On Certain Properties of φ -functions

by

W. MATUSZEWSKA and W. ORLICZ

Presented by W. ORLICZ on May 5, 1960

1. In this paper we use the same definitions and notations as in [3]. Given a φ -function let us define for $\lambda > 0$ the following extended-value functions

$$(\bigcirc) \quad \underline{h}_{\varphi}(\lambda) = \lim_{u \to \infty} \frac{\varphi(u)}{\varphi(\lambda u)}, \qquad (\bigcirc\bigcirc) \quad \overline{h}_{\varphi}(\lambda) = \overline{\lim}_{u \to \infty} \frac{\varphi(u)}{\varphi(\lambda u)},$$

$$(\bigcirc')\quad \underline{h}^a_{\varphi}\left(\lambda\right)=\inf_{u>0}\frac{\varphi\left(u\right)}{\varphi\left(\lambda u\right)},\qquad (\bigcirc\bigcirc')\quad \overline{h}^a_{\varphi}\left(\lambda\right)=\sup_{u>0}\frac{\varphi\left(u\right)}{\varphi\left(\lambda u\right)}.$$

1.1. There exist limits

$$(*) \quad s_{\varphi} = \lim_{\lambda \to 0+} \frac{\lg h_{\varphi}(\lambda)}{-\lg \lambda}, \qquad (**) \quad \sigma_{\varphi} = \lim_{\lambda \to 0+} \frac{\lg \overline{h}_{\varphi}(\lambda)}{-\lg \lambda},$$

and there exist limits (let s_{φ}^{a} resp. σ_{φ}^{a} stand for these) of analogous expression which appear at (*), (**) on replacing $h_{\varphi}(\lambda)$, resp. $h_{\varphi}^{a}(\lambda)$, by $h_{\varphi}^{a}(\lambda)$, resp. $h_{\varphi}^{a}(\lambda)$.

To prove this let us notice that $h_{\varphi}(\lambda) \gg 1$ for $0 < \lambda \leq 1$,

$$\underline{h}_{\varphi}(\lambda\mu) = \underline{\lim}_{\substack{u \to \infty \\ \varphi \to \infty}} \frac{\varphi(u)}{\varphi(\lambda u)} \cdot \frac{\varphi(\lambda u)}{\varphi(\lambda \mu u)} \gg \underline{h}_{\varphi}(\lambda) \, \underline{h}_{\varphi}(\mu), \, 0 < \lambda, \, \mu \leqslant 1,$$

and $h_{\varphi}(\lambda \mu) \leqslant h_{\varphi}(\lambda) h_{\varphi}(\mu)$. By suitable substitution we reduce the supermultiplicative function $h_{\varphi}(\lambda)$, resp. the submultiplicative function $h_{\varphi}(\lambda)$ to a superadditive, resp. subadditive one and apply the well-known theorem on limits of such functions. For the reader's convenience we shall supply a direct proof in the case (*). Let $0 < \lambda_0 < 1$; given $0 < \lambda < 1$, we determine a positive integer n so that $\lambda = \lambda_0^n \mu$, where $\lambda_0 < \mu \leqslant 1$. $h_{\varphi}(\lambda)$ being supermultiplicative, we obtain $h_{\varphi}(\lambda) = h_{\varphi}(\lambda_0^n \mu) \gg (h_{\varphi}(\lambda_0))^n h_{\varphi}(\mu)$. Hence,

$$\frac{\lg \underline{h}_{\varphi}(\lambda)}{-\lg \lambda} \geqslant -\frac{n}{n \lg \lambda_0 + \lg \mu} \lg \underline{h}_{\varphi}(\lambda_0) + \frac{\lg \underline{h}_{\varphi}(\mu)}{-\lg \lambda}.$$
[439]

If $h_{\varphi}(\lambda_0) < \infty$, we get with $\lambda \to 0 +$

$$\lim_{\overline{\lambda} \to 0+} \frac{\lg \underline{h}_{\varphi}(\lambda)}{-\lg \lambda} \gg \frac{\lg h_{\varphi}(\lambda_0)}{-\lg \lambda_0}.$$

The latter inequality holds also in the case of $\underline{h}_{\varphi}(\lambda_0) = \infty$ (in that case $\underline{h}_{\varphi}(\lambda) = \infty$ for every $\lambda, 0 < \lambda < x_0$). Thus we have

$$\underline{\lim_{\lambda \to 0+}} \frac{\lg \underline{h_{\varphi}(\lambda)}}{-\lg \lambda} \geqslant \sup_{0 < \lambda < 1} \frac{\lg \underline{h_{\varphi}(\lambda)}}{-\lg \lambda} \geqslant \overline{\lim_{\lambda \to 0+}} \frac{\lg h_{\varphi}(\lambda)}{-\lg \lambda},$$

