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Dual Structures in JBW-algebras
by
Walter Paul Christopher King

Abstract

Let I be a von Neumann algebra acting on a
Hilbert space % with a cyclic and separating vector.
From the theory of Tomita and Takesaki it is known that

there exrists a %*-antiisomorphism of ® onto its

commutant M' in 8(® ). We extend this result into the

realm of JBW-algebras.

We prove: .
(i) If A 1is an atomic JBW-algebra and ¢ a faithful
state in E then Vﬁ is order isomorphic to A,
(ii) If A 1is a JBW-algebra possessing a faithful
trace 7 in E, then VT is order isomorphic to A,

As a corollary to (ii) we also show
{(1ii) For each positive ¢ € V} there exists a positive
a, in A such that

(bya) = (2850 (a5 b) = 8y’ * b, )
Now suppose that ¢ 1is a faithful state in the
predual, E, of any JBW-algebra A, Let a € A; then
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the linear functional bt A = R defined by (b,apa)
= (Uab, ) is in E., Suppose that a in A is a
square and z.ba is faithful on A. Then

(iv) V‘b is order isomorphic to V‘p
a _

Combining (ii), (iii) and (iv) we have

(v) Let A be a JBW-algebra with a faithful trace
T in E, Then A 1is order isomorphic to V‘:r for

any faithful state ¢ in E dominated by x.

We say a JBW-algebra A posseses the Radon-
Nikodym property if, for amy pair §, ¢ in the predual
with

0 ¢ (a2, 9y < (a%, ¢y

for every a in A, there exists a square b in A
such that {(a,§ ) = (Uba,g) for every a in A, It
is known that the self-adjoint part of a von Neumann

algebra possesses the Radon - Nikodym property.

(vi) Llet p and ¢ be two faithful states in the predual
of a JWB-algebra which has the Radon - Nikodym property.

Then V, and V, are order isomorphic.

@ ¥
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Introduction In their paper of 1936, ({16]) Jordan,

von Neumann and Wigner introduced the concept of an

"y - number system" and showed its éonnection to the
formulation bf quantum theory. The notion of an r -
number system was generalized and this generalization
has been extensively studied by wvarious authors, Spec-
ifically let V be a vector space over some field with
a bilinear, commutative multiplication (v,%) » v « W
which satisfies the following identity for every pair

of elements wv,w in V:

v2°(v° w) = vo(vz s W)

V 1is called a Jordan algebra, a name apparently intro-

duced by Albert in 1946. For the algebraic study of

Jordan algebras the reader is referred to [2] and [15].
Alfsen and Shultz recently gave an infinite

dimensional generalization of r - number systems; =

JB-algebrza is a real Jordan algebra, A, which is also

a Banach space whose norm and multiplication are related

by

(1) la bl < Baflvl

(i1) la% = fal’



2, 42y

1it) fa’] < Ja
for every pair a,b, € A,

In a series of papers, [4], [5], [6], and [7],
Alfsen and Shultz have given a complete geometric
characterization of the state space of a C#%-algebra,

In doing so they developed the theory of JB-algebras
and introduced certain ideas and concepts that seem of
relevance for axiomatic quantum theory. This connection
has been further'studied by Araki in [9],

The class of JB-algebras contains the self-adjoint
parts of C¥%-algebras when equipped with the symmetrized
product X.y = 2-1(xy + yx). An important part of
the theory of von Neumann algebras, which has become
crucial in the application of operator algebras to
éuantum theory, is Tomita-Takesaki theory (see [19]).

We have studied the problem of generalizing this theory
in the JB-algebra context.

The JB-algebra generalizatiom of a von Neumann
algebra is a JBW-algebra; this we intrcduce in Chapter I,

§ 1 and prove a technical theorem we will need throughout.

In § 2 we study the order ideal Vb associated with
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a state ¢; for the special case of a von Neumann
algebra we indicate how Vé can be identified with
the commutant of the GN S representation with respect
to ¢. At the end of Chapter 1 we state and discuss
our main conjecture: Vb is order isomorphic'to the
JBW-algebra when ¢ is a faithful normal state.
An atom of a JBW-algebra is a2 minimal idempotent.
A JBW-algebra is atomic if every idempotent is the least
upper bound of orthogonal atoms., In Chapter II we show
our conjecture to be true for atomic JBW-algebras.
Chapter III begins with a consideration of a
JBW-algebra, A, with a faithful normal Erace, T, and
we show_that V} is isomorphic to A.‘ As a corollary
we prove a Radon-Nikcdym theorem for traces. Then under
the hypothesis of a Radon-Nikodym property’we.shbw that
the order ideals associated with any two faithful normal

states are order isomorphic and consequently order isomorphic

to A,

ix



Chapter 1 Dual structures in JBW-algebras

In this chapter we introduce the basic mathematical
structures involved in this work. &1 is dewvoted to
introducing JBW-algebras and recalling previously known
results that will be pertinent to our studies. Neverthe-
less Theorem 1,7 is new. In §2 we define the object Vb
and establish a number of results that set the scene for
the rest of the thesis., At the end of §2 we present and
discuss our main conjecture,

§1 JBW-algebras

A real Jordan algebra, A, is a real vector space

equipped with a commutative, but not necéssarily associa-

tive, bilinear multiplication

(a,b) € AXA - a.b€ A

vhich satisfies the following identity

azo(bta)=ao(b°az)

valid for all pairs of elements a,b of A. (Here, and in

the sequel, az = a3 ° a,)



Given any real associative algebra R with
multiplication (a,b) - ab, we can make R a Jordan

algebra by forming the symmetrised product,

aeb = 2-1(ab+ba)

A Jordan algebra A 1s called special if it can
be embedded as a Jordan sub-algebra of an associative
algebra equipped with this symmetrized product. We note
-immediately that there exist Jordan algebras that are not
special; such algebras are called exceptional. Indeed
Albert showed in [1] that M5

3
over the Cayley numbers - is an exceptional Jordan algebra,

- the hermitian' 3 X 3 matrices

An important composition in the st&dy of Jordan

algebras is the Jordan triple product
fabc} = (a8 ° b)ec ~(co a)ob+ (boc)oa

We will be particularly interested in the foilowing

linear maps U, : A - A defined for every a in A by

U, : x€A ~-{axal € A



These maps will be used throughout our work,
The algebraic theory of Jordan algebras has been
studied extensively. The reader is referred to [15]
for example for an exposition of this theory, An
important result to be found in [15] is Macdonald's
Theorem, Here and in the sequel we will assume that all
Jordan algebras considered possessan identity, 1.
Theorem (Macdonald) Every polynomizl Jordan
identity in three variables amnd 1, which is of degree
at most one in one of these and which holds for all
special Jordan algebras, is valid for all Jordan algebras,

Definition 1.1 ([8]) A JB-algebra is a real Jordam

algebra, A, which is also a Banach space whose norm,

I ||, satisfies the following axioms

(1) Jaed] < [al ol

(@) fa’) = fal?

(i11) §a’] < | a2+ v

for all pairs of elements of a,b in A,
Theorem.2.1. .of [8] tells that the set A - [azla €A}

1

is a proper convex cone in A that organizes’ A into a

complete order unit space whose distinguished order unit
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is 1, and such that the order unit norm coincides with

the given one. (See Appendix B.)

We also note that Proposition 2.7 of [8] states that
the linear maps Ua : X {axal are positive
(U, (A7) < &) for every a ¢ A,

If A is a JB-algebra, we say A is monotone
complete if, whenever {%I}<: A is an increasing net
bounded above, the least upper bound of {aa] exists.

A bounded linear functional,p, on A 1is called normal
if lim(aa s D) = {a, p) for every increasing net

[aa} c A with l.u.'b.aa = a,

Definition 1.2 A JB-algebra which is also a

Banach dual space is called a JBW-é;lgebra.

Let a be a JBW-algebra with predual E
(i.e. E¥ = A), In [18] Shultz shows that A dis monotone
complete; that E 1is essentially unique, in the sense
that it consists of fhe normal bounded linear functionals
on A; and that E is complete as a Banach space,

Let

EV = {peE|(a’,p) >0 VYa€ A}

and

Ks{peE | (1,p) = 1}



Then E' is a proper convex cone with base K and
(E,K) 1is a base-norm space (see Appendix B) whose base-
norm coincides with the original norm,

In the course of this work we will have occasion
to use the concepts and results of the non-commutative
spectral theory developed by Alfsen and Shultz in [4].
The main defintions and results pertinent to our work
are collected in Appendix C,

In [4], Alfsen and Shultz proved that the pair
(A,1) and (E,K) are in spectral duality, and that A
bas a well defined functional calculus for bounded real
valued Borel functions on R. .

We now give four examples to illustrate the concepts

of JB- and JBW-algebras

(i) Let % be an infinite dimensional Hilbert space

and let C (®) be the algebra of compact operators acting

on &. With the operator norm ¢C(®) is known to be a
C*-algebra (see for example [17], P. 46)., However C(p)

is not a Banach dual space. let A be the self-adjoint part
of C®). With the symmetrized product and given norm

A 1is seen to be a JB-algebra; A 1is not a JBW-algebra,



(ii) Llet m be a von Neumann algebra (see Appendix A)
and let A be the real linear space of zall self-adjoint

elements of M, With the symmetrized multiplication

1 |
ey =z /y(xy +yx);x,y€A

and the norm inherited from M, A is a JBW-algebra,
The normal linear functionals of A are the restriction

to A of the normal self-adjoint linear fumctional on xw.

(1iii) M38 can be normed in such a way as to make it

a JBW-algebra. In fact 'M38 is one of the "r~number
systems" introduced by Jordan, wvon Neumagn and Wigner, [16].
JB-algebras thus appear as a generalization of r-number
systems to arbitrary dimension. The JBW-structure allows
generalization of the functional calculus developed by

Jordan, von Neuman and Wigner £for finite dimensional r-

number systems,

(iv) Let H be a real Hilbert space of dimension at
least three and let e be a distinguished unit vector of
H. Let N={e}", so that H = N® Re. Define the

following Jordan multiplication on H:



(a+ae) o« (b+8e) = [ap + (a|b)le +ab +8a

a,béEN, a,B€R,

The set of squares for this multiplication is a
proper convex cone in H with order unit e, The order-
unit norm is equivalent to the inner product norm on H,
With this order unit norm and multiplication, H is a
JBW-algebra, (See [20].)

