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Summary. In the paper some geometrical and order properties of Orlicz spaces equipped
with Luxemburg norm and with Orlicz norm are investigated. In particular, the necessary
and sufficient conditions for an Orlicz space with Luxemburg norm to have the Radon-
Riesz property () are obtained.

1. Preliminaries. In the sequel it is supposed that the interval (0,1) s
supplied with the usual structure of measure space with Lebesgue measure
. Let z(t) be a real measurable function on (0,1). The rearrangement of
z(t) is a non-negative, non-increasing and continuous from the left function
defined by the equality

2*(t) = inf{A > 0: nz(A) < t}, 0<t<l,

where n5(A) = p({t € (0,1) : [z(2)| > A}) is the distribution function for
|z(¢)|. The following preorder relation on the set of all measurable functions
is connected with the notion of rearrangement:

z <y iff fz:"(t)dt < fy*(t)dt for all s € (0,1).
0 0

A Banach space (E,|| - ||) of real measurable functions on (0,1) is called
a symmetric space if for any z € E and for any measurable function y(t) it
follows from y* < 2~ that y € E and [|y|| < [|]|. For any symmetric space E
the space L.,(0,1) is identified in a natural manner with a subspace of the
congga.te space E* which makes possible to consider the topology o(E, Leo)
on E.

Let E be a symmetric space; £ is said to have the property (H) if
for each © ¢ E and a sequence (z,) C E such that l|lzall — llz|l and
Zn — = in the weak topology o( E, E*) we have zn, — 2 in the norm. If we
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replace the topologyv o( £, £*) in this definition by the topology o(E, L)
(respectively, by the measure topology) we get definition of the property
(Hoo) (respectively, the property (Hm)).

We say that the norm of a symmetric space E is

— strictly monotone if for each positive z,y € E the equality ||z + y|| =
||z|| implies y = 0:

— K -monotone if for each z,y € E such that < y we have ||z|| < ||yl
if, in addition, 2™ # y~ implies ||z|| # ||y||, then the norm of E is said to be
strictly A'-monotone;

— locally uniformly monotone if for each z € E and (2,) C F such that

0<z<a, forall n € Nand ||z,|| — ||z|| we have z, — 2 in the norm;
— order semi-continuous if for each # € E and (z,) C E such that
0 < z,, | = we have ||z,|| — ||z]]

Note that the property of I'-monotones of the norm takes place in a wide
class of symmetric spaces, in particular, in spaces with the Fatou property
and in separable spaces.

There are the following correlations between the notions defined above

[1]:

THEOREM 1. Let E be a separable symmetric space.
(a) The following conditions are equivalent:
(i) the norm of E is strictly monotone and E has the property (Hm),
(ii) the norm of E is locally uniformly monotone,
(b) the following conditions are equivalent:
(i) E has the property (H,,),
(ii) the norm of E is strictly K'-monotone and E has the property (Hm),
(c) if E has the property (H), then the norm of E is strictly K -monotone.

For definitions of geometrical properties of Banach spaces we refer to
[2]. We will also use the terminology and notations of the theory of Orlicz
spaces from (3, 4].

Let M(z) and N(y) be complementary N-functions. Orlicz space is
a linear space of all real measurable functions #(¢) on (0,1) such that
Ini(Az) = fol M[Az(1)]dt < oo for some A > 0 dependent on z(t). Two
equivalent norms are considered on Orlicz space: the Orlicz norm

1
lllas = sup{ Of [o(®)y(®)]dt s In(y) < 1} = inf (1+ Dna(k))/k

and the Luxemburg norm
llzllary = inf{A > 0: Ip(z/A) < 1}.

Denote by Lar, Ly the Orlicz spaces generated by M(2) and equipped
with Orlicz norm and Luxemburg norm, respectively; Eps, E(ps) the closure
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of Loo(0,1) in them, respectively. All these four spaces are symmetric spaces
with K -monotone and order semi-continuous norms.

2. Luxemburg norm. Everywhere below M(z) is an N-function.

TueorReM 2. The following conditions are equivalent:
(i) the function M () satisfies the A-condition,

(i) the norm of Liay is strictly monotone.

(iii) the norm of Lary is locally uniformly monotone,
(iv) Liary has the property (Hm).

Proof. The equivalence of (i) and (ii) has been established in [5, 6].

(i) = (iii). Let 2 € Lp), (zn) C LMy, 0 € T < Zn for all n € N
and ||2.|l(ay — l|l2ll(a). Obviously, we may assume that z # 0. Put for
the sake of brevity An = 1/||znl|(ar). Since M(t —s) < M(t) — M(s) for
t> s3>0, we get Ing(An(zn —2)) € Im(Anzn) = In(Anz) for all m € N.
We have Inr(Mn — @n) = 1, and, by the Lebesgue theorem, In(Anz) — 1.
Therefore Ins(An(2n — 2)) — 0. Then Apllzn — 2ll(ary — 0, and since
limp—oo An = 1/||2|l(ar) > 0, we have ||z, — z|(ary — 0.

