BULLETIN DE L'ACADEMIE
POLONAISE DES SCIENCES
Série des sciences math., astr.
et phye. — Vol. IX, No. 6, 1961

MATHEMATICS

Some Further Properties of ¢-Functions

by
W. MATUSZEWSKA

Presented by W. ORLICZ on April 25, 1961

1. Denote by S the class of continuous positive funetions defined for u > 0,
and define the following functions (which may assume also the value co):

hy (2) = lim 9?((;2) hy (A) = ) m(f(a )) for 2> 0.

A function ¢ € S will be called a quasi ¢-function (briefly: gg-function), if there
exist the limits

) Ig hy (A) lg hy (2)
* o hEn * % p M
) SQJAJLO— —lg A (*) o z~> —Igl

finite or infinite. A function ¢, continuous and nondecreasing for u = 0, vanishing
at zero only and tending to co as u - cc is a gg-function, and ¢, = 5, = 0 (cf. [S]).
Such gg-functions are called @-functions according to the terminology of [4].
Nonincreasing functions of the class S are also gg-functions, and s, < 0, < 0.
To denote gg-functions, we shall use Greek letters ¢, v, %, 0, ... In some cases the
same symbols are to denote peS.
Generalizing the definition from [4], functions ¢, p € S will be said equivalent

for large u (l-equivalent), in symbols @ Ly, if
ap (kyw) < v W) < by (kpu) for u = uy.

J‘ a, b, ky, k- being positive constants. It is easily seen that Lisan equivalence relation.
_ We shall give now some simple properties of the l-equivalence and of the indices
S, Og.

: 1.1, If goitp, where ¢ is a gg-function, y € S, then » is a gg-function, and
== S*ﬁ" G’(P = o"p .

& 1.2. (f‘) Let @ (u) = (p (W), r # 0; then Syr = 1Sy, Gpr = I'0p, and if c;—i» @1,
then Pr ~ @yr.

(b) If ¢ (u) = ur y (u), then s, = r+s,, 0, = r-+o, (the existence of indices
H one side of these equations implies existence of the indices on the other side).

[445)
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1.3. If 5, = 6, = 1 # 0, then such a gp-function will be called quasiregularly
increasing; if s, = o, = 0, quasislowly varying g-functions of a regular increase
in the sense of Karamata [2], i.e. gp-lTunctions satisfying the condition

(1.3.1) @ (u)p(iu) =g () for 2 =0,

where g () is finite and # 0 for every 4, g (2) not identically equal to 1, are quasire-
gularly increasing.

If 2> 0, from (1.3.1) it follows gM)=271r+#0, for g (L )=gX)eg (i)
and g (4) is obviously of the first class of Baire. Hence, s, = o, = r.

Assuming g (1) = | for 4 > 0, we obtain ggp-functions slowly varying in the
sense of Karamata; then s; = o = 0. 1.2 implies immediately

1.4. ¢ is quasiregularly increasing if and only if ¢ (u) = u” y (u), r # 0, where
is quasislowly varying.

1.5, If ¢ is a convex (concave) g-function, then qnﬂ @1, where ¢ is a convex
(concave) g-function possessing a continuous, strictly increasing (decreasing) deri-
vative for u = 0.

Let ¢ be a convex g-function and let ¢ (&) u—! — co as u — co. Then ¢ (u) u—1
is increasing for sufficiently large u and replacing ¢ by an equivalent function we

[
may assume ¢ (u) ! to be increasing for u > 0. Let ¢; () = [ ¢ (£) r—1 dr; since
0

¢ (u)< g (u) <@ (u)foru =0, ¢ possesses the required properties. If ¢ (1) u—1—d,
d < oo, then ¢ (1) £ du and .the function ¢; (4) = du—d lg (1+u) is l-equiva-
lent to ¢ and satisfies the required conditions. If ¢ is concave, then it is strictly
increasing. Since ¢! is a convex g-function, 97—125(?—1)1, where (¢—1); denotes
the function defined for ¢—! in the same way as ¢, was defined for ¢. Obviously,