We will make frequent use of the ¢ (A,E)- and
o (E,A)-topologies on A and E respectively, They will
be refered to as the weak topologies (on_ A and E
respectively), and such statements as 'weak convergence
in A" will mean "o (A,E)-convergence in A",

The strong topology on A is the topology defined

by the family of semi-norms;

9 1/2
a » {a, p) s, P €K,

This topology is a locally convex Hausdorff topology.
From spectral theory (See Appendix C and {4], P. 68) we

know that



Ca,pp? < (a%p), a€A, peEK

so that strong convergence implies weak comvergence, On

the other hand

<az,p) < sup(az,m = llazll =l!aill2
pek

So norm convergence implies strong convergence,

The proof of {18, Lemma 2,2] shows that the dual
Ua* of the map U, defined on P, 2 maps E into E;
hence Ua 1ls weakly continuous, One verifies that A
satisfies the assumptions of [8, §4] to, prove the

following two preliminary results.

Lemma 1,3 [8, Lemma 4.1] For monotone nets in A,

strong and weak convergence coincide, If the net
is increasing,‘and its weak/strong limit exists,
this limit is the least upper bound; conversely,
its least upper bound will be its weak/strong limit,

(1f the net is decreasing similar conclusions hold,)



Lempa 1.4 [8, Lemma 4.1] Multiplication in A

is separately weakly continuous in each variable,
and it is jointly strongly continuous on bounded
subsets,

Lemma 1.5 Suppose [aa} c A is a increasing

net with least upper bound a. Then, for each

b€A, U, b converges weakly to Ub .
o

Proof By assumption a £ & for each «. We can
assume, without loss of generality that a, >0 for all
¢. Then l]aall < lall. Hence aaz converges strongly to

aa.2 and 2, ° b converges strongly to a ¢ b. Thus

A

2
U b = na(aa"b)-a& o b

converges strongly (and so weakly) to U_b.

q.e,d. (Lemma 1.5),

Lemma 1.6 The following two Jordan identities

() f{afci{cbelcijal=1{af czbcz} a}

(ii) fc{af{cbeclale} ={ {cac)}bf{cac} }
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hold in all Jordan algebras.

Proof Let A be a special Jordan algebra, with

maltiplication
L
Xoey = 2 xy+yx).

Then

{xyx} = 2x.(x-¥) -ch y

= XVZX
Therefore

faf{c{cbelc}al} a@:(cbc;c)a

aczbcza

]

{a[czbcz} al

il

By Macdonald's theorem, this identity is valid in

all Jordan algebras.
(ii) is proved in a similar manner,

'q.e.d. Lemma 1.6
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An element u € A 1is called an idempotent if

2
u

u, If A is a JBW-algebra, we know from the spectral
theorem in A(see Appendix C) that A is generated by its
idempotents and that the set, U, of idempotents forms a
complete orthomodular lattice, We denote by v ‘and A
the 1attice operation of taking least upper bound and
greatest lower bound of subsets of y. Note that for
every idempotent u, U, is a positive projection on

A, (See Appendix C.)

The support r{a) of a positive element; a, of A

is defined to be

r(a)zn{u|u2=u, Ua=a}l.

Theorem 1,7 Let A be a JBW-algebra and let aoeiA

be positive, Then, for every a € A with
0<Lag aoz there is a positive b € A such that

Uab=a.
0

Proof Firstly we notice that if the result is true when

r(ao) = 1 it is true for every positive a_ € A, Indeed

0

suppose r(ao) ¢ 1: then a € itnUi( But, by

ao).
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Proposition 2.3 of [5], im U, (ao) is a JEBW-algebra with
identity r(ao), so if the result is true in this
relativised setting it is clearly true in A,

Therefore suppose that r(ao) = 1, Consider the

sequence of functions

-1
¢, () =[°’ oge <m

gL n'lg t < Haoll .

For each n, ¢n(t) is a bounded Borel function

on [0, Ja,ll J. Let

a, |
&g = S b dex
0

be the spectral decomposition of 2qe (See Appendix C.)
A 1is closed under the functional calculus of bounded
Borel functions, so for each n, there exists a unique

cn in A such that

2,1
c, & = S 9,Q)de,
0
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Each c is contained in the weak closure, W, of
the norm closed associative subalgebra of A generxated
by a, and 1 {8, P, 31]. W is also an associative
subalgebra of A [8, Lemma 4.2] and therefore cﬁntains
the positive square root of ¢ for each n, ( cnélz is
contained in the norm closed associative subalgebra of
A generated by . and 1.  Since c € W, this

subalgebra is a subalgebra of W.)

Therefore

{c 1/2 a o 1/2} 1/2 1/2

n " = 2cn o (cn o ao)--cn
= ¢, ® 39
I 2,
0
rlal
= de
n—l A

By proposition 8.2 of [4],

Sﬂ aou de

A
n 1

is an idempotent of A, which we denote by u . It is

a
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clear that u K u when n <m. Let u-= vu . u is
n

the least upper bound of the monotone increasing sequence
u, so {un}:= 1 has strong limit u (Lemma 1.3). By

Lemma 1.5 Uu b converges weakly to Uu b for each
n

b in A, In particular, Uu 8, converges weakly to Uuao.

On the other hand,

Uu % = {unaoun}
n
= % 3
2 ﬂ
= J_1r9e
n

since U €W for each n, and W is associative. For
each p € K,

2
(Uunao,m = g 1A dle, ,pd

n

e
-t ) A d(el,P) 45 U = =
0

(aosp>

by the spectral theory. Hence Uu a3 which we have
n

already seen to converge wezkly to Uuao, also converges
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weakly to therefore Uuao = a. and as the support

303 0

of ag is 1, u=1,

Next, we notice that, by virtue of the comments

following Lemma 4.4 of [8] that L 1/2 L, = L L

1/2
cn 0 0 c.n

for each integer n, where L : A 5 A 1is the linear mapping

Lx +y = Xoy defined for.element x of A, From
the fact that U _ = ZLK2 -L,, foreah x in A,
: b4

it follows easily that U U = U U .
c:nl_/z 24 ag cn1/2

Using this observation and Lemma 1.6, we obtain for

arbitrary b € A:
{cn{aob aO] cn} = {aofcnbcn] ao}

- Layf cn1/2 ‘ cnuz.D %1/2} cn1/23 a3

_ {cnuz{ 1/2,,  1/2, 2y} c_'1:’11/23

aO{ e

= ££c.1/2 a

n 0 cn1/21 btcnljz 20 cnl/2”

{un b un} .
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As noted above [un bun} converges weakly to
{ubu} =b; that is {cn{ aob ao] cn} converges
weakly to b for every b € A,

Now let a € A with 8¢ a( aoz. Since U,
- n

is positive for each n:

2 _ 2 2
0 < Ucnag UcnaO = e, ° 8y = ung 1

i.e, {Uc a]:=1 is a sequence contained in the order
n

interval [0,1] ={a € A] 0 ¢ a< 1} . {0,1] is weakly

compact, so we may choose a weakly convergent subsequence

(v a}® of {U a}® with limit point b in [0,1].
c c
T k=1 n n=1
We claim that U b= a, Indeed, since U is
a a
0 0
weakly continuous, {U U _ a }u converges weakly to
a, ¢
0 n k=1

U, b. But by what was shown above the weak limit of
0

{UaU a}ﬂ is a., That is Uab-—-a.

0% n=1 0

qg.e,d, Theorem 1,7
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Theorem 1.7 provides us with an important tool,
that we use in both Chapter II and Chapter III. It
allows to show that when r(ao) = 1 the linear mapping
U, of A into the order ideal generated by aoz is

0
in fact a bijection onto (see Theorems 2.6 and 3.8).

§ 2 The order ideal associated with a state.

In this section we turn our attention to the study
of the states on a JE-algebra, Let A be a JB-algebra,
and let A% be the Banach dual space ¢f A, The proper

cone in A% defined as

(A*)+ = [¢6A*l<a2,¢> > 0Vace€ A}

will play an important role in the sequel.

A bounded linear functional, ¢ , is said to be a state
if ¢ € (A*)+' and {(1l,¢) = 1. The set of states on A
is a compact convex set denoted by K%,

Definition 1.8 Let ¢ be a state on A; then the

order ideal generated by ¢ in A* dis the linear

subspace of A%

V,o={o € 4% |2 X €RT s.t. -29<0 <KAo)
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Notice that V ;-:—: v, (a*)"  is the smallest face
of (A*)+ containing ¢ (see Appendix B for the

definition of a face), and
vV, = Ilin span [V, 7]
@ i ¢

V¢ is an order-unit space ([3, P. 173]) and

has an order-unit norm:

loll, = inflx €8¥ | -xg < 0 <A 9.

Our study of V 4 is motivated by the following
theorem familiar in the theory of W*- and C*- algebras.

(See [13] and Appendix A),.

Theorem 1.9 Let @ be a von Neumann algebra and ¢

a state on M. Let {%, % J be the G.N.S.
representation I canonically associated to ¢. Then

. A
there is an order isomorphism, #_, of V, £ onto

¢ ¢
1) |}
1r¢(gm )s.a. , where 1r¢(‘.m) is the commutant of 1r¢ (m )

1
in B(g;a) and 7 (m )s.a. i3 its self-adjoint part,

In [14, P, 86], Emch shows there is a one-to-one

correspondence between the positive functionals in V 3
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and the positive operators in 1r¢(*m ) '. The theorem
jtself is stated (without proof) in [3].

When we generalize from C*-algebras to JB-algebras,
it is not possible in general to represent a JB-algebra
over a Hilbert space in the nice canonical way it is
with a C*-algebra using the G,N,S. construction., (Indeed
as is the case with M38, it may not be possible to find
any such representation at all.) Consequently we have
no immediate notion of a commutant, Hﬁwever Theorenm 1.9
suggests we have a suitable replacement at hand, namely V¢.
The work of this thesis is intended to support this claim,
in a way which will be made more explicit later.

Let A be a JB-algebra with state space X%, From
[4,812] we know that K* is strongly spectral (see
Appendix C for the definition of strongly spectral convex
sets), Therefore each a in A has a unique decomposition
a = a -a  with a+, a~  positive orthogonal elements
of A, (See Appendix C.)

