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BOGDAN MIELNIK

QUANTUM LOGIC: IS IT
NECESSARILY ORTHOCOMPLEMENTED?

1. INTRODUCTION

One of the intriguing problems of the present day theory is the lack of
similarity between general relativity and quantum mechanics. General
relativity is a product of a long evolution line of classical theories leading
toward structural flexibility. The most characteristic steps of that evolu-
tion were: (1) the discovery of space-time geometry (stage of Minkowski
space), (2) the generalization of the geometry (introduction of the pseudo-
Riemannian manifolds), and (3) the discovery that geometry depends on
matter. In spite of its classical character general relativity is an example
of an evolved theory: its fundamental structure is not given a priori
(apart from generalities concerning the category) but is conditioned by
physics.

The development which led to quantum theories was not similar to
that. Here, there was only one decisive step: the abandoning of causal
schemes and the transition to the probabilistic wave mechanics. Sub-
sequent progress consisted in improving the symbolic language of states
and observables sufficiently to include probabilistic information of in-
creasing complexity. In spite of its rapid development the quantum
theory did not undergo any further intrinsic changes of fundamental
character and has not achieved a structural flexibility analogous to that
of general relativity. Similarly, as in the twenties, present day quantum
mechanics represents the variety of possible physical situations (pure
states) by the same standard mathematical structure which is the unit
sphere in a separable Hilbert space. Unlike the Riemannian manifolds
the quantum mechanical unit spheres do not differ one from another:
they are all isomorphic. The worlds of the present-day quantum me-
chanics thus present a picture of structural monotony: they are all
‘painted’ on that same standard ideally symmetric surface. The formalism
of the quantum theory of infinite systems and quantum field theory is not
very different from that. In spite of several mathematical refinements
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(the introduction of C*-algebras, the Gelfand-Segal construction) the
basic structural framework of the theory is conserved at the cost of quan-
titative multiplication: when meeting a new level of physical reality the
quantum theory responds by simply producing infinite tensor products
of its basic structure. The resulting development is more similar to an
expansion than to an intrinsic evolution: one just submits other branches
of physical theory to the standard language of states and observables
which has almost become the only acceptable way of thinking in quantum
theories. A still unfinished stage of that expansion process is the pro-
gramme of gravity quantization. A somewhat disquieting question arises,
however: is the structure of the present day quantum theory indeed
general enough to assure that further progress may be achieved just by
continuing the techniques of operators in Hilbert spaces? Or, perhaps,
the situation is different. It may be that present day quantum theory still
represents a relatively primitive stage of development and lacks some
essential evolutionary steps leading towards structural flexibility [2].
If this were so, further development would involve a programme opposite
to the ‘quantization of gravity’: instead of modifying general relativity
to fit quantum mechanics one should rather modify quantum mechanics
to fit general relativity. The way toward flexible quantum structures was
recently opened in the convex set theoretical approach to quantum
mechanics [1, 3, 5, 6]. On the other hand, there exist conservative argu-
ments supporting the necessity of the present day form of quantum
theory, which are found in the axiomatics of quantum logic [4, 7]. This
is why the axioms of quantum logic should be critically reexamined.

2. LATTICE OF MACROSCOPIC MEASUREMENTS

According to a generally accepted philosophy the ‘quantum logic’ is the
set of all ‘questions’ which may be put to micro-object. By a question
(aiéo: proposition, yes-no measurement) one usually understands any
physical arrangement which, when interacting with a microobject, may
or may not produce a certain macroscopic effect interpreted as the answer
‘yes’. Though the ‘question’ may be put to any single micro-object, the
answer becomes conclusive only if obtained for a great number of its
independent replies. This leads to an abstract scheme where ‘questions’
idealize the macroscopic devices used to test the statistical ensembles of

———— e a—
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microsystems. Let now Q denote the set of all ‘questions’ for certain
deﬁni‘le physical objects. For completeness it will be assumed that Q
contains two trivial questions: ‘I’ to which the answer is always ‘yes’ and
‘0’ to which the answer ‘yes’ is never given. The existence of statistical
ensembles as the counterpart of Q allows us to introduce a certain struc-

ture in @ which is the most recognized element of geometry in quantum
theory.

