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Formal systems for topos-theoretic
modalities.

R. Lavendhomme, Th. Lucas and G.E. Reyes.

Introduction

In Reyes [6], a topos-theoretic approach to the logic of reference is
develapped which shows that modal operators of possibility and necessity

may be canonically defined in the context of a topos E (thought of as
“variable sets”) over a base topos 8 (thought of as "constant sets"), i.e., in
the context of a geometric morphism E — 8.

In this paper we shall concentrate on the case that § is the category
of Sets and we shall prove soundness and completeness for the resulting
first-order modal logic, IBM (for "Intuitionistic with Boolean
modalities"),

In the first Section, we briefly review the introduction of modal
operators in the topos-theoretic context Just mentioned. In Section 2, we
specialize these results to the case that 8 is a Boolean topos (e.g. Sets).
The system IBM is described in the next section, together with two other
systems which will play an auxiliary, but important réle in the sequel :
IS4 (for "Intuitionistic S4"), and MAO (for "Modal adjoint operators”).
-Some obvious soundness theorems are stated. In section 4, we prove
soundness and completeness for an extension of IBM for the case that E is
a topos of Kripke trees, i.e., a topos of presheaves over a pre-ordered set
P. Our proof of the completeness theorem for IBM is rather indirect and
proceeds via completeness for 1S4. A system of sequents for IS4 is
presented in section 5, together with a proof of cut elimination for this
system. For our purposes, however, a variant of this system is more
adequate for the completeness theorem for [S4. We consider section 6 as
the most important one of our paper. We introduce Beth trees, forests
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and grafts to define a new semantics : graft semantics. Graft semantics is
not the topos-theoretic semantics described in §1,§2. It is rather non-
standard since it uses the presentation of a topos as sheaves over a forest
of Beth trees with grafts to define the modal operators. Two soundness
and completeness theorems are proved for this semantics : for IS4 and for
IBM. It turns out, however, that in the case of IBM, the axioms on
Boolean modalities reduce the graft semantics to the topos-theoretical one.
Thus, we have proved completeness of IBM for the topos semantics.

§1. Modal operaters on a topos over a base.

In this section we shall briefly review the introduction of modal
operators on predicates of constant sheaves of a topos E (thought of as

“variable sets") over a base topos S(thought of as "constant sets"). For
motivation and proofs, see Reyes [6].

Given a topos E over a base topos 8, i.e., a geometric morphism
E — 8 with finitely left exact inverse image A and direct image

[' (A 4T, we define maps
(2§ ﬁ; F(Q:E;%
as follows : given a generalized element X — Qg, let P >— X be the

subobject classified by p. Applying A, we obtain a subobject AP ™= AX
which is classified by a map AX — Q. We define 8(p) : X — T(Qg) 10

be the transpose of this map.
On the other hand, given a generalized element X — I'(Qg), its transpose

AX — Qg classifies a subobject K > AX. Applying T, we obtain
[(K) = TAX. We define ¥(K) : X — Qg to be the map which classifies

the subobject N(K) > X given by the pull-back diagram

(K) — rax
T Ty

N(K) — X
where 1 : Id — T°A is the unit of the adjunction A T,
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Using the fact that A4T" and A is finitely left exact, it is easy to
check that :
&y
ST ="T:
8(p A q) =38(p) A 8(q).

Definition 1. Letr® — § be a geometric morphism. The necessity
operator O : T(QE) — T(85) is defined to be O = By.

Proposition 2. The necessity operator 1 has the following properties :
(1) O = 1Id,

@ o?=no,

3)OT=T,

40K ~AK))= OK, ~ OK,,.

Proof. Just notice that O = &y is a lex cotriple. (Alternatively, a
direct check is possible).

We can now define the action of 0 on predicates of constant

sheaves as follows : if AS 2 (2 is a predicate of AS, we define

O ctp O ot{() Lep)
AS =3 Qg as the transpose of § I'(Qg) where S = Q) is
the transpose-of . | |

Remark : We may also observe, and this will be used in the case of

predicate logic, that I:er = Dx, where Dx is the transpose of
diag
AXx AX 7 Qf.

We will repeat here the three main examples of Reyes [6] to see
what O is in particular cases.
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Example 1.

S = Sets £ Sets! = E
r

In this case, Ag = (8). FU{Xpie P = TI X;-  Furthermore,

Qg =2 f’ o =1"{D.E] are given by 5(13) ={i € Ilp},
f
vK)=[vie 1(e K)] . The action of O on predicates may be

described (using the "forcing” relation) as follows :
il-Ogs) iff Vjel il ofs],
forall s € S = AS(i) = AS().

Example 2.

S= Sets"g‘ Sets? =fEl*

where P = (P,€) is a pre-ordered set.
In this example, AS(U) = S forall U P and I'(F} = {_liglap E. The

maps g = 2 {___ﬁ Q(1) = T'(Qg), where Q(1) = (K ¢ PIK is downwards

H
closed}, are given by 8(p) = {U & Plp} and yK)=[vUe P(Ue K)L

Once again, the action of 00 on predicates of constant sheaves (or
rather presheaves in this case) may be described by

Ul Qe (5] iff YVeP Vi @ls],
foralls & S = AS(U) = AS(V).
Example 3.

E — S is bounded.
This means that £ may be presented as the category of sheaves over a site
C in§:
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S ﬁ Shg(C)

T
T.;]'\\‘ 5 ad Ti

0
S'EP

where i is the inclusion of presheaves in sheaves, a, the associated sheaf
functor, ﬁﬂ(S)(C) =Sforall Ce C,T(F) = {_li{glop F,a=aAjand T =

o

The maps Qg ﬁ ['(€2g) may be described as follows :

8(p) = closure Dg (Ce C |p],

vK)=[Vece € (ce K)1,

where T'(Q¢) has been identified with the set (in the sense of §) of ¢losed
sieves of €. We recall that a sieve on € is a set K such that C € K and
C' = Ce € implies C+e K. If K is a sieve, closure of
K={Ce CI {Ci — C}iEI e Cov(iC) Vie I Ci e K}. A sieve is closed

if it coincides with its closure.

i.

The action of O on precidates may be described as
Cl+0Og [(ES]C (s)] iff 3 [C = C} ;e Cov(C)

Viel VO C'I- q}[(EsJC.(SH

(). ‘ : \ .
where S -5 CJAS(C) is the C-component of the unit ﬂﬂS —$ ia .r‘_‘aDS = IAS
of the adjunction a 4 1.

Notice that this gives the required action for C-elements of iAS of
the form {Es)c(s) (1.e., constant ones) only. The general case, however,

follows easily from thus :
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if £ e iAS(C), C I D@ [E] iff 3 {C,> C),_, e Cov(C)
Vie I (35;€SE[C =543 (C;> Cle Cov(C)
YieI¥VC'e C Cl¢ [(Es)c, (s,)). (Indeed, & is locally constant).