For o € K*, we define the following semi-norm on A:

(a+

Pa.(a) s T +<a-3a> .
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By the uniqueness of the decomposition a=a -a

Py is well-defined, and it is clear that Py is
homogeneous, To see that Py is also subadditive, let
a, b€ A have orthogonal decompositions

+ - +

a=a ~a, b=2> -b, and ¢ = a+ b have orthogonal

decomposition c¢ = ¢t - ¢ . Now al > a and bt >b

S0 a+ + b+ > a+ b= c, and by Proposition 9.3 of [4],

at +b > ¢’. In a similar way ¢ is seen to be less

than a + b ; hence we see that

pa(a-i-b) = (c+, ¢) +{c ,q)

< (a"+1',0) +(a:+b-,cr>
= p (2 +p ().

Definition 1.10 A state g € K¥* is sald to be

faithful if (az, ¢) = 0 implies a =0 (a € A).
Let ¢ € X% be faithful, Then it is seen that p¢

is a norm on A, which we will denote by | o { 5 Let
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(), =taca]fal <13

L]
1]

{a€ At | (a,0) =1}
S¢ = CO{C¢U ('C¢)}-

Since ¢ 1is faithful on A, Ces is a base for the
cone A+ and the Minkowski functional, q¢ 3

with S¢ is a semi-norm on A, (See Appendix B.) In fact

associated

it follows from the next lemma that 1, (a)= ]]al]qn for every

a € A:

Lemma 1.11 qu (Arp)l

Proof Let a € S¢; then there exist A ,p€ R

with A+pg =1, and al,aze (':¢
If a=a -a is the unique orthogonal decomposition

such that a =2ia; -p 25.

of a, then as was seen above, Aal 2> a’ and pa, >a

Hence

l1=X4p = (lal,¢)+(p,az,¢)
4 -
> <a,¢)+(a,¢)=[|a[l¢
That is S¢ c (A¢)1
Conversely, since S¢ is absorbing, it suffices

to show l}au¢= 1 implies a € Sq&" Suppose, therefore,
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that [ia[l¢ =1 and let g = (a', ¢) and X = (2", ¢)

at - a” 4s the orthogonal decomposition of a.

where a
Notice that uy + A = (a+,¢) +¢a , ¢) = 1. Without

loss of generality we can assume that neither u or A

is zero, (if either is a € C¢), and define a; = p'1a+

=y "1, - = -
and a, A “a . Then al,azécﬁ, and a=pa, Aazé S¢

g.e.d. Lemma 1.11

For the next theorem we denote by A,, A endowed

with the norm [ °* ﬂ¢ (¢ faithful) and assume that V¢

is endowed with the order-unit norm mentioned earlier.

Theorem 1,12 A ¢* = Vg algebraically and topologically,

Proof Firstly, we note that, from Lemma 1.11, A¢

is a base-norm space whose base is (.‘.¢ = A+ N tb—l(l). It
follows therefore, from Theorem B4 of Appendix B, that
A ¢* is an order unit space with distinguished order unit
¢. Furthermore we have

+

(A:) = {TEA;lr(a)zO a €A}

*
Let T be an element of (Aqb ,-r and define [} 7 ||
. ) o
« infh €RT ] 0 <7 <Ag] to be the normof T in A"

Then for every a € A (= A¢, algebraically):
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Ir (@) < maxfr(a’), r(a)]
< max[ Jllrllf 2@, Wrlll 671
= llir Wl maxt o, 5 §a7l,)
< Wrlll maxl §a™t , Ba7p1

supf{ [¢b,0) | | o € K*} for every b € A,

fl

since [bf

Therefore

Ira)| < izl Qal

*
and we see that + is in (A )+, where A 1s equipped with
its original norm. Furthermore 0 < 7(a) < {li7 lll ¢a.0)

for every positive a in A; and s:I.nc:»ea‘1 V¢+ is a face

%
of (A )+, r is a member of V;- .

On the other hand if ¢ € V;' there exists A € R+

such that 0 o <A ¢g. Let a=a -a €A, Then

¢

IKa,e 3| < Ca + a, o) <A (a" + a,9) =)L|]all¢

sog € A¢*. But {(a,o ) > 0 for all a € A'¢+; " therefore

e
UE(A‘Q).

%
Hence we have shown that V¢+ = (A . ) . Using the
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fact that V& and A@ are both linear spans of their
positive parts we conclude that, as wvector spaces,

v, = &
» = % -

To prove the topological part of the theorem it
is sufficient to show ||| 7 ||| = ﬁ?’“¢ for every
T in Vé. To this end we use Lemma 1.11 in the

following computation:

b7 Ul = swp Ka, |
faly< 1

sup [ {(a,7)] Ja€ Co (Cy u - €}

]

sup {[¢a,7>] | a€cy .

inf{x €R| ACa,0) < <a,T) < (a,0), ac ¢}

1

infQA €RT| Ao o <A p )

= Ilfll¢

q.e.d. Theorem 1,12

We now turn to the normal states on a JBW-algebra,
Let A be a JBW-algebra with predual E, Recall that
%
E consists of all the normal functionals on A. Let K

be the state space of A, and
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*
K={p€K | pis normall}.

%
It is clear that K 15 a convex subset of K .,
%
In fact, K 1is a face of X , as will be seen as a

consequence of the following result.

| *
Lemma 1.13 E' is a face of A )+

Proof It is clear that if X € R+ and ¢, p € E+., then L o ¢E

and o+ pé& E+. To .show that E+ is a fac_:e of (A*)+‘we must
show that p'€ E and 0 L0 £ p-implies thaﬁ c € E+;

i.e. we must show that o' fl'.s;“n-o_:l-:mal. To do so, it is
"¢learly sufficient to show that, whenever {aa} c A is a
monotonically decreasing net with greatest lower

bound 0, g.l.b.(aa,o') = 0,

So let {aa} < A be as described., Then g.l.b.(aa .P)

= 0, and for each
0S<ad30') S(aas P
Therefore g.l.b.(aa,cr) = 0 and ¢ is normal.

q.e.d, Lemma. 1.13

As was remarked after the definition of V¢, vt

¢
" |
is the smallest face of (A )+ containing ¢. Therefore

we see from the preceding Lemma, that, when ¢ is a normal
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state, ?ﬁ is a linear subspace of E,.

Definition 1.14 Let A be a JBW-algebra and let

be 2 normal state on A, Let
1 |2.... | |
v = yvi{vi€Al v =v', (v,p) = 0)
and s(y ) =1l-v s( ) is called the support of ¥

Proposition 1.15 Let ¢ be a normal state on a JBW-

algebra, A, with predual E. The following statements
are equivalent:

(i) ¢ 1is faithful
(i1) s(p) = 1

. a

(iii) W.?'Qs is norm dense in E

Proof From the definition of a(¢ ), it follows that

(s(g), o) =1, and so (1 - s5(g),0) = O. Thefefore,

if ¢ is faithful, s8(g) = 1,

Conversely, if 4 1is not faithful then
H = {a¢€ at | a, 3 ) =01} is seen to be a weakly

closed proper face of A+. By [4, Theorem 12.3] H

is of the form im+Uv for some idempotent, v, different

from zero. Therefore (v,4) = 0 and s(@) < 1 - v;
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i.e. 8(¢) # 1. Thus we have shown (i) and (ii)

are equivalent.

To show that (i) and (iii) are equivalent, we

remark that V

s is norm dense in E if and only if

W,y ® facalcae) > 0¥a € v,7)

is a proper cone in A. ([13], Lemma 6),.

%

Now if ¢ 1is faithful, by Theorem 1,12 V; = A¢ ,

+

so (V6+)* = A which is a proper cone of A.

On the other hand, if ¢ is not faithful, there
exists a € A% such that {(a, ¢ ) = 0. Then {(a, o) =0
for every o € Vb+' and {(~a, ¢) = 0 for every o € V6+l

Therefore both a and -a belong to (V&+)* and (Va+)* .

" So V

s .1s not a proper cone of A,

g.e.d. Proposition 1.15

We now present the main conjecture to which this

work is intended to lend support.
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Conjecture 1,6 Let A be a JBW-algebra and ¢ a

faithful normal state on A, Let Vé be the order

ideal generated by ¢. Then there exists an order

isomorphism, A , of V¢ onto A with A(¢) = 1.
In the case where A is the self-adjoint part of

a von Neumamn algebra in standard form with respect to

a faithful normal state ¢, Theorem 1.9 shows that

the conjecture is true, via the Tomita-Takesaki iso-

morphism theorem between the wvon Neumann algebra and its

commutant. (See Appendix A.) The purpose of this

.thesis is to show that when presented in the above form

the Tomita-Takesaki isomorphism theorem extends into the

realm of JBW-algebras. The tools we use should fhrow

some light on some hitherto neglected aspects of the -

structures involved in the Tomita-Takesaki theory,



Chapter II: The isomorphism theorem for atomic JBW-algebras

In this chapter we prove Conjecture 1.16 for an
atomic JBW-algebra with a faithful normal state, The
chapter is in two sections: § 1 gives the basic definitioms,
and recalls some relevant results we need from the liter-
ature in § 2, the desired isomorphism is proved as
Theorem 2,7, The generalization is genuine since, in

particular it covefs the exceptional Jordan algebra M38.
$§ 1 Basic definitions and results

Let A be a JBW-algebra with predual E and
normal state space K. An idempotent, wu, of A is
said to be an atom if 0 (v {u  , v an idempotent,implies
either v=0 or v = u., Recall from Appen&iﬁ C that
a projective face of K is a face of form CﬁnUé*) N K
for some idempotent‘ v in A, and that two idempotents

v, amd v, are said to be orthogonal if vi vy, £ 1,

Proposition 2.1 ([5, Proposition 1.13]) Let u be

an atom of A, Then Uu has one dimensional range
(i.e. 1iaml, = R) and the corresponding projective
face is a singleton subset of K consisting of an

extreﬁe point,
29
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Moreover, there is a one-to-one correspondence

between atoms in A and extreme points of K.

Definition 2,2 A JBW-algebra is said to be

atomic if every idempotent is the least upper

bound of orthogonal atoms,

We give two examples and é counter-example,

(i) Any JBW-aige‘bra whose dimension, as a vector space,
is finite is atomic., In particular, M38 is atomic,
(ii) Let & be a complex Hilbert space. The bounded

self-adjoint operators, as(ﬁ ), form a JBW-algebra with

the operator norm and Jordan product given by

]

Res§S = 1/2(RS,‘+ SR)
R, 8§ € as(b).
as(ﬁ } is an atomic JBW~algebra., The atoms in
as(ﬁ ) are the orthogonal projectioms onto one dimensional
subspaces of §.
(iii) Let I = [0,1]1 € R. Then 1.°(I, u), vhere 4

is Lebesgue measure on I, 1is an associative JBW-algebra,

ium(I, ) is not atomic; indeed, it does not contain

any atoms,
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The following two results, due to Alfsen and
Shultz, will be crucially important in the rest of this

chapter.