((g=1)1) 1 possesses the required properties and by 1.61, ¢ L ((g—1))—!.
u U
L6 If Loy, o) = [ (0) dt, o (u) = [ gy (1) dt, o (u) > oo, 01 (u) = ¢
0 0

as u—oo for two ggp-functions ¢. ¢, then 9«591.
The inequality

(1.6.1) ap (kyu) < @y (u) < by (kau) for u = uy

is satisfied for some positive constants a, b, k|, k»: hence,

ulk, 2 uk,
aki' | p@di< [ gr(ydr<bks [ o dr for u = ug
uu'k, -ul., -uﬂr‘.
and
| u‘k, ;u & u‘ k.
Soakt' [ o@dr< [ g (di <26k [ @) dr
2 b B ]

for u = uy = uy, where uq is sufficiently large. i.e.
a'o (kyu) < oy () < b'o (ky u).

161 If ¢ Lfﬂ and ¢, ¢ are strictly increasing ¢-functions, then ¢—1 i(;*l.
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@, ) satisfy the inequality (1.6.1); if ¢y () = 2, u = ¢! (v), then the inequalities
iu<gl(@lo), glOlo)y<hku e kile (b lo)<er! (0)<
<L kilg—1(a—1%) hold for v = vy = ¢ (ug).

u

1.7. If o (u) = [ @ (1) dt is finite for u > 0, ¢ (u) — oo, where ¢ is a ggp-function,

then 0

(1.7.1) 145, < Sy gy < 140,

L’Hopital’s rule yields &, (1) < By (), hy (B) = 271 h, (4), and it suffices
to apply the definition of indices s and o.

Remark. If ¢ is quasiregularly increasing, i.e. if s, =5 =r, v is also quasire-
gularly increasing and < in (1.7.1) may be replaced by ==.

1.71. (a) If ¢ is a p-function, ¥ has the same meaning as in 1.7, then

(1.71.1) 148, = S 140, = 0g.
(b) If @ is a convex g-function having a continuous derivative for u = 0, then
(1.71.2) §p = 14541, Ty = 10y,

For a nondecreasing ¢, the inequality ugp (3 u)/2 < v (1) < ug (u) is satisfied for
u = 0, whence t,uiwp. Now, it is sufficient to apply 1.1, and 1.2 (b). The part
(b) is a trivial consequence of (a).

Since, according to 1.7 and [5], 2.3 (b), s, = 0 implies ¢ to be [-equivalent
to a convex g-function, owing to 1.7 we obtain:

Formula (1.71.1) holds if ¢’ is a continuous at 0 gg-function such that s,» >0
or 5, = 0 = 0 (in particular, if ¢’ is slowly varying).

1.8. Let ¢ be a strictly increasing ¢-function; then s, = 1op—y.

Let oo > 5, >0 and 0 < s <s,. By [5], 2.3 (b), ¢ & 75 s = p (u%), where o
is a convex function. According to 1.5 we may assume g to be strictly increasing.
If 45 (u) = v, then p—1 (v) = (3571 ()%, whence oy = 57,1, by 1.2 (a). Since p—1
is a concave function, we have ¢,y <1 and by 1.61, 0, = 0,71, whence 0,1 <
< 1/s. Thus o,y < /s, If 5, = oo, the inequality @, < l/s is satisfied for
an arbitrary 5 > 0; hence o, ; = 0. Let 0 < 0, < co; assuming o, < 0, we have
oLy, 7s = v @), where y is concave. Arguing as above we state s, = /o,
whence s, = 1/0,. If 0, =0, o may be taken arbitrarily small; consequently,
5,1 = co. Applying the above proved inequality to ¢—1, we obtain s, = 1/o,—1.

