Here is the highly referenced seminar handout notes by Lawvere, 1962. The pen markings are mine; in
several places my initial thoughts are incorrect (e.g., P has products therefore... In fact P does not have
products or equalizers -only weak products and weak equalizers). Rather than “correcting them” by more
markings I left them incorrect; we have a rather detailed analysis of this category as we were trying to
determine if it had equalizers (we proved it doesn’t). Attached to his notes is a recent email exchange I had
with him concerning “probabilistic relations” using this category.
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THE CATEGORY OF PROBABILISTIC MAPPINGS

— With Applications to Stochastic Processes,
Statistics, and Pattern Recognition

- by F. W. Lawvere

1. Objects and Maps in the Category of Probabilistic Mappings

I.1 Measurable Spaces

1.1.1 The objects which we consider are measuratle spaces & . That is,

Q)= <S,B> will be an ordered pair in which S is any set and B is any
o -algebra of subsets of S. This means that: A al?heis B
(0) Every member of B is a subset of 5. Srns 2 B lea~ A&‘gj"ﬁ-

4%&1&“) The empty set ¥ and the ''whole space' S are members of B.“"J’:: U
|

{b"'"' '.,?iﬁte) Q(Z) If B€ B (i.e., if B is a menber of B) then the complement i t\-'ﬁz‘ B. % 3
g% | (S ~B) ¢ B. i portet ver
/*‘f‘ : <2<
L past 2, H‘.‘ (3) f{B,1=0,1,2,+-- is any countable family of members of B,
ATl A ) =) . The to*
¢ then the union .U .B. is also a member of B. =5
= v boton = b
-3
We also say that B is the class of measurable sets of . +
F\ q-'_ 1s {Cb\C.M'P -&’
1.2 If Q= <S, B> is any measurable space and if f is a function d:i‘rnrg on ,ls
‘ﬂ.
4o
Cﬁ-‘t‘-«i\_h S with values in a E‘rtial_tordered set /\, then f is said to be - /\ n.easur-
i by e 1w | WAYS ¥
'ﬂ-'-q—"’"f; able if for each At /\ we have 'L IL{ (w) < X ¢ ¢ B; that is, if the setﬂof all ‘g;a.)
W sfw| we s Jo do~2lg. s 3 C
ﬁ' 9/ € O whose.value under f prej'e es a :r(we\ X\ is measurable for each A, S

lonls. [Z"P‘

LJ’L“llsﬂl-For example, we will use this notion when /\= R, the real number,

1.3 More generally, if Q= <S, B> and Q' =<S', B'> are any measurable
spaces, and 1f,§ is any function defined on S with values in ', ther.g is

/
S—=F said to be a measurable mapping if and only if £ (B )£ B for every B'¢ 8',

where f-l{B') denotes the set of all x ¢ S for which f(x) ¢ B'. The foregoing
paragraph is seen to be a special case of this by considering Q'= <A\, B(A)>

where B(/\) is the smallest o -algebra containing all sets of the forn:

{xlxg A} for all AE A

Q 2
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iy | ies dan(P) = B (#5)

1.4 If Q= <S, B> is a measurable space, then by a probability nieasure on

is meant a function P which assigns to every measurable set BEB a real
number P(B), in such a way that:

(0) 0 P(B)<1 for every BE B

(1) P(S)=1

(2) If Big B fori=1,2,:.- and if BiﬂBj =0fori#j(i.e., Bi are pair-

wise disjoint measurable sets) then
U B)=F
P B, )= P(B.
(Y B)=F PB)

1.5 In case S is a countable set and B consists of all subsets of S, then for any

probability measure P on <S, B> and any B¢ B, we have
P(B)= T P
(B) <EB ({x})

where {x} is the ''singleton" subset of S whose only member is x, for each
S x £ B, Thus, in this case, a probabﬂxt% measure is already determined by
: \\t 1S~» (o Pi® (o1
a function p(x) = P({x} ) of members of S; this function is arbitrary, save

for the two conditions 0 < p(x) < 1, xgs p(x) = 1.

