MATHEMATICS

Some Further Properties of φ -Functions

by

W. MATUSZEWSKA

Presented by W. ORLICZ on April 25, 1961

1. Denote by S the class of continuous positive functions defined for u > 0, and define the following functions (which may assume also the value ∞):

$$\underline{h}_{\varphi}(\lambda) = \underline{\lim}_{u \to \infty} \frac{\varphi(u)}{\varphi(\lambda u)}, \qquad \overline{h}_{\varphi}(\lambda) = \overline{\lim}_{u \to \infty} \frac{\varphi(u)}{\varphi(\lambda u)} \qquad \text{for } \lambda > 0.$$

A function $\varphi \in S$ will be called a quasi φ -function (briefly: $q\varphi$ -function), if there exist the limits

(*)
$$s_{\varphi} = \lim_{\lambda \to 0+} \frac{\lg \underline{h}_{\varphi}(\lambda)}{-\lg \lambda}, \quad (**) \sigma_{\varphi} = \lim_{\lambda \to 0+} \frac{\lg \overline{h}_{\varphi}(\lambda)}{-\lg \lambda},$$

finite or infinite. A function φ , continuous and nondecreasing for $u \ge 0$, vanishing at zero only and tending to ∞ as $u \to \infty$ is a $q\varphi$ -function, and $\sigma_{\varphi} \ge s_{\varphi} \ge 0$ (cf. [5]). Such $q\varphi$ -functions are called φ -functions according to the terminology of [4].

Nonincreasing functions of the class S are also $q\varphi$ -functions, and $s_{\varphi} \leq \sigma_{\varphi} \leq 0$. To denote $q\varphi$ -functions, we shall use Greek letters φ , ψ , χ , ϱ , ... In some cases the same symbols are to denote $\varphi \in S$.

Generalizing the definition from [4], functions φ , $\psi \in S$ will be said equivalent for large u (l-equivalent), in symbols $\varphi \stackrel{l}{\sim} \psi$, if

$$a\varphi(k_1 u) \leq \psi(u) \leq b\varphi(k_2 u)$$
 for $u \geq u_0$,

 a, b, k_1, k_2 being positive constants. It is easily seen that $\stackrel{l}{\sim}$ is an equivalence relation. We shall give now some simple properties of the *l*-equivalence and of the indices s_{φ} , σ_{φ} .

- 1.1. If $\varphi \stackrel{l}{\sim} \psi$, where φ is a $q\varphi$ -function, $\psi \in S$, then ψ is a $q\varphi$ -function, and $s_{\varphi} = s_{\psi}$, $\sigma_{\varphi} = \sigma_{\psi}$.
- 1.2. (a) Let $\varphi_r(u) = (\varphi(u))^r$, $r \neq 0$; then $s_{\varphi r} = rs_{\varphi}$, $\sigma_{\varphi r} = r\sigma_{\varphi}$, and if $\varphi \stackrel{l}{\sim} \varphi_1$, then $\varphi_r \stackrel{l}{\sim} \varphi_{1r}$.
- (b) If $\varphi(u) = u^r \psi(u)$, then $s_{\psi} = r + s_r$, $\sigma_{\varphi} = r + \sigma_{\psi}$ (the existence of indices on one side of these equations implies existence of the indices on the other side).

1.3. If $s_{\varphi} = \sigma_{\varphi} = r \neq 0$, then such a $q\varphi$ -function will be called *quasiregularly increasing*; if $s_{\varphi} = \sigma_{\varphi} = 0$, *quasislowly varying* φ -functions of a regular increase in the sense of Karamata [2], i.e. $q\varphi$ -functions satisfying the condition

(1.3.1)
$$\varphi(u)/\varphi(\lambda u) \to g(\lambda) \text{ for } \lambda > 0,$$

where $g(\lambda)$ is finite and $\neq 0$ for every λ , $g(\lambda)$ not identically equal to 1, are quasiregularly increasing.

If $\lambda > 0$, from (1.3.1) it follows $g(\lambda) = \lambda^{-r}$, $r \neq 0$, for $g(\lambda_1 \lambda_2) = g(\lambda_1) g(\lambda_2)$ and $g(\lambda)$ is obviously of the first class of Baire. Hence, $s_{\omega} = \sigma_{\omega}^{\tau} = r$.

