$\frac{MATHEMATICS}{(A L G E B R A)}$

On Decomposition of the Modular Ortocomplementary Finite-generated Lattice

by

J. KOTAS

Presented by A. MOSTOWSKI on August 24, 1963

G. Birkhoff and J. von Neumann [1], give the following definition of the quantum logic:

The quantum logic is a system $\mathfrak{M} = \langle M; \cup, \cap, ' \rangle$, where M is a set of propositions which is a modular ortocomplementary lattice [2] with respect to the binary operations \cup and \cap which are called the alternative and conjuntion respectively, and the unary operation 'which is called the negation. Thus every model of quantum logic is a modular ortocomplementary lattice. The most important model of quantum logic is the ortocomplementary lattice of linear subspaces of a linear space. A formula of $\mathfrak M$ is called a tautology of quantum logic, if an arbitrary substitution, for variables in that formula, of elements from an arbitrary model gives 1 of this model. An arbitrary formula with n variables may be identified with a term of modular ortocomplementary lattice generated by n elements. The problem of deciding whether a formula is a tautology of quantum logic is much more simple if there is given a decomposition of modular ortocomplementary lattice onto the direct product of sublattices.

The aim of this note is to prove that every modular ortocomplementary finitegenerated lattice M may be decomposed onto the direct sum of two sublattices M^0 and M^* . In this decomposition M^* is a distributive lattice.

Let M[g, h] be a modular ortocomplementary lattice generated by g and h. We shall use the following notations:

$$g_1 = g \cap (g' \cup h) \cap (g' \cup h'),$$

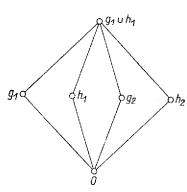
$$h_1 = h \cap (g \cup h') \cap (g' \cup h'),$$

$$g_2 = g'_1 \cap (g_1 \cup h_1),$$

$$h_2 = h'_1 \cap (g_1 \cup h_1).$$

The following two lemmas are easy consequences of the above definitions:

Lemma 1. Either equalities hold $g_1 = h_1 = g_2 = h_2 = 0$ or the elements $0, g_1$, $h_1, g_2, h_2, g_1 \cup h_1$ constitute a sublattice $M^0[g, h]$ of M[g, h] which has the following



Lemma 2. For every $a \in M[g, h]$ we have the following unique representation: $a = s \cup t_1 \cup t_2 \cup t_3 \cup t_4,$

where $s \in M^0[g, h]$, $t_1 = 0$ or $t_1 = g \cap h$, $t_2 = 0$ or $t_2 = g \cap h'$, $t_3 = 0$ or $t_3 = g' \cap h, \ t_4 = 0 \ or \ t_4 = g' \cap h'.$

As a consequence we obtain that M[g, h] has at most 96 elements. Note the following equalities which are true in an arbitrary modular ortocomplementary lattice:

(i)
$$g = g_1 \cup (g \cap h) \cup (g \cap h')$$
,
(ii) $h = h_1 \cup (g \cap h) \cup (g' \cap h)$.

(iii) if
$$(g \cap h) \cup (g \cap h') \cup (g' \cap h) \cup (g' \cap h') = 1$$
, then $g_1 = h_1 = 0$.

We shall use the following notation:

$$\|(x,y) = (x \cap y) \cup (x \cap y') \cup (x' \cap y) \cup (x' \cap y').$$

LEMMA 3. If a, b, c are arbitrary elements of a modular ortocomplementary lattice and $\|(a,b) = \|(b,c) = \|(c,a) = 1$, then the triple a, b, c is distributive.

Proof. Observe that it is sufficient to prove the equality $a \cap (b \cup c) = (a \cap b) \cup c$ \cup $(a \cap c)$. Since ||(a, b)| = ||(b, c)| = ||(c, a)| = 1, we have the following equalities:

$$a = (a \cap b) \cup (a \cap b'), \qquad a = (a \cap c) \cup (a \cap c'),$$

$$b = (a \cap b) \cup (a' \cap b), \qquad b = (b \cap c) \cup (b \cap c'),$$

$$c = (a \cap c) \cup (a' \cap c), \qquad c = (b \cap c) \cup (b' \cap c).$$

Thus,

$$a \cap (b \cup c) = (a \cap b) \cup [(a' \cap b') \cap (a \cap c)],$$

$$(a \cap b) \cup (a \cap c) = (a \cap b) \cup [(a' \cap b') \cap (a \cap c)],$$

$$(a \cap b) \cup (a \cap c) = (a \cap b) \cup [(a' \cup b') \cap ((a \cap b) \cup (a \cap c))].$$
Hence,

$$a \cap (b \cup c) \subset (a \cap b) \cup b) \cup (a \cap c).$$

The inverse inclusion is trivial.

COROLLARY 1. Let A be a modular ortocomplementary lattice. If for every pair $a, b \in A \mid (a, b) = 1$, then A is a distributive lattice.

Let $M = M[p_1, p_2, ..., p_n]$ be a modular ortocomplementary lattice generated by $p_1, p_2, ..., p_n$.

