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The general concept of statistical decision rule be-
longs to the foundations of the modern statistical theo-
ry, see [ﬁ] o Markov maps (of probability distribution
collections Cap GILJ§@> which describe these rules form
an algebraic cetegory [2] ,[3] s With an additional
operation of (tensor) multiplication [4] . This fact
allows to treat many aspects of mathematical statistics
in terms of appeared categorical geometry [5],[6], [4].
In this paper we examine the possibility of such an ap-
proach to the statistical problems of noncommutative pro-
bability theory. A number of our results is new even in
the frame of classical statistics.
1eLet Gjﬁ;);ﬂ) be a mesurable space of elementary
events «C corresponding to an observable random pheno-

menon, and let g Pe, ¢ @ be a family of probability
distributions on (QD;)ﬂ) being a priori possible in

the fram of observation. According to [1| any Wald's
statistical decision rule can be written as a transient
probability distribution [\ (W ;d&) from () onto a
measurable space (A ,j%) of decision OeA . Thus if
we exploit the rule || then our decisions will be dis-
tributed in accordance with the law

Q@:PGH’ QGC’>:AP@(JL0> [—](L,J)v) (1)

The observer does not know the true distribution [ which
completely describes the observed random phenomenon . He

knows only that P belongs to the family ;Pe B¢ 7.
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288 NONCOMMUTATIVE PROBABILITY THEORY

Consequently, all a priori conclusions about a quality
of decision rule [| are based on the properties of
the family {Peﬂﬂ;. | o
g q A 5 () (D) pW

Definition I. Iwo families ;19 } on CIZ )(ﬂ ),
i=1,2, parametrized by the common parameter fel are
equivalent providing that for any decision space(ﬁ,iz)
and any rule f}“)goto)oléj) , i= 1,2, there exists
a rule HLJ)(LJ D,d8) , j= 2 when i = I, and j=I
when i =2, such that

() A0 _ ~u) () (1.2)
E@ n ‘&6 Yo n
The statistical decision rules form a category so
that a composition of two decision rules is againg

such a rule. Hence it is easy to prove the result going
back to D.Blackwell [7] : |

Theorem I.I. Two families {Pe“’) e @1 , i=1,2,
with a common parameter space (@ are equivalent in the
statistical inference theory iff they are congruent in
the categoric geometry, {‘P8(4>}/w‘59é2)} , i.e. pro-
viding there exist such morphisms |1]'* ana LWU* that

(4)

kR (2) (2) (1)
A B A Luu“t’a( , ¥9e@ (1.3

e

Thus we treat probability distribution families as
oarametrized figures and study the geometry (i.e. the
invariant properties) of those under the category of
Markov maps. The geometry is transitive: one can markov-
ly transfer any "point" P into any another one Q .
Sets with at lea®t two"points have non-trivial invari-
antse.

Definition 2. A real function 4 defined on all ob-
ject squares will be called an invariant provided

{(R,?z) fv((li,@ﬂ B Z(g(g)?z}:jc(&j)@zﬂ (1.4)

for all congruent couples, and § will be called a mo-
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notone invariant if always
$(P, B) = f(pw, 1) (1.5)

Every monotone invariant is evidently an ivariant in
the sense of (1.4)e Invariants of more rich families
are defined in a similar way. The following results
concerning invariant metrics on collections Cap (LQ)ﬁ)
we have obtained in [5] .

Theorem 1.2 If a Markov monotonically invariant mat-
ric € is positive homogeneous, i.e.

{Tﬁ ~Q, =P8 =9, ,)- W 82, a0 (1.6)

then

o(®, @)=y () \P-al (1.7

where (g) is a constant, Q’P - &\ is the variation of
difference.

Let us point out that in the discrete case, i.e. when
algebra ﬂ is generated by atoms AK ( k=1425000),and

IP(AK_)-’PL ’ Q(AJ =9, , we have
P-al= 2 |p.-q.| (1.8)

Theorem 1.3 If a Markov monotonically invariant met-
ric € is a Riemannian one, then

S(P,Q)=p(p) 3(P,Q), (1.9)

where}%[?) is a constant, S (P) Q) is the Bhattacharyya
distance generated by Fisher quadratic form;

S(P,Q):acuw% o JPT% )ng:Z[ole)z/Pb (1+10)
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In this paper we consider the possible generalizations
of theorems 1.2 and 1.3 as well as the validity of
generalizations of the following statements.