Assuming $g(\lambda) = 1$ for $\lambda > 0$, we obtain $q\varphi$ -functions slowly varying in the sense of Karamata; then $s_{\varphi}^{\P} = \sigma_{\varphi}^{\P} = 0$. 1.2 implies immediately

- **1.4.** φ is quasiregularly increasing if and only if $\varphi(u) = u^r \psi(u)$, $r \neq 0$, where ψ is quasislowly varying.
- 1.5. If φ is a convex (concave) φ -function, then $\varphi \stackrel{\mathcal{U}}{\sim} \varphi_1$, where φ_1 is a convex (concave) φ -function possessing a continuous, strictly increasing (decreasing) derivative for $u \ge 0$.

Let φ be a convex φ -function and let $\varphi(u) u^{-1} \to \infty$ as $u \to \infty$. Then $\varphi(u) u^{-1}$ is increasing for sufficiently large u and replacing φ by an equivalent function we may assume $\varphi(u) u^{-1}$ to be increasing for u > 0. Let $\varphi_1(u) = \int_0^u \varphi(t) t^{-1} dt$; since $\varphi(t) = \varphi_1(u) = \varphi_1(u)$

1.6. If $\varphi \stackrel{t}{\sim} \varphi_1$, $\varrho(u) = \int_0^u \varphi(t) dt$, $\varrho_1(u) = \int_0^u \varphi_1(t) dt$, $\varrho(u) \to \infty$, $\varrho_1(u) \to \infty$ as $u \to \infty$ for two $q\varphi$ -functions φ , φ_1 , then $\varrho \stackrel{t}{\sim} \varrho_1$.

The inequality

(1.6.1)
$$a\varphi(k_1 u) \leqslant \varphi_1(u) \leqslant b\varphi(k_2 u) \text{ for } u \geqslant u_0$$

is satisfied for some positive constants a, b, k_1, k_2 ; hence,

$$ak_{1}^{-1} \int_{u_{0}k_{1}}^{uk_{1}} \varphi(t) dt \leq \int_{u_{0}}^{u} \varphi_{1}(t) dt \leq bk_{2}^{-1} \int_{u_{0}k_{2}}^{uk_{2}} \varphi(t) dt \quad \text{for } u \geq u_{0}$$

and

$$\frac{1}{2} ak_1^{-1} \int_0^{uk_1} \varphi(t) dt \le \int_0^u \varphi_1(t) dt \le 2bk_2^{-1} \int_0^{uk_2} \varphi(t) dt$$

for $u \ge \overline{u_0} \ge u_0$, where $\overline{u_0}$ is sufficiently large, i.e.

$$a'\varrho(k_1 u) \leq \varrho_1(u) \leq b'\varrho(k_2 u).$$

1.61. If $\varphi \stackrel{l}{\sim} \varphi_1$ and φ , φ_1 are strictly increasing φ -functions, then $\varphi^{-1} \stackrel{l}{\sim} \varphi^{-1}$.

 φ, φ_1 satisfy the inequality (1.6.1); if $\varphi_1(u) = v, u = \varphi_1^{-1}(v)$, then the inequalities $k_1 u \leqslant \varphi^{-1}(a^{-1}v), \quad \varphi^{-1}(b^{-1}v) \leqslant k_2 u, \text{ i. e. } k_2^{-1}\varphi^{-1}(b^{-1}v) \leqslant \varphi_1^{-1}(v) \leqslant k_1^{-1}\varphi^{-1}(a^{-1}v) \text{ hold for } v \geqslant v_0 = \varphi_1(u_0).$

1.7. If $\psi(u) = \int_{0}^{u} \varphi(t) dt$ is finite for u > 0, $\psi(u) \to \infty$, where φ is a $q\varphi$ -function, then

$$(1.7.1) 1+s_{\varphi} \leqslant s_{\psi}, \sigma_{\psi} \leqslant 1+\sigma_{\varphi}.$$

L'Hopital's rule yields $\bar{h}_{\psi}(\lambda) \leq \lambda^{-1} \bar{h}_{\varphi}(\lambda)$, $\underline{h}_{\psi}(\lambda) \geq \lambda^{-1} \underline{h}_{\varphi}(\lambda)$, and it suffices to apply the definition of indices s and σ .

Remark. If φ is quasiregularly increasing, i.e. if $s_{\varphi} = s = r$, ψ is also quasiregularly increasing and \leq in (1.7.1) may be replaced by =.