(iii) = (ii). This implication is obvious.

We have established the equivalence of (i), (ii) and (iii). Thus by Theo-
rem 1, each of these conditions implies (iv).

(iv) = (i). Let = be an arbitrary function from L(ys). Let us consider
its rearrangement z* € L(ary and the sequence z, = Z7X(1/n1)- Then
&, — z* in the measure topology. Besides, z, [ 2”, so, by the order semi-
continuity of the norm of L(pr), we get ||znll(ary — [12*[l(ary. Therefore,
|zn — 2*||(ary — 0. Since z, € Loo(0,1) for n € N, we have z* € E(pr) and
s0 ¢ € E(yny. Thus Liyy = E(uy which is equivalent to the A,-condition
for M(z). ‘

THEOREM 3. The following conditions are equivalent:

(i) M(z) is strictly conver and satisfies the Ay-condition,
(ll) L(M) is rotund,

(iii) Lasy is locally uniformly convez,

(iv) L(ary has the property (H),

(v) L(ary has the property (Hoo). :

(vi) L(ary is separable and its norm is strictly K -monotone.

Proof. The equivalence of (i), (ii) and (iii) has been established in
(7, 8] (see also [9]).

(iii) = (iv). This implication holds true for arbitrary Banach spaces [2].

(iv) = (v). If Lpp has the property (), then it is separable [10]. Thus,
by Theorem 2, Ly has the property (Hm). In addition, the norm of Ly
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is strictly A'-monotone, due to Theorem 1(c). Therefore, by Theorem 1(b),
L(ary has the property (Ho,).

(v) = (vi). Il Liar) has the property (H), then it obviously has the
property (H), too. Hence, L(as) is separable. By Theorem 1(b), the norm
of Lar) is strictly A'-monotone.

(vi) = (i). If L(asp) is separable, then M(z) satisfies the A;-condition.
Let us suppose that M (z) fails to be strictly convex. Then it is linear on
some interval [a,b], a > 0, i.e.

M(z)= L A(1 —a)+ A, z€lab)

o
where A = M(a), B = M(b). Let us show that in this case the norm of
Lagy is not strictly A'-monotone. To this end we construct two functions
2,y € Lapy such that y < 2, y™ # 2™ and [|z|(ar) = ||yllm). Let us consider
separately two cases.

1. f A+ B < 2, then we put a7 = bx(o,1/4) + @X(1/4,1/2): 1 = (a +
b)X(0.1/2)/2 and ¢ = max{b,M~'(2)}. Then the number {, = (1 — (A +
B)/4)/M(e¢) + 1/2 belongs to the interval (1/2,1), and the functions z =
Ty + eX(1/2,0)s ¥ = Y1+ CX(1/2,10) are desired.

2. f A+ B > 2, we denote r = 2/(A + B) and put = = bx(o,r/2 +

x(r/2.7), y = (a+ b)x(0,n/2-

3. Orlicz norm. Turn now to the investigation of geometrical proper-
ties of Orlicz space equipped with Orlicz norm.

THEOREM 4. If M(z) satisfies the Ay-condition, then the norm of Lz
is locally uniformly monotone.

Proof. Let x € Ly, (2) C Ly, 0 € 2 € 2, forall m € N and
llzn]lar — ||z||ar. We may assume that 2 # 0. We have
[|lZnllar = mf(l + Inp(kzn)) k2 mf 14 Ing(ka))/k = ||z||ar-

For each n, we choose a number &y, > 0 such that
(1) lenllar + 1/n 2 (14 In(knzn))/kn, n €N,
We have then for all n € N

Zallar + 1/0 2 (14 Ing(kngn))/bn 2 (1 + Ing(kn2))/kn > llzllar,
from which it follows that

nli_f_lgo(IM(knﬂ?n) — In(kn2))/kn =0

and
(2) Jim Ing(kn(2n = z))/kn = 0.
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It follows from (1) that
(3) lim inf &, > 0.

Show that lim sup k, < oo. If this is not the case, then passing, if necessary,
to a subsequence we may consider that k, — c0. Choose a measurable set
2 C [0,1] of positive measure such that z(t) > Axp(t) for some A > 0.
Then we have

Ine(hne) > [ M(knA)dpp = M(knN)u(22)
2
and
(14 In(knz))/kn 2 ()M (kn )/ (knA).
The right side of the above inequality tends to infinity as n — oo by the
definition of N-function which contradicts the inequality (1). Hence,
(4) lim sup k, < 0.