Theorem 2.3 ([6, Lemma 5.5]) Let A be an

atomic JBW-algebra with predual E and normal
st-ate space K. Then there exists a bipositive
map P : E -~ A which is injective,satisfies
o ! ¢ 1 and maps the extreme points of K

onto the corresponding atoms of A,

Corollary 2.4 ({6, Proposition 5.6]) Every

p € K can be written in the form p = I A P
. f=1
where {p; }i _1 are pairuise orthogonal

extreme points of K and {)\ i}c;: 1 @re pesitive num-

bers with § )‘i=1 and () = & A
i=1 . i=1

u, where u _

- S 3 i

is the atom corresponding to Ps.

§ 2 The isomorphism theorem

The main result of this section is Theorem 2.7.
We decompose its proof into two steps: Proposition 2.5

and Theorem 2.6,
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Proposition 2.5 Let A be an atomic JBW-algebra
with predual E, and let ¢ be.a normal state on

A. let p : E~ A be the map of Theorem 2.3;

A
¢ = ¥P(¢) and J(g) be the order ideal of
‘ A
A generated by 4 , Furthermore let V ’ be the
order ideal of Definition 1.8, Then the restriction

of ¥ to V¢ is an order isomorphism of Vy

. PR . A
onto J(¢ ).

Proof Let 3§  be the restriction of ¥ to V¢. By

definition we have

#

v, ={o € E |3 € RT s.t.-dg £ 0 < Apl
J(3)= [a€a|3r R s.t. -Agsagxgl

Clearly, then, the positivity of gy implies that

A
¥, (Vg) CI(g ). 'l is injective and bipositive so it
is only necessary to show 9, 1is surjective.

- A
We must show that for each a € J(¢ ) there exists

¢ €V, such that § (o) = a. Without loss of generality
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A
we can assume that 0 & a ¢ = $(¢.). Let
as= j . A de)‘ be the spectral decomposition of a
R'l'

and ¢« € RT s @ # 0. By the definition of the spectral

decomposition
a(l- ea) £ a

et u,,..., u_ be orthogonal atoms below 1 - e ;
1 n o’

A A
Upsrees U be the corresponding extreme points of K;

n A

and p = g X u,
i=1
Then | | *
n A n
ap (£ u, ) =a B u < ¥(¢)
i=1 i=1

u, < v(¢ ), sinceyp is bipositive, Upon
1 .

using the fact that [p ] <1, we £ind:

n
Therefore ¢ I
i=

y y 2 2, ¢ c A =
leel” > W(s)sp) 2 a( £ w, T u ) = na
i=1 i=1

2

Thus we have shown that there are only finitely

many atoms below 1 - ea . We can thérefore conclude that

= o
& = L U where tui}i= consists of orthogonal

i=1 1
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atoms and B 2 0.

Now
n A n
1 = (1,46 > iz-—-1<1’ "i_ ui) =12=1ui
@ @ 74N
so I p; £ 1, and we see that X p., u, is
i=1 i=1

a norm convergent series in E. Denote this sum by g¢.

© A n A
p@) = ¢ ( 2 “iui) = lim $( 2 “iu')
i=1 L= i=1
n
= lim S p.u.
Now i=1 * 1%

|
1]
.

We use the bipositivity of 3§ again to see that

0L o0 £ 9. 1i.e. c€V¢.

q.e.d, Proposition 2.5

Theorem 2.6 With the assumption of proposition 2.5,

assume further that ¢ is faithful., Then UA2"'1 s
A
A~ J(p) 1is an order isomorphism of A onto J(g )

: A
with ng-l(l) = @,
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Proof To simplify notation we write T for U, 5-1.

-1 -1
A2 1 32 }

T(L) ={¢ = 3 and T is pesitive so

A
T(4) = J(3) .

A 2=1
We begin by showing that the support, r(g 2 ),
A2~
of ¢2 in A 1is 1. Using Corollary 2.4 we can
A bt
write ¢ = 2 A, U, where the u, are orthogonal

i=1

atoms and A, € R are positive with = 1.

li.=
i=1
N
For each i let u, be the extreme point.cf K

| -]
corresponding to u,. Suppose that ¥ u, # 1.
=1

Then ¥ u

is an idempotent less themn 1 and u, =
i=1

i

1~

is orthogomnal to u,, i=1,2, -~ -~ , Evaluating ¢ on

e
u, Wwe get

A
<.u03¢) = (uos IR u )
1

]
r1e
P
P
£

o
L

g

~

= 0

a contradiction, since ¢ 1is faithful, Hence u, =

0,
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and .E= lui =1,

Miltiplication shows that I A.° u, is
1=1

A
the positive square root of g and we claim T u,

n=1
- a2”L
i1s the support of ¢ . Indeed, suppose u 1is an
A2~L a2~t
idempotent such that U, = ¢ . For each
i A2l

i, 0 < }\.i u, < 9 ; therefore, since im+Uu is

a face of A+ (see Appendix C), it follows from the

definition of a face (See Appendix B) that u, € i.m+Uu.

Thus u, Lufor every i and 1 >u > E u, = 1. There-

-1 i=1

J } : . . M )
fore we have shown that T(¢ Y= 2 u, = 1.
L - 1
A
We can now use Theorem 1.7 and the fact that J{p)
is the linear span of the order interval [0, 3] to

A
conclude that T : A - J(@) 1is onto,

Next we show that T 1is bipositive: Let a € J(a)
be positive and suppose a = Th, b € A. Without loss of_
generality we may assume that 0 { a ¢ 3 By Theorem 1.7

there exists c¢ € A+ such that Tc = a. Let icn}:=1

be the sequence of elements constructed in the proof of

-1
Theorem 1.7 with ay = '32 , and recall that Uc Te
A : n
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converges weakly to ¢. Therefore Uc a = Uc Tb = Uc Tc
n n n

couverges weakly to c¢. But Uc Tb 1is weakly convergent
n

to b, and by the uniqueness of weak’ limits in A, b = ¢,

That is b is positive, and T is bipositive,

To show that T 1is injective we must show that
Ta = 0 implies that a = 0, By the bipositivity of T,
a must be positive so the proof will be complete if we
can show that a > 0, Ta= 0 implies a = 0,

a2l 07l
Thus let a be positiveand Ta = { g a ¢ 1 =0.

A _
From [8, Proposition 2.8] [ a 4 a} =0 also. Using

the norm continuity of themap b - {aba} we have

0 = {aga}

It

1lim {a ( El u)a}
n- :I.'l

lim E A [au al
Na® i=1

= T A, lau, a}
=11 1
From [8, Corollary 2,2] we know that A 1is formally
m
real; i.e. £ bjz-—- 0 implies b.=0 for j=1, -, m
i=1 I

for any {b. }:] 1 € A. Therefore, since [auia} is
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positive for each i, we will have {aui a}] = 0 for

al}

every i and 0 = Z [auia] = {a

[--]
E u
1 i=

1 i
= {alal = a2. Hence a is zero.

q.e.d. Theorem 2,6

Combining Theorem 2.6 and Proposition 2,5 we have

the main theorem of this chapter:

Theorem 2,7 1Let A be an atomic JBW-algebra and

let 3 be a faithful normal state on A. Then

there exists an order isomorphism N: Va - A with

N{@) = 1. .

Proof By Proposition 2.5 we know that there exists an

order isomorphism 3, = zblv of V., onto J(p) with

‘\ 2

bg®) =p. Let a= . Then Theorem 2,6 shows that

U, is an order isomorphism of A onto J(@) with

Ua l=¢, Therefore the map N = gbo o Ua-l is an order
isomorphism of V¢ onto A with N(@) = 1.
q.e.d, Theorem 2,7,



Chapter II1 The isomorphism theorem for finite JBW-

algebras

A JBW-algebra is said to be finite when it has
a faithful normal trace. In § 1 we define the notion
of a trace for a JBW-algebra, A, and prove that when T
is a faithful normal trace on A then v, is order
isomorphic to A. We also prove in this section a Radon-
Nikodym theorem for faithful normal traces., In § 2
we discuss a property we call the Radon-Nikodym property.
This property is known to hold for all von Neumann algebras
We extend the isomorphism theorem to those normal states
on a finite JBW~algebra dominated by a ;aithful normal
trace, and also prove that for any JBW-algebra satisfying
the Radon-Nikodym property V, and V, are order isomorphic

¢ P

for any pair of faithful normal states, ¢ and 3.
§ 1 The order ideal associated with a trace

The definition of a trace is based on the following

result.

Lemma 3.1 Let A be a JBW-algebra with normal

state space K. Then for each 7 in K the follow-

ing are equivalent:

39
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) % %

(i) Ul ST P U T =7 for every idempotent
v in A,

L | * * [ ]

(ii) (u, Uv Ty = (v, Uu T) for every pair

of idempotents uw and v in A.

Proof To show (i) implies (ii) we notice that for
each idempotent w in A, from [Theorem 12,2, 4],

we have

@ = -1 -
wea = 2 (I+Uw Ul-w)a

for each element a in A,
Therefore given idempotents u, v € A and using (i)
*

# -1 %
{u, Uv'r) = {u,2 (I+UV-U1_V)T)

(uewv,7)
| -1 * *
= (v,? (I+Uu - Ul-u) T )

*

{v, Uu 7)

We now show {ii) implies (i). It follows from
the spectral theory (See Appendix C) that the subspace of

n
A consisting of elements of the form £ }Li u, where n
i=1

is finite, Ay € R and u, are idempotents, is norm
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dense in A, Assuming (ii), on this subspace we have

z U*‘T U*
(_z=lkiui, I T
n * %
=iz=1)._i (u,va-_!- l_v‘r)
%
= ':‘.1 Jti {v+1l=~v, Uu T
i=1 i

n
= ( i'a.‘:lli u., 5.

for any idempotent v € A, Therefore the continuous
%

%
functions 7 and U 7 + U, __ T agree on a norm

a

dense subspace of A and so must be equal,

q.e.d. Lemma 3.1

Definition 3.2 A normal state satisfying the

equivalent conditons of Lemma 3.1 will be called
a trace, A JBW-algebra which has a faithful

normal trace is said to be finite.
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We give three examples and a counterexample,

(i) Let I ={0,1} and let fn(I;y) be the space of
(equivalence classes of) essentially bounded Lebesgue
measurable function on 1I. f“(I,p ) 1s an associative
JBW-algebra and every normal state on g (I,p ) is a
trace,
(ii) 'M38 is known to possess a trace, Indeed this is
a particular case of the easily verifiagble fact that
every JBW-algebra whose vector space dimension is finite,
is finite in the sense of definition 3.2

(iii) If A is a non-associative JBW-algebra (even if it
is finite dimensional), then A possessés normal states
that are not traces. As an example let A be the JBUW-

algebra consisting of the 2 x 2 hermitian matrices over

¢ with symmetrized product
- A=l
a°be=2"(ab +ba)
(2, b in A). Consider the faithful normal state, 4,
on A defined by

{(a,¢) = tr(da)

where § is the matrix:
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A 0 (0 <A <1)
0 1-x .