1.71. (a) If φ is a φ -function, ψ has the same meaning as in 1.7, then

$$(1.71.1) 1+s_{\varphi}=s_{\psi}, 1+\sigma_{\varphi}=\sigma_{\varphi}.$$

(b) If φ is a convex φ -function having a continuous derivative for $u \ge 0$, then

(1.71.2)
$$s_{\varphi} = 1 + s_{\varphi'}, \qquad \sigma_{\varphi} = 1 + \sigma_{\varphi'}.$$

For a nondecreasing φ , the inequality $u\varphi\left(\frac{1}{2}u\right)/2 \leqslant \psi\left(u\right) \leqslant u\varphi\left(u\right)$ is satisfied for $u \geqslant 0$, whence $\psi \stackrel{l}{\sim} u\varphi$. Now, it is sufficient to apply 1.1, and 1.2 (b). The part (b) is a trivial consequence of (a).

Since, according to 1.7 and [5], 2.3 (b), $s_{\varphi}' > 0$ implies φ to be *l*-equivalent to a convex φ -function, owing to 1.7 we obtain:

Formula (1.71.1) holds if φ' is a continuous at 0 $q\varphi$ -function such that $s_{\varphi'} > 0$ or $s_{\varphi'} = \sigma_{\varphi'} = 0$ (in particular, if φ' is slowly varying).

1.8. Let φ be a strictly increasing φ -function; then $s_{\varphi} = 1/\sigma_{\varphi-1}$.

Let $\infty > s_{\varphi} > 0$ and $0 < s < s_{\varphi}$. By [5], 2.3 (b), $\varphi \stackrel{l}{\sim} \chi_s$, $\chi_s = \psi$ (u^s), where ψ is a convex function. According to 1.5 we may assume ψ to be strictly increasing. If $\chi_s(u) = v$, then $\psi^{-1}(v) = (\chi_s^{-1}(v))^s$, whence $\sigma_{\psi-1} = s\sigma_{\chi_s^{-1}}$, by 1.2 (a). Since ψ^{-1} is a concave function, we have $\sigma_{\psi-1} \le 1$ and by 1.61, $\sigma_{\varphi-1} = \sigma_{\chi_s^{-1}}$, whence $\sigma_{\varphi-1} \le 1/s$. Thus $\sigma_{\varphi-1} \le 1/s_{\varphi}$. If $s_{\varphi} = \infty$, the inequality $\sigma_{\varphi-1} \le 1/s$ is satisfied for an arbitrary s > 0; hence $\sigma_{\varphi-1} = 0$. Let $0 < \sigma_{\varphi} < \infty$; assuming $\sigma_{\varphi} < \sigma$, we have $\varphi \stackrel{l}{\sim} \chi_{\sigma}$, $\chi_{\sigma} = \psi$ (u^{σ}), where ψ is concave. Arguing as above we state $s_{\varphi-1} \ge 1/\sigma$, whence $s_{\varphi-1} \ge 1/\sigma_{\varphi}$. If $\sigma_{\varphi} = 0$, σ may be taken arbitrarily small; consequently, $s_{\varphi-1} = \infty$. Applying the above proved inequality to φ^{-1} , we obtain $s_{\varphi} \ge 1/\sigma_{\varphi-1}$.

2. The following conditions play a role when investigating properties of $q\varphi$ -functions:

$$(\infty_s) \lim_{u \to \infty} \varphi(u) u^{-s} = \infty, \qquad (\infty_\sigma^0) \lim_{u \to \infty} \varphi(u) u^{-\sigma} = 0,$$

$$(0_s) \lim_{u \to 0^{+}} \varphi(u) u^{-s} = 0.$$

Denote $s_{\varphi}^* = \sup s$, where the sup is taken over exponents s such that (∞_s) holds, $\sigma_{\varphi}^* = \inf \sigma$, where σ are exponents satisfying (∞_{σ}^0) .

2.1. The following inequalities hold for any φ -function: $s_{\varphi} \leqslant s_{\varphi}^* \leqslant \sigma_{\varphi}^* \leqslant \sigma_{\varphi}^*$.