In the rest of this paper, we will be specially interested in cases in
which E — 8 satisfies some further properties. First, some definitions.

Definition 3, (Johnstone (3], Joyal and Tiemney [4]) A geometric
morphism E — 8 is open iff the map 6: Qg — T'(S2) has a left adjoint
A D

Remark 4. The map A automatically satisfies the Frobenius conditions
MK A 8(p) = MK) A p.

For us, the important fact about open map is that the possibility
operator 1s definable.

Definition 5. Let £ — 8 be an open geometric morphism. Let us

define the possibility operator < : T (Qg) = T(Qg) to be © =38,

Proposition 6. LetE — 8 be an open geometric morphism and let
©.,0 :T(Qf) = I'(Qg) defined by © =0h and O = &y. Then the
couple (< ,0) has the following properties

(H<e40;

()0 <ld< <

@)o’=0,02=9;

4) ¢ K, AD0K)=< K, A0K,

Proof. Straightforward computation. For (4), use the Remark 4.

Definition 7. A MAO couple on I'(Qg) is a couple of operators
.0 T(QE) = T(Qg) satisfying (1) - (4).
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We may define the action of © on predicates of constant sheaves in

the same way as for O : if AS E} Q¢ is an arbitrary predicate of AS, we

o &
define AS —5 Qg to be the transpose of S E-Tiﬂp) Qe ., where

S t(g) [(C2g) 1s the transpose of @.

We shall return to our examples to study the action of ¢ on these
particular cases.

Example [ (bis)
8 = Sets ﬁ Sets! = E.
I
In this case, we may check directly that A : 2! 5 2 defined by
MK) =[3ie [ e KD is the left adjoint of §: 2 — 2%,
The action of © =08 A on predicates is given by 1 I+ < ¢ [s]iff
Fje Il ofs] forall s & S = AS(1) = AS(j).

Therefore, this example is the well-known "possible worlds”
semantics.

Example 2 (bis)

8 = Sets ﬁ Sﬂtsﬂmp =E.

I
Once again, we may check directly that A : (1) —» 2 defined by
MK)=[3U e P(Ue K) I is the left adjoint of § : 2 — Q(1).
The action of © = 8 A on predicates is given by Ul— < ¢ [s] iff
AV e PV I o[s] forallse S =AS(U)= AS(V).

Example 3 (bis)

E — § is bounded and open.

In this case, £ may be presented as the category of sheaves over an

open site of €, l.e., a site such that every cover is inhabited (cf Joyal and
Tierney [4]).
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The action of O on predicates may be simplified as follows :
C I+ Og e [(ES)C(SJ] iff vCetlCL CI- o [{ES}C,(S)] foralls e S.
From the adjunction ¢ 4 O we conclude C I+ 05-:1;:[(-'15) C(s)] iff
3Cec ClI+ tp[(ES)C,(s)] foralls € S.

Let us spell the forcing clause for I and < in the general case of §
e 1AS(C) :
Cl- Og o [&] iff 3 {C; = C}; ;€ Cov(C) Viel

3.eS EC=sAVCel €l ¢ [(ES)C,(si)] ).
Cl- 04 @& iff 3(C;— C); e Cov(C) Vie I
@seS HC=5A3CeC Tl o (L) D).

Before leaving this section, let us remark that open maps are
ubiquitous, as the following shows :

Proposition 8

I . C
(1) Assume that E — 8 is a geometric morphism such that its inverse
image A has a left adjoint l'[n 4 A. Then T Is open.

(it} Assume that E b 8 is a geometric morphism such that 8 is a
Boolean topos. Then T is open.

Proof: For (i), see Reyes [6] ; for (1) see Johnstone [3]. These
results, however, may be proved rather straightforwardly,

As a consequence of (ii), every Grothendieck topos E is open over
Sets and hence I'(Q2¢ ) has a canonical couple (¢,0) of MAO operators.

§2. Modal operators on a topos over a Boolean
base.

In this section we shall study the particular case of a geometric
morphism E -» § with § a Boolean topos. We shall see that this

hypothesis implies some special properties about <[,
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Proposition 1. Assume that £ — 8 is a geometric morphism and let
8 be Boolean. Then O satisfies the "modal excluded middle”

MEM : OK v 0K =T, for all K e T(Qg)and © is definable in
terms of O : K = =0-K, for all K € T(Qg).
Proof :Let us check MEM. Let K € I'(Q¢) be given. Then
Y(K) € Qg has a Boolean complement ~y(K) which satisfies
YEK)v = yK)=T
YK) A = yK)= L.
Since & preserves A and T as well as v and L (recall that 6 4 ), we

conclude that
YK v S(HTK) =T
oYK A S{-.TK) =1.

This shows that the complement =&YK is the Boolean complement of &yK,
ie. (since O = &Y)
OKv ~OK=T,.

To show ¢ = =0 =, we first check that d preserves = {and, in fact
—) ; we have the following equivalences :

K <8(p = q)
(L= 8)

AE<(p—qQ)

MK Aap<sqg
(Frobenius)

MEADP) <q
(A= 3)

K A dp £0q

K < &p — dq.
Furthermore, the equivalences

YK £v=K
(04
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Sy 7K £ -~K

K ady-K)< 1

K £ =dy(—=K)
(& preserves —)

K = 6-y-K

AK € =y=K
show that AK £ —y-K,
On the other hand, —=y—-K < AK follows from
AK <K

K <8LK
From here, =8AK < K. The equivalences
—lﬁlK < =K
(& preserves —)

H(=AK) € =K

—“AK £y-K
show that =y=K £ = -AK = AK since {2 is Boolean. We have proved
that AK = —y=K and this implies (since § preserves =) that
OAK = =dy-K
1.€., <K = =0 =K.
Remark: Adapting the arguments of lemmas 3 and 4 of §4, we can
conclude that © = =0 = from the fact that OK v ~OK =T.

§3. Formal systems for modal adjoint operators.

In this section we describe three formal systems of first-order
modal logic for the necessity operator O, MAO couples (¢,00) and MAQ

couples (¢,0) over a Boolean base. We shall call these systems 1S4

(“intuitionistic $4"), MAO ("modal adjoint operators”) and IBM
("intuitionistic with Boolean modality").
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We first introduce a first-order modal language L and define an

interpretation of L into a topos E over§ : E — §.

To simplify the exposition, we shall assume that L has only one
sort. As usual, L has for each u1 a set F_ of n-ary function symbols and a
set R of n-ary relation symbols. Terms and formulas are constructed
from these primitives by using the logical symbols =,=1,A,v,—, 1 ¥.3.00
and < in the usual way.

