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1. In this paper we use the same definitions and notations as in [3].
Given a g¢-function let us define for 4>>0 the following extended-value
functions
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and there exist limits (let s resp. g stand for these) of analogous
expression which appear at (%), (+#) on replacing hg(4), resp. he(4), by
he (4), resp. h (2). & ;

To prove this let us notice that hy(4) > 1 for 0 <A <1
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and hy (Ap) < hy (4) hgp (). By suitable substitution we reduce the
supermultiplicative function hy (), resp. the submultiplicative function
hy (1) to a superadditive, resp. subadditive one and apply the well-
-known theorem on limits of such functions. For the reader’s convenience
we shall supply a direct proof in the case (*). Let 0 <4, <<C1; given
0 << A< 1, we determine a positive integer n so that 4= A u, where
4y << u < 1. hy(2) being supermultiplicative, we obtain hy (1) = hy (A5 p) >
(7”}(p (Ao))" h}p (u). Hence, ks
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If hy(4,) <<oco, we get with A—0 +

Ighy (1) _ 1ghy(2)
—lgi = —1gi,
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The latter inequality holds also in the case of hg (4p) = co  (in that
case hg (1) =oco for every 1,0 <<1<<zx,). Thus we have
Ighy(4) Ighy(2)  —lghy ()
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Similarly we find
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Relations analogous to (+) and (+ +) hold for h“ (), h? (l)
12 Ifqo p then sy =sy, op=o0y; if p~y then s ——sfp, ke
If o~ w, we have with certain positive constants a, b, ky, k»

ap (k,u) < y(u) < by (ks u)

for sufficiently large u. Hence, we obtain
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whence sy <sp; we show similarly that Sp < Sy. Our argument is

untouched in the case 2. One can prove similarly Oy =0y, Iesp. oy = oy,
1.3. (a) Let 0 <s<<co; in order that Sg=s, it is necessary and suf-
ficient that

(0) @u)=u’p(u),

where o (u) is continuous, positive for u >0 and subject to

— e (A
{+) lim < Svucts SO



On Certain Properties of @-functions 441

(b) Let 0 <o <<co; in order that oy, =0 it is necessary and sufficient
that

(©0) ¢ W) =u’ o, (u),

where o, (u) is continuous, positive for u > 0 and subject to
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We shall get analogous theorems for indices s“, o, if we replace in
o (u) o (u) hx(u) 0, (u)
the above formulae 3129(11&) 1y i o 59(1 ) resp. iﬂ@gl(ﬂf) by u/%) e [ W’
(on the whole p, g, are mot g@-functions).

14. ¢ is said to satisfy the condition (4«), a>1, for large u, if
@ (au) < dep(u) for u>wu(a); ¢ is said to satisfy the condition (Aa),
a>1, for laige u, if with a c.>>1 we have ¢ u)ce<g(au) for u>u,(a).
If w(a) resp. u,(a) are zero, then we say that the condition (4s) resp.
(Ae) is satisfied for all u (cf. [3]).

14.1. (@) If su=>0, then (A.) is satisfied for large u and one may
pick up, given an arbitrary e>0, some a>>1 and c. Sso that (lgca)
(Iga)='>sy—e. If (Aa) holds for large u, we have sy > (1g ca) g @)~ > 0.

(b) If op<<oo then (Ae) is satisfied for large u and one may pick
up, given an arbitrary e =0, some a > 1, de so that (1gde) (Iga)~! < oggp+e.
If (4c) holds for large u, we have oy < (Igde) (Iga)~! << co.

Analogous theorems hold for indices s, resp. a; and conditions
(Ae) resp. (4a) for all u.

Let sp<<00, sp—€/2=5", sp— e =5 and let with a certain 0 <<1,<<1 be

gt hoa(lo) )
b < lg 2.0

whence hgp Ao) > Ay s and for 0<<c<<1 we have, provided u > uqy(c),
@ )/p(dyu) > c’ A‘s Let a=1/4,; for u > u,(c) we have ¢(au)>c* a* ¢(u).
It follows that choosing c sufficiently near to 1, ca =1, we get for suf-
ficiently large u the inequality ¢ (au) > c.@(u), where c. = (ca)*,
b LR e
Iga Iga
For sy =00 we choose s< s’ << oo arbitrarily. Suppose ¢ satisfying (Ae)
for large u with a certain a1 and with constant c.. Hence, for large u,
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hy (49) > ca, 1g hy(4,)/—1g A, > 1g ca/lg @ and it remains to appeal to 1.1 (+).
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(b) can be proved similarly.

We arrive at the following corollary: g, << 00 is equivalent to (Aa),
s =0 is equivalent to (Aa).