2. The following conditions play a role when investigating properties of
gp-functions:

(cog) lim @ (1) u—3 = oo, (oo lim ¢ (u) u— =0,

U—>00 U—00

(0s) lim ¢ () u—==0.
U0+

Denote s; = sup s, where the sup is taken over exponents § such that (cos)
holds, ¢ = inf o, where ¢ are exponents satisfying (c09).
2.1. The following inequalities hold for any @-function: s, < s < 05 < Op.
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Let 5, >0, s<s' <5, By [5], 2.3 (a), ¢~ /s, zse = (us’), where y is a
convex g-function. Hence ¢ (u) = ay (k$'u®) for u > uy, whence @ (u)u—s =
=@ ) = u¥=5 = ap (k% us) u=5-us—s > ap (kY uo) ugs" u¥—5; thus (oo5)
is satisfied and s, < 5. Analogously we show of < 0.

2.2. In this section we always assume ¢ to be a g-function satisfying the con-
ditions (0), (o0,). Then a complementary function ¢* may be defined as follows:

¥ (v) = sup (uv — @ (u)).

It is easily proved that ¢* is a g-function satisfying (0,), (o0;) and that to every
v 2> 0 there exists a uy such that ¢* (¢) = wpv — @ (w), [1], [7].
In the following we shall prove some theorems on complementary functions.
2.3. (a) If @1 (W) = ap (bu), a,b >0, then ¢} (u) = ap™* (u/ab).
(b) If tp(u) = @y (u) fm u = ug, then ¢f (u) = ¢* (u) for u = uj.
©If Lo, then g* L gt
To prove (a) note that wv — agp (bu) = a (.!n.:E —p (bu)); hence ¢f (v) =
= sup (uv — ap (bu)) = a sup (u 5 e (u' )) = ap* (v/ab). As regards the proof
w=0
of (b), cf. [6]. (2) and (b) 1mply (¢) immediately.

24. The following formulae are satisfied for any convex ¢-function:

1 1 1 1
(O)Q"l'a’, (00)6 g ¥ i

LA

These inequalities are valid also in the limit cases, when the indices assume
values 1, oo, by usual conventions as regards the indeterminate expressions under
consideration.

By 1.5, taking into account 2.3 (c) and the fact that s, and o, are invariants

of the relation <, we may assume @ to possess a derivative strictly increasing to oo,
Since ¢* (1) = j (p")~1(2) dt is finite for convex ¢-functions, we obtain the required
]

formulae applying 1.71 and 1.8 successively.
The theorem may be proved also by applying [5], 1.41 and 2.3 (a) directly.
Formulae 2.4 (0), (00) are satisfied always, if §p > 1, for this condition implies
@~y, p is convex. Let Sp < 1; the function (¢p*)* = ¢ is called associated with
the function ¢ (g itself need not be convex). Obviously, 7 @ is a convex ¢ -function
satisfying (0y), (o0y); moreover [7], [5],

¢ () < ¢ (u) for u = 0.
2.5. Inequalities s; > s5,, 05 < oy are satisfied.

The first inequality is trivial; in fact, for s, > 1, @~ cp, and always s; > 1,
@ being convex. To prove the second inequality suppose o, << co and note that
o, = inflg d,/Ig a for an arbitrary p-function, where inf is taken over all constants
dz, a > 1, satisfying the inequality ¢ (au) < d, ¢ () for u > u(a). Let gy (u) =
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— di Vg (au), where d,, a > 1. If @; (1) < ¢ (u) for u > u(a), then by 2.3 (b),
, d, : '
ot () =dg! ¢* (E" u) > ¢* () for u = u*(w), and for (¢*)* =¢ and

7. W\ ¥ _ = =
(dﬂ'l G* (%" u)) = d; ! ¢ (au) there holds da! ¢ (au) < @ (u) for u = u,, ie. o5 <

< lg djlga, o, < o,
2.6. The following inequality holds for an arbitrary g-function (satisfying (0y),
(OO[‘).)'.