An interpretation is the association of a constant sheaf AS to the
unique sort of L, a morphism (fl : (AS)™ — AS to each f e F . a
predicate firll : (AS)" — Q¢ to each r e R . This interpretation is
extended by induction to terms and formulas as usual in topos theory (Cf,
Makkai-Reyes [5]). The only clauses which are new are those for [1,¢
and we shall give them in detail. Assume that the forinula (p(xl,...,xn} has
been interpreted as [ X : ol : A5 x .. x AS - Q... We define

[¥:0¢l TAS KX AS — Qp
as the transpose of [J o t (I]:E’r :@l), where
t{[[? sl Sl X .5 Sn — I"{QE)

15 the transpose of [X : ©l. Similarly for ©. We say that o is valid for
the interpretation (when o is a sentence) if [ : 6T : Al — Qpis T.

Furthermore, a rule of inference is sound if it yields valid
conclusions from valid premises.

All the systems to be described will contain IL, i.e., a formal system
for intuitionistic logic. We shall not specify IL further ; the reader may
take his/her favorite system or consult for example, Dummett [2].

(1) The language of 1S4 is L., but without the possibility symbol ¢. The
system IS4 consists of IL together with the following axioms and rules of
inference

L{g =y - (0e— Oy)
e
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O@— O0¢
x=y—=0&=y)
‘_(E“" +
O
In §5 we shall present a sequent calculus for IS4,

(2) The language of MAO is L. The system MAO {with=) consists of IL
together with the following axioms and rules of inference

O0¢—=¢, 0= ¢
Oe—=000, ¢ ¢ =< ¢
©— 009,00 —
oA Oy = (oA O
x=y— Ox=y)

o = Y ¢ = v
O — Owy C'r.p—}{}w

(3) The language of IBM is L. The system IBM consists of MAO together
with the following axiom (MEM) Og¢ v = Og.
An equivalent system to IBM will be presented in §5.

Remark. The system IBM is not new (at least as far as the
propositional analogue is concerned). In fact, it was introduced by Bull
[1] as a system of modal logic "acceptable to intuitionists”. Needless to
say, our motivation is different.

The considerations of §1,2 yield the following soundness theorems :

Proposition 1. Let £ — 8§ be an arbitrary geometric morphism and
let I be any interpretation of L. Then all axioms of IS4 are valid and all
rules are sound.

Proposition 2. Let £ — 8 be an open geometric morphism and let 1
be an intepretation of L. Then all axioms of MAO are valid and all rules
are sound,

Proposition 3. Let £E — § be a geometric morphism and let 8 be a
Boolean topos. Then all axioms of IBM are valid and all rules are sound.
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§4. The modal logic of presheaves.

In this paragraph, we develop with more detail the example of
presheaves over a preordered set ([P,<) (cfr example 2 of §1)

$ = Set f Set" P=E.
r

Let us fix an object S of E. Consider a first-order modal language
L. and an interpretation of L in E E 8. We already know that the

formal system IBM is valid in this interpretation (§3, proposition 2). But
the fact that we interpret in the constant presheaf AS has another effect : if

x has no free occurrence in ¢, all formulas

(CD) ¥x (@ v y(x)} = ¢ v Vxy(x)
(CD for "constant domain") are also valid,

Proof . (We omit the mention of irrelevant variables).
Let Ue P, U= ¥x (¢ v y{x)), UIH ¢ and prove U I ¥xy(x) ; to

do this, Iet V< U, let a € AS(V) and prove V I w{a) ; this 1s clear since
ae AS(V) =38 =AS(U) and U I wy(a).

Let us call IBM* the system formed by IBM plus the extra scheme
(CD) . We have just proved that IBM* is valid for any S-interpretation in

0 .
sPOP we want to prove a converse of this, i.e. a completeness theorem

showing that for any theory I" and sentence ¢ such that I” ¥ ¢ in IBM¥*,

there exists a preordered set P = (P,<), there exists a set S and an S-

interpretation which is a model of I" and does not force ¢. The proof is a
combination of completeness proofs by Kripke models for intuitionistic
logic + CD and similar proofs for modal logic. Since the proofs
involving CD are not too well-known, we give a sufficiently detailed
sketch.

We assume the language L we start with is denumerable (this
restriction should not come as a surprise : the proof of completeness for
CD involves a kind of omitting types argument). We add to L a
denumerable set C of new constants thus forming the language L + C.
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Definition 1. Let T be a set of sentences in L + C.

(DT s F -closedif T @ = peT.

) Tis verichif TFovy=T FeorT F .

(3)Tis C3-richif T+ Ixep(x)= Jc € C I' + olc).

(D is C,Verichif Vee C Trolc)= T r xp(x).

(5) I'is C-rich if T is F-closed, v-rich, C, 3-rich and C,V-rich..

Lemma 2. Let I" be a set of sentences of L+ C and @ and y be
sentences of L+ C such that

(1) T Fo— vy
(2) I'is C, V-rich,
Then there exists a C-rich A containing T such that Qe Aand ye A

Proof : We enumerate the sentences of L + C as a sequence
{0 nl) . and construct a sequence (A n,sn)n = of sets &n of sentences and
sentences € in such a way that foralln €
3)8,€ By,
(4) & 1s a finite extension of T,
(5) e, is of the form g, v B for some sentence B,
(6) A F-En.
Forn=10, we lat,ﬁnz I'U {@] and €y = .
To define A, and €41 We examine ©  and distinguish four cases
according to its form
(Case 1) o =Vx o(x).
(Case 11) A, Fe v ¥x ox) (7).
Since A 1s a finite extension of T, we may write it as [" {cxl,...,cxk} and

k
letting o = 2 o, (7) implies successively
1=

o o) Fe v Vx yix),

I ch—}anv‘v’xw(x},

I' For — Wx (e, v y(x)) {(by CD),
I' FVx (o0 — €.V y(x))
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and by the C, ¥-richness of T -
f-:::rsc:me:: ceC T Fo— g v oyr(c ).
We therefore let AL =4 and Eel T8 V w(c i

(Case 12) ﬂ.n - € Vv VX w(x).
In this case, we let A= A U {Vxm(x)} and €41 =€y
(Case 2) o = 3dx w(x).
(Case 21) A U {Ix w(x)) Fe (8).
As in case 11, we may replace A by T'u {o} and (8) implies successi-
vely :
I' v{a} F3x wfx) - €,
I Fo A 3x ox) — €.
I FIx (oA o) — £,

I FVx (oA ox) — e.)
and by the C, V-richness of " :
fnrsamec e C I Fan m(c )= e

We therefore let ﬂ = ﬂ. \ {wa(x},w(cn}} and En_H e .

(Case 22) A u {Elxm(x)} Fe.

In this case, we let ﬂn+l =4 and €41 = En

(Case 3) w_=7yv 3.

(Case 31) A v {yvs) F-En.

Then clearly A uly) Fe_or A v {6) Fe .

In the first case we let A = A, {Bvyy),e,,, =€ . The second case
15 symmetric.

(Case 32) ﬁn W {ywv3) Fe .

We let ‘f“n+1 = r.\ and €l =

(Case 4) W is nut as in cases | m 3.

(Case 41) .ﬂn ¥ {mn} I'LE.“.
Let "ﬂ‘n+1 =AU {{ﬁn} and &

(Case 42) A {tﬁn} Fen.