If S is not countable, then probability measures on {Jare not determined by
their values at singletons. For example, if S = {xl 0<x < 1} = the "unit
interval", and if B = the smallest o -algebra containing all closed subinter-

vals = the class of '"Borel sets', then there are a great many probability

measures P on {1= <5, B> for which P({x}) =0 for all x. For example,
in this case P =.L.ebesque measure = (generalized) length is a probability

measure but every singleton has zero probability.

1.6 If 0= <S, B> and Q' = <S', B'> are measurables spaces, if { is a
measurable mapping (1.3) from Qto 0', and if P is a probability measure
on £} then the probability measure Pf induced on { by P via f is defined
by

(pi)B') 2 P (")
for every B'iB'. Note ot @:ut fC?roL Hlf}-uas

- e L e T 8
P 15 e mrllost meide Lot ¥ b He grgp 55 L\‘«"‘p(
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s ‘
l. s AL Igfﬁn&m
'/‘;'J—" 08 Wwewy VNI Go q Is T rque
|£' l

and so ]()43')

b AP o
? &e Lo % < tn (:,‘a) ~



1.7

1.8

To verify that Pf is probability measure (i.e,, satisfies the conditions
-1
0, 1, 2 of 1.4) note that the mapping f  from B' to B is a o -homomorphisin;

i.e., that

f'l(s'NB'} = Smf-l{B') for B'¢ B’

"1 o 1 Fi 00 -'1 1 1 1

f (U Bi"Uf (Bi) for BiEB
i=1 i=1

sy =5

From this it is obvious that Pf is a probability n.easure if P is, in fact,
any mapping fron: B' to B which satisfies the above conditions (whether
induced by a mapping from S to S' or not) will induce a mn.apping from:

probability measures on Qto those on I,

If = <S, B> is a n.easurable space and, if x¢ S, then Px defined by

_ {1 if x¢B
PUB)= 10 if x¢B

for any BE B, is a probability measure on {}, known as a "one-point!' or

"Dirac'" measure,

Let 1= <S, B> be a measurable space, P a probability measure on

f a bounded measurable mapping from © to R = the space of real numbers
with Borel sets as the measurable sets (""Bounded" means that for some
positive real number M, I'f(xll X M forall x¢ S). Such an f is often called

a bounded random variable. We now wish to define the P-expectation of f

also called the integral of f with respect to P, denoted by either

ESys) cap

or by f f(x)P(dx)
Q



7 E!PCZW it a2 da_g,‘;ifél C..-mia‘)f!, nLcF\A-r{ c.\sfg ﬁ,— " o verafslg® (r,zr'_‘,&(“_‘j‘
e ot 1o quenlite &t e "L“S’"‘&‘F podiahditti e o

N This can be done by considering approximations to the integral based on
doubly infinite increasing sequences ,
K""E:’m' ’ W8 Pk & Sy £ ol sonbans
N v < < < < < < v
N sa_, =a , sa, Za =a, =< e T,
Ian 'Z-') L) - 4 A ;"—L.___‘ o

%  of real numbers, Given any such sequence a, define the upper approxima-

tion M b-ccw-f(»s.ud”l'&- e

- W
f ¢ 4P = iR 4 ?(,‘;'(":,%J (f, P,a) = _f.'c,—"‘imm“}m@“'l'a“]
<1 w0 L™

k
and the lower approximation s w2 bt sakenrd
e fen) et st °"‘I":i'?
J(f,P,a) = ﬁ: , §a_)o° Pf{an,anﬂT 5
-co<n<o J

Here Pf(a,b] =P { x‘a <f(x)<b } as defined in 1. The upper integral
is defined by

T (f,P) =infJ (f, P,a)
and the lower integral by
1(f,P)= sup J (f, P,a)
where the infimum and supremum are taken over all doubly infinite increas-

ing sequences a. If1 (f,P)~ 1 (f, P), then the function f is said to be integrable

with respect to P, and the integral is defined to be the common value

1(,P)= | aP=T (5, P).
0

It can be shown that every bounded measurable function (on £} is integrable

with respect to every probability measure (on ). For each individual P,
there will ordinarily be many unbounded functions which are integrable with

respect to P.