2. Let p be an arbitrary function continuous and non-vanishing for
u>0. o will be said pseudo-increasing for large u if there exist positive
constants m, n such that

o (uy) >mop (nu,) for us >u, >u,;

changing in the above inequality sign = to << we come to the definition
of pseudo-decreasing (for large u) function; if uy=—=0 we get the defini-
tions of pseudo-increasing (-decreasing) function for all w.

@-function ¢ is said to be (4,s) resp. (4, o)-representable (s> 0,¢ > 0)
if ¢(u)=1y (u’), where y is a convex ¢@-function, resp. ¢ (u) =y (u°), where
y is a concave ¢-function. We have for (4, s)-representable functions sy =
= sSy, 04 = So, and analogous relations hold for (4, o)-representable func-
tions.

2.1. (a) In order that ¢ Ly, where y is (A,s)-representable, it is
necessary and sufficient that ¢ be of form 1.3, (0), where o is pseudo-
-increasing for large wu.

(b) In order that ¢l y, where yx is (A4, c)-representable, it is
necessary and sufficient that ¢ be of form 1.3, (00), where p; is pseudo-
-decreasing for large u.

The theorem does not cease to hold if we replace £ by & and the
words ‘“for large u” by “for all u”.

For s=1, resp. o0 =1, the above is equivalent to theorem 2.3
from [3] and the case of arbitrary s, ¢ may be switched to the latter one.
For the details of proof see [4].

22. If (+) glau)<ca’p(ule)(s=0), where c>0, for 0<a<l1
and for (++) a*@(u/e) >a =0, then y Ly, where y is (A,s)-representable.
Let a*=(p(u/e))""a; we have ¢ (@ u¢ (u/e)~) < ca, whence
lim u= ¢ (u/e)>>d>0. Let uy >u, >u,, where u—*g(u/e)>d/2 for u>u,,

ll—*)m
a==1u,/u,. Since for sufficiently large u, we have (u,/u,)’ ¢ (us/e) > ugd/2 >

it follows that @(au,) =¢(u,) <c(u,/u,)’ ¢ (u,/e), i.e. writing o (u) =¢)u—
we get o (u,) < co (uy/e) for large u.

2.2.1. If (+) holds for those a,u for which (+ +) is satisfied and,
moreover, for 0 < a <1 and u sufficiently small, then ¢ 2y, where y is
(A, s)-representable.

2.3. (a) If sy=>0 then with every s<_s, we have ¢l x5, where ys is
(4, s)-representable, we have ¢ Ly, where y is (A,sy)-representable, if and
only if ¢ is of form 1.3, (0) with s=s¢ and g pseudo-increasing for large
u and satisfying 1.3, (+). With no s>s, ¢ is l-equivalent to a (A, s)-rep-
resentable y;.
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(b) If oy<< oo, then with every oy<<o we have ¢l ys, where ys is
(A, 0)-representable; we have ¢ Ly, where y is (4, oy)-representable, if and
only if y is of form 1.3, (00) with ¢=o04 and p, pseudo-decreasing for
large w and satisfying 1.3, (+ +). With no ¢ <oy ¢ is l-equivalent to a
(A, o)-representable .

The theorem is still valid if we replace in its formulation sg, oy
by s, 0%, L by 2, the words “for large w” by “for all u”.

In the proof of (a) we make use of Theorem 2.2 [3] (for details see [4])
and 1.4.1, (a), 2.1, (a), in the proof of (b) of Theorem 2.1 [3] and 1.4.1,
@), 2.15(b).

2.4. Now we shall give few examples of ¢@-functions and the corres-
ponding indices Sy, op. If @ is convex, then from the inequality
¢ (Au) <Ag(u) for 0 <<A<<1 it follows sg,,>/s;, > 1; if ¢ is concave, then
op < g, < 1. If there exist

“1511 q?)(»%) =hy (1)=H¢ (4) << oo for every A=>0,
then hg(Au) =hy (A) he(u) for 4, u =0, whence hy(d)=1 or 2 *(s>0) for
)= 0; therefore two cases are possible: sy = 0p=10 or sy =0y =s.
If hy (1)=I{q) (A)=1 for A= 0, then we have the so-called slowly oscilla-
ting function in the sense of Karamata [1]. If ¢(u) ~y(u)¢p(u), where
sy >0, then, owing to 1.2, we get sy =o04=00, since we have always
Sgy > Sep 1Sy, Opy << 0y + 0y. The case p(u) =u means the functions sati-
sfying the condition (4,), to adopt the notation of [2]. Let ¢(u)=1u%/p(u),
@ {u)=1u’p(u), where o (u) is a slowly oscillating function (e.g. o (u) =
=1g(1 + u). We obtain sy=0y=3s, sy, = 0y4,, but ¢ is not l-equivalent
to a (4,s)-representable g-function and ¢, is not l-equivalent to a (A, s)-
-representable @~function. For it may be easily seen that 1/p(u) is not
pseudo-increasing for large u and g (u) is not pseudo-decreasing for large u.
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