Theorem 1.4. If a metric € is monotone invariant
under Markov map category, then

S(p,0) > #9(R(L)RE) le-al, (1.11)

where TZ(%) and Tl(%) are probability distributions
on two-atom'algebra;jl(%):gtf Tl=%}jT¥(%)3g7,:%’7L:%3v

Theorem 1e5. If {(P,Q) is a Markov monotone in-
variant, then there exist a monotone real function 3(x)
omPR" , §(c)=0 , and a constant C such that

L(P,Q) > c+3(ﬂ?—&l) (1.12)

If in addition SL'”qu Qt=>{f(P,® +5(PPY, then
g (x) >0 V¥ x=>0o

Two last theorems are new.

2. Random phenomena in mycrophysics cannot be descri-
bed by the schemes of classical (or commutative as it
is said now) probability theory because the logic of
quantum events is non-Aristotelian. The following al-
gebraic scheme has proved to be the most convenient
method to assign an object of noncommutative theory. An
injective von Neumann algebra &éy of bounded linear ope-
rators acting on a Hilbert space . is assumed to be
given, in particular, the algebra B (H) of all such
operators. Algebra & is (in general) a noncommutative
generalization of classic (commutative) algebra of all
bounded measurable functions on the space of elementary
events. Hermitian elements of algebra &> are called
(bounded) observables. The probability state of the ob-
ject is given by a nonnegative normed normal (i.e. ult-
ra weak continuous, or, that is the same, monotonically
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v , H
continuous) linear functional & on ;397@ uié'*>ﬁ29

being an analogue of the mathematical expectation (i.e.
mean value) induced by probability measure, see [8],Eﬂ.
The collection C?(gj;) of all object states ¢ is a
convex closed set in the pre-dual space ng (Séi) =6,

All the Hermitian idempotents € of algebra /> are or-
thoprojectors on corresponding (closed) subspaces
E oM of the space -/ « By the analogy with the com-
mutative case, where the idempotents are indicators of
measurable sets of the elementary event space, these
subspaces are called events (as well as “"yes-no" -
experiments). Evidently the classical scheme is"a speci-
al case of noncommutative one,Eé’ being the commutati-
ve algebra of all bounded measurable functions on ele-
mentary event spacee.

Definition 3. Any affine map

n:&(H) = &%)

will be called Markov according to the natural analogy
with the classical case.

A map [] may be extended by linearity to a positive
monotone continuous linear map of pre-dual spaces )of
charges), f]fSé?k‘->.Q§2* . The conjugate map

n*: ;ékH - ;é%L‘ is R -linear, positive, normal (i.e.
monotonically continuous) and normed. It is uniquely ex-
tended to a € -linear map ;Zi —>;§ e To simplify the
notations we do not distinguish between [1 eanda []*
writing [1 on the right side of a state and on the left
side of a observable. It is easy to see that the system
of all Markov maps of all collections Gf(}f%) forms an
algebraic category in the sense of Eilenberg and Mac-
Lane [10] . First of all, the identity map of any ob-
ject is evidently a Markov one. Secondly, the composi-
tion (successive realization) of two Markov maps is
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again a Markov one. Thirdly, this operation is associa-
tive because of being a map compositione. The mentioned
system will be below called the broad llarkov categorye.

It is possible to define a tensor multiplication of
algebras ~&~ as well as of their pre-dual spaces. Sti-
nespring[li]has shown that the induced tensor products
of broadly Markovian maps need not to be positive and,
in particular, Markov. He has extracted the completely
positive map system being closed under operation of
tensor multiplicatione.

Definition 4. A linear map (1;;61;~>:£q is called
completely positive providing all the maps []| & <,
are positive,

Meidy > 0 ¥ veN, (2.1)

where 2¢, is the identity endomorphism of B(He ) |
Cé«m %Z:Z'

The completely positive Markov maps form also a cate=-
gorye The latter will be called the restricted Markov
categorye. Specifically, the result of interaction bet-
ween the gquantum particle and particles of a random me-
dia is described by a completely positive Markov mape.
Further Stinespring [11] found that all Markov maps in-
to a commutative von Neumann algebra as well as those
from such algebra are completely positive. The latters
describe acts of (classic) measurement of some numeri-
cal-valued physical characteristics [12] . This Stines-
pring's result is based on the well-known theorem of
Naimark [43] stating that any Hermitian resolution of
identity operator is extendable up to an orthogonal ones

Thus, by the scheme of definition 1 in noncommutative
theory there appear the two geometrical equivalence of
families being called the broad and the restricted ones.
Moreover, the scheme of definition 1 allows us to intro-
duce the family equivalence with respect to measurements.
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By analogies with theorem l.1 it is easy to show for
these equivalence the following chain of implications:

Erestricted} => {broad} = ;measurfmg} . (2.2)

It i1s of interest to consider the maximal Markovly
congruent families.
Theorem 2.1le If the congruence of families {{D .

e ® }c G(&:) ,i=1,2, is realized by comple-
tely positive Markov maps [(]'* and | .|?' then

(ﬁ )LL(U 6)(9})32@5(?) Be O} 24212 (2.3)

where (ZGZ'IC »EL‘ y 1 =1, 2, are some injective von
Neumann subalgebrase.