Put $q_j^0 = p_j$, $q_j^1 = p_j$, j = 1, 2, ..., n.

Let $t_1, t_2, ..., t_n$ be an arbitrary sequence such that $t_i = 0, 1$. We shall use the following notations:

$$a_{(t_{1}, t_{1}, ..., t_{n})} = q_{1}^{t_{1}} \cap q_{2}^{t_{2}} \cap ... \cap q_{n}^{t_{n}},$$

$$b_{i} = \bigcup \{a_{(t_{1}, t_{2}, ..., t_{n})} : t_{1} + t_{2} + ... + t_{n} = i\}, \quad i = 0, ..., n *),$$

$$b_{i}^{k} = \bigcup \{a_{(t_{1}, t_{2}, ..., t_{n})} : t_{1} + t_{2} + ... + t_{n} = i, t_{k} = 0\},$$

$$i = 0, ..., n - 1, \quad k = 1, 2, ..., n,$$

$$p_{k}^{*} = \bigcup_{i=0}^{n-1} b_{i}^{k}, \quad k = 1, 2, ..., n,$$

$$p_{k}^{0} = p_{k} \cap (p_{k}^{*})', \quad k = 1, 2, ..., n,$$

$$1^{*} = \bigcup_{i=1}^{n} b_{i},$$

$$1^{0} = (1^{*})'.$$

LEMMA 4. There are the following equalities:

- (i) $p_k^0 = p_k \cap 1^0$,
- (ii) $\bigcup_{k=1}^{\infty} p_k = 10$,
- (iii) $(p_k^0)' \cap 1^* = 1^*$,
- (iv) $(p_k^*)' \cap 1^0 = 1^0$.

For an arbitrary elements $x \in M$ let us put

$$(x)'_0 = x' \cap 1^0, \quad (x)'_* = x' \cap 1^*.$$

Let M^0 and M^* be subsets consisting of all elements of M which may be obtained from $p_1^0, p_2^0, ..., p_n^0$ and $p_1^*, p_2^*, ..., p_n^*$ by use of \cup , \cap , 0 and 0, 0, 0 respectively. It is easy to see that M^0 and M^* are modular ortocomplementary lattices with respect to 0, 0, 0, and 0, 0, respectively.

Lemma 5. M^* is a distributive lattice.

Lemma 6. M^* is equal to D, where $D = D[p_1, p_2, ..., p_n]$ is a distributive complementary lattice generated by $p_1, p_2, ..., p_n$.

THEOREM. M is the direct sum of M^0 and M^* .

^{*)} Here $\bigcup A = \bigcup_{x \in A} x$.

Proof. Since $p_k^0 \in M^0$ and $p_k^* \in M^*$, then it is sufficient to prove that:

- (i) $p_k = p_k^0 \cup p_k^*$,
- (ii) if $a = a_1 \cup a_2$ and $a_1 \in M^0$, $a_2 \in M^*$, then $a' = (a_1)'_0 \cup (a_2)'_*$ where $(a_1)'_0 \in M^0$, $(a_2)'_* \in M^*$,
- (iii) if $a = a_1 \cup a_2$, $b = b_1 \cup b_2$ and $a_1, b_1 \in M^0$, $a_2, b_2 \in M^*$ then a) $a \cup b = (a_1 \cup b_1) \cup (a_2 \cup b_2)$, b) $a \cap b = (a_1 \cap b_1) \cup (a_2 \cap b_2)$,

where $a_1 \cup b_1$, $a_1 \cap b_1 \in M^0$, $a_2 \cup b_2$, $a_2 \cap b_2 \in M^*$.

(i) is obvious. The proof of (ii) is as follows:

$$a' = (a_1 \cup a_2)' = a_1' \cap a_2' = a_1' \cap (1^0 \cup 1^*) \cap a_2' = ((a_1' \cap 1^0) \cup 1^*) \cap a_2' = (a_1' \cap 1^0) \cup (a_2' \cap 1^*) = (a_1)_0' \cup (a_2)_*'.$$

Part a) of (iii) is obvious, the proof of b) is as follows:

$$a \cap b = (a' \cup b')' = (((a_1)'_0 \cup (b_1)'_0) \cup ((a_2)'_* \cup (b_2)'_*))' = ((a_1)'_0 \cup (b_1)'_0)'_0 \cup ((a_2)'_* \cup (b_2)'_*)'_* = (a_1 \cap b_1) \cup (a_2 \cap b_2).$$

COROLLARY. M is distributive if and only if

$$p_1^0 = p_2^0 = \dots = p_n^0 = 0.$$

DEPARTMENT OF MATHEMATICS, N. COPERNICUS UNIVERSITY, TORUŃ (KATEDRA MATEMATYKI, UNIWERSYTET M. KOPERNIKA, TORUŃ)

REFERENCES

- [1] G. Birkhoff and J. von Neumann, The logic of quantum mechanics, Annals of Mathe, matics, 37 (1936), 823-843.
 - [2] G. Birkhoff, Lattice theory, New York, 1948, pp. XIII+283.