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There were so many interesting points raised during this work-
shop, that I wonder whether I can still say anything new on quanuum
logic. Therefore, I would like to make a confession. For thirteen
years I have been fighting against quantum logic. Due to some para-
doxes of sociology, my activities were finally noticed by somebody
who said: "Mielnik? Ah, yes, he is doing something in quantum
logic".

Being so frustrated in my efforts, I am close to recognizing
that after all, (in either a positive or a negative sense), I do
belong to "quantum logic". However, I would like to understand this
concept broadly. For me a quantum logic is not necessarily an ortho-
complemented latticel» 253, 4 .. o - a lattice without ortho-
complementation.® It may be any sort of information sufficient to
reconstruct the structure of states in a physical theory (as, for
example, the algebra of observablesb, 7, geometry of states8-—11,
geometry of convex setslz"zo, manuals?l  formal dialogues??, etc.)
With this in mind, T shall try to explain why quantum logic might
become increasingly important for the rest of physics.

At first sight, the situation does not look encouraging. The
"logic" seems far away from the main trends in theoretical physics.
Let me just remind you of our colleagues computing graphs in perturba-
tive expansions, with a determination to read physical sense in their
infinities. Then, do you still remember the groups of scientists
moved by the good news that there are dispersion relations which can
be iterated? Or, the career of the B-ta function (Weneziano model),

*The text is a combination of two talks delivered by the author at
The Royal Institute of Technology, Stockholm, in October 1979, and
at the Ettore Majorana Centre, Erice, in December 1979.
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the Regge poles, the solitons, the instantons, etc.? Wh9 cares :bout
yes—no measurements? Yet, it turns out Fhat quantum log;c_ls no n
separate from the main stream of theoretlcallphySlCS. I ;t ﬁaseng
popular enough, this was for two reasons. First of al}, the %Fka
trends" of theoretical physics are created by mass s?c1ology: ike
the hits of pop-music, and have not yet_acﬁleved their maturltyé-
Next, "quantum logic' itself, enclosed in 1ts'cast}e of ?rﬁpoil l::i
and corollaries, has not properly recog?lzed its links with E e_r

of physics. To justify this, I shall dls?uss the.generil lnte;k
relation between the two elements quoted in the title of my talk,

“MOTION" and "FORM".

By form I shall understand the collectio? Sf all tlm?—lndeﬁenqeng
aspects of shape, structure, geometry or "logic" present 1? aBplzilca
theory. (Forgive me for this sequence of a%mos?—synonyms. tre of,
when speaking about the form, I shall have in mind the geome z o
the phase space of a physical system (t?ough the other meaglzg- =
still admissible). The idea of moti?n is common for everybody;
the moment I shall leave it unspecified.

The relation between motion and form'is of a fundame?talb
character, It seems as relevant for physics as the Felat;on eg;zen
spirit and matter was for philosophy. Note'thaF motl?n_s gwins
afinity to spirit, (at least, I can hardly lmaglne_splrit 13 egter
static). You may wonder whether mathematical pby31cs shou it
into such transcendental analogies. The truth is thgt it can hardly
avoid them. If you look at the textbooks on foundat10§s.y;u sige
that, in fact, they represent the mo?ern_book of Genes;s,_ 0§ = Z
tell you what was at the beginning (in elther‘a ch?ono ogtca o
logical sense). And if you r?ad'papers on axiomatic quantum s
they tell you that at the beginning there was a form.