We get from (2), (3) and (4) that In(zn —2) — 0. This means that
llzn = llsr — 0.

COROLLARY 1. The following conditions are equivalent:
(i) M(z) satisfies the Ay condition.
(ii) L(ary has the property (Hm).

COROLLARY 2. Let the function M(z) satisfy the Aq-condition. If the
space Lnry is rotund, then it has the property (H).

In order to proof the next theorem we will need two auxiliary lemmas.
Denote by Bg the unit ball of a symmetric space E and by Sg its unit
sphere.

LEMMA 1. Let E be a separable symmetric space. If for any @ € Sg and
a sequence (z,) C Sg it follows from ||z}, + z~|| — 2 that |2}, — 27|| — 0,
then the space E is locally uniformly convez.

Proof. Let ¢ € Sg, (z2) C Sg and ||z, + z|| — 2. It follows from
the properties of rearrangements [11] that (z, + 2) < (2}, + 27), so [|zn +

z|| € [|lz% + z*|| < ||z + ||z*|| = 2. Therefore ||z} + 2*|| — 2 and hence
lzy, — z*|| — 0.
There exists an equivalent norm || - ||p on E such that (E,]| - [jo) is a

symmetric locally uniformly convex space [12]. Put a = 1/[|z]lo. We have
then |laz} — az*||o — 0, hence ||az,|lo — 1. We have

I@n +2)7/2 + 27l < llew + 2ll/2+ 12l € 2,
Im ([(2n +2)/2+ (3 +27)/2] = lim [|(za +2)7/2+ "]
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and

(Zp+2) < (2n+2)/2+ (25, +27)/2.
Therefore ||(2, + )" /24 2%|| — 2 from which it follows that ||(z, +2)"/2 -
z*|| — 0. Hence |la(z, + z)*/2 — az™|jp — 0, so ||az, + az|o = ||a(z, +
z)*|lo — 2. Thus we have ||az, — az||q — 0, therefore ||z, — z|| — 0.

LEMMA 2. Let E be a symmetric space, z € E, (z,) C E, z, = a7}, for all
n € N and z, — 2 in the topology o(E, Ly,). Then z, — 2 in the measure
topology.

Proof. It is sufficient to show that for any subsequence (yx) of the
sequence (2 ,) there exists a subsequence (z,,) converging to z in the measure
topology. Since z, — =z in the topology o(FE, L), then there exists a
constant C' > 0 such that folmn(_r)di < C. Fix a number s > 0. Then we
have

1 1
se3(s) < [an(oxondt < [an@dt<C,
0 0

or 2;(s) € C/s. By this estimate and by Helley theorem, there exists
subsequence (z,, ) of a sequence (y;) converging to a non-increasing function

z everywhere on (0,1). Then for any 0 < @« < b < 1 we have f:zm(t)dt —
fub z(t)dt. On the other hand, by the condition of the Lemma, fub Zp(t)dt —
f!f z(t)dt, from which the equality fﬂb z(t)dt = fub:n(f.)dt follows. Since a and

b are arbitrary, we get @ = z. Thus we have z,, — @ everywhere on (0,1)
and therefore z,,, — z in the measure topology.

THEOREM 5. Let E be a rotund reflexive symmetric space such that E
and E* have the property (Hm). Then E is locally uniformly convez.

Proof. Let 2z € Sg, (2,) C Sg, ¢ = 2%, 2, = z, for all n € N and
|z + 2||E — 2. Choose a sequence (f,) C Sg- such that the equalities
fn = I3 and
(5) lim [z, + 2z, fn] = 2

n—0co

hold, where [z, f] denotes the bilinear form connected with the duality be-
tween F and E~.

Passing, if necessary, to subsequences we may consider that (z,) and
(fn) weakly converge to some elements y € Br and f € Bp-, respectively.
By Lemma 2, f, — f in the measure topology. It follows from (5) and
from the inequality |[zn, fa]| £ 1 that |[z, f]] = limp—ceo [[z, fr]] = 1, i.e.
[|flle- = 1. Since E* has the property (Hm), we have

(6) lfn = fllg- — 0
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Since z,, — y weakly, then using (5) and (6) we get
[:L' + yvf] = nll_l:l}o[r 3 l‘“’f] = nh_.nio([j: + Ty f = fn] T [-"'-' T "L'nsfn:l) =2.

Therefore, ||z + y||g = 2 and so ||y||g = 1. Since E is rotund, we have
z =y, i.e. z, converges weakly to z. By Theorem 1, E has the property
(H). Thus, we have ||z, —z||g — 0. Applying Lemma 1 concludes the proof
of the theorem.

In particular, it follows from this theorem that a reflexive Orlicz space
L s is locally uniformly convex.
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