If A ¢ 2-1, ¢ is not a trace.

(iv) We give an example of a finite JBW-algebra which
is not finite dimensional. The reader is referred to

[10, Chapter 1, § 9] for the details of the comstruction.

Let Z be the one dimensional torus group and

G the discrete subgroup G = {nf (mod1) | n €N , 8
irrational}. Let G act on Z by { - s§, s € G,

£ € Z. Let p be the usual Haar measure on Z. Then

for each s € G, the action { - s ¢, defines a measure
b, on Z by
pS(E) = pw(sE), for each Borel subset of 2Z.

[T is equivalent to p; let rg be the Radon-

Nikodyn derivative of T with respect to pu:

dp,s () = rs(g) dp (€) (note: rs(g) = 1)

We define the following unitary operator on

® = 1%z, ) :
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1/2 1
U k) (&) = rs_l(g) k(s ¢&).

$§ = Us is a unitary representation of G in ®(%),

Foxr each s € G let 538 be a copy of % and

Js : ﬁs - Qs an isometry. Let # be the Hilbert

space direct sum of @s)se g+ Let R € 8(R); then

R has a matrix representation (Rs, t)s, £S G where

o
Rst = ‘JsRJt E 8(g).

Let ® = L7 (Z, 1) aud for each f € ® define

(£) (RS t) s, £ €6 where .

0, s# t

st
Af, s=¢t

and for each y € G- define UY € 3(33.) by Uy- = (Rst)s,t €G

4

0, st™t 4y

o
I

st

=1
4] st =
|y 4

Let % be the von Neumann algebra generated by



(fl) U.‘iu + ... + (fn) Uy_r1

£

1290 anTn, in 8(H). Then 7| 1is a finite

von Neumann algebra, Indeed it can be shown that X in

R is represented by a matrix of the form

T o, U )

st st

where Ty is in * for each y in G, Further, if

X is positive

Te=JexJeEED1

where e'is the identity of G. Therefore 1et T(x) be

defined by

T(x) = [, T(s) dp (5)
T 1is a faithful normal trace on M with -1'( (£))
= SZ £(s) dg (s) for each £ inMM +,

The self-adjoint part of M with symmetrized
product is a finite JBW-algebra,
For the rest of this section 7T will be a faithful

normal trace on a JBW-algebra, A. Let V'r be the order
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generated by 7 inthe predual of 'A. For each idempotent,
v, in A, the map Uv : A+ A 1is a positive projection.

In the language of non-commutative spectral theory Uv

is a P-projection and it has a '"quasi complementary"

P-projection, U s Such that

l-v
T + A
kerUv-lmU]__v, ker Ul-v_ im Ux’r'

The other defining characteristics of P-projections

are (See Appendix C):
fu,l < 1, g, M4 <1

and for every positive normal linear fumctiomal, o ,
* 4+ %
= P €
i U, ol = ol ¢ €im U

*

%*
fuy o ol =locll ® ¢ € im U

l=-v
By Lemma 3.1,' 0 < U:'r < 1 for each idempotent
*
v € A, Therefore U* V = V‘r and since Uv is

l., :
v VT T

weakly continuous, U IV is a-(VT, A) - continuous.
T

*
We assume in the sequel that A'r and V'r are

equipped with the norms in Theorem 1.12, and we thus have

P
A = V'r. algebraically and topologically. Hemnce VT
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is endowed with its order unit norm and AT is A
with the nom [ afl = (at, 7y +¢a", 1y, a=a -a
being the orthogonal decomposition of a in A, Let

c, ={aEA:| (a,7) =13.

The notion of weak spectral duality is defined in
Appendix C. The-structures involved in this definition
will be illustrated in the course of the proof of the

following result,

Theorem 3.3 (A‘r’ CT) and (V-r’ T) are in weak

spectral duality,

Proof Let v be an idempotent of A and denote by

QV the restriction of U:: to V,r . As was noted Ia'bove
Q’v is a weakly (that is a(v,r ’ Ar) - ) continuous
positive projection on V_. That l]Qv[[ < 1 follows
since O is positive and 0 Q r 7. Furthermore
. 4 |

. + o+ + %
im Qv = :LmUv ker U ker nl-v’

levy
follows from the facts that Vr’ when regarded as a
subspace of E, is norm dense., and Qv is a-(VT-,.A‘_)-continuous.

Therefore to show that ﬂv and 01 vare quasi-complementary
P-projections on V_, it is necessary to show that
#

% + %
i it 1 = Wall =
(i) unv a !:1_ Pall r a€ im Qv
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(i) §ay__al = lal, ¥ ae€ g

v T

when a € A'r is positive,

The proof of (i) is as follows, If a € A is

%
positive, so is Qv a. Therefore, assuming

o, all, = fal,

we have

& % *
(a,U_T) = (Q, a, 1) = an aﬂf i auf

%
=(a,;ry =<a, U7 + U __7)
%
and thus (a, Up v 7 » = 0. By the faithfulness of
% %
T,D=U1_va = nl_va, and a € ker+ nl-v
R

(ii) 1is proved in a siwmilar manmer,
Having that each idempotent v € A gives rise to

a P-projection Qv on V'r' we will show that every

VT -exposed face of C-r (See Appendix C for the definition
%
of exposed face)is of theform (im+nv Y n C. for some

idempotent v in A, Indeed if F 1is a Vr-exposed face
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of C., then, by definition, there exists ¢ € Vs

0> 0 with ¢ =0 on F ande > 0 on CT\ F. Let

H" = y (AF). Then H' =[aEA+| (a,g) = 0}

A>0
and we see that by considering ¢ to be an element of
E, i is a weakly (i.e. o (A,E) -) closed face of

A+. Now [4, Theorem 12,3] tells us that there exists an

idempotent - v of A such that H+ = im+ Uv’ and we

= (imTa*
see that F = (im ﬂv) n C‘r'

Since VT is a Banach duall space Vr is monotone
complete, and to complete our proof it remains to show
that every o € v has an orthogonal de?omposition with
respect to the duality (VT, Ar) (See Appendix C, Theoxem C 2)
let ¢ € V.5 by [4, Theorem 12.6] there exists am idempotent

* % . *
v € A such that -.0‘=Uva + U LT with Uvor

* +
and -~ Ul_vo' in E Recall that ﬂv and Ql-v are

restricti £ U"ir U* t \'S therefore
ons o :
icti o v 1-v 55 efo

+ -
=0 =~0 , where

+ -+ - | +
o = Q,0€E , ¢ =-0,_,0€E
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is the orthogonal decomposition we want,

Thus V - and A‘r are in weak spectral duality.

q.e.d, Theorem 3.3

Corollary 3.4 There is a onme-to~one correspondence

between the lattice of idempotents in A and the lattice
of projective units in VT. This correspondence preserves

the lattice operations,

Proof If v is an idempotent of A the coxrresponding
projective unit in V'r is QVT' « On the other hand from
the proof of Theorem 3.3 we know all projective units are
of the form Q u'r' for some idempotent u € A. Further-
more we know that the quasi-complement of ﬂu'r is
01 eyt s 80 the correspondence preserves orthocomplementa-~
tion in the lattices,

Suppose u and v are idempotents of A with

R I
u < v, Then im g, ¢ im U, and we see that

. ¥ +. . . .
im QvC im szv, i.e, Qu‘r < Qv'r e Similarly we
see that the converse is also true.

g.e.d. Corollary 3.4

With Corollary 3.4 at hand we are able to construct

the following map k : A - V'r
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let a = S)‘de.\ be an element of A; foxr

each A € R, et T, = R, 7. Corollary 3.4 shows
A

that {1 }

\hegp IS 2 spectral family in V_. Define

k(a) = S A dTl :+ by [lr-, Corollary 6,10] this is a

well-defined element of V sthe weak Spectral dual1ty
of V. and A “implies that k: A=V, is surjective.

Clearly, also k(a) = 0 if and only if a = 0.
As yet we do not know if k is linear: this is

proved in the following theorem.

Theorem 3.5 The map k: A - VT Just constructed
is a linear order isomorphism of A onto V_ with
k(l) =

Proof Llet AO be the subspace of A consisting of

those elements of the form I: A.vl, where n 1is finite,
i=1

li is in R and v, is an idempotent, i=1, ..., n.

n

For a = A.v, in A_. and for each idempotent, u,
. i'i 0
i=1 :
we have
1 * 11 *
(u,z xin T)=(u, £ A, U 7)= I (u,U T)
i= i i=1 i i=1 i

and thus, by Lemma 3.1:
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*> { o
Ai(vi, Uu‘r = {a, u-r).

33 n
(v, 2 A 8, T) = .Ezl

i=1 i i

Now the idempotents of A are precisely the extreme

‘points of the order interval [0,1]([4, Proposition 8.7]).
n

Thus, if a in AD; a = 1? i&iyi, is positive, by the
. n
Krein-Milman Theorem = Z .li nv'T is a positive
i=1 i

element of V}. Therefore if we define kO: AO - V; by:

n m
Ky(®) = £ p; 0,7, b= I pou €A

i=1 L i=1 i

0

we see that k., is a well-defined, positive, linear

0
map, and since kU(l) =71, of norm less'than or equal
to one.

Ay is a norm dense subspace of A by the spectral
theorem so L has a bounded linear extension to A.
On the other hand, again by the spectral theorem, the
set of elements with finite spectrum is norm dense in A,
and clearly for this set Ky and k coincide, Thus
the unique extension of ko is in fact k.