The dynamics appeared afterwards, Fo su%t the alreadyheX}stlng
form. Let me give you examples. In axiomatic quantum mec am:u;sc,1
the form is introduced in many ways, e.g. as an orthocomp}eme? 2 2
lattice, convex geometry, or algebra of observables, bu; 1t ihgsyis
yields the Hilbert space structure of quantum states. nce =
assumed, the dynamical evolution must'be representedﬁ?g atoz e
parameter group of unitary l:ransforrnatlggjg[:l Due to Hxh er 4 gs =
geometry, any such group has the form ? : t € R, where
self-adjunct operator. Hence, one arrives at the quantum

"Hamiltonians". If, moreover, the pure states corre§po?d to oge;
particle "wave functions", some plausible arguments indicate tha
=2
? —
H=7=+ V(x
B =5= (%)

are the simplest Hamiltonians; hen?e, SFhrﬁdlnger quantu? meE::?lcs
|follow. Let me also recall the axiomatic treatment of c ass 5
mechanics. Here, the basic structure is that of a symplectic manltEd
'fold. Once this structure is postulated, the motions are represen

———
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by one-parameter groups of symplectomorphisms. Their generators are
the classical Hamiltonians and the corresponding equations of motion
coincide with the canonical equations. In both cases (as well as in
almost all axiomatic schemes) the "arrow of creation" leads from the
form to the motion:

"FORM — MOTION"

This scheme pleases us since we are formalists. However, is it
indeed convenient that the form should be decided at the beginning?
Trying to understand the difficulties of quantum logic in new areas,
(such as non-linear fields), I noticed that the axiomatic approaches
have a certain defect. They read the book of creation backwards.
Indeed, when one traces the natural development of a physical theory,
one sees that it is opposite to the one described by the axiomatic
approaches: the motion is given at the beginning, and the form
emerges later. To illustrate this, let me re-—examine the example of
Schrodinger's quantum mechanics.

Here, the entity present at the beginning was the complex "wave
function" y. Initially, little was known about the nature of y.
Hilbert spaces were not yet discovered by physicists, and the set of
all y’s did not yet have any recognized geometry. It was amorphous.
However, it moved. The evolution equations were one of the early
guesses of the theory:

i g%_= - %.g b+ V(R, t)y. fh=m=1) (1)

Now, a structure started to emerge. First of all, wave functions
which are proportional remain proportional after any time evolution:
this makes it possible to assume that the classes of proportional
solutions ('"rays") possess some physical meaning. The evolution
equations (1) are linear and conserve linear dependence: this
suggests that the linear subspaces of the wave functions too possess
a physical sense. So, the first elements of the "logic" 175 start
to appear. Next, for any wave y the integral

2
fas | lb(X, t)l d3X

is conserved by the time evolution: this integral defines a natural
norm of the wave functions and suggests the choice of the statistical

interpretation (Born). Moreover, for any two solutions y, ¢, the
quantity

W, ¢) = fma ¥ @dyx

is conserved by the time evolution: this quantity -becomes a basic
geometric element in the space of the wave functions Y. In this way
one arrives at the Hilbert space geometry of quantum states and the
rest of the scheme follows. The role of the dynamical equations
here is principal: were it not for the dynamical equations (1), the
theory would not arrive at the Hilbert space structure’®>2*, 1t ig
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not otherwise in the case of classical mechanics. Today, this theory
is described in terms of symplectic manifolds, fiber bundles, etc.
However, this geometric language was absent when the theory was
created. What were known then, were just the equations of motion.

It was due to the particular character of these equations that the
"Poisson bracket" turned out to be conserved and the symplectic mani-
folds emerged. The above development is not accidental; it reflects a
natural hierarchy of elements within a physical theory: The motion
creates the form.

"The MOTION creates the FORM"

This hierarchy seems so essential, that while fully recognizing
the importance of form, I want to propose an abstract description of
a dynamical theory inverse to the one given by the axiomatic
approaches. This description follows. 23 25

Suppose, one has a set @ of elements ¢, ¥, ... denoting the pure
states of a hypothetical system. Assume that ¢ is a topological
space with a physically meaningful topology. Though the physical
motivation is not yet complete, it seems reasonable to assume that
¢ possesses also a structure of a generalized differential manifold
(in general, of infinite dimension, except for some special spaces
of states like those of spin or polarization). No other structure
on ¢ will be assumed for the moment. The manifold & is a phase space
of a hypothetical system. However, ¢ is still devoid of any geometry
(like that of a symplectic manifold or that of a projective Hilbert
space): it is left open whether it will represent an orthodox quantum
system or a classical system or any other entity. The next element
to be introduced is the dynamics. However, in order to be informative
the concept of dynamics must be understood globally.