DEFINITIONS. Given an ensemble x and a question ae Q, one says that
the answer ‘yes’ to the question a is certain for the individuals of x if ‘yes’ is
obtained for the average fraction 1 of the individuals of that ensemble.
The ensembles x for which the answer ‘yes’ to the question a is certain will
be told to form the ‘certainly yes domain’ of a. Given two questions
a, be Q, we say that a is more restrictive than b(a<b) if the certainty of the
answer ‘yes’ to the question a implies the certainty of ‘yes’ to the question
b. Thus, a<b if the ‘certainly yes’ domain of a is contained in the ‘cer-
tainly yes’ domain of b.

The relation < is reflexive and transitive. The further properties of <
are associated with the ‘logical’ interpretation. According to that inter-
pretation the questions aeQ represent the elements of an abstract ‘logic’
}vhich reflects the nature of the microsystems: the relation < is the
11.11plication of the logic. Since in any logical system the pair of implica-
tions a=>b and b=>g means that ‘a is equivalent to b’, one generally as-
sumes that a similar property should hold in Q.

AXIOM. I. Two questions a, beQ with identical ‘certainly yes’ domains
are physically equivalent (i.e., cannot be distinguished by observing how
they select any statistical ensemble). Formally:

a<b and b<a=a=b. (2.1)

In consequence, the relation < introduces a partial order in Q with
upper and the lower bounds I and 0. Because of common experience of

classr.cal and quantum phenomenology one also assumes that the partial
ordering < makes Q a lattice.

AXIOM II. For every pair a, beQ the partial order < determines the
unique lowest upper bound a v beQ called the union of a and b. Similarly,
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for every a, be Q there exists in Q the greatest lower bound a A b called the
intersection of a and b.

The physical interpretation given to the union av b is that of an ex-
perimental arrangement which yields the answer ‘yes’ with certainty for
those systems for which either a or b give certainly the answer ‘yes'.
Similarly, a A b is interpreted as an arrangement which yields the answer
‘yes’ with certainty if both a and b yield the answer ‘yes’ certainly. The
‘logical’ interpretation given to the operations A and v is that of con-
junction and alternative. Since Q is a ‘logic’, and the logical systems ad-
mit negation, one generally assumes the following axiom about an ortho-
complemented nature of Q:

AXIOM III. There exists in Q a mapping a—d which to every aeQ
assigns precisely one a'eQ called a negative of a, such that:

a<b=b'<d (22)
ana=0;ava=I (2.3)
(avby=d Ab';(anby=dvb (2.4)
(@) =a. (2.5)

The physical interpretation given to the mapping a—a’ is consistent
with the general idea that the question is an arbitrary macroscopic ar-
rangement producing certain macroscopic alternative effects of which one
is called ‘yes’ and the other is ‘no’. Now, if a is an arrangement of that
kind, the & is interpreted as essentially the same arrangement with an
opposite convention determining what is ‘yes’ and what is ‘no’.

The set of questions Q with the lattice operations A, v and ortho-
complementation a—a’ is sometimes considered the fundamental struc-
ture of quantum theory reflecting the nature of the corresponding physical
objects. In case of classical objects the questions aeQ correspond to the
subsets of a classical phase space. The symbols <, v and A then have
the sense of theoretical inclusion, union, and product respectively, while
the mapping a—d’ is the operation of taking the set theoretical comple-
ment. In that case the logic Q, apart of properties listed in Axioms I, 11,
111 fulfills the distributive law:

an(bve)=(anb)v(anc). (2.6)
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One thus infers that the distributive property of the logic Q is a manifesta-
tion of the classical nature of the corresponding physical objects. A dif-
ferent case of a ‘logic’ is obtained by analyzing the structure of orthodox
quantum mechanics. Here the ‘questions’ are the self adjoint operators
with two-point spectrum {0, 1} in a certain Hilbert space 5# (orthogonal
projectors). Hence, there is one-to-one correspondence between the ele-
ments acQ and closed vector subspaces of #. The closed vector sub-
spaces in ¢ form an orthocomplemented lattice which is not distribu-
tive. Hence one infers that in the micro-world classical logic is no longer
valid, but a new type of logic becomes relevant in which the alternative is
not distributive with respect to the conjunction. One consistently inter-
prets the non-distributive property of Q as the main sign of a non-clas-
sical character of the corresponding objects.