N+ =E“.
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Let ﬂn+1 = ﬂn and €1 =€y
This achieves the construction of {.ﬁn ,En). One easily verifies conditions

(3)-(6) in each case. Arguments typical of this kind of construction will

show that A= U A_is the required C-rich set.
new o

Turning to the modal aspects, we begin by giving a sample of
theorems of MAQO and its extensions,

Lemma 3. The following are rules or theorems of MAO :
2BV q 2o v
Cop =y p— Oy
(2) OT;00ADy < O(@AY;
(3} Coe0C0;
4) Cang)—>1;
(3) CoA0y—>(@Ay);
(6) ©0—-0-9;
(7} 09— 0ng.
Proaf of (1) . @ — Oy

Ce—=C0y POy

Co -y
and similarly in the other direction.

Proof of (2-4) . These are all easy consequences of (1), for example
DA Owy-— 0O O¢~Oy— Oy

X(ApADY) = ¢  O(@gaOY) >y

C(0eADyY) 5 @Ay

O A DOy — O>@ AWy,

Proof of (5). Use the axiom ¢ A Oy — O(¢ A O W),
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Proof of (6). From (4) and (5), one derives €@ A 0 @ — L »
from which (6) follows.

Proof of (7). Simmlar to the proof of (6).

Lemma 4, The following are theorems of IBM

(1) ==« Qo

(2) ¢pv =00

(3) =0 & O¢

(4) 7¢@— 09

(5) 20 =9 & O¢

(6) ©=«0¢ — -=0O¢.
Proof of {1). Immediate from (MEM),
Pioof of (2}, Apply lemma 3(3) and (MEM).
Proof of (3). Immediate from (2).

Proof of {4}, Use lemma 3(7), point (3) of the present lemma and
lemma 3(1)

@— D00 OC¢p— 000

¢ 0000

"3‘"10('}——-} _I_I":}_I{}[P '—l—l'@'—l{}(p-—} ""'Iq}

C=Cp =

=@ — O,
Proof of (5) : One implication is given by lemma 3(6) and the
other follows from the present lemma points (3) and (4).

Proof of (6) : Use points (5) and (1) of the present lemma.

Lemma 5. The following is a theorem of MAQO :
Vx O — OVxe,
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Proof : Use lemma 3(1) as follows :
VxOe— O

OVx O¢ — ¢

CVx O — Vxo

Vx Og — OVxe,

Definition 6. Ler I be a ser of sentences of L + C. The necessity
kernel NI of T is defined by

NI'={olT'—0Ogl.

Lemma 7. NI' o iff I' = 0O wo.

Proof : One implication is obvious. In the other direction, let
NIk ¢ ; then, for some WisenW € NI oy oA A = @,
FO A AY) = O, EOy A A0y, - O¢ by lemma 3(2), and
'O since T - Oyl f= Oy,

We mtroduce now a canonical "accessibility relation” R between C-
rich sets.

Definition 8. Let T and A be C-rich sets.
Define R by :
TRANAC T,

Proposition 9. T'RA <« for all sentences ¢ of L+ C
(pe I = CpeA).

Proof : (From left to right). Let TRA, let ¢ € T and assume
Cpe A;then 2O e Aby lemma 4(2), 0 ~@ € A by lemma 4(4),
@ & I' by the condition I'RA and I" would be inconsistent. (From right
to left). Assume the condition on the right, let Q¢ € A and prove ¢ € T.
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In fact ¢ € T for otherwise ~O¢ e I" by (MEM), ¢ 0@ e A by the
condition, =0 € A by lemma 4(6) and A would be inconsistent.

Proposition 10. R is an equivalence relation.

Proof. Reflexivity clearly follows from the scheme O ¢ — o,
transitivity from O¢ — O O ¢ and symmetry from © O ¢ - ¢ (or
¢ — 0O <) by proposition 9.

Proposition 11 If Tis C, V-rich then NT is C, ¥V-rich..

Proof : Let NT b= [ ¢(c) foralice C. Then forallc e C,
' = Oo(c) by lemma 7, ' = VxOo(x) by the C, V-richness of T',
'+ OVxex) by lemma 5 and Vxp(x) € NI'by definition of NI

We are now ready to prove the completeness theorem. Let T and ¢
in L be such that I" F¢. Add Cto L as described before. Clearly 1" is C,
Vorich i T y(e) forallce C, thenT' = ¥x w(x) by the theorem on

constants, We can therefore apply lemma 2 tothe data I’ ¥ T — @ and T’
C, V-rich to find a C-rich I, containing I" and such that T € I, (a trivial

information) and @ & I'y. We therefore define our model by taking
P = {AlA C-rich and T‘DR.&]
ASAIff A'S A

and
S = {t/~t closed term of L + C}

where ~ 15 defined by
t~tifft="te NIy

(~ is clearly an equivalence relation), Of course we interpret f € F_ by
| f | defined at level A by

FIR (tyfmnt f~) = ot
and r € R by Irldefined at level A by

&- e .
Irl® = {< tl,!' ,..*tn," :vlrtl...tne Al
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Note that it is not necessary to define P by the set of consistent C-
rich sets A such that I')RA : I, is consistent and in general A, consistent
and NA, & A, together imply that A, is consistent.

The fundamental lemma of completeness proofs by canonical
models holds :

Lemma 12. For every A € P, closed term tand closed formula ¢ in
L+C
(1) 12 = t/~,
(2YA B o iff o@e A
Proof of (1). By induction on the form of t.

Proof of (2). By induction on the form of ¢. The atomic case is
easy, but it should be remarked that the axiom x = y — O(x = y) is used
for equalities :

h=bh
iff It 18 = It18
iff t/~ = ty/~ (by point (1))
iff t,=t, € NI,
iff ty=t) € 4,

this last equivalence because, t; =t, € Aimplies O(t; =t,) € A by the
axiom, hence t; =t, € NAandt;=t, € NT‘G (NA = Nl"ﬂ by proposition
oy,

For the connectors —,a,v,—,L,¥,3, the proof runs as usual, using the C-

richness ; note however that for implication, lemma 2 is used m 1ts full
strength to prove

p-2>ye A=IdJA <A (pe Aland ye AY).
Let us check the case of O (we omit the mention of variables). If

Ope Aand A'e Pthenge NA=NI, & A pe A'and A" K ¢ by
the induction hypothesis ; consequently 0@ € A mmplies A O¢. In the

other direction, assume D@ & A ;then ¢ ¢ NA ; but NA i1s C, V-rich by
proposition 11 ; consequently, by lemma 2, NA is included in some C-rich
A" which does not contain ¢ ; hence by the induction hypothesis, A" H- ¢,
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which proves that A - O¢. The case of ¢ may be reduced to the case of
O via the use of lemma 4(2),

Returnmg to the original I" and ¢ such that I }-¢, it remains to

observe that the canonical model we constructed forces every sentence W
of " at level Ty

yel =wyel,
= r{) v (by lemma 12)
and does not force ¢, since @ & I'y and I'y - @, again by lemma 12.

