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INTRODUCTION

In the Euclidean plane, a nonempty set is closed
and convex if and only if it is Chebyshev; that is, for each
point x in the plane there is a unique element of the set
closest to x. This fact from approximation theory, usually
called Motzkin's theorem, was actually first published by
L. N. H. Bunt [9] in 1934, with T. s. Motzkin's articles [38]
and [39] on the same subject appearing the next year. Since
Bunt's theorem gives such a nice characterization of the Cheby-
shev sets in the Euclidean plane, efforts were soon underway
to extend it to other noirmed linear spaces. The work of B.
Jessen [30], H. Busemann ([10], [11], and N. V. Efimov and S. B.
Stechkin [20] in the 1940s and 1950s has led to a complete
characterization of the finite-dimensional normed linear spaces
1n which the conclusion of Bunt's theorem holds. These are the
finite-dimensional spaces that are rotund and smooth; that is,
whose unit spheres contain no line segments and no points
through which pass two distinct hyperplanes supporting the
unit ball.

Much less is known in the infinite-dimensional case.
There 1s no difficulty in deciding when nonempty closed convex
sets are all Chebyshev. In 1941, M. M. Day [14] showed that
this is true for any Banach space that is rotund and reflexive,
while the converse is an easy application of the famous 1964

theorem of R. C. James [27]. Also, it is easy to see that



Chebyshev sets are always nonempty and closed. The problem
is in deciding when all Chebyshev sets are convex. It was
shown by Efimov and Stechkin [19] in 1958 that any space whose
unit sphere contains an exposed point through which pass two
distinct hyperplanes supporting the unit ball has a nonconvex
Chebyshev set that is the union of two closed half-spaces.
Beyond this, almost nothing is known about the convexity of
arbitrary Chebyshev sets in infinite-dimensional spaces. In
fact, there is no infinite-dimensional normed linear space in
which the statement that every Chebyshev set is convex is known
to be true, while there is no smooth space in which it is known
to be false. 1In particular, <t <is not known whether every
Chebyshev set in classical Hilbert space is convex. This is
somewhat startling, since the geometry of classical Hilbert
space is often treated as if it were completely understood.
Because of the difficulties involved with proving
the convexity of an arbitrary Chebyshev set in a given infinite-
dimensional space, the trend over the last two decades has been
toward proving the convexity of Chebyshev sets subject to addi-
tional constraints. In 1961, V. L. Klee [35] showed that in
a certain class of spaces that includes all Hilbert spaces,
the nonempty closed convex sets are exactly the weakly closed
Chebyshev sets. In 1970, I. Singer [46] improved Klee's result
by extending it to a larger class of spaces. A further exten-
sion of this result will be given in this thesis. Other
researchers have imposed different conditions on Chebyshev

sets to force their convexity in particular spaces. Some of



these results will be surveyed in the early parts of this
thesis. More complete discussions of such results and of the
connection between convexity and nearest-point properties of
sets can be found in the survey articles of L. P. Vlasov [57]
and T. D. Narang [40].

The results of Klee and Singer mentioned in the last

paragraph have the following form:

In a Banach space satisfying condition A, the nonempty
closed convex sets are exactly the Chebyshev sets

satisfying condition B.

One of the original goals of the research leading to this
thesis was to discover theorems of this type with conditions

A and B no stronger than necessary. By the result of Day and
James mentioned above, condition A must include rotundity and
reflexivity. If a Banach space is rotund and reflexive but
not smooth, then it contains a nonconvex Chebyshev set that

is the union of two closed half-spaces by one of the results
of Efimov and Stechkin mentioned earlier. This union will
share almost all of the attributes of a nonempty closed convex
set other than convexity itself; for example, it will be weakly
closed. In such a space, about the best we can expect is that
the nonempty closed convex sets are exactly the Chebyshev sets
that are convex, which is just the conclusion of the Day-James
theorem in disguise. Thus, condition A should include rotundity,
reflexivity, and smoothness 1f we are to obtain results besides

the Day-James theorem. In fact, all of the choices for condition



B that have appeared in the literature have seemed to require
even more than rotundity, smoothness, and reflexivity for
condition A. For example, Vlasov [57] has shown that in a
smooth space that is strongly rotund, a condition properly
stronger than rotundity and reflexivity, the nonempty closed
convex sets are exactly the Chebyshev sets such that the metric
projection, the map from each point in the space to the nearest
point i1n the set, is continuous. These additional geometric
hypotheses inserted into condition A have always been reason-
ably strong, and in particular properly stronger than the semi-
Kadec-Klee condition, a statement about the behavior of certain
sequences in the dual unit sphere introduced by Vlasov in [56].
The first part of this thesis, consisting of Sections
1, 2, and 3, is concerned with the improvement of some known
results of the type considered in the last paragraph by showing
that they remain true when condition A includes only rotundity,
reflexivity, smoothness, and the semi-Kadec-Klee condition.
Along the way, we will obtain some other new results which will
be fitted into the framework of a short survey of part of this
branch of approximation theory. The second part of this thesuis,
consisting of Sections 4 through 7, is devoted to the study of
the semi-Kadec-Klee condition and its connection with sup-
portive compactness, a hew property related to the well-known
concept of approximative compactness. It will be shown that the
existence of the semi-Kadec-Klee property in a space 1is closely
related to the supportive compactness of the nonempty closed

convex sets in that space.



We now describe more specifically the content of
this thesis.

Section 1 is a preliminary section. Here we define
many of the classes of normed linear spaces used in this thesis.
We also translate many of these definitions into statements
about the convergence properties of a certain type of sequence
in the unit sphere, which immediately become statements about
convergence properties of certain sequences, the minimizing
sequences, 1n nonempty closed convex sets.

In Section 2, we obtain several new results charac-
terizing certain classes of normed linear spaces in terms of
the approximation-theoretic properties of their nonempty closed
convex sets. A short survey of other known results of this
type 1s also given. The proofs in this section tend to be
very short, since most of the work is really done in Section 1.

The purpose of Section 3 is to prove some results of

the following form:

In a rotund, reflexive, smooth semi-Kadec-Klee space,
the nonempty closed convex sets are exactly the Cheby-

shev sets satisfying some condition.

Seven different choices for this condition are offerred. 1In
so doing, we extend some known results of Klee, Singer, and
Vlasov. The results of Section 2 are used extensively here.
Beginning with Section 4, we embark on a study of
semi-Kadec-Klee spaces. It is shown in Section 4 that the

semi-Kadec-Klee condition 1s equivalent to a semicontanuity



property of the norm-duality map J from a space into its dual.
Some related results about the continuity properties of J are
also proved.

Section 5 introduces the concept of supportive
compactness of a set. The basic properties of supportive
compactness are obtained.

In Section 6, we study the interaction between the
supportive compactness of convex sets and the semi-Kadec-Klee
condition. In particular, we characterize the rotund, reflex-
ive, smooth semi-Kadec-Klee spaces as being the spaces where
the nonempty closed convex sets are exactly the Chebyshev sets
that are supportively weakly compact. This is in contrast to
the results of Section 3, where none of the derived properties
of rotund, reflexive, smooth semi-Kadec-Klee spaces are shown
to characterize such spaces.

Section 7 contains some miscellaneous results about
supportive compactness. Its relationship to approximative
compactness is studied. A result of Vlasov about the convexity
of certain Chebyshev sets is generalized to P-convex sets. 1In
addition, we characterize the reflexive spaces in which every
closed ball is a supportively weakly compact Chebyshev set.

There are also two appendices. The purpose of
Appendix A 1s to show that many of the results of Sections 1,
2, and 3 that appear to depend on James's theorem can actually
be obtained from more basic principles, though the proofs are
somewhat less compact. This appendix also contains an elemen-

tary proof of James's theorem for a large class of spaces.



Appendix B contains some material about the approxima-
tive compactness of closed balls that is tangentially related
to the results of Sectaion 7.

The survey material in Section 2 could logically be
omitted, since it is readily accessible in the literature. We
have three reasons for inserting it. First, its inclusion
makes this presentation reasonably self=-contained. Second,
many of these results are stated and proved in a slightly more
general form than is usual. Third, it is shown in Appendix A
that many of these results, previously believed to be quite
deep because they are corollaries of James's theorem, can
actually be obtained by our method of proof from the Bishop-
Phelps theorem [4].

The notation we use is standard and follows that of
Day [16]. The letter N always denotes a real normed linear
space, and N* indicates its dual space. The letter B is used
for a real Banach space. In spite of this standardization,
we frequently preface our results with "Let N be a normed linear
space" oxr "Let B be a Banach space". This is to emphasize the
presence or absence of a completeness hypothesis. The unit
sphere of N, {x € N: Ixl = 1}, is denoted by I, and the closed
unit ball of N, {x € N: Ixli € 1}, by U. The symbols I' and u"
denote the corrxesponding objects for N*. Additional super-
script primes and pi's extend this notatioh to higher duals
in the obvious way. The map Q: N - N** igs the canonical embed-
ding of N into its second dual. The Banach spaces <) and Kp,

1 < p <o, are defined as in Day [16].



The distance from a point X to a set M is the usual

metric distance given by
d(x,M) = inf {lx - yl: y € M},

The symbols wS ang "T-1im" denote, respectively, convergence
and limit in the t~-topology. 1If T 1s not specified, the norm
topology is assumed. We frequently use "w" and "w*" as abbre-
viations for "weak" and "weak*" respectively, not to be confused
with "w", which usually designates a sequential property. The
abbreviations "w. r. t." and "w. 1. o. g." stand for "with
respect to" and "without loss of generality" respectively.
The symbol "®" will mark the end of a proof or example.

Since we refer frequently to James's theorem, we

should state here the version that we use.

THEOREM (James [27], [29]). A Banach space is reflex-
ive 1f and only <if every continuous Llinear functional in the
dual space achieves its supremum on the closed unit ball of the

space.

We also list two other results used frequently and

sometimes implicitly.

THEOREM (Ascoli [2]). Let f be a nonzero continuous
linear funetional on N, let ¢ be a real number, and let x be an
element of N. Then the distance from x to the hyperplane H =

{y € N: f(y) = o} is given by d(z,B) = Ifl" e = flz)l.



. . W
THEOREM. If (ma) 18 a net itn N and z, F then
*
lel < Zim inf Nz l. AZso, if (f ) is a met in N* and £, % 7,
then Ifl € 1im inf Hfau. That is, norms and conjugate norms are

lover semicontinuous in the weak and weak* topologies respec-

tively.

This last result can be found in Day [16], as can all
of the standard facts about normed spaces used in this thesis.

Our method of crediting results to others is as fol-
lows. If a result has appeared in the literature substantially
as it is stated here, then a reference is given in our state-
ment of that result. If a result is partly ours and partly
another's, then an explanation of which part belongs to whom
is given in the discussion preceding the result. Otherwise,
the result is new. In some cases, a new result is based on a
clever argument devised by someone else for a different purpose.
In this case, appropriate credit and references are given.

We close this introduction with an explanation of
our transliteration of Cyrillic names. With one exception,
we use the English phonetic transliteration instead of the
Czech diacritical; for example, we write "Chebyshev" instead
of "Cebysev". The lone exception is the last name of V. L.
Smulian. In several articles published in French and English,
Smulian transliterated his name as it appears in this sentence.
Since one should be able to control the spelling of one's own

name, we use Smulian's transliteration.
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SECTION 1

PRELIMINARIES

The purpose of this section is to give the defini-

tions of some classes of normed linear spaces used throughout

this thesis and then to obtain characterizations of some of

these classes in terms of the behavior of certain sequences.

These characterizations are used in Section 2 to simplify the

proofs of the main results of that section.

(R)

(UR)

(wUR)

(LUR)

(WwLUR)

1.1 DEFINITION. A normed linear space N is said to be
rotund or strictly convex if I contains no intervals;

uniformly rotund if inf {1 - %lx + yl: x, y e I,

Ilx -~ vyl 2 €} > 0 when 0 < € € 2 (Clarkson [12]);

weakly uniformly rotund 1f inf {1l - %lx + yl: x, v € I,
l£(x - y)| 2 €} > 0 for each £ € L' and each ¢ with

0< e < 2 (Smulian [51]);

locally uniformly votund if inf {1 - %lx + yl: y e I,
lx — yl > €} > 0 for each x ¢ L and each ¢ with

0 < ¢ £ 2 (Lovaglia [36]);

weakly loeally uniformly rotund if inf {1 - %Ix + yi:
ve £, If(x-y)l >} >0 for eachx e I, £ e L',

and € with 0 €< ¢ € 2 (Lovaglia [36]);



(X)

(D)

(s)

(F)

(UG)

(Us)

(H)

(Rf)

11

strongly rotund if, whenever K is a nonempty convex
set in N, then the diameter of the intersection of K
with tU tends to zero as t decreases toward the dis-

tance from 0 to K (Smulian [51]);

a strongly rotund Banach space if N is (K) and a Banach

space;

smooth if each point of I is a point of smoothness of
U; that is, a point through which passes only one hyper-

plane supporting U;

Fréchet smooth if the norm is Fréchet differentiable

on L;

untformly Gateaux smooth if the norm is uniformly

Gateaux differentiable on I;

untformly smooth if the norm is uniformly Fréchet

differentiable on I;

a Kadec-Klee or Radon-Riesz space 1if, whenever (xn)

W
1s a sequence 1n I, x € I, and X, T X, then X, 7 X
a reflexive space if Q(N) = N*¥*,

The classes of spaces in the above definition are

all well-known and have been extensively studied. For a sum-

mary of their most important properties, see Day [16].
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Sequential Characterizations

While the definitions given on the last two pages
are the usual ones for these classes of spaces, they are not
always the most useful ones for our purposes. In many cases
it is more convenient to have a characterization of a class of
spaces in terms of the convergence properties of certain
sequences in nonempty closed convex sets. We now prove a
series of propositions doing exactly that.

In what follows, we use the usual convention that
X denotes an element of a sequence, while X, designates an

element of a net. As always, N is a normed linear space.
1,2 DEFINITION, Let M be a nonempty subset of N, and
let x ¢ N. A net (xa) in M is a minimizing net for x if Iz, = xI

tends to d(x,M).

1.3 PROPOSITION. The following are equivalent.

(1) n <s (R).

(2) Whenever %, € L, fe t'y and f(xn) + 1, then all weakly

convergent subsequences of (mn) have the same limit.

(3) Whenever K is a nonempty closed convex set in N and (a,)
18 a minimizing sequence in K for x € N, then all weakly

convergent subsequences of (xn) have the same limit,
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Proof. Suppose N is (R), and let (xn) and f be as
in the hypothesis of (2). 1If (xnk) is a subsequence of (xn)
converging weakly to some x € N, then £(x) = 1 and lIxl = 1.

By the rotundity of N, there can be only one such x € I where
f attains its supremum on U, and so all weakly convergent sub-
sequences of (xn) have the same limit. Conversely, if X con-
tains a line segment, then it is easy to construct a sequence
satisfying the hypothesis but not the conclusion of (2). Thus,
(1) and (2) are equivalent.

Suppose (2) holds. Let K, (xn), and x be as in the
hypothesis of (3). W. l. o. g. x ¢ K, and we can in fact assume
that x = 0 and d(0,K) = 1. Let f € I' be such that the hyper-
plane {y € N: f(y) = 1} separates U from K. For each n,
1< f(xn) < Hxnﬂ + 1. Thus, Yo = Han_lxn gives a sequence
in Z such that f(yn) + 1. By (2), all weakly convergent sub-
sequences of (yn) have the same limit, and so the same will be
true of (xn). Thus, (2) implies (3).

Finally, suppose that (3) holds. Let Y, € L and £ ¢ T
be such that f(yn) + 1, Let K ={y e N: £(y) = 1}. W. 1l. o. g.

£{y,) > 0 for all n, so x = (f(yn))-lyn £ K for all n. Since

hx I = (£(y,) )L

-1, (xn) is a minaimizing sequence in XK for 0,
and so all weakly convergent subsequences of (xn) have the same
limit. Since the same will be true of (yn), we see that (2)

holds. Thus, (3) implies (2). ®

In Propositions 1.4 through 1.7, we only prove that

(1) and (2) are equivalent. The proof that (2) and (3) are
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equivalent then follows by an argument similar to that used

in the proof of Proposition 1.3.

1.4 PROPOSITION. The following are equivalent.

(1) N Zs (Rf).

(2) Whenever z, € I, fe ', and f(mn) + 1, then (mn) has a

weakly convergent subsequence.

(3) Whenever XK is a nonempty closed convex set in N and (xn)
i8 a minimiaing sequence in K for x € N, then (xn) has a

weakly convergent subsequence.

Proof. It 1s obvious that (1) implies (2). To get
the reverse implication, we first suppose that N is not complete.
Let (xn) be a nonconvergent Cauchy sequence in I. Now (xn) has
a limit x i1n the completion N© of N. Since N* can be identified
with N®* in the usual way, there is some f € I' such that f(xn)
tends to £(x) = 1. Since (xn) cannot have a subsequence weakly
convergent in N, we see that (2) cannot hold.

Thus, (2) implies completeness. Now suppose that
(2) holds. Let f ¢ I', and let (xn) be a sequence in I with
f(x)) -~ 1. W. 1. 0. g.x_ % x. Then Ixl <1 and f(x) = 1.
Thus, each £ € I' attains its supremum on U. By James's

theorem, N is reflexive. ®

The use of James's theorem in the last proof should

be noted. James's theorem is a very deep result, which would
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in turn seem to make Proposition 1.4 very deep. Actually, we
have a proof of Proposition 1.4 that avoids the use of James's
theorem altogether. The proof does use the Bishop-Phelps
theorem [4], which 1s itself a nontrivial result. However, the
proof of the Bishop—~Phelps theorem is arguably more elementary
than any known proof of James's theorem. It would be distract-
ing to present this alternate proof of Proposition 1.4 here,
especially since it depends on a lemma which we would like to
postpone until Section 5. This alternate proof is presented in
Appendix A, along with some observations about James's theorem
and an elementary proof of that theorem for a large class of
spaces.