Thus k: A - v, is a bounded linear positive map

with k(1) =T and k 1is surjective, We have already

remarked that k(a) = 0 if and only if a = 0; thus
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k is bijective.
To conclude we need to show that k is bipositive.

This will clearly follow if we can establish the formula

(a,k(®)) = (b,k(a)) (*)
for every nair a,b € A,
n
To do this we first suppose that a = Z A.v.,
=1 L 1

b = 3 e A
= u_u .
j=1 |

Again using Lemma 3,1, we obtain

m
(a, k(®)) = 2 L"kiuj(vi,ﬂu . T
i=13j=1 j
g IEn A 4 U* T)
= -u "V'., .
i=1j=i L j L ﬂj
g % A (u U* T)
F—] .‘J‘
j=1j=1 2 33 vy
n m
= % Z A palu,, Q_T)
j=1§=11% 3 3 v
= (bs k(a)>

By the continuity of k& and the norm denseness
of Ay in A, this extends to A giving (%).

q.e.d. Theorem 3.5
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Remark This theorem proves Conjecture 1.16 is true in
the case of a faithful normal trace,

We close the section with a Radon-Nikodym theorem
for faithful normal traces; we will need the following
lemma, |

Lemma 3.6 Let 7 be a normal trace on a JBW-

algebra, and let u and v be orthogonal

idempotents; then for every a € A:

(1) (ve (vea), ) =(U_ a,7) =(vea,r)
(ii) {uac- (Voa), TY) = 0
Proof (i) ( v o (v-a),7) .

= (2"'1(1+UV -0 ) 2-1(I+Uv-Ul-v)a,r)

= 4-1((1-1] ct30.) 2,

1 -

-1 * %
= &7 (a, @-U; ) 7 +30 1

and upon using Lemma 3.1

%
{(vo (Ve 3),T) (a,Uv'r)

= (UV a, T)



55

= {V » a, ‘l")
(i1) (ue (vea), r) = (2L +U -9y, _)a, U, 1)

- * ® _%
= 27 a, U] ) + ¢a, U, Uor)

- {a, U*_ U* Y]

1-v u
* *
Since u and v are orthogonal Uv Uu = 0
* * *
and Ul-v Illt1 = Uu . Therefore {(u. (v-a), r) =0

indeed,

q.e.d, Lemma 3.5

Proposition 3.7 Let T be a faithful normal

trace on a JBW-algebra A, Then for each positive
o € V_ there exists a positive b € A such

that (a2, 0) = ({bab},r) for every a € A,

Proof TFirstly suppose that b € A is positive and

| n
has finite spectrumjthat is b = I Juivi where
i=1

Ay 2 0 and v, are pairwise orthogonal idempotents,

1 *
We have for every a in A (a,k(b)) = {(a, E liuv T
1 i

1=

n n 2
= i}:= 1).i(Uvia, T) = iE= lli(Qvi (vi ° a) = v a, 7



2P el vyl )
= . v ° V., ea T
i=13j=1 to1 J '
-iz=1<()tivi ) o a,7v)
n 21 n g7l
= (2 & A v ¢ ( Z A v ). a) s T )
j=1 + % ( i=syd
. 1 2"1 2
- ((12=1A.i vl o 8, T)
-1 -1
= ({ b2 a b2 3, T ).

Now let ¢ € Vr be positive; then by Theorem 3.5

there exists a positive b € A such that k() =g.

By spectral theory there exists a sequence {bn}n=1
of positive elements with finite spectrum in the weakly

closed associlative subalgebra of A generated by a and

1, converging to b 'in norm, Tﬁis subalgebra is isometrically
isomnrpﬁic to the continuous functions on some compact o
Hausdorff space. Therefore bn B will converge in norm to bz-l,

-1 -1 .
and for each a € A, [bnz a bnz 1 will converge

weakly to {bab} (Lemma 1,4). Thus we have
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(a,g) = { a, k(b))

=, { b, k(a) )

lim (bn, k(a) )

) v Y. )

i

1lim €a, k(bn))

n=-

and thus by the previous argument

(a, o) = :;imm ([bn a b, Yo
= [bab} s T 7
for every a in A, )

q.e.d. Proposition 3.7

§ 2 The isomorphism theorem and the Radén-Nikodym Property

Theorem 3.8 Let A be a JBW~algebra with predual

E and let ¢ and P be two faithful normal linear
functionals on A, Suppose that there exists a

positive a, € A such that ({a; ba,}, ¢ ) = ¢b, #)
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for every b € A, Then there exists an order

isomorphism A : V, =V, such that A(¢ ) = ¢.

¢ P
Proof By assumption (b, p ) = (Ua b, 9y for every
0

%* %*
b€ A; that is P =U ¢, U is positive, so

a a

0 0
U* | r Vv v Let A = U* l Obviously
a5 v¢ ® ) 2y Yy

A{®) =9 and A is positive,

To continue the proof we will need three lemmas,

Lemma 3.9 The support of a,s r(ao), is the

identity in A,

Proof Let u & A be an idempotent such that U,2g = 2p-

Then U = 0 and by [8, Proposition 2.8] U, (1 - u)

1-uaO 0

= 0, Therefore {(l1-u, ¢) =(Ua (L-u), ¢) = 0 and
0

by the faithfulness of P, u= 1, Thus r(ao) = 1,
g.e.d. Lemmza 3.9

Let J(ag) be the order ideal of A generated by

ag . It follows from Theorem 1.7 that Ua (A) = J(az).
0
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Lemma 3.10 LA A -'_J(ag) is injective.
0

Proof The reader will observe in the proof Theorem 2.6
that atomicity was used only to show that the support
of the element of A considered there was the identity,

Therefore that proof applies in the present case .as well.

q.e.d, Lemma 3.10

Lemma 3.11 A 1is injective.

Proof It follows from a result of Edwards ([12, Lemma 3.1])

that Ua (A) = J(ag) is weakly dense in A, By a
0

%

standard argument [11, VI] Ua : E - E 1is injective,
0

and thus so is A, p

.

q.e.d, Lemma 3.11

We are now ready to complete the proof of Theorem 3. 8,
It remains to show that A is surjective and bipositive.

To this end, we recall the following notation from I, § 1 .

-1
0, 0t<n
¢n(t) =
t-ls n-IStS“aou
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I al

n
where ag = S Ade, is the spectral decomposition
0 :

of ay. For each b € J(ag) the weak limit of

[cnb Cn}n= ; is the element a € A such that Uaoa = b,

Also “ 30 “

n S -1 deh

i

=]
1

is a monotone increasing sequence of idempotents with

least upper bound 1. (See Theorem 1.7.)

Let p be an element of V’l‘ such that 0 <p £ ¢.

%*
For each n define p, © Uc P. p is positive for
n L]

1
-

for every n. Let a€ A and suppose a = a’ - a

is its orthogonal decomposition; then

I<a, p 3| < max (&', o), <a™, p )}

< max {<a, U 9y, <aF, U 4]
I n

max {(Ua Uc a+, 8, (Ua Uc a, ¢y}
0 0 ™

= max {(U 2, 8), (U, a, 0 )]
hs § n

£ mx{faffol,lalllel
= fal§el.
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By the principle of uniform boundedness

lim {a, Py > = 0 uniformly in n (%)
“ a“-- 0

For each b in J(ag), lim (b’pn> exists; in
n—.

fact, by Lemua 3.9 and the remark following it, there

exists a in A+ such b = Ua a and
0

lim (b, p_} = lim (U_ b, p)
Il @ 1= n

- cn 20

1lim ('ilu a, g
Il =@ n

(a, p).

Therefore we define

o : J(ag) N A+-R
by o(b) = lim (b,pn), By ([12], Lemma 3.3) the
N=®

norn closure of J (ég) N At is A+, and wusing (%)

we can éxtend ¢ ‘to al of A+. Notice that for a € A+,
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o(a) will be 1lim (s, P e
=%
To extend ¢ to all of A, we write a € A as

'a+ - a  (its orthogonal decomposition) and define

o(a) = cr(a+) ~c(a), Now ¢ : A-R is well-defined

and o(a) = 1lim (a, pn) for each a € A. Each Py

II -

is linear, so ¢ will be, Moreover for a positive

it

0< [o(a)] lim {a,p )

s

lim (Uc a, pd
N> n

< lim (U_ a, )
e cn

1

1lim (Ua Uc a, ¢
n-o 0

1im (Uu a, ¢)
n=* 0

(a, 9 ).

N “

Hence, ¢ 1is a positive, continuous linear

functional on A dominated by' ¢; i.e. 0 € V¢. It

%
remains to show Ua' ¢ = p. Foreach a2 in A we

0
have:

(a, U ) (U_ a )
3 c = s O
20 4
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|

) %
lim (Ua a, U, p)
nNes 4] n

= r];imn(UcnUaoa, p

= {a,p).
Hence A 1is surjective and bipositive, and the proof is
comblete.

q.e.d. Theorem 3.8

Corollary 3.12 TLet A bDe a JBW-algebra with a

faithful normal trace 7. Suppose that ¢ 1is a
normal state on A which is dominated by 7,

Then there is an order isomorphism of A onto V.

¢

4

Proof From Proposition 3.7 we know that there exists an
element b € A" such that (a, ¢ > ={{bab}, 7) for
every a € A, We now apply Theorem 3.8 to find an order

isomorphism of V} onto Vé. It follows that since A

is order isomorphism to V}, it is also order isomorphic
to Vb.
q.e.d, Corollary 3,12
Let A be a JBW~algebra. We will say that A has
the Radon-Nikodym Property if given a positive normal

linear functional ¢ on A and any positive normal linear

functional ¥ on A dominated by ¢ there exists
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a positive element b in A such that

(3: lb) = ([bab}s ?)

for every a in A, 1In view of Theorem 3.8 we will
study the class R of JBW-algebras satisfying the
Radon-Nikodym Property.

We note immediately that the JBW-algebras tﬁat are
the self-adjoint part of a von Neumann belong to the class
® ([17 , Theorem 1.24,3]). We also remark that the
property sbove is a quadratic Radon~Nikodym Property;
we draw the reader's attention to Appendix D, where it

is shown that all JBW-algebras satisfy a linear Radon-

a4

Nikodym property.