By the definition of ¢ and by 2.4, there hoids-L + 1 — 1 and it is sufficient
to apply 2.5. St 05

It follows from 2.4 and from [4] that the following properties are equivalent
for convex ¢ [3]:

(a) o (2u) < dp (u) for u = uq,
# @* (au) = ¢, * (u)  for u > u*(a), where ¢, >a>1.

If the convexity of ¢ is not assumed, («) implies (). Another trivial consequence
of 2.4 is: if @ is a convex pseudoregularly increasing @-function, then ¢* has the
same property.

3. Let a g-function ¢ satisfy the conditions (01), (o). Denote
(3.0.1) g@) = [er®emdr for v > 0.

0

The function y (v) = lgg (©)/g (0) is a strictly increasing, convex g@-function
satisfying the condition (o) and ¢* & . (cf. [8], where a theorem on analytic
representation of a convex g¢-function by means of a sum of a series of exponential
functions is proved.).

Assuming ¢ to be sufficiently large, we have e—7® ef® << e—*—*; hence g(@) <o
for v = 0. Convexity of y () is verified in a usual manner, e.g. applying Schwarz’s
inequality to g (¢). Let 0 << 4 < 1 - the following inequality is satisfied for v > —lg4:

<]

1
* g(vtlgh)= [g—¢(5)+w etled gy < ov*® s

B —I1g

Given v = vy, choose uy so that ¢* (v) =urv—¢@ (). If v = vy, we have up = 1
and there holds the inequality
‘HU A
(*%) g(v) = _J 2O gtv gt > ¥V T p—v — 2@ g0,
‘Hv—l

If © > v, where o, is sufficiently large, we have 2v+41g A >w and by (*) and (**),
—o+p*(v) < lgg (@ < ¢* 0)+1g(—1g A).
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Taking into account that ¢* fulfills the condition (co;), the last inequality yields
2t

3.1. Let @ be an arbitrary ¢-function. Suppose 0 < s; < 1, 0 <5 < s,, then ¢
is l-equivalent to ¥ (#®), where y is a convex @-function. The function g, (1) =
= @ (u!/%) is l-equivalent to y and satisfies (coy), for ¢ satisfies (cos), by 2. Moreover,
one may suppose that ¢, satisfies (0,), replacing ¢; by an /-equivalent -function.
Let g1 (v) denote the integral (3.0.1), where ¢ is replaced by ¢f. By 3, @11 lg
21 (/g1 (0) = y1 (u), where 7 = (p})*. Since p; Ly, by 2.3 (0) 1 L .

Since @ (u) = @y (), g is an integral function of the variable v, hence
lg g1 (u®)/g1 (0) is l-equivalent to ¢ (u) and it is a locally analytic function for u > 0.
Ifa,3 > 0, as+p5 = 1, then taking into account that y, increases monotonically,
we obtain y; ((ev; + fv2)%) < 71 (a® 5+ 50 < a® x1 (¥5)+ % 41 (v5). Hence:

Let @ be an arbitrary ¢-function satisfying (0;) and let s, >0, s < s, when
Sp < 1,5 =1 when 5, >1 or 5, =1 and ¢ is equivalent to a convex g-function
satisfying (coy). Let g5 (v) = sg}g. (vv — @ (u/3)). By these assumptions

uz
(a) ¢ & Zs» Where

oo o0

o (,0) _ ]g (J'e*-?s(t-) etvs (h)/" J.E—Es(ﬁ) de;
0 Q

(b) %, is an s-convex function, i.e. ¥, (av,+f7,) < af Yo (02 e (22) for
o, =20, as+p35 =1, and ¥, is locally analytic for = > 0.

U
Let us yet note that if 5, = 0, then ugp pr, where v (1) = [ @ (¢) dt, whence p
0

is convex, and by the previous theorem we obtain also in this case existence of
locally analytic functions /-equivalent to ¢, defined by integrals of the above type
with a factor w—1.
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