The importance of having an elementary proof of Propo-
sition 1.4 is that much of what follows depends on this result.
In particular, we use it in the next section to prove Theorem
2.5. The equivalence of (1) and (3) in that theorem is a well-
known result that has always been treated as a corollary of

James's theorem, when it i1s in fact more elementary.

1.5 PROPOSITION. The following are equivalent.

(1) N is (R) & (Rf).

(2) Whenever x, € L, f e iy and f(mn) + 1, then (wn) t8

weakly convergent.

(3) Whenever K is a nonempty closed convex set in N and (wn)
18 a mintmizing sequence in K for x € N, then (mn) g

weakly convergent.
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Proof. We just apply Propositions 1.3 and 1.4. =

The next three propositions along these lines are

well-known results.

1.6 PROPOSITION (Fan and Glicksberg [22]1). The

following are equivalent.
(1) N Zs (K).

(2) Whenever ® € L, f ety and f(xn) + 1, then (xn) i8

Cauchy.

(3) Whenever K ig a nonempty closed convex set in N and (mn)
18 a minimizing sequence in K for x € N, then (mn) i8

Cauchy.

Proof. We need the fact that (X) is equivalent to

the following condition:

(v) For every f € Z', the diameter of the slice v (f,§)
= {x e U: £f(x) 2 1 - 6} tends to zero as § decreases

to zero.

This is easy to prove; see also Day [16]. Given this, it is
easy to see that (1) implies (2).

Suppose N is not (v). Then therxe is some £ ¢ I'
such that v(£f,5) does not have diameter tending to zero as

§ decreases to zero. It is not difficult to use this to find
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a sequence (xn) in I satisfying the hypothesis but not the

conclusion of (2). =

1.7 PROPOSITION (Fan and Glicksberg [22]). The

following are equivalent.
(1) N is (D).

(2) Whenever z el fe !, and f(xn) + 1, then (xn) con-

verges.

(3) Whenever K is8 a nonempty closed convex set in N and (mn)
18 a minimizing sequence in K for x € N, then (xn) con-

verges.

Proof. After applying Proposition 1,6, all that is
left is to prove that (2) implies completeness, which is easy

either directly or via Proposition 1,5. =

It is natural to ask for an analog of Proposition
1.7 for the case where we only require the sequences to have

convergent subsequences. For this we need a definition.

1.8 DEFINITION (Singer [45]; Vlasov [57]1). A normed

linear space is called an Efimov-Stechkin space if it possesses

the following property:

(CD) Whenever X, E £, £ e X', and f(xn) + 1, then (xn) has

a convergent subsequence.
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The proof of the following proposition is similar

to that of the equivalence of (2) and (3) in Proposition 1.3.

1.9 PROPOSITION (Singer [45]). The following are

equivalent.
(1) N Zs (CD).

(2) Whenever K is a nonempty closed convex set in N and ()
18 a minimizing sequence in K for x € N, then (xn) has a

eonvergent subsequence.

The following characterization of smooth spaces by
Smulian is analogous to the above propositions, but the result-
ing convergence property applies to sequences in N* rather than

N. We offer a proof different from the one in Smulian's paper.

1.10 PROPOSITION (Smulian [49]). The following are

equivalent.
(1) N zs (3).

(2) Whenever fn e !, x e I, and fn(x) + 1, then (fn) i8

weak?® convergent.

The weak* limit in (2) is the unique f € L' such that flx) = 1.

Proof. Suppose N is smooth, and let (fn) and x be

as in the hypothesis of (2). Let £ be the unique element of
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Z' such that f£(x) = 1. Suppose (fn) does not converge weak¥
to £f. Then there is a weak* neighborhood W of f and a sub-
sequence of (fn) that avoids W; w. 1. o. g. (fn) lies outside
W. By the Banach-Alaoglu theorem, (fn) contains a weak* con-

vergent subnet (fa)' Let g be the limit of this subnet. Then
1= 1lim fn(x) = lim fu(x) =g(x) € gl <1,

and so ligl = g(x) = 1. Thus, g = £. Since (fa) does not enter
W, this is a contradiction.

Conversely, suppose (2) holds. If x ¢ L and I£l
= gl = £(x) = g(x) = 1, then applying (2) to the sequence

(t, 9, £, g, ... ) shows that £ = g. Thus, N is smooth. =

We now prove several classical results, both for
theirr later usefulness and because of their easy derivation

from the above results.

1.11 THEOREM (Fan and Glicksberg [22]). WN <8 (D)

tf and only if N 2s (R) & (Rf) & (H).

Proof. This 1s an easy application of the definition

of condition (H) and Propositions 1.5 and 1.7, =

The following theorem follows easily from the defini-
tions and from Proposition 1.4. The proof of the corollary

uses Theorem 1.11.
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1.12 THEOREM (Vlasov (571). N Zs (CD) Zf and only

if N is (Rf) & (H).

1.13 COROLLARY (Singer {45]). N <Zs (D) <if and only

tf N is (R) & (CD).

Weak Collapse and (wK) Spaces

Proposition 1.6 characterizes the normed linear spaces
in which minimizing sequences in nonempty closed convex sets are
Cauchy, with the resulting class being the strongly rotund
spaces. It is useful to have a similar characterization for
spaces in which such manimizing sequences are weakly Cauchy.

We do this by replacing the shrinking diameter in the defini-

tion of strongly rotund spaces with a weaker property.

1.14 DEFINITION. Let (Aa) be a net of nonempty sub-
sets of a normed linear space N. Then (Aoc) weakly collapses if

w

b4 -+ 0 whenever X, Yy € Aa for each «.

a ~ ¥y

The proof of the next lemma is elementary and waill

be omitted.

1.15 LEMMA. The following are equivalent.

(1) (Aoc) weakly collapses.
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(2) For each f e N*, lim (sup {f(x): x ¢ Aoc} - inf {f(x):
o

x eAa})= 0.

(8) For each f e N*, 1lim (sup {f(x - y): z, y € Aoc}) = 0,
o

1.16 EXAMPLE. It is obvious that if the diameter of
(Au) tends to 0, then (Aoc) weakly collapses. The converse is
not true, even for a nested sequence of sets in a Banach space.

Let (en) be the usual sequence of unit wectors in ¢ and let

OI

An = {em: m 2 n}. Then the diameter of An is 1 for all n, even

though (An) weakly collapses. @

Since the strongly rotund spaces are those for which
certain sets shrink in diameter to zero, it makes sense to
define the weakly rotund spaces to be those in which the same

sets weakly collapse.

1.17 DEFINITION. A normed linear space N is said

to have property

(wK) if, whenever K 1s a nonempty convex set in N, then the
intersection of K with tU weakly collapses as t decreases

to d(0,K); these spaces are called weakly rotund;

(WKw) if, whenever K is a nonempty convex set in N and (xn)
is a sequence of elements of K with norm tending to

d(0,K), then (xn) is weakly Cauchy;
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(wv) if, for every f ¢ ', the slice v (f,§) = {x € U:

f(x) 2 1 - 8} weakly collapses as ¢ decreases to 0;

(wLv) 1if, for every f ¢ I' that achieves its supremum on U,

the slice v (f,§) weakly collapses as 6§ decreases to 0.

We really need only consider closed half-spaces in
the definition of (wK), rather than all nonempty convex sets.
Suppose that the stated condition holds for closed half-spaces.
Let K be any nonempty convex set. W. l. o. g. t0 = d4(0,K) > 0.
Let H he a closed half-space containing K determined by a hyper-
plane separating tOU and K. Since the intersection of H with
tU weakly collapses as t decreases to tO' so does the inter-
section of K with tU.

In the next proposition, we assign conditions (wK)
and (wLv) their proper places among the common rotundity con-
ditions and show that the first three classes of spaces in

Definition 1.17 are really the same.

1.18 PROPOSITION.

(a) (wk) = (wkw) = (wv).
(b) (K) => (wK) => (wLv) => (R).
(c) (wUR) => (wk).

(d) (wLUR) => (wLv).
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Proof. Suppose N is (wK). Fix f ¢ &', and let M(S)

1U with {x € N: f£(x) 2 1}. Then

be the intersection of (1 - §)
M(§) weakly collapses as § + 0, and hence so does v(f,§) =
(1L - 8)M(8). Thus, N is (wv).

Now suppose that N is (wv), and let K be a nonempty
convex set in N and (xn) a sequence of elements of K with
Hxnu + d(0,K). W. 1. o. g. d(0,K) = 1. Let f € I' determine
a hyperplane {x € N: £(x) = 1} separating K from U. Since
Han-l < f(Han-lxn), it follows that Hxnﬂ-lxn lies in
V(£,1 - Ix_I"!) for each n. Since v(£,1 - Ix_17Y) weakly
collapses as n + «, (Hxnﬂ-lxn) is weakly Cauchy, and hence
(xn) is also. Thus, N is (WKw)'

Next, suppose that N is (wKw). An easy application
of the equivalence of (1) and (3) in Lemma 1.15 shows that N
is (wK). This completes the proof of (a).

For (b), the first two implications are trivial con-
sequences of the definitions and of (a). For the last, suppose
that N is not rotund, and let L be a line segment in I. By the
Hahn-Banach theorem, we can find a hyperplane H containing L
and supporting U. Let £ ¢ I' be such that H= {x ¢ N: £(x) = 1}.
Then f achieves its supremum on U, but v(f,d) does not weakly
collapse as § + 0, since L lies in v(f,8) for all § > 0. Thus,
N is not (wLv).

For (c), let N be (wUR). We will show that N is
(wv). Let £ € £'. For any § € (0,1) and x, v € v(f,8), we
note that x' = Hxﬂ-lx, y' = HyH-ly, and %(x' + y') are all in

v(£,8). Thus, 1 - 8§ € %lIx' + y'l and 1 - %lx' + y'l € §. Let
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ge ' and 0 < € € 2, and restrict § so that

0 < 8§<inf {1 -%lu+vili:u, vel Ilglu-vwv)l=>c¢cl.

Then g(x' - y')}) < €. Since

glx - y) =gi{x' =y") +g{x~-x'~-y+y")

<e + Iz - xl + ly' -yl

/AN

e + 28,

it follows that sup {g(u - v): u, v.e¢ v(£,8)} - 0 as & ¢ 0.
By Lemma 1.15, v(f,8) weakly collapses as § ¥+ 0, and so N
1s (wv).

To prove (d), let N be (wLUR). Suppose f € I' achieves
its supremum on U at x € L. By a proof analogous to that of the
last paragraph, it can be shown that sup {Ig(u - x)l: u e v(£,8)}
tends to 0 as § + 0. It follows immediately that sup {g(u - v):
u, ve¢ v(f,8)} -~ 0 as § + 0. Applying Lemma 1.15, v(£f,58) weakly

collapses as § ¥+ 0, and so N is (wLv), ®

The class of weakly rotund spaces has appeared in
the literature before, as Cudia's spaces "weakly uniformly
rotund in each direction" in [13] and Yorke's spaces "weakly
rotund at S(E*) in the S (E*) directions" from [61], where the
definitions given were essentially in the form (wv). In view
of the definition of strong rotundity, the term "weakly rotund"
seems sufficient and will be used here.

This next proposition 1s really just a restatement

of Proposition 1.18 (a), but we include it here because it
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complements Propositions 1.3 through 1.7 and Proposition 1.9.
In particular, notice that it is a weak analog of Proposition

l.6.

1.19 PROPOSITION. The following are equivalent.

(1) N s (wK).

(2) Whenever %, € L, f e L', and f(xn) + 1, then (xn) 18

weakly Cauchy.

(3) Whenever K is a nonempty closed convex set in N and (z )
18 a minimizing sequence in K for » € N, then (mn) 18

weakly Cauchy.

Proof. It is obvious that (2) holds whenever N is
(wv), and so (1) implies (2). Conversely, if N is not (wv),
then there 1s some f € I' such that v(f,8) does not weakly
collapse as § ¥+ 0. It is not difficult to use this to find
a sequence (xn) in I satisfying the hypothesis but not the
conclusion of (2). Thus, (2) implies (1).

The equivalence of (2) and (3) is established as

in Proposition 1.3, =

We can require more of the sequences in spaces of
type (wLv), but we have to be a bit more restrictive about which

sequences we consider.
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1.20 PROPOSITION. The following are equivalent.

(1) N s (wLv).

(2) Whenever x €L, felil f achieves ite supremum on U,

and f(z, ) + 1, then () i8 weakly Cauchy.

(2') Whenever x, € L, f e L', f achieves its supremum on U,

and f(xn) + 1, then (xn) is weakly convergent.

(3) Whenever K is a nonempty closed convex set in N, (xn)
18 a minimizing sequence in K for x € N, and there is

ay € Kwith le - yl = dlx,K), then (xn) is weakly Cauchy.

(8') With KX, (xn), x, and y as in (3), (xn) 18 weakly con-

vergent.

In (28'), the weak limit is the unique 3 € I where f achieves

its supremum on U. In (3'), the weak limit <8 y.

Proof. The equivalence of (1) and (2) can be estab-
lished as in Proposition 1.19. The equivalence of (2) and (3)
can be established as in Proposition 1.3 once we notice that
the functional £ ¢ L' in the first half of that proof attains
its supremum on I when we require K to have a point nearest x.

Suppose (2) holds. Let X, and £ be as in the hypoth-
esis of (2'). Now N is (wLv) and hence rotund, so there is a
unique z in I such that £(z) = 1. Let (yn) be the sequence
(xl, Z) Kor 2y Xgy Zy oees ). Then (yn) lzes in I and f(yn)

tends to 1, so (yn) is weakly Cauchy by (2). For any g in N*

-~
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it is immediate that the convergence of (g(yn)) implies that
g(xn) + g(z). Thus, X 3 Z. This gives (2'). Since (2')
obviously implies (2), (2) and (2') are equivalent. Notice
that we have also proved the first remark following the list
of equivalent conditions.

The proof that (3) and (3') are equivalent and the
proof of the second remark following the list of equivalent
conditions use the method of the previous paragraph. Note that

(xl, Yr Xor Yo e ) is a minimizing sequence in K for x. ®

Yorke and Cudia were interested in the weakly rotund
spaces because they are exactly the spaces with smooth duals.
The proofs of this given in [13] and [61] use the fact that a
space 1s smooth if and only if its norm is Gateaux differen-
tiable on . The following proof, based on Propositions 1.10
and 1.19, is somewhat simpler and does not use differentiability

properties of the norm.

1.21 THEOREM (Cudia [13]). &V <s weqkly rotund if and

only 1f N* is smooth.

Proof. Suppose N* is smooth. Let (xn) be a sequence
in I such that there is an £ e I' with f(xn) + 1., Now (an)(f)
tends to 1, so (an) must be weak* convergent by Proposition
1.10 and the smoothness of N*, This implies that (xn) is weakly

Cauchy. By Proposition 1.19, N is weakly rotund.
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Now suppose that N is weakly rotund. Since we need
to treat N, N*, and N** gimultaneously, we use here the common
convention that the number of superscript asterisks on an ele-
ment indicates where the element is located. Let (x;*) be a
sequence in Z'' such that there is an x* € L' with x;*(x*) + 1,
To show that N* is smooth, it is enough to show that (x;*) is
weak* convergent and then apply Proposition 1.10. By the
Banach-Alaoglu theorenm, (xﬁ*) has a weak* convergent subnet,
so to show that (xg*) is weak* convergent, it is enough to show
that any two such subnets have the same limit. To this end,

let (x;*) be a weak* convergent subnet of (xg*) with limit x*¥*,

Then
1l =1im x;*(x*) = lim x&*(x*) = x**(x*) < [x**|
£ 1lim inf Hx;*” =1,
so X** g I'' and x**(x*) = 1. Now suppose that two such subnet

limits y** and z** were unequal, and let y* e ' be such that
y**(y*) # z**(y*), By an easy application of Goldstine's theo-
rem that Q(U) 1is weak?* dense in an, we can find a segquence
(yn) in ¢ such that y*(yn) + y** (y*) and x*(yn) - yhr(x*) = 1,
Let (zn) be a corresponding sequence for z**. Let the sequence
(xn) be given by (xn) = (yl, Zir Yor Zor eee ). Then (xn) lies
in & and x*(xn) + 1, so (xn) is weakly Cauchy by Proposition
1.19. Since (y*(xn)) must converge, (y*(yn)) and (y*(zn)) must
have the same limait; that is, y**(y*) = z**(y*). This contra-

diction establishes the theorem. ®
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It is easy to prove that for reflexive spaces, rotund-
ity of the space and smoothness of the dual are equivalent; see
[16]. This, along with Proposition 1.18 (b) and the previous

theorem, give the following result.

1.22 COROLLARY. For reflexive spaces, rotundity,

weak rotundity, and condition (wLv) are all equivalent.

We can prove a result similar to Theorem 1.21 for
(wLv) spaces, in which we cannot insist that all the points
of I' be points of smoothness of Un, but rather only the points
representing functionals achieving their suprema on U. To do
this, we need a lemma, whose proof is =ssentially the same as

that of Proposition 1.10.

1.23 LEMMA (Smulian [49]). Let x € L. Then the
following are equivalent.
(1) The point x i8 a point of smoothness of U.

(2) Whenever fh e L' and fn(x) + 1, then (fn) i8 weak* con-

vergent.

]
~

The weak* limit in (2) i8 the unique f € T' such that f(xz)

1.24 THEOREM. N %8 (wLv) <f and only <if every f in

$' that attains its eupremum on U is8 a point of smoothness of ",
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Proof. The proof just follows that of Theorem 1.21,
with Lemma 1.23 and Proposition 1.20 being used in place of

Proposition 1.10 and Proposition 1.19 respectively. ®

In [53], Sullivan defined the very rotund spaces to
be the spaces satisfying condition (2) of Theorem 1.24. Thus,
our (wLv) spaces are exactly Sullivan's very rotund spaces.
The following result of Sullivan's is immediate from Proposition
1.18 and the last theorem. We mention it because our proof
avoids Sullivan's use of local reflexivity, though we do use

Goldstine's theorem to prove Theorem 1.24.

1.25 COROLLARY (Sullivan [53]). If N Zs (wLUR),

then N is very rotund.

