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MATHEMATICS

ON CONVERGENCE IN MEAN OF FOURIER SERIES
By S. LOZINSKI
(Communicated by V. I. Smirnov, Member of the Academy, 14. VI. 1945)

Let the function M (z) be defined for 0 <u < 4+ oo and satisfy the
following conditions:

1) M(0)=0; M (u) is>0, convex and steadily increasing for
O<u <+ oo.

2) lim 2 _o 1im

u—-+ 0 U—>+ o

MW _

3) There exist two constants ¢ >>0 and K >0 such that for u>a
we have

M (2u) < KM (u) 1)
Then we say (cf. (*)) that the function M (u) belongs to the class € and

write M€ 2. It is known (3,°) that every function M (z) belonging to
the class @ can be represented in the form

M@= e@d (0<u< +o) 2)
0

where the function ¢(t) satisfies the following conditions:

a) 9(0)=0, ¢(t) >0 for 0 < -+ oo;

B) ¢(¢) is non-decreasing and continuous from the right for
0<t <+ oo;

g1 e .

Besides, if M €2, there exists only one function ¢ (Z) satisfying for-
mula (2) and conditions o), B), y). If M €2, we denote by LM the class
of all functions f(z) measurable on [0, 2r] and satisfying the condition

27
S M[f(@) del+oo (3)
0

Theorem. Let M€Q. Then, in order that for every function f€LM
we should have

Lim \ M (/= su() ) dz =0 (4)
b}

where s, (f) denote the partial sums of the Fourier series of f(x), it is
necessary that.condition

. M(2u)

lim _MW)> 2 (5)

u-»-+co
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hold. If the function ¢(f) from formula (2) satisfies, besides 2), 3), 1)
the condition that

8) ¢’ (¢) exist and be non-increasing for 0<t<+ co and 1im ¢’ (t)=0,

t—>+4-oc0

then the fulfilment of condition (5) is also sufficient in order that for
every function f€LM we should have (&).

Proof. We need the following lemma.

Lemma 1. If M€Q and

. M (2u)
1};1_’9; W) — (6)

then for every A, 1Lk <+ oo, WC have

lim 'f_(}'.“')=1 (7)

We omit the proof for lack of space.

1t is known () that in IM a norm can be defined, which makes LM
a space of type (B). Let us assume that this norm is introduced as
sin (2n-+1)
in(*), and denote the norm of f€LM by | f|y. Let D, (ty=

2 sin—-

be the Dirichlet kernel. It is proved in (*), pp. 196 —200, that for every
function M €2 we have

, 1
| D, (8)|y> 527 max z) 1o
h n( )IM/ 230:9(:))1?( ) g

n
z9(2)

n=1,2,...) (8)

Let us now suppose that the function ME€Q is such that for every
f€LM the relation (%) holds. Then ((*), p. 197, Lemma 5) there exists a
constant A > 0 such that

1D (2) nmqgi;;ﬁ%’—@ (n=1,2,...) 9)

We define for n=1, 2,... the number %, by the relation
M (C)=n (10y
Then, by (9)
| Dn () <24 g (n=1, 2,...) (11)
”n

Suppose now that (5) does not hold. Then we have (6). For every X,
1 <A< + oo, we can define a sequence {urly., of positive numbers, de-

pending on k%, such that lim uj=-+co

h—c0
i TR
bim ) =1 (12)
and
Lugg ) <M () <me (@) (=1, 2,..) (13)

For, if A, 1< k< + o0, is fixed, there exists, by Lemma 1, a sequence
{u))3_, such that lim uy= + oo, e (huy) <29 (uy/2) and

k—c0

i 200 _ g (14)



Clearly
M (u)> M(u))—M (lff‘) > %L P <%’> > ,ll wip (hig) = : wp (wy)  (15)

so that {u,)7, satisfies the first of the inequalities (13).
The second one of the inequalities (13) follows from the inequality
M (u) <ug (u) which is true for every u, 0<u< -+ oo, and (12) follows
from (14). We now put
B=16¢10004, ) =2B (16)
where A is the constant from (11). Let us further so define a sequence
{ug)e, that 1<u,<u,<...lim u;=4cc and (12) and (13) be satisfied.

h—oo
Let n; (k=1, 2,...) be the least positive integer such that %, = Bu,.
We can evidently suppose that u, is so large that u,¢(u,)>1 and
@ (%ny_,)>1. Then, for k=1, 2,... we obtain
tnk
S — St < G —Snge=1) @ Gnge-1) < S ¢ (t)dt=
Tng-1

=M (%ng) — M (Cng—1)=np— (n;;— 1)=1
and lence %n < Gnp-t1+L-<Bu,+1<2Bu;. We obtain the inequalily
Bu, < %n, < 2Buj=\uy (k=1, 2,...) (17)

Now we have A>2, so that by (12) for k>>k, the inequality
o (2uy)/p (uy) <2 holds. 1t follows that for k>k,

cn tn c _c % (2ug) )
“ﬁl‘? <-B—,> < 2w (20 5)=2u 9 (1) Ion) Lhug (ny) <

c )
<16M (u) < 16M () < ZM Cu)=T5m (18)
Clearly
-Cn C-n .
___E_k? <—B_"> 2 oupe (W) > 0,9 m)>1 (k=1, 2,...) (19)
By (8), (18) and (19) we obtain for k>k,
1 o
|| Dok (2) I = 35 max ¢(z)log Zﬁ(/z‘) B

ze(z)>1

] ¢nk> . W ( :"k> Tk~
= 250 ¢ (T logg e < =g 5 18T -
B \B B

Bk

1 B
=529 (ur) 1og 35 =449 (ur) (20)
In virtue of (11) and (17)
M $ 0 (8 !
I D) <24 T2 <24 S Sl < 24 () @)

Combining (20) and (21) we obtain
bdAg (ug) < 249 (M) (k= k)
and hence

1im £¢4) - o

hooo ¥ (uk)

which contradicts (12). The necessity of condition (5) is thus proved.
In order to prove the sufficiency of the conditicns of the theorem,
we shall need the
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Lemma 2. If HeQ and (5) holds, then

M (u) M (v)

< lim

0< ¥l;u_n = < 0 . < 4+ o (22)
u->rfoo ¢ (1) e ¢ (1)
uw R = dt u S - dt
1 1

The proof of the lemma is omitted.

Now, from ((*), p. 192, Theorem 9) it follows easily that, if Me€R,
o satisfies the condition 3) and (22) holds, then for every f€ LM we have
(4). Our theorem is proved.

Remark. Let M€Q and let N(v) be the function conjugate to
M (u) in the sense of W. H. Young (see (?) or (*), pp. 186—191). It can
be proved that if M (u) satisfies (5) then N €, and if, furthermore, ¢
satisfies 3), then for every feLN we have

n—»oo

tim { V(1 /=5, (7)) dz=0.
0
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