3. MOTIVATION OF HILBERT SPACE FORMALISM

For a certain time the ‘quantum logic’ Q was considered to be the funda-
mental structure of quantum theory and has been studied to provide
information concerning the most general form possible of quantum
mechanics. According to a general belief, the answer should be obtained
in the framework of some universal axioms which should reflect the na-
ture of the macroscopic ‘yes-no’ effects and thus should be valid for any
quantum system. The problem of an axiom which would replace the dis-
tributive law of classical logic was studied by Piron [7]. He postulated
the following property of weak modularity as the one which holds for
both orthodox classical and orthodox quantum systems:

aébwav(a’r(b)=b. (3.1)

Piron’s axiom has no immediate physical interpretation. However, it
has been additionally clarified by Pool [8] who has shown that (3.1)
is a necessary condition which allows us to associate uniquely the ele-
ments aeQ with some idempotent operations upon the statistical en-
sembles which represent the selection processes performed by the corre-
sponding measuring devices. In Piron’s scheme the weak modularity has
been completed by axioms of atomicity and covering [7]. On that basis
an important theorem was proved [7]: every irreducible ‘quantum logic’
must be isomorphic to the lattice of closed vector subspaces in a Hilbert
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space over one of three basic number fields (real numbers, complex
numbers or quaternions). Every reducible quantum logic is a simple
product of Hilbert space lattices and thus, corresponds to the orthodox
theory with superselection rules.

The above results have a certain unexpected feature. They provide a
good structural description of the existing theory. However, they seem
to exclude the possibility of generalizations: we return here to the well
known scheme of states and observables with the Hilbert space at the
bottom [7, 8]. Moreover, the scheme of Piron and Pool is so compact
that it is difficult to see in which point it could be relaxed without denying
something very fundamental. This is sometimes taken as an argument
against the possibility of further generalizations of the present day quan-
tum scheme. However, the conclusion from the lattice theoretical results

[7, 8] might be just the opposite. After all, most of the essential progress |
in physics has been achieved by denying something apparently obvious. |

Thus, general relativity denied the axioms of Euclid. Present day quantum
mechanics has denied the even more obvious distributive law. There is
no reason to think that this process is ended. The theorems of Piron and
Pool exhibit a conservative quality of quantum logical axioms: it may
thus be, that these axioms are the next ‘obvious thing’ to be negated in
the future. Is such a step possible?

4. CRITIQUE OF AXIOMATIC APPROACH

It is a specific status of quantum axiomatics that it should reflect phenom-
enology. In order to verify the phenomenological background of quantum
logical axioms a careful identification must be made in order to specify
the elements of physical reality which correspond to the abstract ‘ques-
tions’. At this point axiomatic theory is elusively elegant. A ‘question’
(‘proposition’), we say, is an arbitrary macroscopic arrangement which,
when interacting with a micro-object, may or may not produce a certain
definite macroscopic effect: the presence of the effect is conventionally
taken as the answer ‘yes’ whereas its absence is ‘no’ (or vice versa). Now,
it is argued, the validity of the basic axioms of quantum logic (apart from
weak modularity) is almost a matter of tautology. For instance, two ‘yes-
no measurements’ with the identical ‘certainly yes’ domains are obviously
testing for the same feature, and so the difference between them is not
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essential; this motivates the identity law (2.1). Similarly, the existence of a
unique orthocomplement a’ for an arbitrary ‘yes-no’ arrangement a is
beyond discussion: &' is simply that some measuring arrangement with
the roles of ‘yes’ and ‘no’ interchanged. An apparently more involved
problem concerns the existence of the union a v b and intersection a A b
for any a, be Q. Here, some plausible existence arguments can also be
given, through the constructive prescription is not clear. The above argu-)
ments would be indeed difficult to reject if not for the circumstance that |
the underlying definition is oversimplified. In spite of its elegant gen-:-
erality, the idea of a ‘question’ as a quite arbitrary macroscopic arrange- |
ment which produces a certain macroscopic alternative effect is wrong.
To illustrate this, consider a statistical ensemble of any objects and a
macroscopic device which yields the answer ‘yes’ for an average of & of
them in a completely random way. A good approximation is a semi-
transparent mirror in the path of a photon beam (Figure 1).