Summary

Propositions 1.3 through 1.7, 1.9, and 1.19 all have

basically the following form:

PROPOSITION. The following are equivalent.

(1) N is (eclass).

(2) Whenever x, € I, f ez, and f(xn) + 1, then (condition

on (xn)).
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(3) Whenever K is a nonempty closed convex set in N and (wn)

18 a minimizing gequence in K for x € N, then (condition

on (xn)).

The following table summarizes the conditions corre-

sponding to the classes.

1.26 TABLE. A summary of Propositions 1.3 through

1.7, 1.9, and 1.19.

Class

(R)

(RE)

(WK)

(R) & (Rf)

(CD)

(K)

(D)

Condition on (xnl

all weakly convergent subsequences of (xn) have

the same limit

(xn) has a weakly convergent subsequence

(x,)
(%)
(x))
(x )

(%)

is weakly Cauchy

is weakly convergent

has a convergent subsequence

is Cauchy

converges
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The following charts give the relationships between
the classes of normed linear spaces defined above. All of
these relationships are proved above, are easily deduced from
the above, or can be found in Day {[16]. An "r" above or beside
an arrow indicates a relationship that exists in reflexive
spaces, while a "c" above or beside an arrow indicates a rela-

tionship that holds for Banach spaces.

(D) > (CD) ——> (Rf)
AN
(o]
v \4
(UR) > (K) > (H)
\V4 A3} A4
(LUR) (WUR) —> (WK) <> (WV) > (wKw)
r
)\ \V4 r

(WLUR) —> (wLv) = (R)

(us) —=

> (Rf)

N
(F)

v
(s)

(uG)

/N
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SECTION 2
APPROXIMATIVE COMPACTNESS AND CONTINUITY

OF THE METRIC PROJECTION

This section contains several new results charac-
terizing certain classes of normed linear spaces in terms of
the approximation-theoretic properties of their closed convex
sets, as well as a short survey of some well-known results of
the same type. Although the classical results have always
been stated and proved for Banach spaces, a minimal amount
of extra effort yields these same results for arbitrary normed
linear spaces, and so we offer them in this more general set-
ting. The proofs tend to be very short anyway, since most of
the work is done in Sectaion 1.

The results of this section are used in the next
section to prove the principal results of the first half of

this thesis, Theorems 3.11 and 3.13.

Approximative Compactness

The following definition is due to Efimov and Stechkin
[21] for the case of norm convergence, while the generalization
to the weak topology is due to Breckner [6]. In this defini-
tion, as in the rest of this section, M is a nonempty subset of

normed linear space N.
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2.1 DEFINITION. M is approximatively compact (resp.
approximatively weakly compact) if for each x € N every mini-
mizing sequence in M has a subsequence converging in norm (resp.

converging weakly) to an element of M.

2.2 DEFINITION. The metric projection onto M is

the set-valued map P,, £from N onto M that maps each x € N to

M
the collection of all points of M closest to x. That is, y 1is
in PMX if and only 1f y is in M and Ix - yl = d(x,M). As usual,

the domain of definition of Py is {x e N: Pyx # #}.

When there is no possibility of confusion, we denote
PM by just P. When P is single-valued, we frequently treat it
as i1f it were point-valued instead of set-valued; for example,

we write Px = y instead of Px = {y}.

2.3 DEFINITION. M is a set of existence or proxi-
minal if Px is nonempty for each x € N; that is, closest points
always exist. M is a set of uniqueness if Px is either empty
or a singleton for each x € N. M is a Chebyshev set if Px is

a singleton for each x € N.

We collect here some standard properties of the
above objects that follow from the definitions and from well-

known properties of the norm; see Vlasov [57].
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2.4 PROPOSITION.

(a) If (y.,/ i8 a minimizing sequence in M for x € N and con-

verges weakly to y € M, then y e Pzx.

(b) An approzimatively compact set is opproximatively weakly

eompact.

(ec) An approzimatively weakly compact set is norm closed and

proximinal.

(d) If M is approximatively (resp. approximatively weakly)
eompact and Px 18 a singleton for some x € N, then every
minimizing sequence in M for x converges (resp. converges

weakly) to Px.

(e) A proximinal set is nonempty and closed.

Approximative Compactness of Closed Convex Sets

In the following theorem, the equivalence of (1) and
(3), and thus implicitly the equivalence of (1) and (2), was
established by Breckner [6] for Banach spaces. Vlasov mentioned
the equivalence of (1) and (2) for Banach spaces in [59]. 1In
[57], Vlasov claimed the equivalence of (1) and (3) for arbi-
trary normed linear spaces, but his proof used James's theorem
to show that (3) implies (1), and James has shown that his

theorem does not always hold without the assumption that the
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space in question is complete; see [28]. Our proof is based
on Proposition 1.4, which can be proved without James's theorem

by the argument given in Appendix A.

2.5 THEOREM. The following conditions on normed

linear space N are equivalent.
(1) N Zs (Rf).

(2) Every nonempty closed convex set im N is approximatively

weakly compact.

(3) Every weakly sequentially closed set in N is approxi-

matively weakly compact.

Proof. The equivalence of (1) and (2) is just a
restatement of Proposition 1.4. To see that (1) implies (3),
suppose that N is a reflexive Banach space and (xn) is a mini-
mizing sequence in weakly sequentially closed set M for x & N.
Since (xn) is bounded, it has a weakly convergent subsequence,
which must converge to an element of M. Thus, M is approxi-
matively weakly compact, giving (3). It is obvious that (3)

implies (2). =

In laight of Theorem 2.5, 1t is natural to ask for a
characterization of the normed linear spaces in which every
nonempty closed convex set is approximatively compact. The

next theorem gives the answer and shows that the Efimov-Stechkin
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property is, in a certain sense, a strong analog of reflex-
ivity. The proof is similar to that of Theorem 2.5 and uses

Proposition 1.9. We leave the details to the reader.

2.6 THEOREM (Singer [45]). The following conditions

on normed linear space N are equivalent.
(1) N Zs (CD).

(2) FEvery nonempty closed convex set in N is approximatively

ceompact.

(3) Every weakly sequentially closed set in N is approxi-

matively compact.

We might now ask what happens if we require the
closed convex sets to be Chebyshev sets as well as approxi-
matively compact. A moment's thought shows that the resulting
spaces in which this happens would seem to ke the rotund spaces
that are otherwise like those of the previous theorem. This is

in fact the case.
2.7 THEOREM (Fan and Glicksberg [22]). The following
conditions on a normed linear space N are equivalent,

(1) N is (D).

(2) Every nonempity closed convex set in N is an approximatively

compact Chebyshev set.
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Proof. This follows immediately from Proposition
1.7. Note that condition (3) of that proposition does imply

that the metric projection is single-valued. =

It is probably true that the most well-known theorem
of this branch of approximation theory is the Day-James theorem:
A Banach space is rotund and reflexive if and only if each of
its closed convex subsets is a Chebyshev set. The forward
implication in this theorem was first proved in 1941 by Day
[14], but the reverse implication, long suspected, had to await
the proof of James's theorem. Vlasov claimed the theorem for
arbitrary normed linear spaces in [57], but his proof implicitly
assumed completeness. We give a proof here for arbitrary normed
linear spaces which depends on the following result of Jorg

Blatter.

2.8 LEMMA (Blatter [5]). Let N be a normed linear
space such that every nonempty closed convex subset of N has

a point of minimum norm. Then N is complete.

Condition (2) in the following result is not part of
the classical Day~-James theorem. Note that the equivalence of
(1) and (2) ultimately depends on Proposition 1.4, and can be
obtained without the use of James's theorem by the argument of

Appendix A.
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2.9 THEOREM (Day and James). The following conditions

on a normed linear space N are equivalent.
(1) N is (R) & (Rf).

(2) Every nonempty closed convex set in N is an approximatively

weakly compact Chebyshev set.

(8) Every nonempty closed convex set in N is a Chebyshev set.

Proof. The proof of the equivalence of (1) and (2)
follows immediately from Proposition 1.5. Since (2) obviously
implies (3), we need only show that (3) implies (1).

Suppose N satisfies (3). By the lemma, N is complete.
If N were not reflexive, then by James's theorem there would be
some £ € L' not attaining its supremum on U. Since the closed
convex set {y ¢ N: £(y) = 1} would have no point nearest the
origin, we see that (3) implies (Rf). Finally, if N were not
rotund, then there would be a line segment in I which would
have many points nearest the origin. Thus, (3) implies (R),

which finishes the proof. =

If we were to write out a detailed proof that (1)
implies (2) in the above theorem without using Proposition
1.5, we would discover that reflexivity has two functions in
that proof. First, 1t forces closed convex sets to be proxim-
inal, since hyperplanes are so. Second, it forces minimizing

sequences in such sets to have weakly convergent subsequences.
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If we were to weaken the hypothesis in (2) so that only proxim-
inal convex sets need be approximatively weakly compact Cheby-
shev sets, it is clear that the full strength of reflexivity
would no longer be required, though rotundity would still be
needed to force proximinal hyperplanes to have unique points
nearest the origin. It is equally clear that some mild form
of reflexivity would need to be retained to force minimizing
sequences in proximinal convex sets to have weakly convergent
subsequences. It turns out that the proper requirement on the

normed linear space is that it be very rotund.

2.10 THEOREM. 4 normed Llinear space is (wLv) if and
enly if each of its proxziminal convex sets ©8 an approximatively

weakly compact Chebyshev set.

Proof. Let N be (wLv), and let K be a proximinal
convex set in N. By Proposition 1.20 (3'), minimizing sequences
in K converge weakly to elements of K, so K 1s approximatively
weakly compact. If there were two points in K closest to x € N,
then a minimizing sequence in K for x could be constructed by
alternating these poaints, but it would not converge weakly, a
contradiction. Thus, K is Chebyshev.

Conversely, suppose that every proximinal convex set
in N is an approximatively weakly compact Chebyshev set. Let
(xn) and £ be as in the hypothesis of Proposition 1.20 (2').
Then H = {x € N: £(x) = 1} is a proximinal convex set. It is

easy to see that (f(xn)-lxn)ls a minimizing sequence in H for
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the origin, and hence converges weakly by Proposition 2.4 (d).

By Proposition 1.20, N is (wLv). =
The following problem remains open.

2.11 PROBLEM. Find a sensible characterization of
the normed linear spaces in which each convex Chebyshev set

is approximatively weakly compact.

This problem seems fundamentally more difficult than
obtaining the characterization of Theorem 2.10. For that char-
acterization, as for several of our previous ones, the funda-
mental technique used in the proof involves separating a cer-
tain closed convex set from the unit ball by a hyperplane and
thereby reducing the problem to considering hyperplanes; see
the proof of Proposition 1.20, upon which Theorem 2.10 is based.
This does not seem to help in Problem 2.11, because even if the
closed convex set involved is Chebyshev, the separating hyper-
plane may not be. The reader will have no trouble constructing

examples of this inimz with any nonrotund norm.
Continuity of P for Closed Convex Sets
A question of great importance in this branch of

approximation theory is the characterization of the normed

linear spaces in which the metric projection onto each nonempty
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closed convex set has certain continuity properties. Oshman
[42] gave a guite technical characterization of the Banach
spaces for which such a metric projection is always norm-to-
norm continuous. It was conjectured at that time that Oshman's
spaces were actually just the strongly rotund Banach spaces
(D). Vlasov has recently confirmed this conjecture for Banach
spaces. By an application of Lemma 2.8, we can state his theo-

rem in a slightly strengthened form.

2.12 THEOREM (Vlasov [60]). A wormed linear space N
ts (D) if and only if the metric projection onto every nonempty
closed convex set in N is single-valued and norm-to-norm con-

tinuous.

We are going to see that the rotund reflexive Banach
spaces play precisely the same role for norm-to-weak continuity.
In addition, if we do not insist that the domain of definition
of P be all of N, then we can prove its norm-to-weak continuity

for arbitrary convex sets in a far larger class of spaces.

2.13 THEOREM. Let N be a normed linear space of
elass (wLv). Then the metric projection onto each convex set
16 gingle-valued and norm-to-weak continuous on its domain of

definition.

Proof. Let K be a convex set in N, w. 1. o. g.

nonempty, and let (xn) and x be 1n the domain of definition



43

of P with X, * X Suppose 2z £ N and Yir ¥y € Pz are such that
vy # Y- Then [yl, y2] lies in Pz by a short argument involving
the convexity of K and of the ball centered at z with radius
d(z,K). Saince this ball cannot have a line segment on its sur-
face by the rotundity of N, this contradiction shows that P is
single-valued on its domain of definition.

Since the distance function d(+,K) is continuous

and x. > x
n r

lpx. - xI € IPpx_ - I+ -
P 0 < n xnl Hxn x1

d(xn,K) + "xn - xl

¥

d(x,K),

implying that (Pxn) 1s a minimizing sequence in K for x. By

w
Proposition 1.20 applied to the norm closure of K, Px, > PX.
Thus, P is norm-to~weak continuous on its domain of definition,

as claimed. ®

2.14 COROLLARY. JIn a normed linear space of type
(wLv), the metric projection onto each proximinal convex set

18 single-valued and norm-to-weak continuous.

2.15 QUESTION. Does the conclusion of either Theorem

2.13 or Corollary 2.14 characterize spaces of type (wLv)?

If we add reflexivity to the hypothesis, then all
the nonempty closed convex sets become proximinal by Theorem

2.9, and we do obtain the following characterization.



2.16 THEOREM. The following conditions on a normed

linear space N are equivalent.
(1) W <s (R) & (Rf).

(2) The metric projection onto every nonempty closed convex

set in N ig single-valued and norm-to-weak continuous.

Proof. If N is (R) & (Rf), then N is (wLv) by Cor-
ollary 1.22. sSince every nonempty closed convex set in N is
proximinal by Theorem 2.9, an application of Corollary 2.14
vields (2).

Conversely, if N satisfies (2), then every nonempty
closed convex set in N is Chebyshev, so N is (R} & (Rf) by

Theorem 2.9. =

44

Thus, in a rotund reflexive space the nonempty closed

convex sets are all Chebyshev sets with norm-to-weak continuou
metric projections. The next reasonable question to ask is

for a characterization of the spaces where the nonempty closed
convex sets are exactly the Chebyshev sets with this containuit
property. In the next section, we obtain a partial solution t

this problem.

s

Y

(o]
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SECTION 3

SEMI-KADEC-KLEE SPACES AND A PROBLEM OF KLEE'S

In [35], Klee took up the problem of the convexity
of Chebyshev sets in Hilbert space subject to additional con-
ditions. 1In particular, he proved that in Hilbert space every
weakly closed Chebyshev set is convex, and in fact obtained

the following stronger result.

3.1 THEOREM (Klee [35]). In a Banach space that is
(UR) & (UG), the nonempty closed convex sets are exactly the

weakly closed Chebyshev sets.

Singer later observed that the smoothness hypothesis

can be weakened substantially.

3.2 THEOREM (Singer [46]). In a Banach space that
i8 (UR) & (8), the nonempty closed convex sets are exactly

the weakly closed Chebyshev sets.

The purpose of this section is to prove a result
stronger than Theorem 3.2 and to obtain some similar results
for some other classes of normed spaces and with other con-
ditions on the Chebyshev sets besides being weakly closed.
In order to do this, we need to examine a condition on the

norm introduced by Vlasov.
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Semi~Kadec-Klee Spaces

3.3 DEFINITION (Vlasov [56]). A normed linear space
is called a semi-Kadec-Klee space if 1t possesses the following

property:

w
(SH) Whenever x, x_ e %, £_ ¢ L', fn(xn) =1, and x_ + X,

n n n

then £ _(x) ~» 1.
n

Condition (SH) says that whenever (xn) converges
weakly to x on the unit sphere and (Hn) is a sequence of hyper-
planes such that Hn supports the unit ball at X then the
distance from Hn to x tends to zero. Vlasov originally called
this condition property (SA), consistent with his use of (3)
for the Kadec-Klee property.

The following result gives some common conditions

on normed spaces that imply condition (SH).

3.4 PROPOSITION (Vlasov [56], [57]).

(a) (H) => (SH).

(b) (UG) => (SH).

Vlasov gave an example in [56] showing that the
implication in (a) is not reversible. The implication in (b)
is also not reversible, since any finite-dimensional nonsmooth

space has property (H) and hence (SH). There are, however,
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infinite-dimensional spaces that do not have property (SH).

- > i
For example, 1in Cp let X, e; + e, for n 2 2, where e 1is

the i'th unit wvector. 1In 21 = co* let fn = e, for n 2 2.

w
then X, > X = e, X, € z, fn € L', and fn(xn) = 1 for all n,
but fn(x) = 0 -+1, Thus, o is not a semi-Kadec-Klee space.

The importance of semi~-Kadec-Klee spaces resides in
Theorem 3.6 below, presented in [57] as Theorem 4.28 (k). To
state this theorem, we need a definition giving a weak analog
of the concept of ORL continuity from [7] and [8]; see also

[181].

3.5 DEFINITION. The metric projection onto Chebyshev
set M is said to be outer radially norm-to-weak continuous (ORNW
continuous) if, whenever x ¢ M, the restriction of P to the ray

{x + A(x - Px): A 2 0} is norm-to-weak continuous.

3.6 THEOREM (Vlasov [57]). In a semi-Kadec-Klee
space with a rotund dual, every Chebyshev set with an ORNW

eontinuous metrie projection is convex.

Vlasov actually stated this theorem under the hypoth-
esis that the metric projection is norm-~-to-weak continuous, but
an examination of his proof shows that ORNW continuity suffices.

We use this result along with some of our previous
results to prove a strengthened version of Theorem 3.2. We can
also replace weak closure by other properties of the Chebyshev

set in the conclusion of that theorem, as we now show.
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Convexity of Special Chebyshev Sets

As mentioned in the introduction to this thesis, the
difficulties involved in proving that arbitrary Chebyshev sets
are convex in a given normed linear space have led workers in
this field to resort to proving the convexity of Chebyshev sets
subject to additional conditions, such as approximative compact-
ness or some type of continuity of the metric projection. Theo-
rem 3.6 above is a typical example. Here are some other such

special conditions sometimes used.