1.9 If S is a countable set, B the family of all subsets of S, f any bounded

measurable function on = <S, B>, and P any probability measure on {2,

5
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then
— fﬂf{x)ﬂdx) = T ttx)p(x)
where p(x) = P{{x} ) as defined in 1.5,

1,10 Let f,g be any two bounded measurable functions on a measurable space {i,

and let P be any probability measure on . Then

jﬂ(f +g)dp = _[nfdp + J‘diP

If a is any real number, then

j af(x) P(dx) = a I f(x) B(dx) .
0 Q

O S o SHERR e e e i R R R

1f fn is any sequence of bounded measurable functions such that { is uniforn.ly
n

bounded (|fn(x)[_<_ M for all x,n) and if Jlm f (x) = f(x) for each x £ S,

then lim ‘[ f dp = J:r fdp,
n — oo o 0

1.11 1f 0 £6 <1 and if Pl, 1:’2 are any two probability measures on the measurable

space (), then P = 9P1 + (1--3)P2 is also a probability measure, and

_[nfdp =6 _[‘chipl +(1-8) prdPZ

for any bounded m.easurable function { on £,

1.2 Probabilistic Mappings

2.1 Let =<5, B> and Q' =<S', B'> be any measurable spaces. We say T is

a probabilistic mapping from Qto Q' and write Q—?}Q' if and only if T assigns,

to each point in £, a probability measure on ©', and does so in a measurable

way. More precisely, T is a function of two variables x ¢ S, B'£ B' having tne

properties
Tha R-Ef Semdbusf (0) 0 <T(x,B) <1 for all x& S, B'¢ B'
i~ ot ek
. e (1) T (x,8"y=1 for all x& S
s
'.'n')h ? 6
ke

=5a



(o 8] (o8]
(2) T(x,QlB: ) = _§1 T(x,B!) for each x ¢ S and for each disjoint
1 II_") L L= =
Er- {‘["d'ﬁ"'[s&%ﬁknce B! of measurable sets of Q'.
“T(-,89: 5 —=>Lvn] 1

ﬁn 2 W&“-“Qf . (3) {xlT(x,B')_-g a}E,B for each 0<a <1 and each B'E¢ B',

We will refer to T(x,B') as the (conditional) T-probability of the event

N il

e (& BB in Q', given the elementary event x in {}, or as the T-probability that

—

x is mapped into B'. In case S' is countable and B' consists of all subsets)«
T(,XIEIJE
T(K,::::;“;?‘:

of S', then a probabilistic mapping Q—?—; Q' is entirely detern.ined by a

3 F . 1 1
function t of two point variables x ¢ S, x'¢ S'. (See 1.5) 3-,«“"“‘?] -2ty
iil’-ﬁ(
2.2 Every measurable mapping f from 0 to Q' (the'sre being measurable spaces){la' >R
_—-"‘A
m.ay be regarded as a probabilistic mapping Q-—-E—) Q' as follows: &
1 —=>X }(-——-—';Y Y ( Sn e’
* ' E %(X,B : :
! T8 = {§ {H5h - 3 Lo
e ! x 2l i
\=> (%) e e () (8
X That is, ‘IEf assigns to x the one-point measure (on ') which 1s concentrated

2Lk B)’g\:‘b at f(x)., Probabilistic mappings of this special sort we call deterministic,
1270

— 2,3 Let Q-}‘-vﬂ -[—]> Q" be probabilistic mappings. We define the comgosition

ToU "
Q——> Q" to be the probabilistic mapping defined by
uonbad .-usCL-fvr"‘v Note. Tlege are

" “ - S#‘T‘LLJ\-‘G‘ DS‘{‘HM
ToU ,B = T i 1] < i’ " L. I
(ToUXz.B") fo,"‘ ')« Bix', B )x*‘wg Ges?) Ty
'Q-{ r preb. U oN ﬂ.-'

That is, (ToU)x,B") is the T(x, 0)-expectation of U(e,B").
This is the correct law for composition of conditional probabilities in
physical and other situations,

2.4 If {1 is a countable space is 2,3, then (ToU)(x,B") = t(x,x").U(x',B") .

x' z Sl
1f Q" is also countable, then
— 1 =
(ToU)x,{x"}) = ,‘,Z:w tx, x') ~ulx', x") LB = (x(%{m)
u x€8
‘"en\»cw&cm‘ i Z T(K,;k?)
xcs' b i
&tom\(b,g") = rh.s, ~ ek
) Z’t(x, x")

xe@

-b=




o 2.5 1% ol Q' €5 Q" are measurable n.appings then

T{og = Tfo T

where fog is the usual composition of functions (thus the deterministic

n.appings constitute a subcategory (2.7) of the category of all probabilis-

tic nappifgs. (W5 Suboteery Bl bt ohjecks sncisontle spaces  “ Meag
2rrows * seeturible fachuet - —_