· whence

$$\lim_{\lambda \to 0+} \frac{\lg h_{\varphi}(\lambda)}{-\lg \lambda} = \sup_{0 < \lambda < 1} \frac{\lg h_{\varphi}(\lambda)}{-\lg \lambda}.$$

Similarly we find

$$\lim_{\lambda \to 0+} \frac{\lg \overline{h}_{\varphi}(\lambda)}{-\lg \lambda} = \inf_{0 < \lambda < 1} \frac{\lg \overline{h}_{\varphi}(\lambda)}{-\lg \lambda}.$$

Relations analogous to (+) and (++) hold for $h^a_{\omega}(\lambda)$, $\overline{h}^a_{\omega}(\lambda)$.

1.2. If $\varphi \stackrel{l}{\sim} \psi$ then $s_{\varphi} = s_{\psi}$, $\sigma_{\varphi} = \sigma_{\psi}$; if $\varphi \stackrel{a}{\sim} \psi$ then $s_{\varphi}^{a} = s_{\psi}^{a}$, $\sigma_{\varphi}^{a} = \sigma_{\psi}^{a}$. If $\varphi \stackrel{l}{\sim} \psi$, we have with certain positive constants a, b, k_{1}, k_{2}

$$a\varphi\left(k_{1}u\right)\leqslant\psi\left(u\right)\leqslant b\varphi\left(k_{2}u\right)$$

for sufficiently large u. Hence, we obtain

$$\frac{a}{b} \frac{\varphi(k_1 u)}{\varphi(\frac{k_2}{k_1} \lambda k_1 u)} = \frac{a}{b} \frac{\varphi(k_1 u)}{\varphi(k_2 \lambda u)} \leqslant \frac{\psi(u)}{\psi(\lambda u)} \leqslant \frac{b}{a} \frac{\varphi(k_2 u)}{\varphi(\lambda k_1 u)} = \frac{b}{a} \frac{\varphi(k_2 u)}{\varphi(\frac{k_1}{k_2} \lambda k_2 u)},$$

$$\frac{a}{b} \frac{h_{\varphi}(\frac{k_2}{k_1} \lambda)}{\langle \frac{k_2}{k_1} \lambda \rangle} \leqslant \frac{h_{\psi}(\lambda)}{a} \leqslant \frac{b}{a} \frac{h_{\varphi}(\frac{k_1}{k_2} \lambda)}{\langle \frac{k_2}{k_2} \lambda \rangle},$$

$$\frac{\lg h_{\psi}(\lambda)}{-\lg \lambda} \leqslant \frac{\lg \frac{b}{a}}{-\lg \lambda} + \frac{\lg h_{\varphi}(\frac{k_1}{k_2} \lambda)}{-\lg \frac{k_1}{k_2} \lambda} - \lg \frac{k_1}{k_2} \lambda, \quad \text{for } 0 < \lambda < 1,$$

whence $s_{\psi} \leqslant s_{\varphi}$; we show similarly that $s_{\varphi} \leqslant s_{\psi}$. Our argument is untouched in the case $\overset{a}{\sim}$. One can prove similarly $\sigma_{\varphi} = \sigma_{\psi}$, resp. $\sigma_{\varphi}^{a} = \sigma_{\psi}^{a}$.

1.3. (a) Let $0 < s < \infty$; in order that $s_{\varphi} = s$, it is necessary and sufficient that

(O)
$$\varphi(u) = u^{s} \varrho(u),$$

where $\varrho(u)$ is continuous, positive for u > 0 and subject to

(+)
$$\lim_{\lambda \to 0^{+}} \frac{\lg \lim_{u \leftarrow \infty} \frac{\varrho(u)}{\varrho(\lambda u)}}{-\lg \lambda} = 0.$$

(b) Let $0 < \sigma < \infty$; in order that $\sigma_{\phi} = \sigma$ it is necessary and sufficient that

$$\varphi(u) = u^{\sigma} \varrho_1(u),$$

where ϱ_1 (u) is continuous, positive for u > 0 and subject to

$$(++) \qquad \lim_{\lambda \to 0+} \frac{\lg \overline{\lim} \frac{\varrho_1(u)}{\varrho_1(\lambda u)}}{-\lg \lambda} = 0.$$

