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 The information-theoretical - approach to - thermodynamics (informational- -
thermodynamlcs for short) has been developed by Ingarden and Urbanik [1]—[11]
(cf. also Jaynes [12]— [14]) Tn the present paper their ideas are generalized and
further developed.

‘We shall first restrict our discussion to the case of 2 finite-dimensional Hilbert
3pace The condltlon under which the extension to the case ofan 1nﬁn1te-d1men51onal
~—Hilbert 'space is possible’ will be presented at the end ‘of The present paper.

Let 9 be 2 finite-dimensional Hilbert space corresponding to a physical system
and let. N .== dim 9¢, Denote by P the set of all density operators on 9. Each element .
g e P will be called a microstate. To every observable there corresponds a self-
adjoint linear operator on . The mean value of the observable A at a microstate p,
i.e., Tr (4p), will be denoted by m, (g).-Let H be the Hamiltonian of the system
in question. In the Schrddinger picture the time evolution of the microstate g (f)

is described by the von Neumann equation

) in —e(r) — [H, 0 (0]

When the microstate o (0) is known at the time 7= 0 we can calculate from (1)
o () (t = 0) and, in consequence, find the time evolution of mean values for all
observables. :
The. entropy, s(g), of a microstate ¢ is given by the von Neumann formula,
i.e., s (o) = —Tr (o ln ). It was shown in [15] that 5 (¢) is the only (up to an additive
constant) measure of information contained in g, compatible with the axiomatic
definition [16], which is invariant under all unitary transformations in . In parti-
cular, s (o (1)) = s (¢ (0)) for all ¢(0)eP and ¢ > 0.
_ Suppose that we- have determined (measured) the mean values of observables
— A Ap (p < N2—=1)-at-the ‘time——=0.—The—problem-is-to assign-for -every——
observable X and for every t > 0 the estimated value of X at the time 70
in a consistent way with the qﬁantum-mechanical description. The proposed solution
of this problem is based on the information-theoretical approach. '
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Let A@ = (A, ..., Ap) (A for short) be a set of p observables such that operators
I, A4,,...,Ap are linearly mdependent and p < N2 — 1, N = dim %, I is the identity
operator. Two Imcrostates o' and Q” are said to be equ:valent with respect to A4,

~ in symbols o’ ~ e ', if my, (@) = my, (@7 for i =1,..., p. The relation ~ divides.
the set P of all microstates into disjoint classes. These classes will be called A4-
macrosfates and will be denoted by capital Greek letters @ ,, ¥, ..., The A-macrostate
containing a microstate ¢ will also be denoted by [p],. The value My (D), of
the observable A; (i = I, ..., p) at a macrostate @, is defined as the common value
of my (¢) (=1,...,p) for all 0D,

In order to define the entropy of the macrostate we apply the principle of
maximum uncertainty formulated by Jaynes, Ingarden and Urbanik. According
to this principle, we define the entropy, S (@ ,), of the macrostate @, as the maximum .
uncertainty concerning microstate ¢ when the macrostate @, is known. More
precisely,

2 : : S(@A)zsup{s(g):ge'@r,}.
Wichmann {17] has proved the following

TrEOREM 1. Let D, be a macrostate. Then fhere exists a unique microstate
o*ed, such rhat

o Sy s, o
e wWhere T e
T i P . :'i'_'"_" B N B e
4y o e*=9*(ay...,ap) = [Tr exp (‘—' 2 ag Az)] exXp (— Z ai Ai) Yy
=1 . . i=1 !

and the eguérions
N MA; (@A)ﬁTr (Aig (al,... )'7" (=1,..,p)

have the umque solutzon in ag, ... ap. |
The microstate o* will be called the representative microstate for the macrostate D,.
Let £ be a closed convex set of microstates and let X be an observable. The
relation divides the set 2 into disjoint classes. These classes will be called -
relative X-macrostates and will be denoted by D@5 (£2), ¥x (D), ....

Let @, be a macrostate known at time ¢ = 0, and let us'denote by £2; the closed
convex set of microstates at the time ¢ > 0 which have belonged to @ at the time
t=0,1ie, 2= {0@®:0(0)e®,} Consider the family

© Fi@)={le@xn2:00ed,y}

of all lerelatlve X-macrostates which can be composed of the microstates belonging
to @, attime t = 0. Allelements of F} (D) are indistinguishable by the measurement
of the mean values of observables Ay, ..., 4. In order to decide which element
of the family F% (&) has to be chosen, the principle of maximum uncertainty will
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be applied. Namely, the Qerelative X-macrostate at the time t > 0, Dt (), is
defined as the maximally uncertain .Q,;—relatlve X—macrostate from the family F (D ,)-

More premsely,
(7 @ Y (&2) S (bef (.Q,)) = sup {S (‘I’ (.Qt)) SF' (Qt) e F! x (@ A)}

Moreover, the estimated value at time t = 0 M (@ ), of an observable X
is defined by the equality : o o

¢)) o MX (@A) = M X (@X (-Q t))