3.7 DEFINITION (Vlasov [58]). A nonempty set M is
a A-set if its intersection with each closed half-space is

either empty or proximinal.

3.8 DEFINITION (Klee [34]). A nonempty set M is
boundedly (weakly) compact if its intersection with each closed

ball is (weakly) compact.

In [3], Asplund proved that a Chebyshev A-set in a
Hilbert space 1s convex. Vlasov [58] extended this result to
uniformly smooth Banach spaces, and his proof actually goes
through whenever the Banach space is (SH) with a rotund dual,

a weaker requirement.

We are going to see that in certain spaces the con-
vexity of some classes of Chebyshev sets, such as the Chebyshev

A-sets, implies that the space is smooth. To do this, we need
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to look at a certain construction of Efimov and Stechkin that

shows what can happen when the space is not smooth.

3.9 EXAMPLE (Efimov and Stechkin [19]). Recall that
f e L' exposes U at x e L if £(x) = 1 and £(y) < 1 everywhere
else on U. We then say that x is an exposed point of U.

Let N be a normed linear space with a point x € I
that is both an exposed point and a point of nonsmoothness of
U. Let £ € Z' be an exposing functional for x. Let fl and f2
be distinct elements of L' such that fl(x) = f2 (x) = 1. By
replacing f1 and f2 by l~5(f1 + £) and 3«z(f2 + f) if necessary,
we can assume that f1 and f2 both expose U at x., For i =1, 2,
let M, = {y € N: £, (y) 2 1}. sSince each £, exposes U at x, it
is not difficult to see that each Mi is a Chebyshev set. Let

M be the union of M. and MZ' We claim that M is also a Cheby-

1
shev set. To see this, suppose that y ¢ M. The only case we
need worry about 1is when d(y,Ml) = d(y,MZ) , and w. 1. 0. g.
we can assume that this common dastance is 1 and that y = 0.
Since the only point in M at distance 1 from 0 1s X, we see
that M is Chebyshev.

Hence, N contains a nonconvex Chebyshev set. Note

that any rotund nonsmooth normed linear space thus contains

a nonconvex Chebyshev set. =

It will also be useful to have the following lemma.

The proof is not difficult; see [57].
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3.10 LEMMA (Vlasov [57]). A4n approxzimatively weakly
compact Chebyshev set has a norm-to-weak continuous metric

projection.

The following is the first of the two principal
results of this section. Recall that condition (wLv) can
be stated as a smoothness condition on the dual space by
Theorem 1.24, and note that the following result also involves

a rotundity condition on the dual.

3.11 THEOREM. Let M be a subset of novmed linear

space N, and consider the following statements about M.
(1) M is a proximinal convex set.

(2) M is Chebyshev and Py 18 ORNW continuous.

(3) M is Chebyshev and Py 18 norm-to-weak continuous.
(4) M is Chebyshev and approxzimatively weakly compact.

If V is (wLv) & (SH) and has a rotund dual, then all four state-
ments are equivalent. Conversely, if (1) through (4) are equiv-

alent for all M, then N is (wLv) and smooth.

Proof. Suppose first that N is (wLv) & (SH) and
N* is rotund. By Lemma 3.10, (4) implies (3). It is obvious
that (3) implies (2). By Theorem 3.6, (2) implies (l1). Finally,

(1) implies (4) by Theorem 2.10.
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Now suppose that (1) through (4) are equivalent for
each set M in N. By Theorem 2.10, N is (wLv) and hence (R).
Suppose N were not smooth. Consider the nonconvex Chebyshev
set M of Example 3.9. It is reasonably obvious that whenever
x ¢ M, then Px is constant on the ray [Px, x, =), but the proof
1s somewhat tedious. For a rigorous argument, see the proof
in Theorem 3.9 of [57] that a space is smooth if each of its
suns is convex. In particular, PM is ORNW continuous. This

contradiction shows that N must be smooth. =

We are going to show that for reflexive spaces that
are (wLv) & (SH) and have rotund duals, several equivalent
conditions can be added to Theorem 3.11, including that M be
a Chebyshev A-set and that M be a boundedly weakly compact
Chebyshev set. We first give an example to show that this is

false in the absence of reflexivity.

3.12 EXAMPLE. Every separable Banach space has an
equivalent norm that is (LUR) with the corresponding dual norm
being rotund; see [16], Theorem VII.4.1 (a). Let H-Ha be such
a norm on 21, and let B be the resulting Banach space. Then
B is (wLUR) and hence (wLv) by Proposition 1.18 (d). Also,
any (LUR) space is (H) (see [16]) and so (SH). Thus, B is
(wLv) & (SH) and has a rotund dual, so conditions (1) through
(4) of Theorem 3.11 are equivalent for subsets of B.

However, not every proximinal convex subset of B

is boundedly weakly compact. For example, the closed unit
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ball is convex and is easily seen to be proximinal. However,
if U were boundedly weakly compact, then it would be weakly
compact and B would be reflexive. Since reflexivity is iso-
morphism-invariant, I?.l would be reflexive, a contradiction.
Also, not every proximinal convex set in B is a

A-set., For example, B itself is certainly a proximinal convex
set. However, since B is not reflexive, there is some f e I!
that does not achieve its supremum on ZB' Then A = {x € B:
£(x) > 1} is a closed half-space, and the intersection of B

with A, which is just A, is not proximinal. =

The next theorem is the strengthened version of Theo-
rem 3.2 that we have been promising. In order to understand
its relationship to Theorem 3.11, consider a reflexive space
that is (wLv) & (SH) and has a rotund dual. Then the space is
obviously (R) & (Rf) & (S) & (SH). Conversely, 1f N 1s a space
that is (R) & (Rf) & (8) & (SH), then N* a1s rotund because
rotundity and smoothness are dual concepts 1n reflexive spaces;
see [16]. N is also (wLv) by Corollary 1.22. Thus, adding
reflexivity to the requirement that a space be (wLv) & (SH)
and have a rotund dual yields exactly (R) & (Rf) & (S) & (SH).
Thus, the next theorem and its corollary are analogs of Theorem

3.11 for reflexive spaces.

3.13 THEOREM. (Consider the following statements

about normed linear space N.



(1) N is (R) & (Rf) & (S) & (SH).

(2) The nonempty closed convex subsets of N are exactly the

Chebyshev sets with ORNW continuous metric projections.

(8) The nonempty closed convex subsets of N are exactly the
Chebyshev sets with norm-to-weak continuous metric pro-

Jections.

(4) The nomnempty closed convex subsets of N ave exactly the

approximatively weakly compact Chebyshev sets.

(5) The nonempty closed convex subsets of N are exactly the

boundedly weakly compact Chebyshev sets.

(6) The nonempty closed convex subsets of N are exactly the

weakly sequentially closed Chebyshev sets.

(7) The nonempty closed convex subgsets of N are exactly the

weakly closed Chebyshev sets.

(8) The nonempty closed convex subsets of N are exactly the

Chebyshev A-sets.
(9) N is (R) & (Rf) & (5).
Then:
(a) (1) =>(2) =>(3) =>(4) => (5) =>(6) => (7) =>(9).
(b) (4) =>(8) => (9),

(¢) For spaces of type (SH), (2) through (9) are equivalent.



54

Proof. (1) =>(2). This is an easy consequence of
Theorems 2.16 and 3.6.

(2) = (3). Suppose (2) holds. By Theorem 2.9,

N is (R) & (Rf), so by Theorem 2.16, every nonempty closed
convex set is Chebyshev with a norm-to-weak continuous metric
projection. The reverse inclusion follows easily from (2).

(3) => (4). Suppose (3) holds. By Theorem 2.9,
every nonempty closed convex set is an approximatively weakly
compact Chebyshev set. For the reverse inclusion, just apply
Lemma 3.10 to condition (3).

(4) => (5). Suppose (4) holds. Since boundedly
weakly compact sets are easily seen to be approximatively
weakly compact, all we need to show is that nonempty closed
convex sets are boundedly weakly compact. Since (4) implies
the reflexivity of N by Theorem 2.5, this 1s immediate.

(5) => (6). Suppose (5) holds. By Theorem 2.9,

N is reflexive. 1In reflexive spaces, weakly sequentially
closed sets are easily seen to be boundedly weakly compact;

see [57], Proposition 2.3. Thus, we need only show that non-
empty closed convex subsets of N are weakly sequentially closed,
which is immediate.

(6) => (7). This follows easily, since every closed
convex set is weakly closed and a weakly closed set is weakly
sequentially closed.

(7) = (9). Suppose (7) holds. By Theorem 2.9,

N is (R) & (Rf). Suppose N were not smooth. The nonconvex

Chebyshev set of Example 3.9 is the union of two weakly closed
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half-spaces and hence is a weakly closed Chebyshev set. This
contradiction establishes that N 1s (S), which gives (9).
This finishes the proof of (a).

(4) = (8). Suppose (4) holds. By Theorem 2.9, N
is (R) & (Rf), and in particular is complete. 1In [58], Vlasov
proved that every Chebyshev A-set in a Banach space is approx-
imatively weakly compact, and so every Chebyshev A-set in N 1is
convex. Conversely, suppose M is a nonempty closed convex set
and H is a closed half-space. If M intersects H, then the
intersection is a nonempty closed convex set and hence is Cheby-
shev by Theorem 2.9; in particular, the intersection is proxim-
inal. Thus, M is a A-set. By Theorem 2.9 again, M is itself
Chebyshev, which gives (8).

(8) => (9). Suppose (8) holds. By Theorem 2.9, N
is (R) & (Rf). Suppose N were not smooth, and consider the
nonconvex Chebyshev set M of Example 3.8. Now M is the union
of two closed half-spaces, each of which 1s a A-set by Theorem
2.9 (3). From this, it 1s easy to deduce that M is itself a
Chebyshev A-set. This contradiction establishes that N is
smooth, and hence (9) holds. This proves (b}.

A comparison of (1) and (8), along with (a) and (b),

establishes (¢). =

3.14 COROLLARY. Let N be (R) & (Rf) & (5) & (SH),

and let M be a subset of N. Then the following are equivalent.

(1) M is a nonempty closed convex set.
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(2) M is Chebyshev and Py 18 ORNW continuous.

(8) M is Chebyshev and Py ©8 norm-to-weak continuous.
(¢d) M is Chebyshev and approximatively weakly compact.
(5) M is Chebyshev and boundedly weakly compact.

(6) M is Chebyshev and weakly sequentially closed.

(7) M is Chebyshev and weakly closed.

(8) M is a Chebyshev A-set.

Any (UR) space is (LUR) and hence (H); see [16].
Also, (UR) Banach spaces are reflexive by a result of Milman
[37] and Pettis [43]. Thus, any Banach space that is (UR) & (9)
is also (R) & (Rf) & (S) & (SH). It follows that Theorem 3.13
is at least as strong a result as Theorem 3.2. To show that
it is stronger, we display a space that is (R) & (Rf) & (S) &

(sH) but not (UR).

3.15 EXAMPLE. 1In [14], Day constructed a Banach
space B that is separable and reflexive but not isomorphic
to any uniformly rotund space. As in Example 3.12, B can be
given an equivalent norm ”'”a such that the resulting Banach
space Ba is (LUR) & (S). By the comments preceding this exam-
ple, Ba is (R) & (Rf) & (8) & (SH), even though it cannot be

(UR)., =
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It is instructive to compare Theorem 3.14 with the

following result.

3.16 THEOREM (Vlasov [57]). Let B be a Banach space.

Then the following are equivalent.
(1) B is (R) & (Rf) & (S) & (H); <. e. (D) & (S).

(2) The nonempty closed convex subsets of B are exactly the

approximatively compact Chebyshev sets.

(3) The nonempty closed convex subsets of B are exactly the
Chebyshev sets with norm-to-norm continuous metric pro-

Jjections.

Incidentally, the completeness hypothesis in this
last theorem can be removed by an application of Lemma 2.8.

In Theorem 3.16, conditions (2) and (3) imply (H),
so it is reasonable to ask if any of conditions (2) through
(8) in Theorem 3.13 imply (SH). If any one did, then that con-
dition would be equivalent to N being (R) & (Rf) & (S) & (SH),
which would bring to an end one line of investigation. It
would be particularly interesting to discover 1f condition (7)
implies that N is (SH), for in that case conditions (1) through

(7) would be equivalent in any normed linear space.

3.17 QUESTION. Suppose that the nonempty closed
convex subsets of N are exactly the weakly closed Chebyshev

sets. Must N be a semi-Kadec~Klee space?
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We might also ask if all these special conditions
on the Chebyshev sets are necessary. The following question

along these lines is still open.

3.18 QUESTION. If N is (R) & (Rf) & (S) & (SH), are

the nonempty closed convex sets exactly the Chebyshev sets?

For finite-dimensional spaces, the answer is yes,
as can be deduced from the following result. We show that

this result is contained in Theorem 3.13.

3.19 THEOREM (Busemann [10], [11]; Efimov and Stech~-
kin (20]). For a finite-dimensional normed linear space N, the

Ffollowing are equivalent.
(1) N is (R) & (S).

(2) The nonempty closed convex sets are exactly the Chebyshev

sets.
Proof. (1) => (2). Any finite-dimensional normed
space is (H) and hence (SH), as well as (Rf). Thus, (1) implies

that N is (R) & (Rf) & (S) & (SH), so by Theorem 3.13, the non-
empty closed convex sets are exactly the weakly closed Cheby-
shev sets. Since the norm and weak topologies agree on N and
any Chebyshev set is norm closed, the words "weakly closed"

are redundant.
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(2) = (1). If (2) holds, then the nonempty closed
convex sets are exactly the weakly closed Chebyshev sets, so

N is (R) & (S) by Theorem 3.13. =

As mentioned in the introduction to this thesis,
much less is known in the infinite-dimensional case. Of course,
the problem does not lie in the "Chebyshevness" of nonempty
closed convex sets; this was settled in full by Theorem 2.9.
The difficulty lies in proving the convexity of Chebyshev sets.
There is no infinite-dimensional space known in which every
Chebyshev set is convex. There is also no smooth space of any
kind known to contain a nonconvex Chebyshev set, so much remains
to be done in this area. In fact, the convexity of Chebyshev
sets in classical Hilbert space 1s considered to be the major
open problem of this branch of approximation theory.

While Theorem 3.13 is an improvement on Theorem 3.2,
it still falls short of being a characterization of spaces in
which the nonempty closed convex sets are exactly the weakly
closed Chebyshev sets. It does, however, point out the impor-
tance of learning more about spaces that are (R) & (Rf) & (S8) &
(SH) , and about semi-Kadec~Klee spaces 1n general. The next
few sections are devoted to doing this, with one result being
an approximation-theoretic characterization of the spaces that
are (R) & (Rf) & (S) & (SH). The tool we use for this study
is the new concept of supportive compactness. However, before
we can study supportive compactness, we need to take a look at

the norm-duality map and its continuity properties. It turns



out that the semi-Kadec-Klee condition is just a statement

about the continuity of this map.

60
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SECTION 4
SOME CONTINUITY PROPERTIES OF

THE NORM-DUALITY MAP

The semi-Kadec-Klee condition is a statement about
the interaction between certain sequences in I and certain
corresponding sequences in I'. To study this relationship,
it proves to be important to have some simple map between N
and N* whose properties are directly related to the geometry
of these two spaces. There are several reasonable choices
for this map that have in the past been useful in this branch
of approximation theory.

In 1969, Asplund [3] gave an elementary proof that
in any Hilbert space, every Chebyshev set with a norm-to-norm
continuous metric projection is convex. To do this he applied

2x to a hypo-

the map T: H \ {0} + H\ {0} given by T(x) = lIxl~
thetical nonconvex Chebyshev set as the first step in a certaain
construction. This transformation, called <nversion in the
unit sphere, had earlier been used by Klee [35] to prove certain
theorems about Chebyshev sets in Hilbert space. Klee in turn
attributed the method to F. A. Ficken, who used it in some of
his unpublished work.

Another map frequently encountered is the spherical
image map v studied by Cudia in [13]; see also the discussion
of the subdifferential of the norm by Giles in [24]. This is

the set-valued map sending each x in I to the collection of

all £ in I' with £(x) = 1. Note that for a Hilbert space H,
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the restriction of the inversion map T to I just gives v, pro-
vided that H* is identified with H in the usual way.

Ficken's inversion map can be extended to arbitrary
normed linear spaces in a natural way, but it seems to be some-
what difficult to analyze in this general setting. The spher-
ical image map has friendlier properties, but does not contain
enough information for our purposes. There is another well-
known natural map, the norm-duality map, that will prove more
suitable for our purposes. We actually need a slightly gen-

eralized form of this map.

The Norm-Duality Map

4.1 DEFINITION. ILet N be a normed linear space,
and let z € N. Then Jz is the set-valued map from N into
*
2N \ (g} given by:
Jx=1lx~-zI{f e I': £(x - 2) = Ix - zl}.

2

The map J = Jo is called the norm-duality map.

Note that J, 2z = {0} and that whenever f is in sz,

then f(x - 2) lx - ZH2 and ||f] = |Ix - 2l|; conversely, when-
ever f satisfies these last two equalities, then f is in sz.
In particular, f is in Jx if and only if £(x) = ixI2 and |£] =
Ixl, and so the restriction of J to I just yields the spherical

image map v. See Holmes [26] for more about the map J.
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The map J, possesses a certain useful continuity

property. Recall the following cefinition.

4.2 DEFINITION. Let (A, rl) and (B, r2) be topo-
logical spaces, and let ¢: A -+ 2B N {#} be a set-valued map.
Then 9 is Tz-to-rz upper semicontinuous (TZ-TZ u. 8. e.,) 1if,
for every T,—Open set G in B, the set {x ¢ A: ¢x lies in G}

is T,-Open in A.

The following fact is well-known for J, and the
extension to Jz causes no problem. A proof can be constructed
along the lines of the proof in [24] that subgradient mappings

are norm-to-weak* upper semicontinuous.

4,3 PROPOSITION. Let 2 € ll. Then Jz 18 norm-~to-

weak* upper semicontinuous.