We have thus proved :

Theorem 13. Let L be a denumerable first-order modal language. Let
I" be a set of sentences of L and ¢ be a sentence of L such that, in

IBM* [T W @. Then there exists an ovdered set B = (P,2), there exists

a set S and an S-interpretation of Lin Sets P which is «
countermodel to T .

Additional comgletenesé theorems (1) Let us add to IBM* the scheme

Copaly = C(pay) and consider the semantic condition : VU, V e P,
JW £ U, W £ V. The soundness theorem is clear. To prove the
completeness, prove that the canonical model satisfies the semantic
condition ; it suffices to show that for A, A" in the canonical P, AUA' is
consistent ; this is so, because AUA" inconsistent implies successively :

= & A 8 — L for somede Aand &' e A,
B © (A8 — © L,

= ¢ (6A8)—> L  bylemma 2(3),

= © 8A < & - L by the scheme considered,

(oA & —L)eA,
1L e A,
a contradiction ; the last step is justified by the fact that 6 e A, & e A’

and NA = NA' all together imply © & € Aand ¢ &' & A.

(2) Let us add to IBM* the scheme O(@ v y) A =0Op — Oy and consider
the semantic condition : AVe P VW e P, W £ V. Again, soundness is
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clear. To prove the completeness, prove that the common NIy is in fact

C-rich, hence belongs to the canonical P and 1s the greatest element sought
for.

(3) One falls back on classical S5 by adding to IBM* the scheme
@ v =¢. The canonical model is then the traditional one : an equivalence
class of maximal consistent C-rich sets. This is in fact “"the" first-order
modal logic of the example Set!.

(4) Adding ¢ — O ¢ to IBM=* gives classical logic with the trivial

necessity operator. Since NI” =1 in that case the canonical model is the
traditional one : a unique maximal consistent C-rich set.

(5) It remains for us an open problem whether one can characterize the
semantic condition of connection : VU, V e P, In EIUU,...,U“ e P

U=U,=U, 20, < Uy z.=U ,2U =V). The axiom scheme
Qv Y AQCoa O w— @Ay is clearly satisfied in constant

presheaves over such a P, but we have no completeness proof for that
scheme.

§5. A calculus of sequents for IS4.

Although our main objective is a completeness proof for IBM, the
system IS4 is a naturel step to consider and has interest in itself,

We first note that IBM may be obtained from 1S4 by adding the
axiom scheme

(SMEM) D¢ v 00 =0
(SMEM for “strong modal excluded middle") and the definition
‘-'}l:p = =0 =,

Proposition 1. The system IBM is equivalent to 1S4 + (SMEM).

Proof : IBM proves (SMEM) because =0 -0 ¢ « © 0 and

© 09 — 0@ are theorems of IBM and (SMEM) follows by (MEM). It is
also easy to show that IS4 + (SMEM) proves MAO. Let us show for
example the adjunction ¢ 0@ — @ :
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¢« OO0
<0 0pA(Opv O=-0¢)
= 20-Op A Op
which implizs O, hence @.

We now present a systern of sequents, to be denoted by [S45q,
which has the same strength as IS4. A sequent is here an ordered pair T :
@ where I' is a finite set of sentences and @ is either the empty set or a
sentence. We consider a system of sequents ILSq for intuitionistic logic

and add two .ules for the modal operator of necessity. To be specific, we
adopt Dummett's systemn ([2], p. 133) and add :

oy o
(0Q)
I, oy Do

(C:)

with the restriction on (:0) that all sentences of I are necessary, i.e. of
the form O0&. To simplify the exposition, we will also neglect equality
and function symbels, for which the reader may easily make the
adaptations.

Proposition 2. The calculus of sequents 154Sq has the cut elimination
property.

Proof : The proof is similar to the proof of cut elimination for
ILSq : it suffice: to examine when necessary the two new rules. Let

+
IS4gq be the systein IS45q augmented with the cut rule :

o Aoy
(Cut)
Ay
One considers an initial use of (Cut), i.e. a proof D of the form
VD, VD,
ro Ch0y

(Cut)

Cply oy
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where D, and D, do not use (Cut). It suffices to eliminate this use of
(Cut) or to import it in D or D,,orto diminish the complexity of o in

such a way that a finite induction will give the desired result. We
concentrate only on the modal steps of the procedure.

(A) Suppose first that D does not end with the introduction of ¢,
(A1) f T : o is axiomatic, (Cut) may be trivially eliminated.
(A2) If D, ends with the introduction on the left of a sentence B in Iy
one examines the different possibilities. The case of the ifituitionistic
rules is well-known and the case of (O 1) is easy : one transforms
TyBy
(0:)

TI,DBI co Doy
(Cut)

l"l,I:I!31.1'E LY
into .
]—l’Bl T o rl’ﬂ: LY
(Cut)

FBy T,y
(302

I":li O Bl:rz . TI
and {Cut) has now been imported in IDi. (In the sequel, we refer to this

straightforward transformation as a commutation of {O:) and (Cut)).

(B Suppose now that Dl ends with the introduction of c.

(Bl) If o is introduced by (Thin), one trivially substitutes to the proof a
proof which uses (Thin) only.

(B,) If o has not been introduced by (Thin), one examines Dz' Three
cases are possible,

(B21) If D, ends with an introduction in I',, one proceeds as in {(A) to
import (Cut) in D.,.

(B22) If D, ends with an introduction of y on the right, the only non-
intuitionistic case is when 7 is of the form Oy, and is therefore
introduced by (:0). The proof has the following shape :
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v
VD, Loy
1"l v (:01)

oo Oy,

',y 08y,
and the restriction on (:J) shows that o and the senfences of 1"2 are
necessary. This means that the last step of D is the introduction of
o= DOa, by
Iy oy

'O
1 ]
and that the sentences of ].“‘1 are necessary. We can therefore legitimately
transform the given proof into
I:0ca, I, 000y
(Cut)

Pl oy
(:0)

I, 08y 1
where the use of (Cut) has been imported in D,

(B23) It remains to examine the case where D, (as D) ends with the

introduction of o. In this case, the induction is on the complexity of the
sentence ¢. Leaving aside the intuitionistic cases, we consider the

casewhere o is O . The given proof ends with
Iy roy Iy0y
Oy — (0O

(Cut)

1"1,1"2 Yy
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and this is transformed into
I'yroy Loy

Iyl oy
This finishes the proof of proposition 2.

The cut elimination property is the only non trivial verification
leading to the following corollary :

Corollary 3. The sequent T : o is provable in [54gq off
IS4 = A — o

To prove the completeness theorem for IL and Beth trees,
M. Dummett considers (loc. cit. p. 229} a variant of ILSq admitting
sequents of the form T : A where A (as I') 15 a finite set of sentences. We
denote by ILpMSq (for ‘multiple conclusion sequent’) Dummett's systzm

and by IS4MSq the same system tozcther with the rules
Oo,o:A NI ot
c0O) —— (0
O A IOo,A
where NI' = {O&10¢ € T'}.