We shall get analogous theorems for indices s_{φ}^{a} , σ_{φ}^{a} if we replace in the above formulae $\lim_{u\to\infty}\frac{\varrho\left(u\right)}{\varrho\left(\lambda u\right)}$ by $\inf_{u>0}\frac{\varrho\left(u\right)}{\varrho\left(\lambda u\right)}$ resp. $\overline{\lim_{u\to\infty}\frac{\varrho_{1}\left(u\right)}{\varrho_{1}\left(\lambda u\right)}}$ by $\sup_{u>0}\frac{\varrho_{1}\left(u\right)}{\varrho_{1}\left(\lambda u\right)}$, (on the whole ϱ , ϱ_{1} are not φ -functions).

- **1.4.** φ is said to satisfy the condition (Δ_{α}) , $\alpha > 1$, for large u, if $\varphi(\alpha u) \leqslant d_{\alpha} \varphi(u)$ for $u \gg u(\alpha)$; φ is said to satisfy the condition (Λ_{α}) , $\alpha > 1$, for large u, if with a $c_{\alpha} > 1$ we have $\varphi(u) c_{\alpha} \leqslant \varphi(\alpha u)$ for $u \gg u_1(\alpha)$. If $u(\alpha)$ resp. $u_1(\alpha)$ are zero, then we say that the condition (Δ_{α}) resp. (Λ_{α}) is satisfied for all u (cf. [3]).
- **1.4.1.** (a) If $s_{\varphi} > 0$, then (Λ_{α}) is satisfied for large u and one may pick up, given an arbitrary $\varepsilon > 0$, some $\alpha > 1$ and c_{α} so that $(\lg c_{\alpha})(\lg \alpha)^{-1} > s_{\varphi} \varepsilon$. If (Λ_{α}) holds for large u, we have $s_{\varphi} \gg (\lg c_{\alpha})(\lg \alpha)^{-1} > 0$.
- (b) If $\sigma_{\varphi} < \infty$ then (Δ_{α}) is satisfied for large u and one may pick up, given an arbitrary $\varepsilon > 0$, some $\alpha > 1$, d_{α} so that $(\lg d_{\alpha})(\lg \alpha)^{-1} < \sigma_{\varphi} + \varepsilon$. If (Δ_{α}) holds for large u, we have $\sigma_{\varphi} \leq (\lg d_{\alpha})(\lg \alpha)^{-1} < \infty$.

Analogous theorems hold for indices s_{φ}^{a} resp. σ_{φ}^{a} and conditions (Λ_{α}) resp. (Λ_{α}) for all u.

Let $s_{\varphi} < \infty$, $s_{\varphi} - \varepsilon/2 = s'$, $s_{\varphi} - \varepsilon = s$ and let with a certain $0 < \lambda_0 < 1$ be

$$\frac{\lg \underline{h}_{\varphi}(\lambda_0)}{-\lg \lambda_0} > s',$$

whence $h_{\varphi}(\lambda_0) \gg \lambda_0^{-s'}$ and for 0 < c < 1 we have, provided $u \gg u_0(c)$, $\varphi(u)/\varphi(\lambda_0 u) \gg c^{s'} \lambda_0^{-s'}$. Let $\alpha = 1/\lambda_0$; for $u \gg u_0(c)$ we have $\varphi(\alpha u) \gg c^{s'} \alpha^{s'} \varphi(u)$. It follows that choosing c sufficiently near to 1, $c\alpha > 1$, we get for sufficiently large u the inequality $\varphi(\alpha u) \gg c_\alpha \varphi(u)$, where $c_\alpha = (c\alpha)^{s'}$,

$$\frac{\lg c_{\alpha}}{\lg \alpha} = s' + s' \frac{\lg c}{\lg \alpha} > s.$$

For $s_{\varphi} = \infty$ we choose $s < s' < \infty$ arbitrarily. Suppose φ satisfying (Λ_{α}) for large u with a certain $\alpha > 1$ and with constant c_{α} . Hence, for large u,

$$rac{arphi\left(u
ight)}{arphi\left(\lambda_{0}\,u
ight)}\!\geqslant\!c_{lpha}, ext{ with } \lambda_{0}\!=\!rac{1}{lpha},$$

 $h_{\varphi}(\lambda_0) \gg c_{\alpha}$, $\lg h_{\varphi}(\lambda_0) / - \lg \lambda_0 \gg \lg c_{\alpha} / \lg \alpha$ and it remains to appeal to 1.1 (+).