\ 1/2

12

No doubt, this is a certain macroscopic arrangement producing a
macroscopic alternative effect: either the photon reaches the screen ‘yes’
or it does not. However, the arrangement on Figure 1 cannot be con-
sidered one of ‘questions’. If it were, it would produce a sequence of
catastrophes in the structure of ‘quantum logic’. First of all, it would not
be clear which device is the ‘negative’ of the semitransparent mirror a. By
insisting on the purely verbal solution (just the interchange of ‘yes’ and
‘no’) one would conclude that «’ is acting, in fact, identically as a: for it too
gives the answer ‘yes’ in a completely random way for an average of 3
of the beam photons. Thus, a’=a. This would further imply: 0=anda'=
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—ana=a=ava=av a =Iand so, the whole structure of Q would col-
lapse.
One might reply, that the axioms of quantum logic are exact, but they
must be properly understood. The semi-transparent mirror in Figure 1
is not a good example of a ‘question’ since it is not at all a measuring
device: it does not verify any physical property of the transmitted photons.
| This is a good answer, but it means that the whole approach of ‘quantum
'logic’ should start from an information which is inverse to the usually
} given. Not every arrangement producing a macroscopic alternative effect
L‘E a question (yes-no measurement) — the right information should read.
Indeed, one feels, that in order to be a quantum mechanical measuring
device, the macroscopic arrangement should do something more specific
than merely produce the ‘yes’ and ‘no’ effects in an arbitrary way. In some
axiomatic approaches this is assured by requiring that the ‘yes-no mea-
surement’ should have the non-trivial certainty domains: there should be
some microsystems for which the answer ‘yes’ is certain and some other
for which the answer ‘no’ is certain. This requirement eliminates the
semi-transparent window as an element of Q. However, it is still far from
sufficient. To see that, it is enough to consider two hypothetical macro-
scopic devices A and B acting on mixtures of red, yellow and violet light.
The device A transmits the red photons and absorbs the yellow and violet
ones: however, it re-emits on average  of the absorbed yellow photons in
form of red photons. The device B is also transparent for the red photons
and absorbs the yellow and violet ones: now, however, 1 of the violet
photons are re-emitted in form of red photons. Schematically:

Fig. 2.
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Both devices 4 and B have a common ‘certainly yes’ domain: they are
completely transparent only to the red photons. They also have the
property of performing idempotent operations on photon mixtures which
in some treatments is considered a fundamental quality of the ‘yes-no
measurements’. However, A and B have different domains of ‘certainly
no’ and so, they are not physically equivalent. This difference, in spite of
Axiom I, cannot be considered non-essential and absorbed into the
identity relation (2.1). Indeed, if we insisted that 4 and B are merely two
different physical realizations of that same abstract question aeQ, we
would have two essentially different prescriptions for production of the
negative a': once by taking A4’ (‘certainly yes’ for the violet) and once by
taking B’ (‘certainly yes’ for the yellow). Formally: A=B but A'#B".
In consequence, something would be broken in the assumed structure
of Q: either the identity axiom (2.1) or the uniqueness of the orthocom-
plement. We therefore reach the conclusion that the macroscopic devices
A and B are still not ‘good enough’ to represent the abstract ‘questions’,
Indeed, the most essential condition is still missing. According to Ludwig’s
thermodynamical condition [5] the macroscopic ‘yes-no measuring
device’ apart from possessing non-trivial certainty domains must also
have the property of minimizing the randomness of the ‘yes’ and ‘no’
answers. A generalized version of this idea was employed in [6] by re-
quiring that, for a given ‘certainly yes’ domain, the yes-no measurement
should have a maximal possible ‘certainly not’ domain. This requirement
is, finally, the sufficient condition which allows one to distinguish the
subclass of those macroscopic devices which correspond to the abstract
‘questions’. An essential problem now arises: is it necessarily so, that
the counter-examples against the quantum logical axioms must auto-
matically vanish when the class of the macroscopic ‘yes-no’ arrangements
is restricted to the subclass of proper random-minimizing ‘yes-no mea-
surements’?

If the orthodox theory is not a priori assumed, the answer to this ques-
tion must remain conditional. It depends essentially on the validity of a
certain intuitive image which we usually associate with the phenom-
enology of physical objects and which, in general, may or may not be true.
According to this image, each ‘question’ ae Q determines a certain specific
property of micro-objects: the objects having that property are those for
which the answer ‘yes’ is certain. Now, we intuitively assume that for each
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domain of micro-objects which possess a certain ‘property’ there is a
unique complementing domain of micro-objects with an ‘opposite proper-
ty’: so that, once it is known for which objects the answer of the ‘yes-no
measurement’ is ‘certainly yes it is also uniquely determined for which
ones it should be ‘certainly no’. This image is true in orthodox quantum
mechanics because of the orthogonal structure of the closed vector sub-
spaces in a Hilbert space. However, it may be not of universal validity.
In fact, it is not a logical impossibility to imagine a hypothetical physical
world where to every domain of micro-objects with a certain special
property there would be many possible ‘complementing domains’ corre-
sponding to many possible ways of being ‘opposite’ to that property.
If that were so, there could exist many random minimizing ‘yes-no
measurements’ with a common domain of ‘certainly yes’ and different
‘certainly no’ domains. A hypothetical sequence of such devices is rep-
resented in Figure 3.