In most physical theories the dynamics are introduced by distinguish-
ing a certain one-parameter group of transformations of the phase
space which represents the time evolution of the system. This
description, though elegant, is not sufficient. A one-parameter
group of transformations can only describe one particular evolution
of the system on a certain fixed external surrounding (e.g. a vacuum).
However, the same system can be submerged in many external surround-
ings in which it may evolve according to different one-parameter
groups. To understand the dynamical nature of the system it is
essential to know all of them; just as to understand the nature of

an individual one has to know all his abilities and not only his
actual behavior. This leads to the idea that the dynamics, in order
to be informative, should be global?6, 23,25 § e, it should tell
about the open possibilities. The simplest global description is
obtained by introducing a counterpart of &: a certain set Z whose
elements £,y , ... denote the external conditions in which the system
can be submerged. Below, I shall assume that these conditions are
dissipation-free, and therefore, to every £ € E there corresponds a
unique two-parameter family of transformations g(&; t, t') : & + @
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t <t', mapping the pure state oato the pure states and representing
the evolution process which the system undergoes under the influence
of the external condition £. It seems only a minor restriction to
assume that g(&; t, t') are diffeomorphisms of &. Now, the ways of
the two approaches part. In the traditional description of the
dynamics one chooses a certain fixed £, € £ and one considers a
single one- or two-parameter family of transformations: Eot, it =
8(Ey; t, t') ("fixed Hamiltonian"). In the "global description one
has to consider a wider set of all operations g(g; t, t') correspond-
ing to all time intervals and all external conditions:

G={g(Es t, t) s Ee &, £ 2EY) (2)

Below, I shall assume that G contains also limiting transforma-
tions corresponding to "asymptotic" external conditions; therefore
it should be closed in some natural topology. Following Lubkin, 27
I shall call the elements of G the "dynamically achievable" trans-
formations. It seems admissible to assume that the achievable trans—
formations can be repeated with a time delay and superposed one after
another. Hence, G has a natural structure of a semigroup. This
semigroup does not- represent any particular evolution process but
is rather the semigroup of open possibilities. Therefore, I call it
the semigroup of mobility.

In spite of the popularity of the "fixed Hamiltonian approach"
the global view of dynamics seems to be gaining ground. Tts ideas
are seen in the algebraic approaches dealing with sets of many opera-
tions® and in semigroup approaches where the Hamiltonian is left
unspecified,?8-3 The variety of external conditions have been
introduced to the quantum field theory by Schwinger32 in his S-matrix
formalism. The advantages of the dynamics of open systems have been
recognized®®. The semigroup G has been introduced?®:25 to represent
the element of motion in non-relativistic dynamical theories; it seems
informative enough to allow the reconstruction of the form. To
justify this, let me check what G is in the case of Schrodinger's
quantum mechanics.

Consider Schrodinger's wave packet in one dimension. Here, the
system is described in terms of functions of two operators q and p,
9, p =1 (I put4 =1). The "external conditions" are the external
potentials in Schrodinger's wave equation, V = V(q, t). The simplest

evolution operations are

2
e“iT(% + Vilg)), To=ak! =t o0,

and represent the dynamical evolution of Schrodinger's wave packet
in the presence of the time independent external potentials V = V(q).
The other achievable operations are their products and limits. In

particular, the unitary operations £~1V(a) ,.. dynamically achievable.
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They are limiting cases of the transformations caused by strong ‘
external fields acting within a short time ("shock transformations"):

2 1
e—iv(q) - 14 —11(% s V(q)) (3)
T+ - - -
The entire mobility of the system is not immediately obvious.