An essential feature of IS4MSq is that it has no explicit rule of
thinning. To show the equivalence of 1543.;1 and IS4M3q, it is therefore
necessary to prove first the elimination of the rules of thinning. Let
1S4,/ o be the system IS4MSq together with

A A
(Thin:) o (:Thin) .
oA oA

Proposition 4. The systems 1S4MSq and 1S4, , are equivalent.
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Proof : Let us consider an initial use of one of the rules of thinning
and let D be the proof which is strictly above that occurrence (D is

therefore in IS4MSq). If D is an axiomatic sequent, thinning is useless

because the consequence is again axiomatic. In the other cases, we import
the use of thinning in D. Suppose, for example that D ends with (:01) :

NI': o
¢0)

' OoA
(Thin:)

rE:ooA.

If £ is a necessary sentence, we can commute (: ) and (Thin:). If § is
not necessary, then N(T",£) = N(T") and the proof may be transformed into
a proof without thinning :
N[ = N(TLE) : o
(:8)

g : o
The preceding proposition makes it easy to establish

Corollary 5. The systems 1548q and 1S4MSq are equivalent.

§6. Beth models for 1S4 and IBM.

6.1. Description of the semantics:

Let F be a forest. By 'forest’, we mean here a countable set of
countable trees. We also suppose that trees have a root, viewed as a
maximum. The nodes of a tree are indexed by finite sequences of natural
numbers, the ordering being the opposite of the initial inclusion of
sequences, the root corresponding to the empty sequence.

Let A be a tree and i a node of A. A set of nodes of A bars i (or is
a bar for 1) if every path of A containing i also contains a node of S. A
set K of nodes is sarurated if with a node it also contains all smaller
nodes. It is easy to see that the bars for i which are saturated form the
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covering sieves of a Grothendieck topology on A. Since all these covers
are inhabited, A becomes an open site and we call that particular topology
the Beth topology on A. The Beth topology on a forest is given by the
Beth topology on every tree of the forest ; we then speak of a Beth
forest,

The semantics which we want to describe reduces in the case of
IBM (at least for the canonical model constructed in the completeness
proof) to the standard topos-theoretic semantics of example 3 but contains
in the case of IS4 a new ingredient (grafts) which is not present in that
standard topos-theoretic semantics.

To cover both cases and show the connections between them and the
presentation of [2], we repeat with some precision the elementary concepts
of interpretation and forcing (or satisfaction).

Let F be a Beth forest and E be a non empty set. An interpretation
™M over (F,E) associates with every n-ary relation symbol r and element
¢ e E"a set N(r,¢) of nodes of F in such a way that the following two
clauses of functoriality and localization be satisfied :

(Dhifj<iandie N(rg), thenje N(rg;

(2)if S is a sieve covering i and S & N(r,c), then1 & N(r.c).

Ifi € N(rg), we say that r(¢c) is forced or sansfied in i and write
IF r(x) [¢] or more simply M II- r(c). This notion of forcing is

extended to all formulas in the usual sheaf~the0ret1c manner, e.g. !

(a) M = @ v y [¢] iff there exists a sieve S covering i such that for

e.varyjel S,M I @lelor™M = yicl;

(D) ML 1= e [gf iff for EvErijE i, M i+ ¢lc];

(c) M IIl Ix @(x,y) [d] iff there exists a'}sieve S covering 1 and, for every

je S, an element ¢ € E such that M. 1= ¢ (x,¥) [:: d].

To connect this with the 1ntmc'!uclmn we cunmder the sheaf AE
associated to the constant presheaf AjE defined by AyE() =E forall 1 e
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F. Given the conditions-on r, it 1s clear that r defines a subsheaf Ar of AE
in such a way that
(’E’E}i (c)e Ar(1) iff 1e& N(rc).

In other words, by the usual sheaf-theoretic definition of forcing,

i 1) [(£p), (@) iff LI r(x) [g).
1

Clearly, that is all what is needed to prove by induction on non-modal ¢ :
il o) (Lg), ©1 ff I o(x) [c].
' 1

Turning now to the modal aspects, we distinguish two semantics for
the modal operators, one for IBM, the other for IS4.

A. The case of IBM. It is a consequence of the first paragraphs that since
we are dealing with an open site,

- 090 (L) @ iff Ve Fjl o) [(£p); @),
Preferring here the simpler notation of (2], we could as well complete (a),

(b), (c) and the like by :
M= Oex)fe) iff Vje F,2 I- ox) [cl.
: ]

B. The case of [S4. To give the semantics to IS4, we introduce grafts,

Let F be a forest and (ﬁ‘ms}E o be an enumeration of its trees. We often
designate a node of A_ by (s,i) and speak of the tree s instead of A Let
us be given a mapping associating to each s > 0 a node (sy,)) with s, <s.
We say that the tree s has been grafted in the node (s;,j) and write
(s,0) < (sl,j) (where (s,0) is the root of the tree s). This relation allows
us to associate to the forest F a new tree, by taking the ordering generated
by < and the orderings of the trees of F. We still denote by < this new

ordering. By graft semantics, we understand the use of < to interpret

necessity :
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(s,i) I O [(ﬁ-E}{S H (¢)] iff there exists a sieve S covering i in A_ such
that for every (s,j) € S and every (s,1) = (s,i),
(10 [ @ [(£E)[5' " (¢)]. We could as well complete (a), (b), {c} and

the like by :
M I [ [c] iff there exists a sieve S covering 1 in A such that for

ﬂv&rg/ 8,_]} e S and every (s,1) < (), M = @ [c].
In both cases (IBM and 1S4), these %éﬁmtmns are extended to a

general £ € AE(i) as is explained in the first paragraphs. We will

henceforth use the notation M. (IP“} ¢ lclor M II— @fc] which the topos-
5.1

oriented reader my consider as a shorthand for the- more precise (s,1) Ik

¢ [(£g) (5.0) (¢)] and for which he may extend the result to the general case

E & AE((s,1)).
In both cases (IBM and 1S4), we verify by induction the functorial

and local character of forcing :

Proposition 1 For every formula ¢(x) and every ¢ :

(Y if M- @(cland j <1, then M 1= o [cl;

1 J : ,
(2) if there exists a sieve S covering i such that for everyje 8§,

M I @ [¢), then M I @ [c].
] 1

We also verify that the semantics is sound :

Proposition 2. IBM is sound for the topos-theoretic semantics on a
Beth forest and 1S4 is sound for the graft semantics on a Beth forest with
grafts.

Proof : For the intuitionistic part, one has the usual computations.
For the modal part, let us check for example : (A) the vahidity of
O(p — y) - (O — Ow) for Beth forests with grafts and (B) the

vahdity of (SMEM) for Beth forests.