‘certainly

Fig. 3.

The devices 4, A,,... schematically represented in Figure 3 choose the
same domain of micro-objects on which the answer should be ‘certainly
yes’ but they minimize the randomness in favor of various ‘certainly no’
domains 2, Q,,... For each of those devices the verbal negation opera-
tion (yes & no) could be easily performed leading to a sequence of devices

' A,... with different ‘certainly yes’ domains Q,, Q,,... Contrary to

Axiom 1, the devices A,, A,,... would be physically different, and even if
we tried to neglect the difference by insisting that (2.1) defines the right
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physical equivalence, the negatives A, A5,... could no longer be identified
on that same principle. It thus becomes clear that the axioms of ‘quantum
logic’ are not so absolute as they seem at the first sight. Even the apparent-
ly obvious laws of identification (2.1) and orthocomplementation (2.2-5)
are not logically inevitable. Similarly, like the distributive law of classical
logic, they are conditioned by the physical properties of the corresponding
micro-objects. This suggests that before deciding what the ‘quantum
logic’ is and which axioms it must fulfill, the theory should go deeper and
look for the justification for the axiomatic structures in physics of the
statistical ensembles themselves. The steps taken in this direction lead
to the recently formulated convex scheme of quantum mechanics.

5. CONVEX SCHEME OF Q.M.

In the orthodox approach to quantum logic the statistical ensembles are 4
an implicit counterpart. Their fundamental role has been rediscovered in -
the convex scheme of quantum mechanics [ 1, 5, 6]. The basic concept of
this scheme is that of a quantum state. Given a statistical ensemble of
certain micro-objects the state stands for an averaged quality of a random
ensemble individual. Formally, states are equivalence classes of statis-
tical ensembles. Given micro-objects of certain definite kind (e.g elec-
trons) the fundamental structure of the scheme is the set S of all states. If
the micro-objects obey orthodox quantum mechanics, then S is the set of
all positive operators with unit trace in a certain Hilbert space # (‘density
matrices’). If it is not a priori assumed that the orthodox theory holds, it
may only be granted that S has a structure of a convex set: the convex
combinations p,x, + p, X, for x;, x,€S and py, p, >0, p, + p, =1 mean the
state mixtures and the extremal points of S represent the pure states. In
principle, S might be considered a convex set ‘in itsel with the convex
combination axiomatically introduced [3]. However, for the sake of il-
lustrative qualities, one usually represents S as being embedded in a
certain affine topological space E which can be constructed by a formal
extension of S: the points in S then represent the pure and mixed states of
the system, whereas the points of E out of S have no physical interpreta-
tion [6]. For the reason of physical completeness it is assumed that S is
a closed convex subset of E,

Though the structure of S reflects a relatively simple phenomenology
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(it only shows which states are the mixtures of which other states) there
is an extensive physical information contained in the geometry of S.
In particular, shape of S determines the structure of the macroscopic
alternative measurements which is so fundamental in other axiomatic
approaches. This is due to the following concept of a normal functional.

DEFINITION. Given an affine space E with an affine linear combination
AyXy 4 AsX5(Xy, X2€E, Ay, 4,€R, Ay +4,=1) a function ¢: E—R is called
linear if (A, X, +A%x2)=2,4(x,)+ 1,0 (x,) for every xy, X,€E, 4,, 1;€R,
Ay + A, =1. Given an affine topological space E and a closed convex sub-
set S E, a continuous linear functional ¢: E—R is called normal on S iff
0<¢(x)<1 for every xeS.

The normal functional admit a simple geometric representation. Any
non-trivial linear functional in E can be represented by a pair of parallel
hyperplanes on which it takes the values 0 and 1. Now, the functional ¢
. is normal on § if the subset S is contained in the closed region of E limited
by the hyperplanes ¢ =0 and ¢=1.