Theorem 3.13 ILet A be a JBW-algebra of class T,

and let ¢ and y be faithful normal states on A,

Then V, and V, are order isomorphic,

@ P

Proof Consider the faithful normal linear functional
p=¢ +y. p dominates both ¢ and p. Therefore
since A is of class® , we can use Theorem 3.8 to see

that Vw o~ Vp =V, , where = indicates order isomorphism.

¥
Corollary 3.14 Let A be a JBW-algebra of class

m, and let ¢ and P be normal states on A,
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with supports s(p) and s ) respectively,
Then if s(@) = s@®), V¢ is order isomorphic

to Vw.

Proof Let v = s(g)=s@®) and B= imUv. B is

a JBW-algebra which clearly is of class t , and ¢

and ¥ are faithfull normal states on B. Furthermore,
both V¢ and Vw are subspaces of imU: , the predual

of B. Hence by the szbove theorem, V, and V, are

¢ ¥

order isomorphic.

Corollary 3.15 Suppose that A is a finite

JBW-algebra, and further that A is of class %,
Let ¢ be a faithful normal state on A.' Then

V¢ is order isomorphic to A.

Proof A 1is finite so there exists a faithful normal
trace, ¥, on A, By Theorem 3.5, V*r and A are order
isomorphic, Applying' Theorem 3.13 to ¢ and 7, we get
the desired result.

q.e.d. Corollary 3.15
Remark Corollary 3,15 proves Conjecture 1,16 for a

finite JBW-algebra of class @&,



Chapter IV Conclusion

Iq their study of JB-algebras, Alfsen and Shultz
have developed axioms satisfied by the lattice of P-
projections of a JBW-algebra, As they pointed out,
these axioms have an interpretation in the study of
axiomatic quantum theory. In [9], Araki made this
connection even more concrete by giving a characterization
of the state space of a quantum system in terms of a
lattice of filters with axioms closely resembling those
of Alfsen and Shultz for P-projections.

On the other hand, the Tomita-Takesaki theory of
modular algebras has proven, in the last.tem years, to
be of fundamental importance in quantum statiséical
mechanics, One aspect of this theory is to establish
under favorable circumstances an isomorphism between a
von NEﬁmann algebra and its commutant.

The first aim of this thesis was to find a general-
ization of the commutant of 2 von Neumann algebra in the
more general setting of JBW-algebras. 1In connection with
the above remarks our formulation seems to have the

advantage, in the study of the foundations of quantum

theory, of only involving objects and operations that have

66
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physical interpretation. Indeed we were initially
motivated in our study by a problem in non-commutative
ergodic theory,

In general, a JBW-algebra does not have a concrete
realization as an operator algebra acting on scme.
Hilbert space; the notion of commutant therefore has to
be revised from the start, We achieved this in the
following wmanner. Let A be a JBW-algebra and ¢ a
normal state; we have studied the order ideal generated
by ¢ in the dual of A, We denote this order ideal by
V¢. Via Theorem 1.9 we have seen that whem A 1is the
self-adjoint part of a von Neumann algebra X, then
in a natural manner V, can be identified with the self-
adjoint part of the commutant of the G,N.S. representation
of ® with respect to ¢,

Our main conjecture is that when ¢ is a faithful
normal state, there éxists an order isomorphism of A
onto Vé.

In the case where A is an atomic JBW~algebra it

was shown that indeed there does exist an order isomorphism

of A onto Vé for every faithful normal state @, and
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the order isomorphism was explicitly constructed, We

point out that this case includes the algebras &(p),
gy

where & is a complex Hilbert space and the exceptional
algebra, M38. Furthermore, we remark that this case
covers the quantum systems investigated in [9], as the
systems studied there are finite dimensional.

A JBW-algebra issaid to be finite if it possesses
a faithful normal trace 7. The example (iv) comnstructed
on P43 shows there exist finite JBW-algebras that have
no atoms, We have also proved the conjecture to be
true for a faithful normal trace, and as an application
proved a Radon-Nikodym theorem for normal traces.

In Chapter III, § 2 it was shown that if two

faithful normal states ¢ and $ on any JBW-algebra A

are related by

(a, ) = { {bab} ,9), a€A
for some fixed positive b in A, then V¢ and V¢ are
order isomorphic,
A JBW-algebra, A, is said to satisfy the Radon-Nikodym
Property if given any normal state, ¢, on A and any

positive normal linear functional 3§ dominated by ¢

there exists an element b of A. such that
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{a, ) = ({bab}s¢>s a €A,

The class of JBW-algebras satisfying this property is
denoted by R.

Let A be a JBW-algebra in %, Further, let ¢
be a faithful normal state on A. Then we proved that
in this case also A and V& are order isomorphic,

The results we have obtained are reminiscent of
those parts of the Tomita-Takesaki theory obtained by Dixmier,
{10, Chapter ITII, § 1]. On the other hand our aim has
been to extend Tomitaz-Takesaki theory from operator algebras
to abstract JBW-zlgebras using methods taken from the
theory of partially ordered vector spaces and non-commutative
spectral theory. In addition to providing a ge;ruine
generalization, our methods also throw light into the basic
structures involved in the isomorphism theorem, not just

for the generalization, but also for operator algebras

themselves,
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Appendix A Tomita-Takesaki Theory

The general references for this appendix are: Dixwier

[10], Sakai [17] and Takesaki [19].

Let & be a Complex Hilbert space and let M be
a subalgebra of @) .M is said to be a *-subalgecbra
%
if whenever x €M, x €M 3slso, Let M' be the

commutant of M in B®@R); i.e,

M ={x'€a@®)] x'x =xx' vx €m }.

In general we will have

sm c;:mll -— ﬂ(iv) =

LA IR

MY o gqptre =‘m(v) = .

where T" = @")', etc.

Definition A1 A von Neumann algebra acting on ¥ is
a *-subalgebra m of B8@®) which coincides with its
bicommutant ‘.

It ¢an be shown that a von Neumann algebra M is

a Banach dual space whose self-adjoint part, ﬂ]ls a

%
={xeém | x=x} s, 18 a JB-algebra with product x o ¥y

-1
=2 “(xy +yx), xX,¥ Ems°a.

72
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let M be a von Neumann algebra acting on a
Hilbert space %, A vector £ € 8 is said to be cyelic

for M 4if the closure in % of the subspace

Mg ={x£]| x€m}

is © itself. n €% is called separating if x €m,
X = 0 dimplies x = 0. It is knownthatifn€ & is
separating for M, n 1is cyelic for Mm'., If there exists
a vector £ € ¥ which is both cyclic and separating for
M, ® is said to be in standard form, (Via the Gelfand-
Naimark-Segal representation it is always possible to
represent a von Neumann algebra on a Hilbert space in

-

such a way that the representation is in standard from.)

Theorem A2 Let M be a von Neumann algebra acting on

a Hilbert space R, and let ¢ € ® be a eyclic and
separating vector for M, Then there exist a unique
antilinear isometry | J: ® . & with Jz =1 and J¢=¢
and a positive, self-adjoint (in general umbounded but

densely defined and invertible) A: ® - & such that

m=am'J, O&FTm AN - @
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%
for every t € R, Themap x- Jx J is a *-anti-

isomorphism of M onto M' and for every ¢ € R, the

map X - Alt X Alt is a *-automorphism of M,

This is the main theorem in Tomita-Takesaki theory
(see [13]). We give here only a sketch of the construction
of the operators J and & .

One begins by defining two densely defined antilinear
operators Sy: Mg - ® and F,: Mg - 2 by Sy ¢ X& -

% %
~x ¢ and Fy: x' ¢~ x' ¢, One then shows that §,

is preclosed and its adjoint F is an extension of Fye
Further the minimal closed extension, S, of S0 satisfies

%
S =F and szg=g, F2n=n for ¢ and 7 in the

A

domains of F and S respectively.

Let § = J &2-1 be the polar decomposition of S,
Using the above relations between S8 and F - (A= S*S =FF*)
- one Sht‘)WS that J 4s an anti-linear isometry with |

32=1; Jait=AJ‘tJ for every t €R; and JE = ¢

= g.
The construction of J and /A emphasizes that the

proof of the theorem, as its traditional statement given
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above, depends in an essential way on the fact that

is an algebra of operators acting on a Hilbert space,
Moreover the details of the proof involve:  an amazing
amount of tricky amalysis of one complex variable, a
field of mathematics one would hardly expect to be called

upon in the von Neumann theory of rings of operators,



Appendix B Partially ordered vector spaces

The general references for this appendix are
Alfsen [3] and Ellis [13].

Let X be a real vector space. A non-empty subset
X' of X is called a cone if whenever X,y € X+,
x+y € £ and Ax € X for every non-negative real X,
and -x € X' jmplies that x = 0. Let X" be a cone
in X. X 1is said to be directed if X = xt - X%. We
define a partial ordering on X by writing y < x if
X-y€ x"' (x,y € X). This ordering is said to be
archimedian if y <A x for some x > 0 and for all
positive real A 1implies y £ 0. Foragiven x € X

bt

the set
Jx) ={y € X |3xr €rRVs.t, -Ax<y<AR])

is called the order ideal of X generated by x. 1If
J(x) = X, x is called an order unit, A convex subset,
K, of X+ is called a base of X+ 1f X+ = U (A XK).

: AER
A face of X" is a subset of X' of the form F = Xt n = ’
where X+\F_ is convex,for some subspace H of X, This
is equivalent to F being a subcone of X+ with the
property that 0 ( y < x and x € F implies y € F.
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Definition B1 Let A be a real linear space partizlly

ordered by a positive cone A+ such that A is directed,
Let e be a distinguished order unmit in A and consider

the seminorm
fal = inf{r €RY | -regacrel.

»

If A is archimedian ordered then { *} is a

norm, and (A,e) is called an order unit space.

Proposition B 2 Let (A,e) and (A',e') be two order
unit spaces. Suppose that k: A - A' 1is a vector space
homomorphism such that k(e) = e'. Then K is continuous
with %!l =1 4if and only if k.(A"') < vt (iL.e. Kk

is positive). If jn fact k 1is a bijective then K 1is
an isometry if and only if both k and k.-l are positive

(i.e. k 1is bipositive).