(A) Assume M. (!I—) Q(p — y) and M [H_} .
5.1
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Then there exists a sieve 51 covering i in's such that for every (s,jlj IS 31
and (s1) < (s.j¢), 7T (sl'F_i' @ —> y. Similarly, there exists a sieve S,
covering 1 in § such that for every (s’,jz) = S2 and (s',1") < (S-jz)=
M I . Clearly, S =S, N S, will show that M. I= Ow.
(s',1") (5,1)

(B) We want to show that M |+ Oe@ v O-0O¢@. As sieve covering 1in
s, we consider the total siﬂvg’lj e Alj= i}. It suffices to show that
M I Teor™M | O-De@. Suppose M I O¢ and show that for
eve{rs}’l%r,k) & M, T(E‘I?l- ~O@. It suffices isﬂ'?ake kK'<kin A and to
show that M I+ O &f}kgiut this is immediate since if M. = O, then

M- O, F (r,k)
(s,1)

6.2. Planting a Beth forest with grafts,

In completeness proofs, one often begins by enriching the language
with new constants. Limiting ourselves to the denumerable case, we
suppose that this has been done and we denote by L this enriched language
which has thus a denumerable number of constants. Let (I': A) be a
sequent of L. We associate to it a Beth forest with grafts.

Let F be the (denumerable) set of sentences of L. and ¥ ® be the
disjoint union of a denumerable set of copies of F. Let also (o), _, be
an enumeration of ¥ . We construct by induction on k finite Beth forest
(with grafts) F and in each node (s,1) of Fk attach a sequent {F[S_ﬂ’k :

&(s .i),i-:)'

Fork =0, FD has only one node (say (0,0)) and the sequent attached
to that node 1s the mttial (1" : A).
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For k > 0, the induction hypothesis is that we have a finite Beth
forest (with grafts) I, and its attached sequents. Consider the (k-+1)-th
sentence & of the enumeration of F " For each node (3,1) of Fk* we make
the following construction. If (r(s,iJ,k - A (s,i),k} 15 axiomatic or does not
contain o, we leave it unmodified. Otherwise, we examine the form of o
If o is not necessary, we proceed as in (2], pp. 233-235, We simply
recall the case & = (f — ) to fix our terminology :

(Case 1) (B — v) is in r(s.i],k ;if Bis in Ay Oryin F(s,i),k’ we leave
the sequent unmodified ; otherwise, we choose to add 3 to '&(s.i},k oryto

Tk

(Case ii) (P - v)isin A s,k if there exists in A:‘ (the tree with index s
already constructed in F,) a node i < i with B e Tk dYE A s
we leave the sequent unmodified ; otherwise, we add new nodes to the tree
A% as described below :

{a) We choose a new 1’ below i and on the right in the sense that if i is the
sequence of natural numbers (nl,...,nr), then i' is a sequence (nl,...,nr,n*)
with n' strictly greater than any n such that (nl,...,nr,n) is already in Af:.
The new attached sequents are

(83D S iy e P B i) = T & (BY = (YD),

i (D) S Ty iean P8k = Csipk * Asiiy )

(b) Moreover, if 1 is a minimal node in AIS‘, we also introduce a new node
1" below 1 but 'on the left' in the sense that if i = (nl,...,nr) then
1" = (n,,...,n,0). The new sequents are then given by :
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skt “Bikrt) = Troinge A

/N

i i
(i imkert * Bsimpet) (i it * By 1)
= (rfs.i},k : ﬂ(s.i],k) = (r(s,i},k v (B} (v} ).
Considering the modal case o = [I3, we proceed as follows :
(Case i) O is in r(s,i},k ; in this case, we let 1"(5‘].}’]&_'_I = F{S,i}!k v (B}
and leave ﬂ‘[s,i X unmodified.
(Case ii) O ;lj is in é‘{s,i},k; if there exists (s',1") in F, such that
(8,1") < (s,i) and B e ‘ﬁ(s',i'),k* we leave the sequent unmodified :
otherwise, we add a new tree with a new index s' and graft it on the node
(8.1) 1 (s",0) < (s,1) ; in this case the sequent in (s,i) is left unmodified and
the sequent attached to (s',0) is |

k1 B i) = Ny (B

This finishes the construction of Fk ‘- We define F to be the union
of the Fk's.

6.3. Completeness of IS4,

We extend here to IS4 the completeness proof fér IL. by Beth trees
given in [2],

Let (F,) be a sequence of finite forests with grafts having in each

node an attached sequent, as has been constructed from a sequent (I" : A)
in the preceding section. We say that (F)) is a refutation of (I": A) if no

sequent is axiomatic in any node.

It is easy to adapt [2] to establish the following result :
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Proposition 3. [f (I : A) has no proof of length =, the sequence (F)
may be chosen in such a way thar no sequent in any node for F_be

axiomatic.

The essential point in the proof of proposition 3 is that the
construction of the preceding section inverts one of the rules of deduction
at each step and in each new node. Considering the case of modal rules,
we observe that if a new tree has been grafted, this is due to the inversion
of rule (:00). The idea is then to construct (k) in such a way that for

each k, 0 € k < 1, and for every node (s,i) of F there is no proof of
1"|[5 Dk ﬂ.{s ).k of length r - k. To do this, the modal rules do not

complicate matters, since the only choices in the construction of I appear

m three cases :
a) oy g 18 (f A7) and 15 in ﬂ‘(s,i),k + in this case, one has to add 3 or y to

A,
(s,i),k :
b) oy, s (B v and is in F{s kS in this case, one has to add f ory to

r, ... :
{s, 1.k’
cyoy s (B yandisin oy in this case, one has to add P to
ﬂn(&i),k or Y to r(s,i},k‘
None of these cases is directly modal.

Konig's lemma applied to proposition 3 gives the main corollary :

Corollary 4. Every sequent (I' : A) has a proof or a refutation.

Let (I" : A) be a non-provable sequent. According to corollary 4, 1t
has a refutation (F,), _ .. We associate to this refutation an interpretation
M over (F,E}, where the forest F is the union of the F_'s and E 1s the set
of closed terms of L (divided by the equivalence induced by equality as in
§ 4 lemma 12 if we want to consider it) and decide for each node of each
tree s of FF which atomic sentences are satisfied.
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Let 1 be a node of the tree s and let F(s - ﬂ-.{s i) be the infinite
sequent defined by r(s,i} = l'iEl r{s,i},k and ﬂ"(s,i) = LE' a(s}i)_k. We say that
the node 1 of the tree s is in N(r¢) (or that M = r(c)) if the set of nodes

8,1
j of the tree s such that r(c) e T{SJ) is a bar for 1 in the tree s.

Proposition 5. The definition of N(r.c) determines an interpretation
over (F,E).