(b) can be proved similarly.

We arrive at the following corollary: $\sigma_{\varphi} < \infty$ is equivalent to (Δ_{α}) , $s_{\varphi} > 0$ is equivalent to (Δ_{α}) .

2. Let ϱ be an arbitrary function continuous and non-vanishing for u > 0. ϱ will be said *pseudo-increasing for large u* if there exist positive constants m, n such that

$$\varrho\left(u_{2}\right)\gg m\,\varrho\left(n\,u_{1}\right)\;\mathrm{for}\;\;u_{2}\gg u_{1}\gg u_{0}\;;$$

changing in the above inequality sign \geqslant to \leqslant we come to the definition of pseudo-decreasing (for large u) function; if $u_0 = 0$ we get the definitions of pseudo-increasing (-decreasing) function for all u.

 φ -function φ is said to be (Λ,s) resp. (Δ,σ) -representable $(s>0,\sigma>0)$ if $\varphi(u)=\psi(u^s)$, where ψ is a convex φ -function, resp. $\varphi(u)=\psi(u^\sigma)$, where ψ is a concave φ -function. We have for (Λ,s) -representable functions $s_{\varphi}=ss_{\psi},\ \sigma_{\varphi}=s\sigma_{\psi}$ and analogous relations hold for (Δ,σ) -representable functions.

- **2.1.** (a) In order that $\varphi \stackrel{1}{\sim} \chi$, where χ is (Λ, s) -representable, it is necessary and sufficient that φ be of form 1.3, (o), where ϱ is pseudo-increasing for large u.
- (b) In order that $\varphi \stackrel{!}{\sim} \chi$, where χ is (Δ, σ) -representable, it is necessary and sufficient that φ be of form 1.3, (00), where ϱ_1 is pseudo-decreasing for large u.

The theorem does not cease to hold if we replace $\stackrel{l}{\sim}$ by $\stackrel{a}{\sim}$ and the words "for large u" by "for all u".

For s=1, resp. $\sigma=1$, the above is equivalent to theorem 2.3 from [3] and the case of arbitrary s, σ may be switched to the latter one. For the details of proof see [4].

2.2. If (+) $\varphi(\alpha u) \leqslant c \alpha^s \varphi(u/\varepsilon)$ (s > 0), where c > 0, for $0 \leqslant \alpha \leqslant 1$ and for (++) $\alpha^s \varphi(u/\varepsilon) \geqslant \alpha > 0$, then $\psi \stackrel{l}{\sim} \chi$, where χ is (Λ, s) -representable.

Let $a^s = (\varphi(u/\varepsilon))^{-1} a$; we have $\varphi(a^{1/s} u \varphi(u/\varepsilon)^{-1/s}) \le c a$, whence $\lim_{u \to \infty} u^{-s} \varphi(u/\varepsilon) > d > 0$. Let $u_2 \gg u_1 \gg u_0$, where $u^{-s} \varphi(u/\varepsilon) \gg d/2$ for $u \gg u_0$, $a = u_1/u_2$. Since for sufficiently large u_0 we have $(u_1/u_2)^s \varphi(u_2/\varepsilon) \gg u_0^s d/2 \gg a$ it follows that $\varphi(a u_2) = \varphi(u_1) \le c (u_1/u_2)^s \varphi(u_2/\varepsilon)$, i.e. writing $\varphi(u) = \varphi(u) u^{-s}$ we get $\varphi(u_1) \le c \varphi(u_2/\varepsilon)$ for large u.

- **2.2.1.** If (+) holds for those a, u for which (++) is satisfied and, moreover, for $0 \le a \le 1$ and u sufficiently small, then $\varphi \stackrel{a}{\sim} \chi$, where χ is (Λ, s) -representable.
- 2.3. (a) If $s_{\varphi} > 0$ then with every $s < s_{\varphi}$ we have $\varphi \stackrel{!}{\sim} \chi_s$, where χ_s is (Λ, s_{φ}) -representable, we have $\varphi \stackrel{!}{\sim} \chi$, where χ is (Λ, s_{φ}) -representable, if and only if φ is of form 1.3, (o) with $s = s_{\varphi}$ and ϱ pseudo-increasing for large u and satisfying 1.3, (+). With no $s > s_{\varphi}$ φ is l-equivalent to a (Λ, s) -representable γ_s .