A similar proposition holds for broad iMarkov congruen-
ces The proof follows immediately from the ergodic theo-—
rem for Markov endomorphisms, [14], [’15] see aiso \_16]
(7]

2« For convenience we consider in the paper separable
Hilbert spaces only. Moreover, by injectivity of al-
gebras L we may consider nothing but the total algeb-
ras ob (#)and @ (E(H)) :6)(7() .Hence to describe the
observables, the states, and the Markov maps, the matrix
notations may be used, [18] 19J For that purpose one
must fixe some orthonormal basis in # .Then the obser—
vables A and the states ? will be described respecti-
vely by Hermitian matrices [ a) and by positive mat-
rices (kf ) with the unit trace. In the case of obser-
vables the superscripts and subscripts are written on
the left of the letter to distinguish then from states.

To describe a Markow map (]:@& (J@‘“) “‘?Q) (%(2))

1)
one must construct the bases of Z/ ’ a H® ,Phere
is a possibility of the initial basis and the final one
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r ) Ay 2)
being taken distinct even if H 7 JZ’/

Lemma 3.l. The properties of four-valent (unitary)
tensor (;(4[£’) describing a Markov map

L1/ féf(?z(ﬁv *76?(3¥‘%C) are the followings:

£ 0/ — ¢ ;
(/LZLLC T, (224 K / \‘/de, K/ZI (3'1)

Lry,y LI Z/ 7“»4 ) ‘? DY (3.2)

= S, *
2E 78? o e (3+3)
VES ET ) (E o N ") 6B )

Here 5%’ is the Kronecker symbol, éi is the complex

conjugate of é; and the summation is taken over coin-
ciding upper and lower indices (i.e. superscript and
subscript) or over coinciding left and right ones. The
correct sense of summation in the case of dim W= e
is stated in [19] . The conditions (3.1) - (3.3) imply
respectively the Hermitian property, the positivity,and
the trace preservation. Now let us show how the Stines-
pring's construction is simplified in finitedimensional
theorye.

Lemma %.2. A matrix [ u, ) of any completely positi-
ve lMarkov map satisfies the conditions (3.1), (%.2) and

= gé-é ;,7' ;weé >0, (3e4)

VOZ S (B Se)
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The condition (3.4) is stéronger that (3e3),

8 3e%e A matrix lé(/ of any completely positi-
ve Markov map permits [20] the decompositions of form

(i Z“) 2’19, i, (9), (3.5)
g 0s)= e (S) ¥ b, 5.
Corollg_z;z The composition of completely positive Mar
kov maps is again such a mape
Proof. The condition (3.4) allows to regard the ten-
sor[ me{zj as a matrix of positive Hermitian operator
on a space % )Z/,v o The positivity of this matrix
implies (3.5). Further', any positive trace-class opera-
tor matrix is also decomposable in the sum of the form
(g‘f g ) . The (|| ® :d, image of such a tensor is
pos:Lt:Lve in virtue of

Nu 'z < b Patt ke
ZJ L /‘g g/?, 7'{} (} Zl}-e ; ?C'(‘Zr a v a-=
— D 2
{Z_fzfp‘ﬂg‘ "Da,/ 20,
Finally, the matrix ([§ s 4 7/) of some special posi-
tive Hermitian operator on ,,qm ® ,7(,,, is mapped by a

matrix of /J/ © i/, int<’>< a matrix /716" of operator
(a

on:?'/ @y,where%;g—, %Cg,*/kf;ﬂz «The

positivity of ( impl:.es (3el4)e In addition,it

should be pomted out that the Kraus decomposition (3.5)
is correct in a denumerable case tooe.

4. Any R -linear combination of two states of an ob-
ject belongs to a Hermitian part of its pre-dual space,

R~ AWG)(J/}:Q;:} , and is described by the
trace-class operator.

Definition 5. The positive part [ (*) and the negative
part [ (7) of an operator & ,ﬁ:’ are described by
spectral decompositions:

Ty Bl TSI e (4e1)
JK>O
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o= -2 £
<0

[

The values

LT @ > TR TN =2, @
A

— [+ -
where |I'|= |Z( )r‘ +T,L( )" will be respectively called
the positive variation, the negative and the total oneses

Decompositions ['= re_ o) and gfé__(gm@ e,
: 5 ) s ( _
where EG) = 7 E.,, E-' =) EK) &(*—): E(USZC
&>©C Ju&e )

é’('): E(‘5{7€ , we shall call the forks.
Lemma 4.1. Positive and negative variations of [c¢ 2.

are monotone invariant under the broad Markov categorye
Any {"GL*H is congruent to the cahrge F'n? on two-

atom measured space Lﬂ, = f‘»’; , W, })
7 N (+) ul Ui (")
\u}(“i) 2 s lﬂ, lu;}(wz)-"!z [ (4e3)

Corolarye. Iz | and [ | form a complete sys=—
tem of invariants of ['¢ 75,  under both both the Mar-

kov categories.