By the convemty of FX (@ A) and by Theorem 1 it follows that the macrostate
@' (2,), and in consequence Mz (®,), is uniquely determined.
The X-macrostate containing the macrostate @;(.Qt) will be denoted by GD‘
© (it is assumed.that the initial.macrostate @, is fiked)i— - == e
___The_ presented descrlptlon in terms of macrostates 1s called the quantum
znformattonal thermodynamtcs e SR

THEOREM 2. Let (D be a macrostate known at the ttme t = 0 and Ier X be an
observable Then tke relanons

_ﬁ(g) - - {jﬁf(’!’?t)— [Q*_(Z)JX('\ _M“ | T T T L T
e d _ i
(10  ML@)=Tr (X@ ®)

hold. T he microstate o* (f) is determined by means of the von Neumann equation

' . d ,
an ih—0* () = [o* (1), H]
with the initial condition o* (0) = p*, where o* is the representative microstate for D ,.

THEOREM 3. Let @, be a macrostate known at the time t = Q. Then the following
inequality

(12) S(@Y) > S(Py)

~ holds, where P!, = [o* (D]
This Theorem may be interpreted as an analogue to the Boltzmann’s H-Theorem
m the case of macrostates.

- A—m&erestat&«ibvi-s said to be ~mvaﬂant—undef—the—motmn if for every t%O

the microstate g (¢) belongs to @ ,, whenever the initial microstate g (0) has belonged
to @,. '

THEOREM 4. All A-macrostates are invariant under the motion iff every operator
A (i=1,...,p) commutes with the Hamiltonian of the system in question.
Every macrostate invariant under the motion will be called the equilibrium

macrostate. The equilibrium quantum thermodynamics may be characterized as
the theory of equilibrium macrostates.



266 A Kossakowski

Let us consider a set X0 = (X, ..., X7), which will be denoted by X for short,
of observables such that operators I, X, ..., X; are linearly independent and

< N2 — 1. The value My (®,) will be denoted by ng O G=1,..,r. For
every time t > 0 there exists the representative microstate g for the macrostate
fe* (0]x- By Theorem 1 g; has the form

(13) 0t = [Tr exp( be(t)Xi)]_ exP( be(t) Xf),._

‘where b; () (i = 1 r) can be umque]y expressed in terms of MM; (H (z = 1 or)
from the equations

(14) My, () =Tr(X;g) (i=1,.,0.

Taking into account (10) and (11) the equatioﬁs of motion for M, () i=1,...,1)
can be written as follows

d . ) _
{15) ih— My, () +Tr (¢ [H, X;]) = Tr ((o* (1) — ¢o) [Xi, H])
i=1,..,n
with the initial conditions
(16) My, @ =Tr (X, 0*(®) (=17,

where o* (£) (¢ = 0) is determined by (11).
It may be observed that the left-hand side of (15) is expressible only in terms of—
My (D) (i =1,..., 1), since 0.-is a function of My () (i=1,..,r) by (13) and (14).——

e THEOREM SkLet MX‘ (r)_ (1

1, r)_ be_ rhew.soluzzon of tke_equarlon.s'

A '"’EM%{‘??'W(?*[H’ Xi])'=°f,, ¢=1-n o

_ with the initial conditions My (0) = Tr (X1 0*) (i=1,..., r) and let V4 (¢). be. the_.__;'

 X-macrostate correspondmg to the values M X (1‘) (z =1,. r) T hen for every t e 0 T
the equality Lo

18) - "s (Wx(r))-—is(?'xm))
holds.

With regard to the equality (18) the time evolution described by (17) may be
called the iso-entropic motion with respect to observables Xi, ..., X;. Moreover,
the right-hand side terms in (15) may be interpreted as the collision terms for
observables X, ..., X;.

Until now" we have considéred thé case of a finite-dimensional Hilbert space.
In this case the entropy of any macrostate is finite. In the case of an infinite-
dimensional Hilbert space, entropy (2) may, or may not, be finite. In this case the
formalism presented above has to be subjected to some restrictions imposed on
admissible sets of observables in order to make the entropy (2) finite.
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Let %% be o separable Hilbert space, and let 4, ..., 4, be a set of observables
such that operators I, Ay, ..., Ap are linearly independent. The set Ay, ..., 4, of
observables is called a thermodynamically regular set (regular for short) if there
exists a sequence ¢y,..., ¢p of p real numbers such that

(19) _ - Tr(eg A1+...4cp Ap) < o0,

The notion of regularity given here is a generalization of that introduced in [1]
for one observable. We observe that informational thermodynamics in the case
of an infinite-dimensional Hilbert space can be formulated only for regular operators. _

The classical informational thermodynamics can be formulated exactly in the
same manner as the quantum one in the case of an infinite-dimensional Hilbert
space. The following changes are necessary. Let I" be the phase space corresponding -
| to.a_physical system, and let. dI" be the Liouville -measure--on-J%-A -microstate=—
'Q (q, p) is the Radon-—leodym derivative of a probablhsm: measure on " with -

| respect to the Liouville measure. An observable A = A (g, p) is a real measurable
function_on I'. Finally, the commutator has to be changed into i {, -} ({-, }
denotes the Poisson bracket) and Tr 4 has to be replaced by f A(g,p)drl.

L AN ,f'f’
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