Let $s_{\varphi} > 0$, $s < s' < s_{\varphi}$. By [5], **2.**3 (a), $\varphi \stackrel{l}{\sim} \chi_{s'}$, $\chi_{s'} = \psi(u^{s'})$, where ψ is a convex φ -function. Hence $\varphi(u) \geqslant a\psi(k_1^{s'}u^{s'})$ for $u \geqslant u_0$, whence $\varphi(u)u^{-s} = \varphi(u)u^{-s'} \cdot u^{s'-s} \geqslant a\psi(k_1^{s'}u^{s'})u^{-s'} \cdot u^{s'-s} \geqslant a\psi(k_1^{s'}u_0)u_0^{-s'}u^{s'-s}$; thus (∞_s) is satisfied and $s_{\varphi} \leqslant s_{\varphi}^*$. Analogously we show $\sigma_{\varphi}^* \leqslant \sigma_{\varphi}$.

2.2. In this section we always assume φ to be a φ -function satisfying the conditions (0_1) , (∞_1) . Then a complementary function φ^* may be defined as follows:

$$\varphi^{*}\left(v\right)=\sup_{u\geqslant0}\left(uv-\varphi\left(u\right)\right).$$

It is easily proved that φ^* is a φ -function satisfying (0_1) , (∞_1) and that to every $v \ge 0$ there exists a u_v such that $\varphi^*(v) = u_v v - \varphi(u_v)$, [1], [7].

In the following we shall prove some theorems on complementary functions.

2.3. (a) If
$$\varphi_1(u) = a\varphi(bu)$$
, $a, b > 0$, then $\varphi_1^*(u) = a\varphi^*(u/ab)$.

(b) If
$$\varphi(u) \geqslant \varphi_1(u)$$
 for $u \geqslant u_0$, then $\varphi_1^*(u) \geqslant \varphi^*(u)$ for $u \geqslant u_0^*$.

(c) If $\varphi \stackrel{l}{\sim} \varphi_1$, then $\varphi^* \stackrel{l}{\sim} \varphi_1^*$.

To prove (a) note that $uv - a\varphi(bu) = a\left(bu\frac{v}{ab} - \varphi(bu)\right)$; hence $\varphi_1^*(v) = \sup_{u \ge 0} (uv - a\varphi(bu)) = a\sup_{u' \ge 0} \left(u'\frac{v}{ab} - \varphi(u')\right) = a\varphi^*(v/ab)$. As regards the proof of (b), cf. [6]. (a) and (b) imply (c) immediately.

2.4. The following formulae are satisfied for any convex φ -function:

(o)
$$\frac{1}{s_{\varphi^*}} + \frac{1}{\sigma_{\varphi}}$$
, (oo) $\frac{1}{\sigma_{\varphi^*}} + \frac{1}{s_{\varphi}} = 1$.

These inequalities are valid also in the limit cases, when the indices assume values $1, \infty$, by usual conventions as regards the indeterminate expressions under consideration.

By 1.5, taking into account 2.3 (c) and the fact that s_{φ} and σ_{φ} are invariants of the relation $\frac{l}{\varphi}$, we may assume φ to possess a derivative strictly increasing to ∞ . Since $\varphi^*(u) = \int_0^u (\varphi')^{-1}(t) dt$ is finite for convex φ -functions, we obtain the required formulae applying 1.71 and 1.8 successively.

The theorem may be proved also by applying [5], 1.41 and 2.3 (a) directly.

Formulae 2.4 (o), (oo) are satisfied always, if $s_{\varphi} > 1$, for this condition implies $\varphi \stackrel{1}{\sim} \psi$, ψ is convex. Let $s_{\varphi} \le 1$; the function $(\varphi^*)^* = \overline{\varphi}$ is called associated with the function φ (φ itself need not be convex). Obviously, $\overline{\varphi}$ is a convex φ -function satisfying (0_1) , (∞_1) ; moreover [7], [5],

$$\overline{\varphi}(u) \leqslant \varphi(u) \text{ for } u \geqslant 0.$$

2.5. Inequalities $s_{\overline{\varphi}} \geqslant s_{\varphi}$, $\sigma_{\overline{\varphi}} \leqslant \sigma_{\varphi}^{\overline{q}}$ are satisfied.