Thus, the operations

2
P
2 (x>0

m €
0

are achievable as they represent free evolution; however, can their

inverses

2
P
+it
e 2

be dynamically achieved? The answer to this question follows from
the formula?6:

il
T

y 2 p2 o1 7
_le e p

_- - _1
welnen £ A e

351Nl
]l

2 = 1 (4)

12 terms

Note that all signs in the exponents on the left side of (4) are
identical. For Tt > O this formula represents a sequence of evolu-
tion operations in Schrddinger's wave mechanics.

- itP : .
The e lTE’ are free evolution operations.
. 2 '
The ¢ * %’%’ are "shock transformations" corresponding to oscyllator
shaped pulses of the external potential. The whole formula represents
a "closed circuit" of the evolution: after the sequence ?f 12
operations all the wave packets must return to their initial shape.

As a consequence, one has also:

2 1 2 . p2
2 Inig 2 . p? Ui i L yekog +icR
e'l?% e_”% Rt SR T LR W )
11 terms

Note that all terms on the left side are achievable. Hence,

. _p2 -
g+1ﬂ?§ (tr > 0) is achievable too. Formula (5) y1eld§ a
prescription for how to manoeuvre the system 1nto_an operation inverse

to its free evolution, so that it will reproduce its past states.
What is curious is that prescription (5) give the operation
2
.- P
+iT =
€ 7
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as a whole; so the past state can be recovered without actually
worrying what this state was and what the present state of the system
is. The assumption about one space dimension here is not essential;
the same is true for Schrodinger's particle in R3. What is still
more curious is that an analogous "retrospection formula" exists for
finite particle systems.3"% Given any number of Schrodinger particles
evolving under the influence of a certain fixed interaction potential,
there are manoeuvres with the external field which can force the
system to perform an operation inverse to its natural evolution,

thus recovering its past state, whatever this state was.3" This
operation can be effected with any desired accuracy for each fixed
number of N particles, but it disappears in the thermodynamical limit
N > . These results, besides telling a story about the "resurrection
of finite particle systems" happen to be essential for the general
mobility problem. It turns out that the operations inverse to the
natural evolution occupy a key position among the unitary transforma-
tions. Once they are achievable, all other unitary operations can be
effectively approximated with the help of Trotter formulae.26,3% Ag
a result, the mobility semigroup of Schrodinger's quantum mechanics
of many particles coincides with the unitary group in the correspond-
ing Hilbert space of states. This explains the true origin of the
unitary group in orthodox quantum mechanics: this group would un-
avoidably arise from the very dynamics of the theory, even if no
other arguments concerning the Hilbert space geometry were available.
This also throws some light on the detailed state structure of that
theory. Let me recall the question about the operational sense of
all pure states raised by Lamb.3% 1In agreement with its superposition
principle, quantum mechanics predicts that, given any two state
vectors, any linear combination of them represents a physically
admissible state. However, in quantum mechanical experiments only a
small fraction of these states has been created; for usually one deals
with the eigenstates of energy, momentum, angular momentum, spin, etc.
The question is: are the other states represented in nature, or are
they redundant? As noticed by Lamb the answer involves the dynamics.
By taking adequate external potentials in Schrodinger's evolution
equation, Lamb shows that, starting from a certain initial one-
particle state, any other state can be generated by a sequence of
dynamical operations.3 Hence, any "wave packet" is a physically
realistic state. The same conclusion follows from the results about
mobility.26»3% These results, moreover, yield some insight into the
structure of many particle states, so important for the interpreta-
tional controversies of quantum theory. 3 According to the doctrine,
the states of composite systems are to be constructed by taking the
antisymmetric (or symmetric) tensor products; and it is an essential
question, whether all the elements of the tensor product space are
indeed physically achievable. Again, the answer depends on the
dynamics. If one assumes the validity of the many particle
Schrodinger equation, then every unitary operation in the anti-
symmetric tensor product space can be dynamically achieved3% and
therefore, any tensor-product state can be generated out of any other
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state of the same type. Hence, the structure of states assumed in
many particle quantum mechanics is not accidental. Of course, this
cannot substitute for experimental evidence, such as that based on
Bell's inequality. However, it shows consistency links: one cannot
disbelieve the existence of any particular tensor product state
without disbelieving simultaneously the linear Schrodinger evolution
equation for many particles. Apart from these concrete results, the
mobility theorems suggest some conclusions concerning general
dynamical theories.