4.4 COROLLARY. Let 2z € N. If I, is single-valued

on N, then Jz 18 norm-to-weak?* continuous.

Many of the geometric properties of the normed linear
spaces that we have been studying can be expressed as corre-
sponding properties of the norm-duality map. We list here some
of the more basic and well-known of these relationships. The
proofs are elementary and will be omitted, though note that the

proof of (c) uses James's theorem.
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4.5 PROPOSITION. Let N be a normed linear space and

B a Banach space.
(a) N is smooth <if and only if J is single-valued.

(b) N is rotund if and only if Jx and Jy are disjoint when-

ever x and y are distincet elements of N.
(e) B is veflexive if and only if J(B) = B*,

(d) If J*: N* + N** {8 the norm-duality map for N*, then for
any x € N, Qe e J*(Je). In fact, Qx € J*(f) for each f

in Jx.

(e) B is (R) & (Rf) & (5) if and only if J i1s a bijection
from B onto B*, in which case J-I ean be identified with

J* in the obvious way.

Part (c) of the theorem does not hold for arbitrary
normed linear spaces. James [28] has constructed a normed
linear space that 1s not complete but in which every contin-
uous linear functional attains its supremum on I.

It is well-known that a smooth space is Fréchet
smooth if and only if the spherical image map v is norm-to-
norm continuous; see [24], [13], and [51]. If we require
norm-to-weak continuity instead, we obtain a smoocthness con-
dition between (F) and (S). The following is not the original

definition of such spaces, but 1s an equivalent formulation due

to Giles [23].
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4.6 DEFINITION. A normed linear space is very smooth
and is said to satisfy condition (VS) if the spherical image

map is norm-to-weak continuous.

The following characterizations are easy to derive
from the above results and comments. As 1s the usual con-
vention, continuity, as opposed to semicontinuity, implies

that the map is single-valued.

4.7 PROPOSITION. Let N be a normed linear space.

(a) N ie (S) if and only if J ie norm-to-weak* continuous.

(b) N 28 (VS) if and only if J 18 norm-to-weak continuous.

(e) N Zs (F) if and only if J 18 norm-to-norm continuous.
It turns out that the semi-Kadec-Klee spaces are

exactly the spaces where J has another semicontinuity property,

but the relevant topology on N is not one of the usual ones.

The Lambda Topology

4.8 DEFINITION. The X topology on a normed linear
space N is the topology with closed sets defined as follows.
A set A is A-closed if, whenever (xn) is a sequence in A such

w
that x, +~ x € N and Ix Il - Ixl, then x e A. The A* topology
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on N* is defined similarxly, with weak convergence replaced

by weak* convergence.

We are not claiming that N and N* are topological
vector spaces under these topologies, and in fact they are
frequently not, as we show in Proposition 4.10 below. However,

the A and A* topologies are at least topologies.

4.9 PROPOSITION.

(a) The X and A* topologies are Hausdorff topologies on N

and N* respectively.

(b) The A (resp. A*) topology is at least as strong as the
weak (resp. weak*) topology, but is no stronger than the
norm topology.

A
(e) If (xn) 18 a sequence in N, then x, > @ if and only if

w
x, T and Hmnu + llell. A4 similar result holds for A#*-

sequential convergence.

, . A w
(d) If (xu) is a net tn N and x, + ©, then x, T and quﬂ -

o

lell. A similar result holds for A*-convergence,

Proof. We give proofs for the A topology. The proofs
for the A* topology are analogous.

For (a), note that the empty set and N are A-closed
and that arbitrary intersections of A-closed sets are A-closed.

If Apr ene An is a finite collection of A-closed sets with



union A and (xn) is a seguence with X, 3 x € N and Han +
Ixll, then some infinite subsequence of (xn) belongs to some
Ai. It easily follows that x € A, and hence A is A-closed.
Thus, the A-closed sets do define a topology on N. We will
show it to be Hausdorff in a moment.

For (b), it is obvious that a weakly closed set is
A=-closed. This finishes the proof of (a), since a topology
as strong as a Hausdorff topology is itself Hausdorff. Also,
if A is A-closed, (xn) is a sequence in A, and Hxn - xi -+ 0,
then x € A, so A is norm closed. This proves (b).

For (d), note that for any € > 0, the set D(g) =
{y e N: {llyl - Ixlll < €} is A-open and is thus a A-neighbor-

hood of x. It immediately follows that HxaH -+ Ixl. By (b),
W

X, T X. This gives (d) and one part of (c).
w
For the rest of (c), suppose that X, * X and Hxn" -
Ixll. If A 1s a A-closed set not containing x, then there is

an n, such that X, ¢ A whenever n 2 Ny - Thus, X, & x. =®
It 1s not difficult to see that a set is approxi-
matively weakly compact if and only if it 1s approximatively
sequentially A-compact; that is, minimizing sequences have
A-convergent subsequences with limits in the set. Thus, for
many of our purposes we could deal with the A topology rather
than the weak. Unfortunately, the )\ topology displays a cer=-
tain bit of unpleasant pathology in spaces that do not have

Kadec~Klee norms.
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4.10 PROPOSITION. In a normed linear egpace N, the

following are equivalent.
(1) N Zs (H).
(2) The norm and X topologies agree on N.

(3) Veetor aqddition <8 A-continuous.

Proof. The proof of the equivalence of (1) and (2)
is just an exercise in definitions. Also, (2) obviously implies
(3), so we need only show that (3) implies (2). Suppose that
the A topology is properly weaker than the norm topology. Then
there is some norm open ball B centered at the origin and an
x € N such that B + x is not A-open. Since N \ B is easily
seen to be A-closed, B is A-open. Thus, vector addition cannot

be A-continuous. =

We can now prove the major results of this section,
which say that condition (SH) is just a continuity statement

about the norm-duality map.

4,11 THEOREM. A4 normed linear 3pace 18 a semi-Kadec-
Klee space if and only if its norm-duality map is A-to-weak*

upper semicontinuous.

Proof. Suppose N is (SH). Let G be a weak* open

set in N*, We need to show that {y € N: Jy lies in G} is
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A-open; that is, that A = {y € N: Jy intersects N* \ G} is
A~-clogsed. Let (xn) be a sequence in A with X, y x € N and
Mxnu + |Xf. We need to show that x ¢ A.

Suppose x = 0, Since JO0 = {0}, we need to show that
0 ¢ G. Suppose to the contrary that 0 € G. Since G 1s norm
open, there is a 8§ > 0 such that 1f £ ¢ N* and Ifl € §, then
f ¢ G. Since > 0, some xn0 has norm less than §, and so
£l < § for all f € ano. Thus, ano lies in G, which contra-
dicts the assumption that xno e A.

Now suppose that x # 0. For each n let fn be an
element of an lying outside of G. Since anH = Han + Ixl,
we can assume w. 1. o. g. that £ # 0 and X # 0 for each n.

1

- w -
Then Hxnﬂ X, I xll 1x. For each n,

1 1

- - _ -1 -1 _ -2 2 _
PENTTE (i 17 7% ) = WENT TR 0TTE (x ) = x0T CIx 17 = 1.

1fn(llxll_lx) + 1. Multiplying by anﬂﬂxﬂ,

Since N is (SH), anﬂ-
we see that £ (x) - 112, By the Banach-Alaoglu theorem, (£ )

has a subnet (fa) with a weak* limit £. Then
HxH2 = lim fa(x) = f(x) < Ifllxl € lim MfaHMxH = Hx"z,

and so I£l = Ixl and £(x) = IxI%. Thus, £ € Jx. Also, since
each fa e N* \ G, a weak* closed set, £ € N¥ \ G. Thus, Jx
intersects N* \ G, implying that x € A. This proves that J
is A-w* u. s. c. whenever N is (SH).

Now suppose that J is A-w* u. s. c. Let X s X € X
with X y X, and let fn € ' be such that fn(xn) = 1 for all

n. To show that N is (SH), we need to show that fn(x) + 1.
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For each € > 0, let G, = {g e N*: |g(x) - 11 < €}, a weak*
open set. Then {y € N: Jy lies in Gs} is A-open and contains

A
X¥. Since X+ X, there is an n, such that:
> i ] -
nzzn ==$>an lies J.nGE@fneGS@Ifn(x) 1] < g,

€

Thus, fn(x) + 1, as required. ®

4.12 COROLLARY. The following are equivalent.
(1) N s (S) & (S8H).
(2) J is A-to-weak* continuous.
(3) J is A-to=-A* comntinuous.
Proof. The equivalence of (1) and (2) is immediate

from the theorem and Proposition 4.5 (a). Since (3) obviously

implies (2), we need only show that (2) implies (3). Suppose

g7 k).

(2) holds. TILet XK be a A*-closed set in N*, and let A

It is enough to show that A is A-closed. Let (xn) be a sequence

W w*
in A with x_ > x and x_ I » (xll. Then Jx_ = Jx and lIJx_| =
n n Ak n n
Han > Ix) = I1Jxl, so an + Jx. Since K is A*-closed, Jx € K.

Thus, x € A, =™

For a large class of spaces, the A-to-weak* upper
semicontinuity of Theorem 4.11 can be replaced by A-to-i*

upper semicontinuity.



4.13 THEOREM. Suppose N is a normed linear space
whose dual space has a weak* sequentially compact unit ball.
Then N is a semi-Kadec-Klee space if and only Zf its norm-

duality map is A-to-A* upper semicontinuous.

Proof. If J is A-X* u. s, c., then N is (SH) by
Theorem 4.11. Conversely, suppose that N is (SH). Let G be
A*-open in N* and let A, (xn), and x be as in the first para-
graph of the proof of Theorem 4.11. The proof now proceeds
word-for-word like that proof until the application of the
Banach-Alaoglu theorem. We pick 1t up there.

By the weak* sequential compactness of Uﬂ, (fn) has

a subsequence (fn ) with weak* laimit f£. As in the proof of

] wk
Theorem 4.11, £ ¢ IJx and £l = Ixll. Since fn + £ and an N =
}\*
"Xn = izl = {£l, fn + £. Since each fn lies in N* \ G, a

A*-closed set, f also lies in N* N\ G. Thus, Jx intersects
N* \ G, and so x € A. As before, this is enough to prove

that J is A-A* u, s. c. =

4.14 COROLLARY. Suppose N satisfies one of the
following conditions.
(a) N has an equivalent smooth norm and is complete.
(b) N Zis weakly compactly generated (see [16]) and complete.
(e¢) N ig reflexive.

(d) N is separable.
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Then N is a semi-Kadec~Klee space if and only if its norm-

duality map 18 A-to-A* upper semicontinuous.

Proof. Hagler and Sullivan [25] have shown that if
N is a Banach space with an equivalent smooth norm, then u” is
weak* sequentiilly compact, so in case (a) we just apply the
previous theorem. Case (b) follows from case (a), because weakly
compactly generated Banach spaces have equivalent smooth norms;
see [16]. Case (c) is immediate from the Eberlein-Smulian theo-
rem, while case (d) follows from the fact that the weak* topo-

logy on U" is metrizable whenever N is separable. =

Case (c) of the corollary also follows from case (b),
since reflexive spaces are weakly compactly generated. Though
separable Banach spaces are also weakly compactly generated,
invoking case (b) to prove case (d) would require that N be
complete.

With a small amount of extra proof, Proposition 4.7

and Corollary 4.12 can be combined to yield the following.

4,15 PROPOSITION. ILet N be a normed linear space.

(a) N ie (8) & (SH) if and only <f J is A-to-A* continuous.

(b) N is (S) <if and only if J is nmovm-to-X* continuous.

(e) N is (VS) if and only if J Zs norm-to-\ continuous.

(d) N is (F) if and only if J 18 norm-to-norm continuous.



We finish this section by noting two cases in which
J is bicontinuous. Klee [34] asked for a characterization of

the spaces for which J is a norm-to-norm homeomorphism. Cudia
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obtained the answer in [13] by an argument analogous to the one

we offer.

4,16 THEOREM (Cudia [13]). Let N be a normed linear

space. Then the following are equivalent.
(1) N is (R) & (Rf) & (F) & (H); that is, (D) & (F).

(2) J is a norm-to-norm homeomorphism of N onto N*,

Proof. If N is (R) & (Rf) & (F) & (H), then J is
a norm-to-norm continuous bijection onto N* by Propositions
4.5 (e) and 4.15 (d). Also, by a result of Smulian [52], N
being D is equivalent to N* being (F), provided N is complete.
Thus, ™1 is also norm-to-norm continuous.

Now suppose that (2) holds. Since an incomplete
normed linear space cannot be homeomorphic to a Banach space
(Klee [33]), N is complete. Then Propositions 4.5 (e) and
4.15 (d) imply that N is (R) & (Rf) & (F) and that N* is (F).

By Smulian's result, N is (D) and hence (H). =

Note that condition (1) in the previous theorem
implies that both N and N* are (H), because N being reflexive
and Fréchet smooth implies that N* is (D) by Smulian's result

mentioned above. It then becomes a trivial corollary of
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Proposition 4.10 that J is a A-to-A homeomorphism whenever it
is a norm-to-norm homeomorphism. The following more substan-
tial result can be proved by the same type of argument as in

the last proof. We leave the details to the reader.

4.17 THEOREM. Let N be a normed linear space. Then
the following are equivalent.

(1) N is (R) & (Rf) & (5) & (SH) and N* is (SH).

(2) J is a A-to-\ homeomorphism of N onto N*.
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SECTION 5

BASIC PROPERTIES OF SUPPORTIVE COMPACTNESS

In this section, we define a new analog of approxi-
mative compactness, called supportive compactness, and obtain
some of its basic properties. The eventual goal, to be accom-
plished in Section 6, is to obtain an approximation~theoretic
characterization of the spaces that are (R) & (Rf) & (S) & (SH)
to compare with Theorem 3.13, which falls just short of givaing
such a characterization. Along the way, we will discover that
supportively compact sets have certain interesting properties
of their own. For instance, if a Banach space has a rotund
dual but no other assumed geometric properties, then its sup-

portively compact Chebyshev sets are convex.

Supportive Compactness

5.1 DEFINITION. Let M be a nonempty subset of normed
linear space N. A net (fu) in N* is a supportive net for M
with respect to x € N if there is a minimizing net (xa) in M

for x such that £ € J_x for each a.
o Xx"a

5.2 DEFINITION. Let T be a topology on N¥*, Then
nonempty set M in N is supportively t-compact if, for every
X € N and every supportive net (fa) for M with respect to X,

(fa) has a subnet that is t-convergent to some f ¢ JX(M). If



this condition holds with nets replaced by sequences, then we
say that M is supportively Tw-compact. If T is not specified,

the norm topology is assumed.

The three topologies we use for T in the above def-
initions are the norm, weak, and weak*. We list here some
basic properties of sets that are supportively t-compact in

these topologies.

5.3 PROPOSITION. Let M be supportively T-compact,

where T i8 the norm, weak, or weak* topology. Then the fol-

loving hold.

(a) M is proximinal and hence closed.

(b) Whenever 2 € N and y € P&, then Jzy 18 T-compact.
(e) Whenever 2 ¢ N, then Jz(PMz) 18 T-compact.

(d) If N is smooth, then whenever P,3 is a singleton, every

M
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supportive net for M w. ». t. 2 18 T=-convergent to Jz(PMz).

Proof. For (a), let x € N, and let (fa) be any sup-
portive net for M w. r, t. x that is t-convergent to some f ¢
Jx(M). Let y € M be such that f ¢ ny, and let (xa) be a min-

imizing net in N that corresponds to (fa)' Then

d(x,M) < lIx - yl I£l € lim inf F£ 0

lim inf Ix - x, I = d(x,M).



It follows that (x - yl = d(x,M) and y ¢ Px. This finishes

M
the proof of (a).

For (c), suppose that (fu) is a net in JZ(PMz). It
is easy to see that (fa) is a supportive net for M w. r. t. 2z
and so has a subnet (fB) T-convergent to some f ¢ JZ(M). By
the proof of (a), £ ¢ JZ(PMZ).

For (b), let (fa) be a net in J, Y where y ¢ Pyz.
By (c), (fu) has a subnet (fB) that is T-convergent to some
f e JZ(PMZ). Then £l = d(z,M) = llz - ylIl and f(y ~ z) =
lim fB(Y - z) =y - sz. Thus, £ € J, Y, and so Jzy is
T-compact.

After recalling that Jz is single-valued whenever

N is smooth, the reader will have no difficulty supplying the

proof of (d). =

The following lemma is proved in the same way as

parts (a) and (c) of the last proposition.

5.4 LEMMA. Let M be supportively Tw-compact, where
T 28 the norm, weak, or weak?* topology. Then M is proxziminal.

Also, for any z € N, Jz(PMZ) ts sequentially T-compact.

Since sequences are frequently easier to manipulate
than nets, it would be nice to know when the definition of
supportive t-compactness is equivalent to that of supportive
Tw-compactness. The next theorem answers this question for

the most interesting cases. To prove the theorem, we need

77



78

the following lemma, whose proof follows the proof given in
Vlasov [58] that approximative sequential weak compactness

implies approximative weak compactness, which is in turn an
adaptation of an argument due to Day from the second edition

of his book [15]; see his Theorem III.2.4.

5.5l£§gg§. Suppose N is a normed linear space and
A is a subset of N having the property that any minimizing
sequence in A for 0 has a weakly convergent subsequence with
limit in A. Then any minimizing net in A for 0 has a weakly

eonvergent subnet with limit in 4.

Proof. C(Claim: Whenever L 1s a finite-dimensional

subspace of N**, then there exist fi e ' (i =1, 2, ... ) such
that sgp z"(fi) = [lz''| for each z'' ¢ L. To see this, let
(zi") be a sequence dense in L. For each i, let fi e Z' be
such that z;''(£;) > lz;''l - 1", rThis sequence works.

Since a minimizing net (ya) has a bounded tail,
(an) contains a weak* convergent subnet in N**, Therefore,

it is sufficient to establish the following fact:

*
If (Qy,), . o > ¥'' € N*¥, |y I + d(0,A), and (y)

lies in A, then y'' e Q(a).