2.6 A probabilistic miapping 1 —%Q, where 1 is a one-point space, is just a

probability nieasure on 02, If QLQ is a probabilistic n.apping, then

Po T is the induced distribution on ', This is familiar in case {}! is s
Tes was & Be the Lobntios of whvid ditabufion Gr 2 genenl produb (st soppig To WO
Euclidean space and T a detern.inistic mapping (i.e., T is a '"randomn, 7T isdferrushe
s redoees b
variable''). Another special case is that where Q0= <S,B>, Q' =<3,B'>, 1% 6aliar
lef

and B' is a sub-J-algebra of B, while T is the "identity" n.apping; then BA(x ) - PH-}B)
a; 1]
PoT is the restriction of P from B to B! . (

2.7 If @(*")mej

then

To(UoV)=(ToU)oV.

Also, if iQ denotes the probabilistic mapping defined by the (deterministic)

identity map on {2, then
idOT=T=T0inf

whenever Q—T—-; Q'. Thus, the class P of all probabilistic n.appings between

measurable spaces, together with our notion of con.position, is a category

in the sense of Eilenberg-MacLane. Thus, the notions of functor, natural

transformation, and adjoint functor have a well-defined meaning in connec-

5\ Q‘.Dtion with # . |The ''objects" of P are arbitrary measurable spaces.l
[ e ———
yly\\? ‘
2.8
- A
75e

Let, for each object Qin P, £ () = the set of all probability measures

on {3, equipped with the sniallest 0-algebra such that for each nmaanzable

T



Q=-(S,®)

Ae®
A cQ, the evaluation 9 (0) — [0, l] at A is n.easurable. Thus, D (0)
— is also an object in # . For any Q—'I:-) Q' in ° , define the deterministic

map B () LTy 1 (') by -

B (THPNA) =| [ Pldw) T (w, A)
Q

for every P¢ © (Q) and every pr.easurable A' C Q'. Thus, £ (T)(P) = PoT
for Ps P (Q); i.e., viewed as|a probabilistic mapping, \E—‘:SL'_‘(—"_D.:

pae.an={; o1 i%

)
for every element P of £ (1), and for every nmieasurable set A’ of proba-

¢ (‘,)

bility measures on Q7 @& ) wé‘wk-‘e,pé’
' L
Define also the probabilistic mapping Ml‘zﬁtf\ E,;zwr‘"u ) *“ al\ V*
&
P o SR Twss o cfres &
9 @—50 et
for each object Q in ® by the formula
s
pQ{PIA) & P{A} '{-e 'P(*:k) l P ;-0—
for each element P of £ (Q) and each measurable AC Q. Then for any
E,

0— Q' in P, the diagram

P 3 &,d @"‘"’ g

® AR
: JECGLR
£ (1) l l 2 g —id
D{Q’)“«'E_) Q! @
Q' e

is commutative, so that » is a natural transformation of the functor p
into the identity functor on‘@.

2.9 Actually £ is co-adjoint to the inclusion of the deterministic subcategory
into 0P ;i.e. ,‘m‘%—.—iﬂ-wnai-pi-ﬂh,—md-if Q-T—) 0' is any probabilistic
mapping then there is a unique deterministic n.apping f such that the

]
.u 1
b 9
d <3
L““g @ad«'}j—@ =B
The ek

(\:-lslpﬂ-ﬁ Bev

£ CtB—ch(ﬁ;