The first inequality is trivial; in fact, for $s_{\varphi} > 1$, $\varphi \stackrel{l}{\sim} \overline{\varphi}$, and always $s_{\overline{\varphi}} \ge 1$, $\overline{\varphi}$ being convex. To prove the second inequality suppose $\sigma_{\varphi} < \infty$ and note that $\sigma_{\varphi} = \inf \lg d_{\alpha} / \lg \alpha$ for an arbitrary φ -function, where inf is taken over all constants d_{α} , $\alpha > 1$, satisfying the inequality $\varphi(\alpha u) \le d_{\alpha} \varphi(u)$ for $u \ge u(\alpha)$. Let $\varphi_1(u) =$

$$= d_a^{-1} \varphi(au), \text{ where } d_a, \ a > 1. \text{ If } \varphi_1(u) \leqslant \varphi(u) \text{ for } u \geqslant u(a), \text{ then by } \mathbf{2.3} \text{ (b)},$$

$$\varphi_1^*(u) = d_a^{-1} \varphi^* \left(\frac{d_\alpha}{a}u\right) \geqslant \varphi^*(u) \text{ for } u \geqslant u^*(a), \text{ and for } (\varphi^*)^* = \overline{\varphi} \text{ and}$$

$$\left(d_a^{-1} \varphi^* \left(\frac{d_\alpha}{a}u\right)\right)^* = d_a^{-1} \overline{\varphi}(au) \text{ there holds } d_a^{-1} \overline{\varphi}(au) \leqslant \overline{\varphi}(u) \text{ for } u \geqslant \overline{u}_x, \text{ i.e. } \sigma_{\overline{\varphi}} \leqslant$$

 $\leq \lg d_{\alpha}/\lg \alpha$, $\sigma_{\overline{\varphi}} \leq \sigma_{\varphi}$. **2.6.** The following inequality holds for an arbitrary φ -function (satisfying (0_1) , (∞_1)):

$$\frac{1}{s_{\varphi^*}} + \frac{1}{\sigma_{\varphi}} \leqslant 1.$$

By the definition of $\overline{\varphi}$ and by 2.4, there holds $\frac{1}{s_{\varphi^*}} + \frac{1}{\sigma_{\overline{\varphi}}} = 1$ and it is sufficient to apply 2.5.

It follows from 2.4 and from [4] that the following properties are equivalent for convex φ [3]:

(a)
$$\varphi(2u) \leqslant d\varphi(u)$$
 for $u \geqslant u_0$,

(
$$\beta$$
) $\varphi^*(\alpha u) \geqslant c_{\alpha} \varphi^*(u)$ for $u \geqslant u^*(\alpha)$, where $c_{\alpha} > \alpha > 1$.

If the convexity of φ is not assumed, (a) implies (β). Another trivial consequence of 2.4 is: if φ is a convex pseudoregularly increasing φ -function, then φ^* has the same property.

3. Let a φ -function φ satisfy the conditions (0_1) , (∞_1) . Denote

(3.0.1)
$$g(v) = \int_{0}^{\infty} e^{-\varphi(t)} e^{tv} dt \qquad \text{for } v \geqslant 0.$$

The function $\chi(v) = \lg g(v)/g(0)$ is a strictly increasing, convex φ -function satisfying the condition (∞_1) and $\varphi^* \stackrel{l}{\sim} \chi$. (cf. [8], where a theorem on analytic representation of a convex φ -function by means of a sum of a series of exponential functions is proved.).

Assuming t to be sufficiently large, we have $e^{-\varphi(t)}e^{tv} < e^{-vt-t}$; hence $g(v) < \infty$ for $v \ge 0$. Convexity of $\chi(v)$ is verified in a usual manner, e.g. applying Schwarz's inequality to g(v). Let $0 < \lambda < 1$; the following inequality is satisfied for $v > -\lg \lambda$:

$$(*) g(v+\lg \lambda) = \int_0^\infty e^{-\varphi(t)+tv} e^{t\lg \lambda} dt \leqslant e^{\varphi^*(v)} \frac{1}{-\lg \lambda}.$$

Given $v \ge v_0$, choose u_v so that $\varphi^*(v) = u_v v - \varphi(u_v)$. If $v \ge v_0$, we have $u_v \ge 1$ and there holds the inequality

(**)
$$g(v) \ge \int_{u_v-1}^{u_v} e^{-\varphi(t)} e^{tv} dt \ge e^{u_v v - \varphi(u_v)} e^{-v} = e^{\varphi^*(v)} e^{-v}.$$

If $v \ge v_1$, where v_1 is sufficiently large, we have $2v + \lg \lambda > v$ and by (*) and (**),

$$-v+\varphi^*(v) \leq \lg g(v) \leq \varphi^*(2v)+\lg(-\lg \lambda).$$

Taking into account that φ^* fulfills the condition (∞_1) , the last inequality yields $\chi \stackrel{l}{\sim} \varphi^*$.