We first inductively construct a sequence U%Q in % and a system
of sequences (flj), (fzj)’ ... In ', To this end, we select
sequence (flj) in I' arbitrarily and an o4 such that both

|(an1 =yt (£99) 1 < 1 and Hyaln - d4(0,A) < 1. Suppose now
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that o and sequences (f£..), ... , (f .) have
13 1,3

10t %p- n-

been chosen so that

-1 -1

'(ank - y'(E )1 <k T oand "Yuk" - d(0,a) <k (1)

whenever i, j € k € n - 1. Let Ln be the linear hull of

{an roeee 0 QY } and let L_' be the linear hull of L
1 n-1 n n

and y''. By applying our first claim to L = Ln', we can find

2]
3 ]
a sequence (fnj)J=1 in ' such that

sup H(Qx = y'') (£
]

nj)' = [Qx - y''l for all Qx € L. (2)

Now choose a, so that (1) is satisfied when k = n and i, j € n.

We have now inductively constructed (an)§=1 and (£..) SO

ij’i,j=1
that (1) is satisfied whenever i, j € k and (2) is satisfied
for all n 2 2.

Notice that (Ya );=1 has the following properties:
n

Hya i+ d(0,A) and fij(ya ) -~ y"(fij) as n + » for all i, 3.

n n
By hypothesis, there 1s a subsequence (Ya ) of (Ya ) such that
Y, y z € A. Then "k ?
Tk
fij(z) = y"(fij) for all 1, j. (3)

Clatm: If S is the union of Ll' L2, ... and B is
the norm closure of S, then Qz € B. Suppose not. Note that
S is a subspace of Q(N) as the increasing union of a collection
of subspaces, and hence B is a closed subspace of Q(N). By the
Hahn-Banach theorem, there is an f ¢ L' such that f(Q_l(B)) =0

and £(z) > 0. Sincey, e 0"l (B) for each k, it follows that
n
1
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0 = lﬁm f(yu ) f(z) > 0. This contradiction proves the

n
claim. k
Let € > 0 and let Qy € S be such that 0z - Qyl € €,

By virtue of (3),

[ {(Qy - Y")(fij)l = | (Qy - QZ)(fij)[ € € for all i, j.
But IQy - y''l S sup I (Qy - y")(fij)l € € by (2)., Since
1,3
IQz = y''l < 2e for all € > 0, we see that y'*' = Qz € Q(A),

which completes the proor., =

5.6 THEOREM. [Let M be a nonempty subset of 2 normed

linear space N.

(a) M is supportively compact if and only <if it is supportively

w-compact.

(b) M is supportively weakly compact if and only if it is

supportively weakly w-compact.

(e¢) If N ie¢ separable, then M is supportively weak?* compact

if and only if it <s supportively weak* w-compact.

(d) If Ut is weak* sequentially compact and M 18 supportively

weak* compact, then M is supportively weak* w-compact.

Proof. For (a) and (c¢), the relevant topologies
are metric topologies on norm-bounded subsets, and so the
forward implications present no difficulties, as the reader

can easily verify.
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For the reverse implication for (c), suppose the
sequential condition holds, and let (fa) be a supportive net
for M w. r. t. x with corresponding minimizing net (xa). By
the Banach-Alacglu theorem, (fa) contains a weak* convergent
subnet, which w. 1. o. g. is (fa)' Let f be its limit. It
is enough to show that f ¢ JX(PMX). If not, then since Jx(PMx)
is weak* compact by Lemma 5.4 and the metrizability of the
weak* topology on norm-bounded subsets, there are disjoint
weak* open sets Wy and W, such that Jx(PMx) lies in Wy and
f e W,. W. 1. o. g. (fa) lies entirely in W,. Since HxaH >
d(x,M), it follows that the unordered set {fa} contains a
supportive sequence for M w. r. t. x, which might not be a
subnet of (fa)’ weak* convergent to some g € JX(M). Since
g € Jx(PMx), we have a contradiction. This proves (c).

We now obtain the reverse implication for (a). Sup-
pose M is supportively w-compact. Let (fa) be a supportive
net for M w. r. t. X with corresponding minimizing net (xa).
Let € > 0, and let Wa be the union of all open balls of radius
€ centered at an element of JX(PMx). Thus, WE 1s an open set
containing Jx(PMx). We claim that there is an o such that
o 2 oy implies fa £ We' If not, then there is a subnet (fB)
of (fa) that lies outside We' Since a minimizing sequence can
be extracted from the unordered set {XB}, there must be a
sequence (gn) in {fB} that converges to an element of Jx(PMx),
which is a contradiction.

Thus, d(fa’Jx(PMX)) + 0. Now JX(PMx) is norm compact

by Lemma 5.4, and so it is approximatively compact and hence
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proximinal. For each o, let = be an element of JX(PMx) closest
to fa' Note that fa - g, > 0. By compactness, (ga) has a sub-
net (gB) converging to some g € JX(PMX). Since (fB) also con-
verges to g, M is supportively compact. This proves (a).

The reverse implication for (b) is an immediate con-
sequence of Lemma 5.5 applied to N* with A = Jx(M)' For the
forward implication, suppose that (fn) 1s a supportive sequence
for supportively weakly compact set M w. r. t. x € N. By hypo-
thesis, every countably infinite subset of {fn} has a weak
limit point, and so {fn} is relatively weakly sequentially
compact by the Eberlein-Smulian theorem. Let (fn ) be a weakly
convergent subsequence of (fn). Since (fn.) must itself have
a subnet converging weakly to some f & JX(M), it follows that
fn. 3 £, which completes the proof of (b).

! Finally, suppose the hypothesis of (d) holds. Then
any supportive sequence (fn) for M w. r. t. x € N has a weak¥*
convergent subsequence, which w. 1. o. g. is (fn). Since (fn)

also has a subnet weak®* convergent to an element of Jx(M), we

are done. ®»

The following corollary is obtained from part (d)
of the theorem in the same way that Corollary 4.14 was obtained

from Theorem 4.13.

5.7 COROLLARY. Whenever Banach space B has an equiv-

alent smooth norm, in parttcular whenever it is weakly compactly
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generated, then every supportively weak* compact set in B is

supportively weak* w-compact.

It should be noted that many common spaces to which
the corollary applies are also either separable or reflexive,
and so the conclusion of the corollary can be obtained more
readily from parts (b) and (c) of the preceding theorem. How-
ever, i1f S is an uncountable index set, then co(s) is neither
reflexive nor separable, and yet is weakly compactly generated;

see [16].
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SECTION 6

SUPPORTIVE COMPACTNESS AND CONVEXITY

The purpose of this section is to study the inter-
action between convexity and the various forms of supportive
compactness defined in the previous section. We first study
the convexity of supportively compact Chebyshev sets. Follow-
ing this, we take up the converse problem of deciding when
convex sets have some form of supportive compactness. By com-
bining our results from these two studies, we obtain the approx-
imation-theoretic characterization of the normed linear spaces
that are (R) & (Rf) & (S) & (SH) that was promised at the end

of Section 3.

Convexity of Supportively Compact Chebyshev Sets

In order to prove that a Chebyshev set is convex,
it is frequently necessary to prove that it has some "solar"

property; see [57]. The one that we use is the following.

6.1 DEFINITION (Vlasov [55]). A nonempty closed set

M is called a §-sun 1f, for each x ¢ M, there is a sequence
d(zn,M) - d(x,M)

-). l.

The following two facts are going to prove useful

for our study.
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6.2 LEMMA (Vlasov [571). Let M be a proziminal set
in normed linear space N with metric progjection P, and suppose

that ¢, 'y, v, v' e N, ¢ # v, « ¢ M, and f ¢ L' are such that

x' e Pz, z € (z',v), v' € Pv, and f(v' - z) o’ - zl., Then

_d(v,M) - d(z,M) <7 - flz!' - x)

0 < 12 .
= o = I e’ - x|

6.3 LEMMA (Vlasov [54]). If B is a Banach space,

then B* 18 rotund if and only if each S-sun in B 18 convex.

The method of proof of the following lemma was
inspired by Vlasov's proof in [57] that a Chebyshev set with
a norm-to~-weak continuous metric projection in a semi-Kadec-

Klee space 1s a =-sun.

6.4 LEMMA. Let M be a supportively weak* w-compact
set. Suppose that whenever x € N and y, 2z € Px, then J y = J %
Then M is a 6-sun. In particular, every supportively weak*

w-compact Chebyshev set ie a S-sun.

Proof. Let x ¢ M. W. l. o. g. x =0 and d(0,M) =1,
because the property of being a d§-sun is easily seen to be
invariant under translations and expansions. Let y ¢ PO, and
let (vn) be a sequence such that v + 0 and 0 lies in (y,vn);
that is, v, 0 down the "far side" of the ray (y,0,v}. Let »

vn' £ Pvn. By the continuity of d4(-,M),

1< an'ﬂ < an' - vnH + HVnH = d(vn,M) + HVnH +~ d(0,M) = 1.
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Thus, (vn') is a minimizing sequence in M for 0. Let fn € Jvn'

for each n, and let (fn ) be a weak* convergent subsequence,
*

£ oS f
n. e J(PO)

(£

J
Jy. By thinning, we can assume that (fn ) =
-1

w* J 2
Thus, ¢ an'H fn + £, and so gn(y) - £(y) = 1yl

J
n* n
= 1.

By Lemma 6.2,

Jdlv M) - ato,M g

g.{y) -+ 0.
v _T n
n

Thus, (vn) is the sequence required in the definition of a

§-sun. =

By combining Corollary 5.7 with Lemmas 6.3 and 6.4,
we immediately obtain the following theorem. Note that there
is only one geometric condition on the Banach space, though

it is a reasonably strong one.

6.5 THEOREM. In a Banach space with a rotund dual,
every supportively weak* w-compact Chebyshev set (a fortiort

every supportively weak* compact Chebyshev set) is convex.

6.6 COROLLARY. In a Banach space with a rotund dual,
every Chebyshev set that is supportively compact or supportively

weakly compact is convex.

Thus, if Banach space B has a rotund dual, a Cheby-
shev set with any of the types of supportive compactness we

have treated is convex.
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Supportive Compactness of Convex Sets

We now work on the problem converse to the one dis-
cussed above. We need the following technical lemma, which

is used both here and in Section 7.

6.7 LEMMA. Let N be a normed linear space such that
U ie weak* sequentially compact. Let T be a topology on N
such that the norm is T-lower semicontinuous and J i& T-to-weak?*
upper semicontinuous. Let M be a subset of N with d(0,M) = 1
such that every minimizing sequence in M for 0 has a T-conver-
gent subsequence with limit in M. Then every supportive
sequence for M w. r. t. 0 has a weak?* convergent subsequence

with limit in J(PO).

Proof. Let (fn) be a supportive sequence for M
w. r. t. 0, and let (xn) be a corresponding minimizing sequence.
W. 1. o. qg. X 5 y € M. By the t-lower semicontinuity of I,
y € PO. Since U" is weak* sequentially compact, we can assume
w*
b

w. 1. o. g. that fn f. We will be done if we can show that

f € Jy.

Suppose £ ¢ Jy. It is not difficult to see that Jy
is weak* closed. Since the weak®* topology is completely reg-
ular (see [16], p. 12), there must be disjoint weak* open sets
W1 and W2 with £ ¢ w, and Jy lying in W,. Since X, 5 y and

J 1s t-to-weak* upper semicontinuous, there 1s an n, such that
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w*
? 3 [} .
n n, implies fn e W, and hence fn ¢ Wl' Since fn + f € Wy

this is a contradiction. =

6.8 THEOREM. Let N be a normed linear space such
that U" 4s weak* sequentially compact. In the following col-

lection of statements, (1) = (2)=> (3).
(1) N ts (wLv) & (8H).

(2) Every proximinal convex set in N is a supportively weak?

w-compact Chebyshev set.

(3) N is (R) & (SH).

Proof. (1) = (2). Suppose N is (wLv) & (SH). Let
M be a proximinal convex set in N, and let x € N. Let (fn) be
a supportive sequence for M w. r. t. x. W. l. o. g. x = 0 and
d(0,M) = 1. By Theorem 2.10, M 1s an approximatively weakly
compact Chebyshev set, so if (xn) is a minimizing sequence in
M for 0, then X 3 PO by Proposition 2.4 (d). Also, Hxnﬂ -
IPOl, so x, A PO. Now J is A-w* u. s. c. by Theorem 4.11.
Since the norm is A-lower semicontinuous, Lemma 6.7 shows
that (fn) has a weak* convergent subsequence with limit in
J(P0). Thus, M 1s supportively weak?* w~-compact.

{2) = (3). Suppose that (2) holds. Since every
proximinal hyperplane is Chebyshev, it is not hard to see that
N is rotund. Now suppose that x € I, X, € z, X M X, fn gL',

and fn(xn) = 1 for each n. We need to show that fn(x) + 1 to
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establish that N is (SH). Let £ ¢ L' be such that f(x) = 1.
-1

W. 1. o. g. f(xn) > 0 for all n, and so Y, = £(x) x, € K =

{y € N: £(y) = 1}. Note that K is a proximinal convex set.

1

Now lly Il = f(xn)- > 1, so (y_ ) 1s a minimizing sequence in

K for 0. It follows that (g ) = (f(xn)"1

fn) is a supportive
sequence for K w, r. t. 0 corresponding to (yn). If (gn ) is
a subsequence of (gn), then (gn ) must have a subsequence (gn. )
converging weak* to some g € J(PKO) = Jx, by (2). Thus, Tk
9. (x) » g{x) = 1. It follows that gn(x) + 1, and so fn(x)
isJk also convergent to 1. ®

As we saw in the proof of Corollary 4.14, U is weak*
sequentially compact whenever N is separable or is a Banach
space with an equivalent smooth norm, such as a weakly com-
pactly generated Banach space. More obviously, the last theo-

rem holds for reflexive spaces, which gives the following

result.

6.9 THEOREM. Let N be a normed linear space. Then
the following are equivalent.
(1) N 2e (R) & (Rf) & (SH).

(2) Every nonempty closed convex set in N 18 a supportively

weakly compact Chebyehev set.

(3) Every nonempty closed convex set in N t8 a supportively

weak* compact Chebyshev set.
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Proof. (1) = (2). Suppose (1) holds. By Corollary

1,22, N is (wLv). By Theorem 2.9, every nonempty closed convex

set in N is proximinal, and hence a supportively weak* w-compact

Chebyshev set by Theorem 6.8, An easy application of reflex-
ivity and Theorem 5.6 (b) yields (2).

(2) = (3). This is obvious.

{3) = (1). Suppose (3) holds. By Theorem 2.9,
N is (R) & (Rf). By Theorem 5.6 (b), every nonempty closed
convex set in N is a supportively weak* w-compact Chebyshev

set. By Theorem 6.8, N is (SH). =

A Characterization of (R) & (Rf) & (S) & (SH) Spaces

We can now combine the results of this section to
give the long-promised approximation-theoretic characteriza-
tion of the normed linear spaces that are (R) & (Rf) & (S) &
(SH) . Compare this next theorem to Theorem 3.13, which falls

short of being such a characterization.

6.10 THEOREM. ILet VN be a normed linear space. Then
the following are equivalent.
(1) N is (R) & (Rf) & (5) & (SH).

(2) The nonempty closed convex sets in N are exactly the sup-

portively weakly compact Chebyshev sets.
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(3) The nonempty closed convex sets in N are exactly the sup-

portively weak* compact Chebyshev sets.

Proof. (1) => (2). This is an immediate consequence
of Corollary 6.6 and Theorem 6.9.

(2) => (1). If (2) holds, then N is (R) & (Rf) & (SH)
by Theorem 6.9. If N were not smooth, then by Example 3.9 N
would contain @ nonconvex Chebyshev set that would be the union
of two supportively weakly compact half-spaces. Such a set
would itself be supportively weakly compact, a contradiction.

The equivalence of (2) and (3) is immediate from the

fact that either condition implies reflexivity. =

Theorem 6.10 naturally raises the problem of a char-
acterization of the spaces in which the nonempty closed convex
sets are exactly the supportively norm compact Chebyshev sets.
It turns out that the resulting spaces are obtained by replacing

smoothness by Fréchet smoothness in Theorem 6.10 (1).

6.11 THEOREM. Let N be a normed linear space. Then

the following are equivalent.
(1) N is (R) & (Rf) & (F) & (SH).

(2) The nomnempty closed convex sets in N are exactly the sup-

portively compact Chebyshev sets.



92

Proof. Suppose N is (R) & (Rf) & (F) & (SH). Smulian
[51] showed that whenever a Banach space B has a dual that is
(F), then B is (D) and hence (H); see also our Theorem 1.11. 1In
our case, N* is (H), and so supportive compactness and support-
ive weak compactness agree for sets in N. An application of
Theorem 6,10 yields (2).

Now suppose that (2) holds. By Theorem 6.9, N is
(R) & (Rf) & (SH). If N were not smooth, then by Example 3.9
N would contain a nonconvex Chebyshev set that would be the
union of two closed half-spaces, each supportively compact.
As in the proof of Theorem 6.10, this would yield a contra-
diction. Thus, N is smooth and J is single-valued. By Prop-
osation 4.7 (c), we will be done if we can show that J is norm-~
to-norm continuous. In fact, it suffices to show that J is

+ x, £ = Jx

norm—-to-norm continuous on I. Let X1 X € LI, x n n’

1

n
and £ = Jx. Now f(xn) = 1, so (f(xn)- xn)is a minimizing se-
quence in H = {y € N: f(y) = 1} for 0 with corresponding sup-
portive sequence (f(xn)-lfn). By (2) and an easy argument,
f(xn)-lfn + Jx = £. Thus, fn + £, and so J is norm-tc-norm

continuous, ®

It might seem interesting to find approximation-
theoretic characterizations of spaces that are (R) & (Rf) &
() & (SH), where (¢) is some form of smoothness besides (S)
or (F). Theorem 6.10 does this trivially for (o) = (VS),
since there is no difference between smoothness and very

smoothness for reflexive spaces; see Proposition 4.7. It
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is not so easy to find approximation-theoretic characteriza-
tions of the type we have been considering when the smooth-

ness property in question is a uniform property, such as (UG)

or (US). 1In fact, this entire thesis to this point does not
contain a single characterization of a class of normed linear
spaces involving some uniform rotundity or smoothness property,
or even a localization of one, such as local uniform rotundity.
The closest we ever come is in Appendix B, where we obtain an
approximation=-theoretic characterization of the midpoint locally

uniformly rotund spaces by studying the behavior of closed balls.
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SECTION 7

CLASSES OF SUPPORTIVELY COMPACT SETS

In the previous section, we explored the connection
between supportive compactness and convexity, with the goal
of obtaining the characterization of Theorem 6.10. The pur-
pose of this final section is to study supportive compactness
in some other classes of sets useful in approximation theory

besides the closed convex sets.