Levask™
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‘ CPF
f O ; (G
/ E}- @adp. Qh@, (‘@f [T mue-rs:? 21w Pf"'[ i A!f‘k St
fcom Ehe funchor L O C)ua 5 Wit

diagramn. R ’T“K‘o
— s@y @EH-Ea 0
o H&9) I
TT T ¥ T & | > 3 o) ifﬂ“ggm—
.()-— “-(Q) 5 (ﬂl] ____i?_'___) g -:'1 T .’rh A
2B 5@ o i)

is commutative. (In particular, there is a deterministic inclusion
h..»@(maﬁ-llg O— P (Q) and this is actually a retract with associated retraction ® O_.)
m(n,ﬁ(&'ﬁg is expected that this adjointness observation will aid in the analysis
l%:. .fr) T of various n.ethodological problems such as Bohm's questions about
quantum n.echanics,
1.3 Stochastic Processes and Decision Maps
3.1 A fairly general class of decision problems may be formulated as follows,
There is a basic space Q) and a measurable partition A of QC elements

vy determnestic H:ﬁag

of A being called ''patterns' or "decisions", We denote the quotient

mapping @—> A by f. (Actually, for the formulation of the problem we
could allow f itself to be "fuzzy"; i.e., probabilistic.) There is also a
space T of "observable states' and a probabilistic n:apping D-E)I‘
expressing the conditional probability F(ew, A) that the observed state lies
in any A & T, given that the basic state is we . The problern, is then

to find a "best" completion 8 of the diagram

Q———F———ny T
s
N AT o]
Au’

One of the '"virtues' of probability theory (and hence of the cate-
gory P ) is that this general proHen., when properly explicated, has a

solution in many cases in which the corresponding detern.inistic problen:

™ ;

T oes not; a basic reason for this is the possibility in P of forming convex
De—2gl
——_:? con.binations of maps, whereas there is no corresponding operation which
L
“tlooms produces detern.inistic n.aps, Of course, if there exists 8 such that

BT,
ILQ.:/_E—I_E_)__. _()_' 10

-9_
e (0T (=30 (3 2) = 8T g « (0 Tl - R'—R
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Veb (-, t5ood) 4[] fé?oo){x, (i) e 22

3.

2

Fod =f, we would choose such 8 as the solution to our problen:; unfortun-
ately, this is not possible for many F, f of interest. One popular schen.e
for making definite the criterion for choosing 6 is to work with a given

£ gy 3 T ;
distribution 1 —> ! on €} and to choose § so as to maxin.ize the quantity

w%hﬁfﬂit?LL“iﬁzﬁf?

o} bty s
.:%Zé 3 Fo, [h] bk

& e 1o be x ik o e ot A
which represents the average (with respect to P) of the probability of

making the correct decision by first making the observation F and then

following the decision rule 8, The probability mieasure P clearly expresses

the relative importance attached to various basic states x¢ D when evaluat-

ing the decision rule 8. In the absence of any such P, one could choose 8§

S0 as to n.axinize

inf (Fo8)(x,[f(x} .
x£50
The existence of solutions § to these optin.ization problen.s can be
established in very great generality by topological argunients,
We consider stochastic processes with discrete tin.e, Let N be the cate-
gory with countably many objects and no non-identity miaps, and let L N
denote the category whose objects are sequences QO’ QI' - +- of objects

in ® . We define a functor AN

R awl &

wi‘_w“"”

pN_ &, pN

¢ VIH: {l]:rn 93

for each sequence {2 of measurable spaces, where }];[n

n.easurable space whose elements are all n-t uples <x

by

denotes the
k

g MBd > with
o n-1

X, & Qi, equipped with the sniallest 0-algebra which n.akes each projection

1T Qk—-} QJ_ measurable, If Qn is thought of as the space of all possible
k <n

11
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states of a system at tin.e n, then @(Q}n is the space of all possible

histories of the systen: up to time n. We define a general ten.porall

discrete stochastic processin O to be any map

< reess 15 ’T“'C- MT P
Yo Fachutre yroe: p

P

g N .
in®?". Given any two processes

b—2, g0 o /
/

the general theory of categories indicates that a map P-—f-—)»P' of stochastic

processes should be defined as a sequence

f

0 —>0

n == n Pﬂ“‘f J,Jw"fs

T \
of maps in %, such that for each time n&N-'t‘:-he diagran, (EL"C"LE'_E%':,S.’—-
@) ,—ﬁ;%ﬁ‘:@&k s Cbmté{% {',.A!I‘SEEQ’
()n ' - °

@ (ﬂ’n 3@{9 }n & Hj\.—_—?@n s p g>

n

Pl lP; @-—g"