The normal functionals have a natural physical interpretation. Let xeS
be a statistical ensemble and suppose, that there is a macroscopic device
which produces a certain macroscopic alternative effect “yes-no’. If one
translates the ‘yes’ and ‘no’ into the numbers: ‘yes'=1 and ‘no’=0, the
action of the device is completely characterized by a number ¢ (x) (0< ¢ x

x (x)< 1) which represents the statistically averaged answer to the in-
dividuals of the ensemble x. Since it is implicit in the definition of the
statistical ensemble that it is composed of independent individuals, the
process of testing any mixed ensemble is equivalent to testing indepen-
dently each of the mixture components. Consistently, ¢ (p;x; + PaX;)=
=p,d(x;)+ P2 (x,) and so, every ‘yes-no’ arrangement defines a certain
normal functional on S. Here, no limitations are present which are essen-
tial for the ‘quantum logic’. Every macroscopic alternative arrangement
is included in the scheme and is mathematically represented by a normal
functional, no matter whether or not it minimalizes the random element in
the ‘yes’ and ‘no’ answers. We thus reach a generalized scheme of quantum
theory based on the theory of convex sets (‘convex scheme’ [6]). In that
scheme the collection of all states of a physical system is represented by a
closed convex set S in an affine topological space. The set of all macro-
scopic ‘yes-no’ devices corresponds to the collection of all normal func-
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tionals on § mathematically represented by all possible ordered pairs of
closed hyperplanes enclosing the set S and labelled by numbers 0 and 1
(see Figure 4).

‘certainly
yes'

Fig. 4.

Since the set of the normal functionals is determined by the shape of the
convex set S, so is also the collection of macroscopic ‘yes-no devices’.
Consequently it is a feature of the convex scheme that in it the structure
of the ‘yes-no measurements’ is not decreed a priori but is determined
by the more fundamental structure of the statistical ensembles. By ana-
lyzing the precise mechanism of this determination we reach a certain new
structure which is a natural candidate for a replacement of traditional
‘quantum logic’.

6. LOGIC OF PROPERTIES

It is a controversial problem, whether the formalism of quantum theory
can be used to describe the properties of the single micro-object ‘as it is,
in all its complexity’ (Piron [7]). The single act of measurement in quan-
tum mechanics is not conclusive, and therefore, the direct interpretation of
quantum mechanical formalism is that of a statistical scheme. The notion
of property of a single system can however be introduced as a next ab-
straction stage of the theory. In the axiomatic approach of Jauch and
Piron [4, 6] this is done by analyzing the structure of Q. Below, another
method will be employed which departs directly from the properties of
statistical ensembles.
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Statistical ensembles are, in a way, macroscopic entities: though it
might be impossible to predict the behaviour of a single micro-individual
in a given physical situation, one can predict the behaviour of the en-
semble as a whole. Therefore, there is no difficulty in defining the physical
properties of the ensembles. By saying that a certain ensemble has a cer-
tain property we simply have in mind that the ensemble behaves in a speci-
fied way in some definite physical circumstances. If now the ensembles are
represented by points of the convex set S, the properties are just the sub-
sets of S. It is still an open question, whether a subset of S should fulfill
some regularity requirements (such as the measurability) in order to
represent a physically verifiable property. As pointed out by Giles [9]
the answer must depend upon the degree of idealization which is permitted
by the theory.

The main difficulty with the single individuals in a statistical theory
lies in the fact that there is no immediate correspondence between the
properties of the ensembles and the properties of the individuals. In fact,
not every property of the ensemble is of such a nature that it may be at-
tributed to each single ensemble individual. A strictly macroscopic
example is obtained by considering a human ensemble composed half
of men and half of women: the fifty-fifty composition then is a property
of the ensemble which, however, cannot be attributed to each single
ensemble individual. Quite similarly, one can have a beam ef photons of
which the average fraction 4 penetrates through a certain Nicol prism.
However, it may be that the ability of penetrating through the prism with
the probability 1 cannot be attributed to each single beam photon, for the
beam is just a mixture of two types of photons one of which is certainly
transmitted and the other certainly absorbed by the prism. In general,
a property P of statistical ensemble is a proper starting point for a defini-
tion of a certain property of the single micro-objects if two conditions
hold: (1) whenever two ensembles have the property P their mixtures must
also have it, and (2) whenever a mixture has the property P, each of the
mixture components must also have it. These requirements mean that
the properties of the single microsystems are represented only by special
subsets P =S which fulfill the following definition [6].

DEFINITION. Given a convex S, a wall (also: face) of S is any subset
PcS such that: (1) xy, x,€P, py, p, 20, py + p,=1=p,x, +p,x,€P, and
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(2) pyxy +pax,€P with x,, X, €8, py, p,>0, p; +p,=1=>x,, x,€P. Geo-
metrically, a wall is any convex subset of S which possesses the property
of ‘absorbing intervals’: whenever P contains any internal point of a
certain straight line interval / = § it must also contain the whole interval I.