Approximatively Compact Sets

It might seem that the norm-to-weak* upper semi-
continuity of the norm-duality map would force approximatively
compact sets to be supportavely weak* w-compact. The following
example shows that this is not so. 1In fact, not even single-

tons need be supportively weak* w-compact.

7.1 EXAMPLE. In Em, let x= (1,1, 1, ... ), and
= = >
let M = {x}. 1In 21, let X, = %(e1 + en) for n 2 2, where e;
is the i'th unit vector. Let fn = Qo(xn), where Q0 is the
canonical map from 21 into 21** = L *. It is easy to see that
(£ ) is a supportive sequence for M with respect to 0, but that
n

(fn) has no weak* convergent subsequence. Thus, M is not sup-

portively weak* w-compact. ®
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The\problem in the above example is that the closed

unit ball of £_* is not weak* sequentially compact.

7.2 PROPOSITION. Let N be a normed linear space

such that U" is weak* sequentially compact. Then every approx-

tmatively compact set in N is supportively weak* w-compact.

Proof. Let M be an approximatively compact set in
N, and let (fn) be a supportive sequence for M w. r. t. Xx € N
with corresponding minimizing sequence (xn). W. 1. 0. g. x =0
and 4(0,M) = 1. An application of Lemma 6.7 now finishes the

proof. ®

7.3 COROLLARY. If " is weak* sequentially compact,
then every boundedly compact set, a fortiori every compact set,

in N 18 supportively weak* w-compact.

As noted in the proof of Corollary 4.14, u" is weak*
sequentially compact whenever N is a weakly compactly generated
Banach space. Also note that u" 1s weak* sequentially compact
whenever N is a separable normed space, since the weak* topol-

ogy on U" is metrizable.

7.4 COROLLARY. If N is reflexive, then every approx-

itmatively compact set in N is supportively weakly compact.



By imposing various smoothness conditions on N, we
can force the norm-duality map to have certain continuity
properties. This in turn causes a supportive seguence to be
convergent in some sense when the corresponding minimizing
sequence is norm convergent. In particular, the following

result follows easily from Proposition 4.7.

7.5 PROPOSITION. Let N be a normed linear sgpace.

(a) If N is smooth, then every approximatively compact set

in N i8 supportively weak®* w-compact.

(b) If N ie very smooth, then every approrimatively compact

set in N is supportively weakly compact.
(e) If N is Fréchet smooth, then every approximatively com-

pact set in N is supportively compact.

If we require that N be a semi-Kadec-XKlee space,
then we can obtain the result for approximatively weakly com-

pact sets corresponding to Proposition 7.2.

7.6 PROPOSITION. Let N be a normed linear space of

type (SH) such that " is weak* sequentially compact. Then
every approximatively weakly compact set in N 18 supportively

weak* w-compact.

96
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Proof. WNote that any weakly convergent minimizing
sequence is \-convergent. Also, J is A-w* u. s. c. by Theorem
4.11. With these observations, the proof now continues like

that of Proposition 7.2, =

Corollaries to Proposition 7.6 corresponding to the
corollaries of Proposition 7.2 can now be obtained. We leave

this to the reader.

P-Convex Sets

The following definition is a well-known general-

ization of the Chebyshev property; see [57].

7.7 DEFINITION. Set M in normed space N is called

P-convex 1if, for every x ¢ N, the set Px is nonempty and convex.

The following lemma says that in a smooth space, an
important property of Chebyshev sets is actually true of all

P-convex sets.

7.8 LEMMA. Let M be a P-convex set in smooth space

N. Then for every x € N, Jw(PMx) 18 a singleton.

Proof. W. l. o. g. x =0 and d(0,M) = 1. Let £ ¢ I'

be such that H = {y € N: £(y) = 1} separates Py0 and U. It is
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easy to see that PMO lies in the intersection of H with I.
Thus, for each y ¢ Py0. £ is the unique element of &' such

that £(y) = 1; that is, Jy = {f}. Thus, J (Py0) = {f}. =

Vlasov has shown that in a Banach space of type (SH)
with a rotund dual, an approximatively weakly compact Cheby-
shev set is convex; see [57], Theorem 4.28 (k). We now use
Proposition 7.6 to show that Vlasov's result remains true if

the Chebyshev property is weakened to P-convexity.

7.9 THEOREM. Let B be a Banach space of type (SH)
witth a rotund dual. Then every approximatively weakly compact

P-convex 8set im B 18 convex.

Proof. Let M be P-convex and approximatively weakly
compact. B is smooth, and so U" 1s weak*® sequentially compact
by a theorem of Hagler and Sullivan [25]. By Proposation 7.6,
M is supportively weak* w~compact. By Lemma 7.8, JX(PMx) is
a singleton for every x € B. By Lemma 6.4, M is a §-sun. By

Lemma 6.3, M is convex. #&

Closed Balls

It can be shown that every closed ball in a normed
linear space is an approximatively compact Chebyshev set if

and only if the space has the midpoaint local uniform rotundity
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property introduced by Anderson in [l1]. The purpose of this
subsection is to obtain some similar results with approximative
compactness replaced by supportive weak compactness.

The following condition is a weakening of the semai-

Kadec-Klee property.

7.10 DEFINITION., A normed linear space is said to

have property (SH') if, whenever x, X € z, fn e L', fn(xn) =1,
w
X, > X and lim min {t: Htxn - x =0} =1 - o for some o €

{(0,1), then fn(x) -+ 1.

7.11 THEOREM. In the following collection of asser-

tions about normed linear space N, (1) =>(2) = (3) => (4).
(1) N is (R) & (Rf) & (SH').

(2) Every closed ball in N is a supportively weakly compact

Chebyshev set.

(3) Every closed ball in N is a supportively weak* w-compact

Chebyshev set.

(4) N is (R) & (SH').

Proof. Suppose (1) holds. Let V be a closed ball
in N and let (fn) be a supportive sequence for V w. r. t. x £ N.
W. 1. o. g. x =0 and 4(0,V) = 1. Let (xn) be a corresponding
minimizing sequence for (fn), and let Y, = lenll-lxn for each n.

By Theorem 2.9, V is an approximatively weakly compact Chebyshev
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set, so X, *y, = P0. Thus, Yo T Yg also. Letting B be the
radius of V, we note that (1 + B)yo is the center of V. Since

xn € V for each n,

< i H - = X
1 € min {t Iy, (1 + Byl B} < Iz 0.
Since Mxnu + 1, lim min {t: ity - (1 + B)y,Il = B} = 1, and so
n n 0
. . . _ . __ B _ 1 . - -1
lﬁm min {t: ey, = vol = 1% B} = 75 g ULetting g, = Ix I £,
we see that 9 € L' and gn(yn) = 1 for each n. Since N is (SH'),

gn(yo) + 1. Since N* is reflexive, (gn) has a weakly convergent
subsequence, which w., 1. o. g. is (gn). Let £ be its limit.

Then

| ol
Il

lim gn(yo) = f(yo) < Ifl <1,

so Ifl = £(y,) = 1 and £ € Jy, = J(P0). Since f, > £, V is
supportively weakly compact. Thus, (2) holds.

It is obvious that (2) implies (3).

Now suppose that (3) holds. Since closed balls are
Chebyshev, it is easy to see that N is rotund. Now let x, X
fn’ and o be as 1in the hypothesis of the definition of con-

and let V be the closed ball of

. . _ a
dition (sH'). Let 8 = y—
radius B and center (1 + B)x. Let m, = min {t: IItxn - xl = a};

w. 1. 0. g. m, is finite for each n. Then
min {t: Htxn - (1 + B)yxll =B} = (1 + B)mn + (1 +B8)(L - a) = 1.

Thus, ((1 + B)mnxn) is a minimizing sequence in Vw. r. t. O,
Let (fn }) be a subsequence of (fn). By supportive weak* w-com-

pactness, there is a subsequence ((1 + B)mn. fn. ) of the
e Ik
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sequence ((1 + B)m .fn ) converging weak* to some £ ¢ Jx.

n
Since (1 + B)mn fn. (x) » £(x) = 1, it follows that
e Ik
fn. (x) ~ 1.
Ik
Since every subsequence of (fn(x)) has a subsequence tending

to 1, fn(x) + 1. Thus, N is (SH'). =

7.12 COROLLARY. 4 reflexive space is (R) & (SH')
if and only if each of its closed balls is a supportively

weakly compact Chebyshev set.

Incidentally, the fact about midpoint locally uni-
formly rotund spaces mentioned in the first sentence of this
subsection is a new result. It can be found in Appendix B,
along with some related results about the approximative prop-

erties of closed balls.
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APPENDIX A

PROPOSITION 1.4 AND JAMES'S THEOREM

In this appendix, we give a proof of Proposition
1.4 that uses only elementary methods and the Bishop-Phelps
theorem and does not rely on James's theorem. We also give
an extension of James's theorem to certain classes of normed
linear spaces without a completeness hypothesis. This theorem
also has an elementary proof not using the classical version
of James's theorem. Finally, we indicate one possible direc-
tion of search for anyone seeking an elementary proof of James's

theorem itself.

1.4 PROPOSITION. The following are equivalent.

(1) N is (Rf).

(2) Whenever z, € L, fek', and f(xn) + 1, then (xn) has

a weakly convergent subsequence.

(3) Whenever X is a nonempty closed convex set in N and (xn)
18 a minimizing sequence in K for x € N, then (xn) has a

weakly convergent subsequence.

Proof (without James's theorem): It is obvious that
(1) implies (2). The equivalence of (2) and (3) follows by
elementary methods as in Proposition 1.3. Thus, it suffices

to prove that (3) implies (1).
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Suppose (3) holds. Then N is complete by the ele-
mentary argument given in Chapter 1. Let F be any support
funetional in N**; that is, an element of N** taking on its
supremum on U". We wish to prove that F € Q(N), so w. 1. o. g.
IFl = 1. By Goldstine's theorem, there is a net (xa) in U
with Qx, E*F. Let £ ¢ &' be such that F(f) = 1, Since Qxa(f) -
F(f), 1 2 Hxaﬂ = f(xa) + P(f) = 1, and so HxaH + 1 and f(xa) >
1. Let K= {x e N: £(x) = 1}, a nonempty closed convex set.
Since (3) holds, any minimizing sequence in K for 0 has a
weakly convergent subsequence, whose limit is in K because K
is weakly closed. By Lemma 5.5, whose proof was elementary,
any minimizing net in X for 0 has a weakly convergent subnet
with lamit in K. In particular, the minimizing net (f(xa)-lxa)
has a weakly convergent subnet (f(xB)_le) converging to some
x € K. Thus, xB z X and QxB Z*Qx. Since QxB y*F, we see that
F = QX.

Thus, every support functional in N** lies in Q(N).
The Bishop-Phelps theorem [4] says that whenever B is a Banach

space, the support functionals in B* are dense in B*. It fol-

lows immediately that Q(N) = N**, and so N 1s reflexive. =

We can now check to see how much of what we did in
the first two sections really depended on James's theorem.
Nothing in Section 1 required it, while the only results in
Section 2 that needed it were the implications (3) =» (1) in
Theorem 2.9 and (2) => (1) in Theorem 2.16, as well as Vlasov's

Theorem 2.12 that we mentioned but did not prove or later use.
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Vliasov needed a result of Oshman from [41] that used James's
theorem in a crucial way. It is interesting that none of our
other results need James's theorem, because Theorem 1.11,
Theorem 1.12, the equivalence of (1) and (3) in Theorem 2.5,
and Theorem 2.7 are all well-known results whose known proofs
have all relied on James's theorem,

It would be nice, though of course not crucial, to
remove completely our dependence on James's theorem. This
could be done by solving the following problem, also mentioned

by Blatter in [5].

A.l1 PROBLEM. Find an elementary proof, not using

James's theorem, of the following fact:

A normed linear space 1s reflexive whenever it is rotund

and each of its nonempty closed convex sets has a point

nearest the origin.

While we have no solution to this problem, we can give
such a proof if we replace rotundity with the somewhat stronger
property (wLv). 1In fact, we can get by with the following weak-

ening of (wLv).

A.2 DEFINITION (Vlasov [59]). A normed linear space
has property (wCDL) if, whenever X, € L, fe ', £ achieves its
supremum on U, and f(xn) + 1, then (xn) has a weakly convergent

subsequence.
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It is clear from Proposition 1.20 that condition
(wCDL) is condition (wLv) with the rotundity requirement elim-
inated. By an easy argument, it can be seen that (wCDL) just
says that hyperplanes generated by support functionals in I'

are approximatively weakly compact; see [59].

A.3 THEOREM. Let VN be a normed linear space with
property (wCDL). Then N is reflexive i1f and only 1if every

f e L' achieves its supremum on U.

Proof (without James's theorem): The forward impli-
cation is elementary. For the reverse, suppose that every
f e L' is a support functional. We now just compare Defini=-

tion A.2 with Proposition 1.4, =

As we mentioned before the proof of Theorem 2.5,
James has shown that his theorem does not hold, in general,
for normed linear spaces not assumed to be complete. However,
Theorem A.3 shows that James's theorem does hold for all normed
spaces of class (wCDL), and hence for all spaces that have
stronger properties, sich as (wK), (wLUR), (wUR), or (LUR).
Also, Theorem A.3 is in a sense the strongest theorem possible
in this direction, since a space that is not (wCDL) obviously
has no hope of being reflexive.

Since reflexivity is isomorphism-invariant, a simple
corollary of Theorem A.3 is that a normed space N with an

equivalent (wCDL) norm /*/ such that every f € N* achieves
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its supremum on the closed unit ball of (N, /+/) is reflexive.
It is interesting to compare this result with Klee's result in
[32], also obtained by elementary methods, that a Banach space
B such that every f & B* achieves its supremum on every 1so-
morph of U is reflexive.

Several comments about property (wCDL) are in order.
First, property (wCDL) by itself does not imply completeness.
Any dense subspace of £2 is uniformly rotund and hence (wCDL).
We make this comment to point out that Theorem A.3 does have
some content beyond James's theorem itself. Second, property
(wCDL) does not imply reflexivity by itself, even for complete
spaces. Any separable Banach space can be given an equivalent
(LUR) and hence (wCDL) norm; see [16]. Third, the following
example shows that not all rotund Banach spaces are (wCDL).
Thus, one cannot solve Problem A.1l by proving that all rotund
spaces are (wCDL) and then applying Theorem A.3.

A.4 EXAMPLE: (21, el This space was constructed

H)o
by Mark Smith in [47] to show that not all (URWC) spaces are

(MLUR); see Smith's paper for the definitions.

For y = (yl, yz, ees )} in 22 let v' = (0, y2, y3, N
and let Hyﬂs = max {Iyll, Hy'Hz}. Let (an) be a sequence of
positive reals with a, 0, and define T: 22 > 22 by T(yl, y2,

1 2 3 .

e ) = (v, WY, YT, ... ). Define H-HW: 22 + 1R by

_ 2 2. %
Iyl = (Iylg + hryl5) %,
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It can be shown that H-HW is a norm on 22 equivalent to the
usual norm; see Smith's paper.
For x = (xl, x2, «ee ) in 21' let x' = (0, x2, x3,
1
«se ), and let HxHM = max {Ix I,Hx'ﬂl}. Let I: 21 > 22 be

the inclusion mapping. Define H-HH: 21 + R by
= 2 2,%
HxHH = (HxHM + HIxHW) .

Smith showed thatilﬂuils an equivalent rotund norm on 21. We
now show that (21, ”."H) 1s not (wCDL).

Let (en) be the usual sequence of unit vectors in
£. and £_. Let f ¢ 21* be given in the usual £ representa-

1
L -
tion by £ = 32e1. In 21, let x5 = 3 %el. It is easy to check

that Ixyly = 1 and that if x = (x', x°, ... ) and Uxly < I,

then Ix| < 3™%. It follows immediately that Ifl, = 1 and

that f£f attains its supremum on the closed unit ball of (21, H-HH)
at x,. Now let x = 3_;5(e1 +e ) forn > 2. It is not diffa-

- -1
cult to check that HanH + 1. If we let W, = "Xn"H X then

IlwnllH = 1 and f(wn) + 1. However, (wn) cannot have a weakly
convergent subsequence, because the sequence (en) in 21 does

not. Thus, (21, H-HH) is not (wCDL). ®

We close this appendix by noting that a solution to
the following problem, when combined with Theorem A.3, would

give an elementary proof of James's theorem.

A.5 PROBLEM. Find an elementary proof, not using

James's theorem, of the following fact:
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If B is a Banach space such that every £ ¢ L'
achieves its supremum on U, then every hyperplane

supporting U is approximatively weakly compact.

Any solution to Problem A.5 will use the complete-
ness of B in some crucial way. James gave an example in [28]
of an incomplete space with every £ € I' achieving its supremum

on U. By Theorem A.3, such a space cannot be (wCDL).
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APPENDIX B

APPROXIMATIVE PROPERTIES OF CLOSED BALLS

Many of the theorems proved previously in this thesis
characterize the normed linear spaces in which the nonempty
closed convex sets have certain approximative properties. We
might also ask for similar characterizations relative to cer-
tain interesting subclasses of the closed convex sets. For
instance, an important problem in approximation theory is to
find the approximative properties of closed subspaces of cer-
tain normed linear spaces and to characterize the spaces in
which the closed subspaces all have certain of these properties.