Proof : The functoriality condition is easy : if r{¢c) € 1"{s Dk and if
i' =1 in s, the construction of section 6.2 ensures that r{c) € I“(S DK for
all k" = k. The locality condition is trivially ensured by the definition of

N{r,c).
It remains to show that M. is a counter-model of ([": A) :

Proposition 6. Let F= (Fk) be a refutation of the sequent (I : A) and
™M be the corresponding interpretation. For all nodes (5,i) of F, every
sentence of l"(s D is satisfied in (s,1) (in the sense of grafts semantics) and

no sentence of ﬂ{s D is satisfied in (s,1)(in the sense of grafts semantics),

Proof : Let (s,1) be a node of F, ou(x) a formula and ¢ closed terms.
We prove by induction on the form of o that if a(g) e 1"{31”, then
M Isl_; o) and if clc) ‘ﬂ{s,i)’ then M. I:; a(¢). The atomic case and
the non-modal inductive cases are as in [2], pp. 241-243. Let us examine
the modal case.

{A) Let o be of the form Of in [gsy Let k be the stage where [ B has
been introduced in r(s,i}.k and let S, be the set of terminal nodes of the
tree Af which are below 1. As A:f 15 finite, S1 1s a bar for 1 1in Aif. Let
S, = {(s.) 1i' <, (s,i) & A¥). Ttisclear that S=S, U S, is a bar for i
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in A.. Moreover, for every k' 2 k and (s,i) € S hl;', ap e Lok
A graft (s,9) < (s,i") for (5,i") € S can only be introduced at a stage
k' =2 k and then F(51‘¢Jk1+1 2 Nr(s,i'},k' and O e F(sr.@_k._'_]. When
OP is examined at a further stage, B is introduced on the left and hence,

for every (s,)) < (s,i% e S, P e F[s’ i and B is satisfied in (s',j) by the
inductive hypothesis. All this proves that 03 is satisfied in (s,1).

(B) Let & be of the form O P in Ay Let k be the stage where
OBvO - 0P has been examined say at stage k. It has therefore been
introduced in ﬂ.{s DK Suppose OP is satisfied in (s,i). Then there exists

a bar S for 1 in A such that for all (s,i'y € S and for all
(s',)) < (s,i"), M. H— |3 (1). But then the leftrnost path from (s,i) crosses

S, say at node (8,1, )I in which one has M |I— 13 It is the key property
of the leftmost path that sequents are re:peatec!l From this, OP € .ﬂ

and at some stage a graft (s,0) < (s, 11} is introduced with B € ﬂ"(s o) 11313;
induction, M H—,i‘ . This contradicts (1) and shows that O is not

$,0)

satisfied in (s,i).

Theorem 7. If the sequent (I" : A) is not provable in 1S4, then it has a
counter-model in graft semantics.

~ This follows from corollary 4 and proposition 6.

6.4. Completeness of IBM.

What has been proved of IS4 may be trivially extended to 1S4-
theories, i.e. to the system IS4 with a set -4 of axioms added. If A is
finite, the result is already contained in proposition 6 and theorem 7. If
A is infinite, one can adapt the planting procedure of forests (with grafts)
of section 6.2, Let o be the (k+1)-th sentence in the enumeration of F -

If o is not in A, proceed as indicated ; if & is an axiom, begin by adding
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If o 1s not in A, proceed as indicated ; if o is an axiom, begin by adding
it to the r(sTi},k for all (s,i) e Fk and examine it according to the
procedure. This way of proceeding preserves the finite character of
sequents, which is an advantage when treating quantifiers.

The preceding observation is commonplace for non logical axioms,
but in the case of IBM (which is the IS4-theory having as a set of axioms
all sentences of the form O¢ v O -~0¢), we wish a modification of the
semantics of 1S4 which interprets [ by "for all nodes of the forest”.

Proposition 8. In models of IBM constructed as in proposition 6,

M= OB iff for all (s of F,M I B,
(5,1} (s',1")

Proof : It clearly suffices to revise point {(A) of the proof of

proposition 6 and observe that by the very construction of the counter-
model the relation < is connected. Hence there are essentially two things

to prove :

(1) if (s'1) < (s,i) and OP e 1"{S iy then O & 1"(
(2)if (s,1) < (s",i")and OB e r{s.i}’ then OB € 1“{5....[..}+

For (1), we recall that the construction ensures that (s,1) < (s,i) implies

Slijl} 3

Cny & I and (s'.9) < (s,1) implies NI'{E..M S T+ it follows

that (') < (s,0) implies T, € Ty

For (2), we observe that at node (s".,i"), O BvO = OP has been examined
say at stage k. It has therefore been introduced in 1"{5.. ")k and one of the

terms of the disjunction has been added to F(s.. iy - Assume O =3 has
been chosen ; in that case, 0 - 0OP € I"(S., i O-0OBe 1"{5 jy (since

(s, < (s"i"))and O -OP e 1"{E iy It would follow that 0Of and - OB
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would be in 1"{s iy and that F would not be a refutation. Consequently,

one has to choose Of, i.e. OP € l"[s.. iy

As a consequence of proposition 8, the method of section 6.3
modified as suggested above establishes the completeness of IBM in
constant sheaves for the usual topos-theoretic semantics : just forget the

relation < at the end.

To summarize, we have proven :

Theorem 9. Let L be a denumerable first-order modal language. Let
T : A be a sequent of L which is not provable in the calculus of sequents
with multiple conclusions corresponding to IBM. Then I" A has a
counter-model in constant sheaf for the usual topos-theoretic semanfics.

Applying our previous remarks on axioms, we may extend this
theorem to calculi of sequents with multiple conclusions corresponding to
IBM with (non-logical) axioms. Using the equivalence of IS4MSq and

1S4, we may return to IBM itself to obtain.

Theorem 10. Let L be a denumerable first-order modal language . Let
I" be a set of sentences of L and ¢ be a sentence of L such that in IBM, T’
i ¢. Then T ¢ has a counter-model in constant sheaf for the usual

topos-theoretic SEMantics.
6.5. An open problem.

We conclude paragraph 6 by mentioning an open problemn.

In 1S4, one can obviously define © ¢ by = @, but this does not

preclude the question of having at hand a less boolean notion of
possibility. Let us call 1IS4 the system with two modalities O and ©

given by 1S4 and the axioms
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GQ{pé 'Oq},
Q- 2o,
O — §) = (9 — ),
Ol v y) = (Cov o).

A calculus of sequents equivalent to 1IS4 may be obtained by adding to
I1545q two rules :
oy Mo
(¢ (0
oA <o
the first rule being subject to the condition that all sentences of T be
necessary and that y be empty or a finite disjunction of possible sentences

(ie. of the form V<E). The proof of equivalence of the two systems may
be done by cut elimination as in proposition 2 of § 5.

The open problem is that of completeness of 1IS4 for gralts
semantics. We think that to take into account the specific role of @,
distinguished grafts should be introduced.
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Added in proof. An alternative proof of Cut Elimination for a calculus of
sequents for IS4 has been given in M. OKADA "A Heyting algebra for
normalization theorems”, to appear.
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