1. When trying to gemeralize quantum theory by introducing non-
linearities, one confronts a certain technical problem. The formalism
of the present day theory is so adapted to the existence of the
unitary group that it is hard to imagine any ''quantum theory" in
which this element would be missing. This is the source of a criti-
cism which is often raised: "What about unitarity?". Now, it seems
that the answer to that question can be given. In orthodox quantum
mechanics the unitary group appears because it represents the
dynamical mobility. This indicates that in the non-linear theories
the semigroup G is the right substitute for unitarity.

2. 1In current dynamical theories the phase space is usually
introduced with a certain a priori postulated geometry: it is either
a symplectic manifold or a (projective) Hilbert space or a mathemat-
ically sublimated variant of these structures. The dynamics is
introduced afterwards, on the already prepared ground of the phase
space. This approach, though founded on a good tradition, is not
necessary. The geometry of the phase should not be postulated,
because it follows from the dynamics. This is seen in orthodox
quantum mechanics, where the '""scalar products' arise because they
are invariants of the unitary group. In turn, the unitary group
arises because it represents the dynamical mobility. It is not other-
wise inthe classical theory, where the geometry of the symplectic
manifold, even if not postulated from the beginning, would never-
theless arise from the classical mobility group. This shows that
the geometry of the phase space is not "fundamental"”, but
"dynamical™: it emerges after applying the Klein programme to the
transformation semigroup G acting on the manifold ®. Having this
semigroup, one has to find out whether the manifold ® is a Hilbert
space, a symplectic manifold or any other structure.

3. Similar conclusions concern all other aspects of form.
Thus, given the phase space ® and the semigroup G one can infer some-
thing about the class of functional observables of the theorg; it
should be one of the invariant function subspaces of G on 9. 3,25
In turn, the observables determine the convex set S of all pure and
mixed states, (the statistical figure of the theory?3). Given the
statistical figure, the propositions of quantum logic can be found
as closed faces of S.°
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What one has here is a scheme for physical theories, different
from that of t@e axiomatic approaches. In this scheme the form is
secondary and is to be read off from the dynamics; quite similarly

to the way in which the shape of an animal's bones can be determined
by observing the animal in motion.

. The above link between dynamics and structure might be of
interest for new domains where the dynamics has already been intro-
duced but where the geometry is still missing. To illustrate this,

consider a hypothetical theory of real two-component "wave functions"
in one space dimension:

wl(x, t)

lp i lpz(x’ t) :

As the dynamical equations assume:

NETE 5 ||w g% ¥
ot || v, =1 [l o= |l *VE DN o v, ®)

where Y(x,"t) are arbitrary functions representing the "external
potentials". 1If V(x, t) = 0, the free evolution equations are

;mmediately integrable and allow the class of motion integrals of the
orm:

+co

[ [s) + hwyp]

-0

whe¥e g a?d h are arbitrary functions. However, for the general
motions with V(x, t) # O the only functional still conserved is:

+co
I =k f G+ ax, KeR (8)

Th§refore, (8) becomes the basic functinal of the theory
suggesting the normalization of the pure states and the statistical
interpretation with ;2 + wzz defining the "localization probability".
N?te that the resulting structure is typically quantum mechanical
with ¢; and Yy behaving like the real and imaginary parts of a coaplex
wave packet. This structure, however, would no longer arise in the

case ?E a different dynamics. As an example, consider the non-linear
equations:

o [t ol v, 0 £ || ¥,
3t |1v, -1 ox| v, Gst) —f(¢12) 0 v, (9)
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where the function f is given. Here again the quantities (s) are the
integrals of the free evolution. Now, however, other functionals are
distinguished as the invariants of arbitrary motions :