The purpose of this appendix is to characterize the
normed linear spaces in which the closed balls all have some
approximative property. This effort will disclose a surprising
connection between the approximative compactness of closed
balls and the property of madpoint local uniform rotundity of
a normed linear space originally studied by Anderson. We now

give Anderson's definition and some useful extensions of our

own.

B.1l DEFINITION. A normed linear space N is said

to be

(MLUR) midpoint locally uniformly votund if X, > X, whenever

Xor Yo X € L and %(xn + yn) > X, (see Anderson [1]):
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w
(WMLR) weakly midpoint locally uniformly rotund if X, T Xg

whenever Xpr Yoo Xg € I and ls(xn + yn) * Xgi

(MsSC) midpoint sequentially compact if (xn) has a convergent

subseqguence whenever X 0 Yor %Xg € L and lg(xn + yn) MY

(wMSC) weakly midpoint sequentially compact if (xn) has a
weakly convergent subsequence whenever Xor Yoo Xg € z

and li(xn + yn) > Xg.

It turns out that midpoint sequential compactness

1s just midpoint local uniform rotundity with the rotundity

removed.

B.2 PROPOSITION.

(a) (MLUR) <> (R) & (MSC).

(b) (wMLR) <> (R) & (wMSC).

Proof. Part (a) is easy, as is the forward implica-
tion in (b). For the reverse implication in (b), suppose that
N is (R) & (wMSC). Let Xor Yor ¥g € I with m, = %(xn + yn) >
Xg . By thinning, we can assume that X, y x and Yo g y for some
X, vye U, In fact, x, v € I since Xg = L(x +y) ¢ L. Since N
is (R}, x =y = xo. It follows that every subsequence of (xn)

w
has a subsequence converging weakly to X1 and so xn * Xge n
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The following characterization of midpoint sequen-

tially compact spaces is going to be quite useful.

B.3 LEMMA. Let N be a normed linear space. Then

the following are equivalent.
(1) N Zs (MSC) (resp. (wMSC)).

(2) Whenever @, e I, lax I > I, Iy Il + 1, and %(mn ty,) T T,
then (xn) has ¢ convergent (resp. weakly convergent) sub-

sequence.

Proof. Since (2) obviously implies (1), all we
need to show is that (1) implies (2). Suppose that N is (MSC)

(resp. (wMSC)). Let Xoyr X0 and Yn be as in the hypothesis of

(2). Then:
-1 -1
H%(Hxnu X, * hy 1 yn) - %4l
-1 ~1
< %len t ¥y, - Hxnu X, - HynM ynﬂ + II%(Xn + yn) - xOH
»+ 0.

1

Thus, (Hxnn- xn) has a convergent (resp. weakly convergent)

subsequence, and hence (xn) does also. ®

Recall from Theorem 2.6 that the Efimov-Stechkin
spaces are exactly the spaces in which all nonempty closed
convex sets are approximatively compact. Our next result
says that the midpoint sequentially compact spaces play the

same role for closed balls.
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B.4 THEOREM. If N is a normed Llinear space, then
NV 2s8 (MSC) if and only if every closed ball in N is approx-

imatively compact.

Proof. Suppose that N is (MSC). Let V be a closed
ball in N, and let (xn) be a minimizing sequence in V for some
¥x e N; wo 1, 0. g. x =0 and 4(0,V) = 1. Let X, be the point
on the line connecting 0 with the center of V that i1s on the
surface of both V and U.

Case 1: Radius (V) = 1. Let Y, = 2%y - X Then

0
%(xn + yn) = X and Han + 1. Since 2x0 is the center of V,
= < - <
2 H2x0H |I2x0 an + Hxnﬂ €1 + Man + 2,
and so HynH = II2x0 - an + 1. By Lemma B.3, (xn) has a con-

vergent subsequence, whose limit lies in the closed set V.

Case 2: Radius (V) < 1. Since V is contained in
the closed ball of radius 1 centered at 2x0, (xn) is a mini-
mizing sequence for 0 in this larger ball, and we need only
appeal to Case 1.

Case 3: Radius (V) =r > 1. Let V' be the ball
of radius 1 centered at 2x0. Let xn' = Xq + r—l(xn - xo);
that 1is, xn' is obtained by drawing X, back toward X enough

1) + r-lﬂx I - 1, so
n

that x_' e V'. Then 1 < lx 'l € (1 -1~
(xn') has a convergent subsequence by Case 1, and hence (xn)
does also. As in Case 1, the limit is in V.

Thus, V is approximatively compact, no matter what

its radius is. This gives the forward implication.
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Now suppose that every closed ball in N is approx-
imatively compact. Let X1 Y1 X E I with li(xn + yn) > Xy

Let V be the closed ball waith center 2x0 and radius 1. Let

xn' = 2x0 - X,r SO that (xn') is a sequence on the surface
of V. Then

< ' < t o = - -
1 nxn I < Hxn ynn + Mynn II2xO X, ynﬂ + Hynn + 1,

SO (xn') is a minimizing sequence in V for 0. Since (xn')

has a convergent subsequence, so does (xn). -

If we examine the statements of the previous theorem

and Theorem 2.6, the following result is immediate.

B.5 COROLLARY. 4n Efimov-Stechkin space is midpoint

sequentially compact.

By Theorem 2.5, the reflexive spaces are exactly the
spaces in which all nonempty closed convex sets are approxima-
tively weakly compact. The weakly midpoint sequentially com—
pact spaces play the same role for closed balls. The proof
of the following theorem is essentially the same as that of

Theorem B.4.

B.6 THEOREM. If N Ze¢ a normed linear space, then
v is (wMSC) if and only if every cloesed ball in N is approx-

imatively weakly compact.
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B.7 COROLLARY. A reflexive space is weakly midpoint

sequentially compact.

Of course, the corollary is also a trivial conse-
quence of the definition of condition (wMSC).

It 1s easy to see that a normed linear space N is
rotund if and only if each closed ball in N is a Chebyshev
set. By combining this fact with Theorem B.4 and Proposition

B.2 (a), the following result is immediate.

B.8 THEOREM. 4 normed linear space N Ze (MLUR) if
and only if every cloged ball in N is an approximatively com-

pact Chebyshev set.

It is somewhat surprising that the well-known class
of midpoint locally uniformly rotund spaces should have such
a simple approximation-theoretic characterization, since these
spaces are rarely discussed in approximation theory. It is
interesting to note that the (MLUR) spaces play the same role
for closed balls as do the strongly rotund Banach spaces for
arbitrary nonempty closed convex sets; see Theorem 2.7.

If we combine Theorem B.6 with Propecsition B.2 (b),

we obtain the following weak analog of Theorem B.S8.

B.9 THEOREM. 4 normed linear space N is (wMLR) if
and only <if every closed ball in N is an approximatively weakly

compact Chebyshev set.
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Recall that the rotund reflexive spaces are exactly
the spaces in which all nonempty closed convex sets are approx-
imatively weakly compact Chebyshev sets; see Theorem 2.9. In
one sense, the last theorem says that the (wMLR) spaces play
exactly the same role for closed balls as do the rotund reflex-
ive spaces for arbitrary nonempty closed convex sets. In
another important sense, they do not. By Theorem 2.9 again,
the rotund reflexive spaces are exactly the spaces in which
the nonempty closed convex sets are all Chebyshev, while the
rotund spaces are the spaces 1in which closed balls are always
Chebyshev sets. At the end of this appendix, we show that the
rotund spaces do form a class of spaces properly larger than
the (wMLR) class.

The following result can be viewed either as an easy
corollary of Theorems B.8 and B.9 proved with the use of Theo-
rems 2.7 and 2.9, or as a reasonably straightforward conse-

quence of the appropriate definitions.

B.10 COROLLARY.

(a) (Anderson [l1]) A etrongly rotund Banach space is mid-

point locally uniformly rotunds
(b) A rotund reflexive space 18 weakly midpoint locally

uniformly rotund.

Recall for a moment Theorems 2.6 and 1.12, which

together show that every nonempty closed convex set in a



116

reflexive Kadec-Klee space is approximatively compact. The
essential idea of the proof is that reflexivity forces mini-
mizing sequences to have weakly convergent subsequences, which
the Kadec-Klee property converts into norm convergent subse-
quences. It might seem that if we give up reflexivity and just
settle for bounded sequences having weakly Cauchy subsequences,
then we would lose everything essential to the proof. It is
therefore somewhat surprising that we still retain approxima-
tive compactness for closed balls. To see this, we now obtain
new characterizations for the spaces studied earlier in this

appendix.

B.11l DEFINITION. A normed linear space N is said

to have property
(nﬂl) if it contains no subspace isomorphic to 21;

(Gl) if, whenever (xn) is a minimizing sequence in a closed
ball for some point in N, then (xn) has a weakly Cauchy

subsequence;

(G if, whenever (xn) is a weakly Cauchy minimizing sequence

in a closed ball for some point in N, then (xn) has a

norm convergent subsequence;

(sz) if the definition of (G2) holds with "norm convergent"

replaced by "weakly convergent”.
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B.12 PROPOSITION. For Banach spaces,

(a) (nR,) =>(G,);

(b) (H) =>(G,).

Proof. Rosenthal [44] has proved that a Banach space
1s (n!ll) if and only if each of its bounded sequences contains
a weakly Cauchy subsequence. This gives (a) immediately.

For (b), we use an argument inspired by Kadec's proof
in [31] that, for Banach spaces, (n!ll) & (H) & (R) together
imply (MLUR). Let V be a closed ball in Banach space B of type
(H). Let (xn) be a weakly Cauchy minimizing sequence in V for
xe B, W. l. 0.9g. x=0 and 4d(0,V) = 1. We can assume that
the radius of V is 1; the other cases follow from this as in
the proof of Theorem B.4.

Let 2%, be the center of V. Then x, lies on the

0 0
surfaces of both V and U. Let Y = ¥, = Xg- Notice that (yn)
is weakly Cauchy, and that IIx0 + ynll - 1,
Claims: llx0 - ynll +~ 1. Just notice that Il2x0 - xnll -+
1 because llxnll +- 1; that is, (xn) tends toward the surface
of V. This proves the claim.
Suppose that (xn) were not norm convergent. Since
(yn) is thus not Cauchy, there is an € > 0 and subsequences
(1) (2) . (1) _ (), 5
(yn ) and (yn ) of (yn) with I|yn Y, I 2 € for all k.

k k k k
We have:

(1) (2) (1) (2)
f + X - YI< %z, + I+ Ilx, - ¥ n - 1,
xO ynk ynk 0 ynk 0 nk
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. 1 2 .
so lim sup nxo + %(yék) - Yék))" £ 1. Since Xg + %(yéi) - yéi))
converges weakly to Xq
_ . (1) (2)
1 = lIxyl < lim inf Ix) + %(y ~" -y “")l.
k k
Thus, Ix, + %y - v %)) 5 1 and x, + 53 - @Y YT « |
0 n, n, 0 ny n, 0
Since B is (H), it follows that X, + %(yél) - yézh -+ Xq and
k k
hence that Hy(l) - yéz)ﬂ + 0, a contradiction. ®

Dy

B.13 PROPOSITION. For Banach spaces,

(a) (Gz) & (02)<==> (MSC);
(b) (Gl) & (GZ) & (R) <> (MLUR);
(e) (Gl) & (wcg) => (wMSC);

(d) (GZ) & (sz) & (R) < (WMLR).

Proof. See Proposition B.2 and Theorems B.4 and

Propositions B.12 and B.13, together with Theorems
B.4 and B.8, give the following two results. The implication
(nﬁl) & (H) & (R) => (MLUR) in the second result was obtained

by Kadec in [31], but the rest of the result is new.

B.14 THEOREM. If Banach space B is (nk,) & (H),
then B is (MSC), and so every closed ball in B is approxima-

tively compact.
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B.15 THEOREM. If Banach space B is (nﬂz) & (H) & (R),
then B is (MLUR), and so every closed ball in B ie an approx-

imatively compact Chebyshev set.

It is interesting to compare these results with Theo-
rem 1.12, Corollary 1.13, and Theorems 2.6 and 2.7, which show
that whenever a normed linear space is (Rf) & (H) (resp. (Rf) &
(H) & (R)), every nonempty closed convex set in N is approx-
imatively compact (resp. approximatively compact and Chebyshev).

Let us return for a moment to Corollary B.1l0 (a).
While it is true that (D) implies (MLUR), there are hordes of
spaces that are (MLUR) but not (D). For example, Anderson [1]
has shown that any (LUR) space is (MLUR). Since any nonreflex-
ive separable Banach space can be given an equivalent (LUR)
norm (see [16]1), while spaces of type (D) are reflexive, it is
not difficult to construct (MLUR) spaces that are not (D). The

following question does remain open, however.

B.16 QUESTION. Are the reflexive midpoint locally
uniformly rotund spaces exactly the strongly rotund Banach

spaces?

It 1s not difficult to show that this question is

equivalent to the following one.

B.17 QUESTION. For reflexive spaces, does condition

(MLUR) dimply condition (H)?
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It was shown by Smith in [48] that not all (MLUR)
spaces have property (H), thus settling in the negative a
question asked by Anderson in [l1]. However, Smith's counter-
example is not reflexaive, so Question B.17 remains open. A
positive answer to this question would certainly be interest-
ing. However, 1f we examine Propositions B.12 (b) and B.13 (b),

we see that Question B.1l7 is equivalent to the following.

B.18 QUESTION. For reflexive spaces that are (Gl) &

(R), are conditions (H) and (G2) equivalent?

Put this way, an affirmative answer does not seem
likely.

To end this appendix, we examine the relationships
between the main classes of spaces studied above., As we men-
tioned above, Anderson has shown that every (LUR) space 1is

(MLUR) . Thus, the following result is not surprising.

B.19 PROPOSITION. A weakly locally uniformly rotund

normed linear space 18 weakly midpoint locally uniformly rotund.

Proof. Suppose N is (wLUR). Let Xor Yoo X4 € )
w
be such that m, = %(xn + yn) * X4 We need to show that X, =
X Let £ ¢ Z' be such that f(xo) = 1. Now f(yn) €1, f(xn) <

1, and f(mn) - 1, so f(xn) + 1 also. Thus, f(%(xn + mn)) -+ 1,

and so



121

> L > - -
12 szn + XOH 2 %Hxn + mnu %Hmn xOH

2 £Gi(x, +m)) - Hlim - x 01 » 1.

. . w
Since N is (wLUR) and H%(xn + xO)H - 1, X, * X5, =
The following implication diagram can now be derived

easily from the above results.

(LUR) —> (MLUR) —> (MSC) (Rf)

| | |

(wLUR) —> (wMLR) —> (wMSC)

!

(R)

We now give some examples, most of which are adapted
from the work of Mark Smith, to show that no more implication

arrows can be added to the above diagram.

B.20 EXAMPLE: { (2). Let 21(2) be the Banach space

1
(R?, I+0), where Il (x;,x,)lI, = Ix,1 + I%,1. Then 21‘2) 15 (Rf) &

(MSC) & (wMSC), as is any finite-dimensional space, but 21(2)
has none of the other properties in the diagram, because it is

not (R). =

B.21 EXAMPLE: (21, H-HE). This space was constructed
in [17] to show that 21 has an equivalent (UCED) norm; see the

reference for the definition of condition (UCED). Let I be the
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inclusion map from ﬂl into 22. Define H'HE: 21 + R by

Ixhy = (it ? + roxt )

In [47], smith showed that (R is a norm on 21 that is (LUR)
and equivalent to the usual Zl norm. Since (21, H'HE) 1s not
reflexive, we see that none of the other properties in our

diagram implies reflexivity. ®

B.22 EXAMPLE: (£ This equivalent norm on

gr elig).

22 1s defined in our Example A.4. Smith [47] showed that this

norm is (wLUR) but not (MLUR). Since U'HW is a rotund norm,

(2 U-HW) is not (MSC). Thus, (wLUR) does not imply (MSC).

2'
Since (22, H'HW) is a reflexive space, neither does (Rf) imply

(MsCc). =

B.23 EXAMPLE: (Zl, H-HH). This space, constructed
by equivalently renorming 21, is defined in our Example A.4.
Smith [47] used this norm to show that (R) does not imply

(MLUR) . We now use it to show that (R) does not even imply

(wMSC) .

Let (en) be the usual sequence of unit vectors in

£

-l -
= 3 2(e1 + en), and Y, = 3 %(el - en).

— 2~k
1° Let Xg = 3 e;r X
= %
Then m, 2(xn

1, Ix ly > 1, and Iy Iy = 1. However, x - y,

n
+ yn) = Xq- It is not too difficult to check

that "XOHH =

= 2-3-%en has no weakly convergent subsegquence, so (21, H-HH)

is not (wMSC).
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Thus, (R) does not imply any of the other properties

in the diagram. =

Smith [47] also constructed a space (£2, H-HA)

that is (MLUR) but not (wLUR). Thus, our implication diagram

is complete.
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This alphabetical index of all the classes of normed

CLASS NAME OF CLASS

(CD) Efimov~-Stechkin

(D) strongly rotund Banach

(F) Fréchet smooth

(Gl) -

(G2) -

(H) Kadec-Klee (Radon-Riesz)

(K) strongly rotund

(LUR) locally uniformly rotund
(MLUR) midpoint locally uniformly rotund
(MsSC) midpoint sequentially compact
(ngy) -

(R) rotund (strictly convex)

(Rf) reflexive

(5) smooth

(SH) semi-Kadec-Klee

(sH')

Alternative names are

PAGE

17
11
11
116
116
11
11
10
109
110
116
10
11
11
46
99



CLASS

NAME OF CLASS

(UG)
(UR)
(us)
(Vs)
(wCDL)
(wG,)
(wK)
(wK )
(WLUR)
(wLv)
(WMLR)
(wMSC)
(wUR)

(wv)

uniformly Gateaux smooth
uniformly rotund
uniformly smooth

very smooth

weakly rotund

weakly locally uniformly rotund

very rotund

weakly midpoint locally uniformly rotund
weakly midpoint sequentially compact

weakly uniformly rotund

PAGE

11
10
11
65
104
116
21
21
10
22
110
110
10
22
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