The concept of a wall generalizes that of an extreme point: the extreme
points are just one-point walls of S. Any non-empty convex set S has two
improper walls: the whole of § and the empty set 0. For any convex set the
walls form a partially ordered set with the ordering relation < being the
set theoretical inclusion <. As seen from the definition, the common part
of any family of walls is also a wall. This implies that the walls form a
lattice: for any two walls P, R<S the greatest lower bound P A R is just
the common part PR whereas the lowest upper bound Pv R is ob-
tained by taking the common part of all walls containing both P and R.
If the points of S represent the pure and mixed states of a certain hypo-
thetical system, the walls of S represent the possible properties of the
system ordered according to their generality. In particular, the whole of
S represents the most general property possible (no property) whereas the
empty wall § stands for the impossible property (no system with that
property). The extreme points of S (if they exist) are atoms in the lattice
of walls: they correspond to maximally specified properties, in agreement
with the Dirac idea of pure states as being the maximum sets of non-
contradictory information which one can have about the microsystem.
It still remains an open question what sort of regularity requirements a
wall should fulfill in order to be an operationally verifiable property.
The standard quantum mechanical convention is to consider the lattice
of closed walls of S as representing the physically essential properties of
the system; this lattice will in future be denoted by P.

The existence of normal functions on S allows one to define a natural
notion of orthogonality in P.

DEFINITION. Two properties P, R are called excluding or orthogonal
(PLR) if there is at least one macroscopic ‘yes-no’ arrangement which
answers certainly ‘yes’ for systems with the property P and certainly ‘no’
for the systems with property R (or vice versa) Thus, P LR if there is a
macroscopic device able to distinguish the property P from the property
R without an element of probabilistic uncertainty.

The set of properties P with the relations of inclusion (<) and exclusion
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(L) is that structure of quantum theory which most directly reflects the
nature of micro-objects. It has been thus proposed that the lattice P
should be considered the ‘logic’ of a quantum system instead of the lattice
of macroscopic measurements Q[6]. The above idea of quantum logic is
wider than the orthodox one. The ‘propositions’ (properties) here are not
necessarily in one-to-one correspondence with some ‘yes-no measure-
ments’. The ‘property’ is an abstracted quality of statistical ensembles and
therefore, it should be verifiable: however, it is not a priori supposed that
the verification might be always reduced to a single act of measurement.
In spite of a more abstract sense of P, the problem of the validity of the
standard lattice theoretical axioms becomes much simpler for the ‘logic
of properties’. In fact, the identity axiom (2.1) is automatically fulfilled,
since the partial ordering < is now the set ‘theoretical inclusion’. The
lattice axiom, too, automatically holds because the closed walls of S must
form a lattice. It is not so with the orthocomplementation law which has
now a quite different status. The notion of ‘negation’ is not immanent for
the properties. What becomes natural here is the more primitive relation
of the exclusion L. Depending on the structure of that relation the opera-
tion of negation can or cannot be constructed on P. The following defini-
tion seems to express the physical idea of what the negation is.

DEFINITION. Let P be a property and let P* denote the subset of all
properties which are orthogonal to P. If in P* a greatest element exists,

95=0
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this element is called the negative of P and denoted P'. If for every PeP the
negative P’ exists, we say that the logic P admits negation.

As is easily seen, the existence of negation, in general, is not ensured by
the structure of the walls. A hypothetical case where negation could not
be constructed because of the geometry of S is shown on Figure 5.

For the convex set represented here the subset composed of one point
x is a wall and the family {x}* contains the seven non-trivial walls: the
four one-point walls {y,}, {y,}, {¥s}, {v4} and the three straight line seg-
ments P,,, P,3, P34 The family {x}* thus contains three maximal walls
Py,, Py, P34 but it does not contain the greatest one: the convex set S
does not possess a wall which would contain the three segments P, ,, P,;,
P;, and be orthogonal to x. As a consequence, no unique orthogonal
complement can be defined for the ‘property’ P= {x}. The above situation
has not very much to do with the possibility of interchanging the ‘yes’ and
‘no’ answers in the ‘yes-no measurements’ and cannot be excluded by con-
sidering the rature of the macroscopic measuring devices. Inversely, this
is the absence of the situations like that represented in Figure 5 which
must be first granted to explain the origin of the usually assumed structure
of Q. In fact, if the convex set in Figure 5 represented the collection of all
pure and mixed states of a certain physical system, the structure of the
‘properties’ would make possible the existence of three different ‘yes-no’
measurements with the same domain of ‘certainly yes’ (the pure state x)
which would, however, minimize the random element in different ways,
by choosing three different ‘certainly not’ domains P,,, P,3, P;,. This
would lead to a non-orthodox structure of Q with the identity law broken
(see also [6]). This shows that the logic of properties P, in a sense, lies one
level deeper than the phenomenology of ‘yes-no measurements’. The
existence or non-existence of negation in P is one simple fact which justi-
fies or disproves the whole system of axioms which are traditionally em-
ployed to describe the structure of ‘questions’. An essential problem now
arises: have we indeed some universal reasons to believe in the ortho-
complemented structure of P?