Definition B3 Let E be a partially ordered vector space

with positive cone E"  and suppose that E is directed,
Suppose further that E+ has a base K. Let p be the
Minkowski functional of co(RU~K). If p is & norm,

(E,K) 1is said to be a base norm space,



78

Theorem B4 Let (E,K) be a base norm space, and let

%
E be its Banach dual space. Define

E) = (feE | fx) >0vx€E]
Then there existsa unique e € (E*)+ such that
e(x) =1 for every X € K and (E*)'I' is a come in
E* which induces an ordering on E."c in such a way that

* -
(E ;e) 1is an order unit space and the order unit norm

is the duzal norm.
%
In this case E can be identified with the linear
space of bounded affine functions on K, Ab(K), with

norm

1£] = max {£(x)| ’
x €K )

£e AP(R).



Appendix C Non-commtative spectral theory

In this appendix we summarize the main concepts
and results of non-commutative spectral theory developed
by E.M, Alfsen and F, W. Shultz in [4] and [5]. Through-
out this section we will assume that (E,K) is a base
norm space and (A,e) is an order unit space with E* = A.
We will refer to the ¢ (E,A) and o (A,E) topologies
as the weak topologies on E and A respectively,

Definitions Let P be a weakly continmuous projection

on A, We write

CimTP = (imP)n_A+ s k.er+P= (kerP)n£+

*
P will have a weakly continuous adjoint, P : E - E;
. N + k. . ‘
we define im P and ker P in a similar mammer to
the above, P is said to be neutral if P has norm at
most one, and the following implication is valid for p € E+:
% *
I8 = lpll = pein™P
Now consider another weakly continuous projection

Q: A- A, P and Q are said to be quasi-comblementary

if

im+P = ker+Q, im+Q = ker+P.
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Q is referred to as the quasi?complement cf P,

P is said to be a P-projection if it has a quasi-complement
Q, and both P and Q are neutral (see [4, §1, §2] for
equivalent formulations of this concept;)

Remark In [4] it was pointed out that the concept of a
P-projection has possible interpretatiomns in quantum
theory. This idea has been further developed in [9].

To each P-projection P on A we associate the
element Pe € A; Pe is called a projective unit and is
an extreme point of [0,e] ={a€ A] 0<age}. If P'
is the quasi-complement of P, P'e is also a projective
unit and P'e = e - Pe, .

A convex subset F of K is called a face of K
if whenever Ap + (L-A)oc € F, p,c€K, A € [0,1].
then p, 6 € F, The faces of K are in one-to-one
correspondence with the faces of E+. A face F 1is said
to be A-exposed if there exists a positive a € A such
that a=0 on F and a >0 on K/F. F is called
a projective face if F is of the form KN (imi'P*)
for some P-projection P on A. For the rest of this
Appendix we will assume that every A-exposed face of F

is in fact a projective face. (This is a strong assumption,
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necessary for the development of the spectral theory;
see [lx;, 8541.)
Let U be the set of projective units in A and
order Uwiththe ordering induced by A. We point out that
Pe £ Qe if and only if im+P c im+ Q, if and oﬁly if
PQ = QP = P, We introduce the following orthogonality
on U; Pei Qe ¢ Pe+ Qe e, Per Qe implies Pe £ Q'e
which in turn implies PQ = QP = 0,

Proposition C.1 U is a complete orthomodular lattice

with the operations L and < . ([4], Theorem 4.5.)

Let {e)t}l ¢ g Deaset of projective units.{el}h R

is called a spectral family if it satisfles the following

1

conditions:

(1) sa:}L gep for X <yu

(ii) e, = A e
A u>r H

(iii) A e =0, v e =e,
RN A

We say that a projective unit Pe 1is compatible
with a€ A if Pa + P'a= a, and that E and A
are in weak .spectral duality if for every a2 € A and

every A € R there exists a P-projection P, such that
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PAa < )LPAe

P"Laz A P'ke

and Ple is compatible with a.
Two elements a, b € A" are said to be orthogonal
if there existsa P-projection, P, such that

ae€ im+P and bEker+P.

Theorem C 2 Suppose that every A~ exposed face of

K is projective. Then a necessary and sufficient
condition for E and A to be in weak  spectral
duality is that evexry a € A has a decomposition

t . .0 w + = .
a=2at-2a where a , a € A are orthogonal. In this

case to every a € A 1is a spectral family {el }A € R

such that
8 = jld a
R A

where the integral is a norm convergent abstract Riemann-

Stiltjes integral. Further e, =e for A > [al

and e, = 0 for x ¢ ~{}al.

We note that if E and A are in weak spectral
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duality then each spectral family [eh }h c g Vith

the property that there exist o, 8 € R such that

e, = 0 for A £ B <& and e =e for A > o determines

a unique a € A via formula z )Y del . However it is not kmnown
known in general whether weak spectral duality uniquely deter-
mines the spectral family of a given a € A,

Theorem C 3 Let E and A be in weak spectral duality,

Then each 2 € A has a unique spectral decomposition

as= S A d e if and only if the orthogonal decompesition
R

a = a@ - a in Theorem C2 is unique, 1In this case

we say that E and A are in spectral duality.

Theorem C4 Let E and A be in spectral duality.

Then for each a € A and each bounded Borel function
£: R « R there exists a unique element in A, denoted
by £(a), such that

(E@, @) = | £0)dce, 0

for every o € K., Furthermore if f is the characteristic
function of a Borel set, then £(a) 1is a projective unit
in A,

Now suppose that X is compact in some locally

convex Hausdorff topology. Since we may associate A



84

with AP°(K), the bounded affine functions on K,

we see that A(K) c Ab(K), where A(K) is the space
of continuous affine real-valued functions on K, and
ask when is A(K) closed uander functional calculus
of continuous functions from R to R. In fact fce
have

. ‘
AK)Y =~ E, E* = AP(®)
and the question is answered by the following theorem.

Theorem C5 Let K be compact in some locally convex

Hausdorff topology, and suppose E and A are in
spectral duality. Then A(X) is c¢losed under the
functional calculus of continmuous functions if and only
if whenever a € A(K), a has orthogonal decomposition
a=a-a with a+, a € A(K).

From now on we assume that (E,K) and (4,e)
are in spectral duality. The spectral theory allows

us to form squares in A: 32 = Slzd €y where

and we may consider the product

a=SJL dr":). ’

aeb = 2 l[a+b)? -2% -1b?] (%)

In general this product can fail to be bilinear,

but when it is, A is a JBW-algebra, as was shown in
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[4, §12]. In [2] the following was shown to be neces-

sary and sufficient for (*) to be a bilinear product.

Theorem C6 (¥*) 1is a bilinear product making A a

JBW-algebra if and only if
[P,Qle = [Q',P']e

for every pair of P-projections P and Q on A. (Here

[ e+ 1 denotes the Lie bracket: iP,Ql = 2;1(PQ -Q?)).
If the product (*) is bilinear then the projective

units of A are in fact the idempotents of A and for

each idempotent, u, the corresponding P-projection is

given by a - {uau} , a € A, where { 1 1is the Jordan

]

-+

triple product,



Appendix D A linear Radom-Nikodyr theorem

We show that, with minor modifications, the
proof of Sakai's linear Radon-Nikodym theorem goes
through in the context of JBW-algebras,
Theorem (See {17, 1.24.4]) Let ¢ be a positive normal
linear functional on a JBW-algebra A. Then for each
normal linear functional 3§ such that 0 <P < ¢
there zxists a positive-element a € A such that
(b, ) ={a = b, p) for every b € A,
Proof Firstly assume that ¢ is faithful on A, and
consider the linear map a ~ ¢ where - is the
normal linear functional defined by (b,,¢a) = {a e+ b, ¢),
a,b € A. This map is continuous with respect to’ the weak
topologies on A and its predual, E. Indeed suppose
that {%x} is a directed net in A converging weakly to
zero., The mapping ¢ ~ dw ¢ 1is weakly continuous
(8, Lemma 4.,1], so fﬁr each b € A, {%x « b} converges
weakly to zero, and (b, ¢ﬁx) = (%!o b, ¢) - 0. The?efore

{¢a } converges weakly to zero in E,
o

Let T be the image of [-1,1] = {a € A| -1 ¢ a ¢ 1}
under a - q:a. [-1,1] is weakly compact, so using the

continuity of a = $,» T 1is seen to be weakly compact
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in E. Furthermore T is convex.

Now suppose that 0 < < ¢ and g T. Then

there exists b, € A such that (b,, $> > 1 and

¢ bD;,UHSl for every o € T, Llet b0=bg-b5

be the decomposition of bo into positive and negative

parts, and let v bDe an idempotent of A such that

Ub,=by , U _ by=-by. Let h=2v-1; h&[-1,1]
and h° by = 2(v ° by) -by = 2T by - b'g + by
= b + by
Therefore, since h €[-1,1], %h €T an::l
1 ><byg,) = (hoby, 9)
= Kby + by, 9
+

> (b, + 'ba )

Multiplying the last inequality by +«1 we also

have -1 g (by+ by, ) and

-1 £ <b'5+b0,-=b>

£ <b;'b[-):’b)

= (bo s ¥
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< (b'g + by, ) £ L.
This contradicts the assumption that ('bo, P )y > 1
and we conclude p € T; i.e. there exists a € [-1,1]
such that (b, ) = (a - b, ¢) for every b € A,

let a = a+ - a be the orthogonal decomposition

of a, and let v be an idempotent in A such that

+ - -
1.y @ =0, U,a =a, Then

0 (v d ) =(ve a,p

(U, a, #)

= (a , ¢) < 0.

implies by the positivity and faithfulness of ¢
that a = 0,

Hence we have shown that if 4 is faithful, and
0 < ¢ there existsa positive element a € A such
that (b, ¥) = (a b, p) for every b € A,

We complete the proof by showing that ¢ does not
need to be faithful, If ¢ is not faithful, let s(9)
be the support of ¢., Then ¢ is faithful on the JBW-
algebra i.m""Us @)’ so by what we have already proved

there exists a € im+US(¢) such that (b, §) = (a2 = b,d),
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0Ly {9, for every b € im+Us(¢) . Now since

.+ . e %
a € im Us(qs)’ and both ¢ and ¢ are in im Us(@)’

for any b€ A we have

(bﬂb) = <US(¢)bs ’1’)

fl

Ca * (U (5yD)s )
(US(¢)(3 o b)s @

(a b, p).

(Recall from [8, Lemma 2.11] that since Us@)a = a,

we have

2
Lal 2 L5y = Lsge)?

LyYs ()

2

(2Lsgy = Lsgg)’ La

Us¢) La

where Lc denotes the map Lcd = ¢ ¢ d.)