(b) If $\sigma_{\varphi} < \infty$, then with every $\sigma_{\varphi} < \sigma$ we have $\varphi \stackrel{!}{\sim} \chi_{\sigma}$, where χ_{σ} is (Δ, σ) -representable; we have $\varphi \stackrel{!}{\sim} \chi$, where χ is $(\Delta, \sigma_{\varphi})$ -representable, if and only if ψ is of form 1.3, (00) with $\sigma = \sigma_{\varphi}$ and ϱ_{1} pseudo-decreasing for large u and satisfying 1.3, (++). With no $\sigma < \sigma_{\varphi} \varphi$ is l-equivalent to a (Δ, σ) -representable χ_{σ} .

The theorem is still valid if we replace in its formulation s_{φ} , σ_{φ} by s_{φ}^{a} , σ_{φ}^{a} , σ_{φ}^{a} , σ_{φ}^{a} , σ_{φ}^{a} , σ_{φ}^{a} , σ_{φ}^{a} , the words "for large u" by "for all u".

In the proof of (a) we make use of Theorem 2.2 [3] (for details see [4]) and 1.4.1, (a), 2.1, (a), in the proof of (b) of Theorem 2.1 [3] and 1.4.1, (b), 2.1, (b).

2.4. Now we shall give few examples of φ -functions and the corresponding indices s_{φ} , σ_{φ} . If φ is convex, then from the inequality $\varphi(\lambda u) < \lambda \varphi(u)$ for $0 < \lambda < 1$ it follows $s_{\varphi} \geqslant s_{\varphi}^{a} \geqslant 1$; if φ is concave, then $\sigma_{\varphi} \leqslant \sigma_{\varphi}^{a} \leqslant 1$. If there exist

$$\lim_{u\to\infty}\frac{\varphi\left(u\right)}{\varphi\left(\lambda u\right)}\!=\!\underline{h}_{\varphi}\left(\lambda\right)\!=\!\overline{h}_{\varphi}\left(\lambda\right)\!<\!\infty \ \ \text{for every} \ \ \lambda\!>\!0,$$

then $h_{\varphi}(\lambda \mu) = h_{\varphi}(\lambda) h_{\varphi}(\mu)$ for $\lambda, \mu > 0$, whence $h_{\varphi}(\lambda) = 1$ or $\lambda^{-s}(s > 0)$ for $\lambda > 0$; therefore two cases are possible: $s_{\varphi} = \sigma_{\varphi} = 0$ or $s_{\varphi} = \sigma_{\varphi} = s$. If $h_{\varphi}(\lambda) = h_{\varphi}(\lambda) = 1$ for $\lambda > 0$, then we have the so-called slowly oscillating function in the sense of Karamata [1]. If $\varphi(u) \sim \psi(u) \varphi(u)$, where $s_{\psi} > 0$, then, owing to 1.2, we get $s_{\varphi} = \sigma_{\varphi} = \infty$, since we have always $s_{\varphi\psi} \geqslant s_{\varphi} + s_{\psi}$, $\sigma_{\varphi\psi} \leqslant \sigma_{\varphi} + \sigma_{\psi}$. The case $\psi(u) = u$ means the functions satisfying the condition (Δ_3) , to adopt the notation of [2]. Let $\varphi(u) = u^s/\varrho(u)$, $\varphi_1(u) = u^s \varrho(u)$, where $\varrho(u)$ is a slowly oscillating function (e.g. $\varrho(u) = \log(1+u)$). We obtain $s_{\varphi} = \sigma_{\varphi} = s$, $s_{\varphi} = \sigma_{\varphi_1}$, but φ is not l-equivalent to a (Δ, s) -representable φ -function and φ_1 is not l-equivalent to a (Δ, s) -representable φ -function. For it may be easily seen that $1/\varrho(u)$ is not pseudo-increasing for large u and $\varrho(u)$ is not pseudo-decreasing for large u.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES (INSTYTUT MATEMATYCZNY, PAN)

REFERENCES

- [1] J. Karamata, Sur un mode de croissance régulière des fonctions, Mathematica (Cluj) 4 (1930), 38—53.
- [2] M. A. Krasnosielskii, J. B. Rutickii, Convex functions and Orlicz spaces, (in Russian) Moscow 1958.
- [3] W. Matuszewska, On generalized Orlicz spaces, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys., 8 (1960), 349.
- [4] , Przestrzenie funkcji φ -całkowalnych, (doctoral-thesis), A. Mickiewicz University, Poznań, 1960, Prace Matem. 5, (in press).