If we dismiss some verbal arguments, we are really left with one in-
tuitive picture which can be of importance. This is the picture of matter
and of a certain selection process which subtracts a component of matter
with a certain definite property. Now, if the subtraction is done with
enough care, the component which remains (‘the rest’) depends only on
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what was subtracted but it does not depend on how it was subtracted. This
simple picture is, in fact, one of the deepest constructional principles of
present day theory and is the true origin of the subsequent image of
as being an orthocomplemented lattice. Indeed, one usually takes for
granted that each ‘property’ distinguishes a certain component of matter:
‘the rest’ then uniquely defines the ‘complementing property’. This idea
finds a particular realization in classical theory, where the properties cor-
respond to subsets in a classical phase space and the ‘subtraction’ is the
operation of taking the set theoretical complement. A different mechanism
stands for the same in orthodox quantum theory. Here the states of matter
are described by vectors in a linear space (wave vectors) which obey a
linear evolution equation. Now, if a wave vector is selected by subtracting
a certain component, the uniqueness of ‘the rest’ is due to the existence of
the linear operations. This explains the strong position of the ortho-
complementation axiom in the present day theory: whenever one deals
with some quanta which are well described by a linear wave-equation, the
orthocomplemented structure of ‘properties’ will naturally appear. On
the other hand, this also indicates that the orthocomplemented structure
of P might not be universal: it does not express the nature of any theory,
it just expresses the essence of linearity. Is linearity a necessary attribute
‘of quantum mechanics? In spite of the traditional philosophy of the super-
position principle, schemes based on non-linear wave mechanics have
always been a tempting alternative for quantum theory. One might expect
them to contribute something to the understanding of the measurement
problem: for a possibility is open that the Schrédinger evolution equation
and the measurement axioms are just two opposite approximations to a
still undiscovered theory. Thus, the quantum axiomatics should not be
too quickly closed. This may become of special importance in problems
which involve the quantization of gravity.

In fact, if the gravitational field has a quantum character, an intriguing
problem concerns the behaviour of a hypothetical single graviton. Is this
behaviour similar to the dynamics of the macroscopic gravitational
universe governed by Einstein’s equations? In principle, it must not be so.
It is possible that the single graviton in vacuum (if such an entity exists) is
well described by a certain linear law, in agreement with the spirit of
orthodox quantum mechanics, and that the non-linear behaviour of the
macroscopic gravitational field is a secondary phenomenon due to inter-
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actions in a cloud of many gravitons. In this case the formalism of opera-
tor f‘feld.s in Hilbert spaces would be sufficient to describe the quantum
grawtatl’on. However, this hypothesis has some disadvantages. In fact, if
ic graviton were described by a linear wave, a question would arise as,to
in whaF space-time this wave propagates? Is it just the flat Mink;)wski
space.-tlmc? If so, general relativity would be a theory with a background
of I\./[mkow.ski metric masked by clouds of gravitons. This is, however
agalr}st an innate aesthetics of general relativity, where the ba;ckgrounci
rnetry:: which is not seen under the cover of the macroscopic field is un-
physical and should not enter into the formulation of the theory. Thus, it
may be that the situation is different. Perhaps, even a single gre.witon,in
\facuu.m modiﬁm the space time in which it exists and so, creates a non-
linearity in its own propagation law. This would lead to a new picture of
que%ntum theory where the selection processes could no longer be as-
sociated with linear decomposition operations of certain ‘state vectors’
and the mechanism which had accounted for the uniqueness of the ortho-
com.plement in the orthodox theory would no longer be valid. The re-
sulting properties of ‘non-linear quanta’ would not have to imitate the
orthogonality structure of the closed vector subspaces in 3, but they

could form a generalized ty i i
: pe of logic where no unique negation opera-
tion can be constructed. ¢ e
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