3.1. Let φ be an arbitrary φ -function. Suppose $0 < s_{\overline{\varphi}}^* \le 1$, $0 < s < s_{\varphi}$, then φ is *l*-equivalent to $\psi(u^s)$, where ψ is a convex φ -function. The function $\varphi_1(u) = \varphi(u^{1/s})$ is *l*-equivalent to ψ and satisfies (∞_1) , for φ satisfies (∞_s) , by 2. Moreover, one may suppose that φ_1 satisfies (0_1) , replacing φ_1 by an *l*-equivalent function. Let $\overline{g}_1(v)$ denote the integral (3.0.1), where φ is replaced by φ_1^* . By 3, $\overline{\varphi}_1 \stackrel{l}{\sim} \lg \overline{g}_1(u)/\overline{g}_1(0) = \chi_1(u)$, where $\overline{\varphi}_1 = (\varphi_1^*)^*$. Since $\varphi_1 \stackrel{l}{\sim} \psi$, by 2.3 (c) $\overline{\varphi}_1 \stackrel{l}{\sim} \varphi_1$.

Since $\varphi(u) = \varphi_1(u^s)$, \bar{g}_1 is an integral function of the variable v, hence $\lg \bar{g}_1(u^s)/\bar{g}_1(0)$ is l-equivalent to $\varphi(u)$ and it is a locally analytic function for u > 0. If $\alpha, \beta \ge 0$, $\alpha^s + \beta^s = 1$, then taking into account that χ_1 increases monotonically, we obtain $\chi_1((\alpha v_1 + \beta v_2)^s) \le \chi_1(\alpha^s v_1^s + \beta^s v_2^s) \le \alpha^s \chi_1(v_1^s) + \beta^s \chi_1(v_2^s)$. Hence:

Let φ be an arbitrary φ -function satisfying (0_1) and let $s_{\varphi} > 0$, $s < s_{\varphi}$ when $s_{\varphi} \le 1$, s = 1 when $s_{\varphi} > 1$ or $s_{\varphi} = 1$ and φ is equivalent to a convex φ -function satisfying (∞_1) . Let $\varrho_s(v) = \sup_{v \in S} (uv - \varphi(u^{1/s}))$. By these assumptions

(a) $\varphi \stackrel{l}{\sim} \gamma_{\varphi}$, where

$$\chi_{\varphi}(v) = \lg \left(\int_{0}^{\infty} e^{-\varrho_{S}(t)} e^{tv^{S}} dt \right) / \int_{0}^{\infty} e^{-\varrho_{S}(t)} dt;$$

(b) χ_{φ} is an s-convex function, i.e. $\chi_{\varphi}(av_1+\beta v_2) \leq a^s \chi_{\varphi}(v_1)+\beta^s \chi_{\varphi}(v_2)$ for $a, \beta \geq 0$, $a^s+\beta^s=1$, and χ_{φ} is locally analytic for v>0.

Let us yet note that if $s_{\varphi} = 0$, then $u\varphi \stackrel{l}{\sim} \psi$, where $\psi(u) = \int_{0}^{u} \varphi(t) dt$, whence ψ is convex, and by the previous theorem we obtain also in this case existence of locally analytic functions *l*-equivalent to φ , defined by integrals of the above type with a factor u^{-1} .

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES (INSTYTUT MATEMATYCZNY, PAN)

REFERENCES

- [1] Z. Birnbaum und W. Orlicz, Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math., 3 (1931), 1—67.
- [2] J. Karamata, Sur un mode de croissance regulière des fonctions, Mathematica (Cluj), 4 (1930), 38—53.
- [3] M. A. Krasnosielskii, J. B. Rutickii, Convex functions and Orlicz spaces [in Russian], Moscow, 1958.
- [4] W. Matuszewska, On generalized Orlicz spaces, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys., 8 (1960), 349—353.
- [5] W. Matuszewska and W. Orlicz, On certain properties of φ -functions, ibid., 8 (1960), 439—443.
- [6] , A note on the theory of s-normed spaces of φ -integrable functions, Studia Math. 21 [in press].
- [7] W. Orlicz, On integral representability of linear functionals over the space of φ -integrable functions, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys., 8 (1960), 567—569.
- [8] W. C. Videnskii, Applications of the theory of integral functions to construction and investigation of N'-functions [in Russian], Dokl. Akad. Nauk SSSR, 121 (1958).