= 2
IV =k f  [o? + 68,H] ax, (10)

where ¢(u) = J.f(u)du. Were the non-linear waves (?) to represent
the pure states of a hypothetical system, the quantity (10}-and not
(8) would become the basic functional of the theory suggesting t?e
norm and the statistical interpretation. Thus, for example, taking

y-1
£(u) = 3 (r > 0)

one would obtain a dynamical theory whose norm functional would be:
™ i r
T
LW = ol =xf @] +43) ax (11)

and therefore, the pure states would admit a natural represegtatio?
in the normed linear space L' instead of the Hilbert space L2, This
is how the motion determines the form of the theory.

The above example s naive but it illustrates the genesis of the
form as something deduced from the dynamics. This should not be
taken against the status of the form in the physical theo?y. Qn the
contrary, it shows that the problem of form cannot be av01ded'1n
mature dynamical theories. As a matter of fact, the hypothesis that
"logic" might be conditioned by physics was foryula?e? §1most at the
birth of "quantum logic".39 Because of a certain rlgld}ty of the
orthocomplemented lattices it was not pursued later, whlch-led to an
isolation of the "logic" and most probably to some losses in other
domains, which often undertake new dynamical problems but treat th?m
in terms of the old formalism, (this might be one of the difficulties
with "quantization" of non-linear fields). R?cently, however, some
developments were initiated in which the contingent c?aracter of
logic can no longer be ignored. The idea about no?—llnear quanta
has emerged.23s 2% 405 41, 42 7Tpae giructure of-log1? sesgs more
flexible at present,® (see also our dialogue with Plr?n ): A non-
linear variant of quantum field theory with the non—lln?arlty affect—
ing the states has been considered."™ One of the most_lnterestlng
situations exists around the gap between quantum theories and general
relativity.

This gap deserves some comments. Tt reminds me of the opinion
that the fundamental problems of physics belong to the past.
Einstein, Planck, de Broglie, Schrédinger, Heisenberg, D1rac'and
others were happy because they were working in a fortunaFe time when
there were clear inconsistencies within theoretical physics (such as

D
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the failure of Maxwell electrodynamics to be Galileo invariant or
black body radiation). However, according to this criterion, we are
happier today. The gap between quantum Physics and general relativity
is deeper and more evident than just a little inconsistency such as
black body radiation. It is an abyss. Shall we be able to cross it?
Attempts to fill the gap with the already known Hilbert space struc-
ture of quantum theory continue, but have not yet brought a decisive
solution. A basically different attempt has been Proposed by
Penrose"S who assumes that the hypothetical gravitation, like the
macroscopic gravity field, is non-linear and should be represented

by a complex left flat solution of the Einstein equations ("heaven"),
Recently an algebraic theory of "complex heavens" has been developed
by Plebanski and his co-workers .6 However, the statistical
interpretation of "non~linear gravitation" is stil] missing and the
geometry of the theory has not yet emerged. One feels the need for
some more structural elements and it seems doubtful whether they
should be Hilbert Spaces and orthocomplemented lattices. Here, there

18 a challenge for form if we understand it widely enough.

I would like to derive some conclusions from thesge developments,
though they are basically unconcluded. It seems to me now that the
elements of form and motion can be given an almost human sense. We,
who work on foundations, are mostly formalists and we worship form.
Our colleagues working on graphs, scattering amplitudes ete., are
the followers of motion, In the scheme which I Presented, motion is
at the beginning and form emerges later, However, if you dislike
being merely the end of a creation instead of representing its origin,
Please do not treat this scheme literally, Perhaps it is superfluous
to decide what came first, the chicken or the egg? What matters is the
link. I feel we have arrived at the stage when neither the pragmatic
trends nor the foundations can achieve much by developing alone.
Therefore, if I were to propose a pProgram, it would be a Program to
investigate the links. What kind of motions are basically possible?
What forms are associated with them?
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