L
o
8
P o 0 4 1
Qn T 0 ” %o 3,\_._.«-1 ) Ten (3\_%'——‘)9
n o S 6 l,g
’e')-“! £ g ~ \é{.&\
2o K;t’,ﬂ v
is con.mutative, Since there is also an obvious notion of conlpositio Lﬁgr,?.-?ﬂ
such maps, all stochastic processes and all n.aps of such degrmine a »
,_,J' Lol
category o @ﬁ?,om
e 1? N & Q‘\'-
(B BN T 1
3
Or

which we call the category of temporally discrete stochastic processes, ,\\Qp(‘% o
All the machinery developed in the general theory of categories, as well ¥
as that which can be developed for the particular category @, can thus

be applied to formulate, explicate, and solve many methodological

problen.s within the category (@ .‘d) N}.

3.3 If N denotes the additive m.onoid of non -negative integers, conside red

as a category with one object 0, then the functor category
~ 12 N

-11-~
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is the category of temporally discrete Markov processes. Explicitly,

N
an object in P s just a measurable space {) together with a probabilis-

tic n.apping ﬂ-—z-)ﬂ » and maps f in€ M satisfy a comn.utative diagran.

' f
O—>
2

] ], I

G) A0

If we are 1gi.ven a Markov process <{, T> together with an initial

= . . o 2 S ; :
distribution 1 — >, we can view our situation as a general stochastic
process in which

1. Qn=Qforallnaﬂ
Q ) is j
25 @{.z)o —-)OO is just P
s (k (Q)n - Qn is just the comn.position

T
0 -0 .30
k<nq< n-1

where the first is the projection; i.e,, the dependence on the past is
really only on the preceding moment and, furthermore, the law of
transition {rom: one tin.e to the next does not change with tin e,

If we denote by (1, P l\} the category of Markov processes augn.ented

with initial distributions, then the foregoing discussion detern.ines a functor

LPYN— 3. PN,

This assertion carries the additional information that the various n.appings
n.atch up properly, and also raises the question of whether the above
functor has an adjoint (or co-adjoint). That is, is it possible to extend
any process to a Markov process in a fashion which is universal with

respect to maps to (or from:) Markov processes? ?

13
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Inbox (3) - kirksturtz@universalmath.com - Register.com Webmail

From: wlawvere@buffalo.edu
Subject: Re: Probabilistic Relations
Date: 07/19/2011 08:23 AM

To: kirksturtz@universalmath.com

Dear Dr. Sturtz

For this and many other constructions,

for example an internal Hom, it seems

that one needs to consider the category of

all convex spaces and not just its full subcategory P.
That is, the whole Eilenberg-Moore category of

the commutative pr monad, not only the Kleisli
category of free algebras (="simplices" in this case).

In group theory one deals with actual groups not only
their presentations (= maps in the Kleisli category).

The most obvious property of this monad that most
do not have is that the free on 1 is 1, with the result
that the tensor product has projections ("marginals")
which however do not have the universal property of
the associated cartesian product.

The commutativity of the monad means that all sorts of
diagram categories arising in statistics can be enriched.

Thanks for your interest and | look forward to your
further comments.

Best wishes
Bill Lawvere

On Tue 07/19/11 9:39 AM , "kirksturtz@universalmath.com" kirksturtz@universalmath.com sent:
> Dear Prof. Lawvere, | have been trying to develop the concept of

> probabilistic relations using the Category of Probabilistic Mappings,

> P, via Rel(P). Such an approach requires P be regular - it is not.

> It only has weak equalizers; given a parallel pair f,g: X-—>Y,

> the weak equalizer is the extreme set of the set of all probability

> measures P on X which satisfy f P = g P, along with the evaluation

> map. (Choquet Theory) In P arrows to 2 with the powerset

> algebra correspond to measurable functions, and seemingly the

> apparent alternative to the Rel(P) approach is to define a

> probabilistic relation as either aP map X x Y -—> 2, which

> for finite spaces correspond directly to fuzzy relations, oras a P

>map X xY > [0,1] . Defining composition is the challenge.

> | am familiar with the current literature - it falls short of

> capturing this critical concept. Any thoughts are greatly

> appreciated. Respectfully,
> Kirk Sturtz, Ph.D.

> Universal Mathematics

> Dayton, OH

> 937-610-8704

>
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