Proof. There are bases of .7//1) and of (7({1“) formed
by eigenvectors of F , respectively, of /U « Then in
appeared matrix representation the connection between
matrix elements of [ and of [/l ie reduced to that
between the diagonal elements only.Hence, we are led to
a classical, see [5], lemma 549

An application of this results to the linear combina-
tion of state operators 4 - Z ¢ gives us two famili-

r(I)(%) - te (-7 @M{) /”'m(z)»f(_)/z)—-f-z,i‘é@)(4’4)
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of monotone invariants of the couple (95) 771’). Each them
forms a complete system of invariants when ¢ and %"
are (operatorly) commuting. For ¢  and ¥" being commu-
ting it is necessary and, may be, sufficient that

o e ; y
[(¥-2,8)-2,¢]"-) (o)) Ve, 8 20

When_¢ ana 7" are commuting

Lf(VE Vo) |- [ e ae ) (F e e
! - -1 m* -1
e ({6 -6 B)]- [ dx [zl e

In the general case the transparent system of invari-
ants and the generalizations of the formulas (4.5) and
(4.6) are not known yete.

5 The axioms of a metric space are the following:
1°0(x,4)20 5 2° Q(xY)=0=> =2 » 3°§xY=5(3,%)
wo §(2,%) 2 €(2,4)+ ¢y, %)  + If the function O(x3)
doesn't satisfy the axiom 2° it is called a pseudomet-
rice We shall consider the fiore exotic case of asymmetri-
cal distance © , when sxiom 3  is not fulfilled, and
the inequality 4° takes place with just given order of
“"points'e.

Theorem 5.1. If the metric &P, %) given on all the
objects@?(gg%)is a monotone invariant under the res-
tricted Markov category, the

S(B,Y) > F(RE)RG) 19-¥, (501)

where /(P—"ff/_is the potal variation (trace norm) of the
difference ¢ - %5) R(6)is a probability distribution on
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the twoatom measurable spaces

73/69)"/?/0,;9)=27/@):@)73/“/;157/-'?4/@/-‘/'@/ (5.2)

Remarke. If a distance ¢ 1is asymmetric, the
A8 Y)> £ 8- %] mofS(R 1), RE), G03), R,

_ ) ) o
Proff. Let o/ = @ & be the fork of ¢ for the
trace-class operator @-%‘-" « The restriction of sta-
tes on the measurable space _Q:fgml g("] is a

completely positive larkov map. Hence, g’(@}yﬂ)zf@j/%&l)
b 3 xd

and { ﬁé‘ 27U‘/= 'fﬁw/ = ?ffw// according to lemma 4.1. Con=
sequently, it is sufficient to prove the theorem in the
case when  and % are the probability distributions
on a two-agom measured space. Any probability distribu-
tion on the latter is of the form (5.2), 0< P/ ,
where P is a probability of the first atom, and

[RC8) - (&) =2 |e-¢é]. (5+3)
u " . )

Any Markov endomorphism of the collection / 78/(;))

0 ¢ P</ f is described by an affine endomorphism
of the segment f@s 0 « @é./f

Lemma 5.2. If < @, ¢ B < &' <& <7 , then the Mar-
kov endomorphism [] of collection [ﬁ[@/f , Which maps
the distributions R/ into R/& ") , 1 31,2, is
given by the matrix
/ (7’91/‘(/’ &2,/)'(7’52)(7'62/) (7’@}&;’(7'93)5‘71/

_

E-C | 8,(1-6')-6,0-8)) 6,665
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Corollaxry. If —/—’(Lﬁ/ %Lrj is a monotone invariant under
the restricted Markov category then 7[(,@/57// RA) >

> f(p/@/}/ Q/@L/// under the lemma's conditions.
Lemua 5.3. Let us construct the points &), =€, 2~ and

the powers of the matrix

4 -9 (’}/“ -g" o .
(0 '\/Z__{_/) . p ),\,‘/_U ) (55)

1
where 0 ¢ (. </, c<%z( . The powers [l/"of the Markov
endomorphism [/ associated with matrix (5.5) maps the
collection }R[&’)f by the rule R(@K)Lu"zg(@km) .In

addition

IR(B,.,)-R(8)] =9 " [R(&)-R (b)) (5.6)

This lemmas are proved by easy calculationse. Let us
return to the proof of the theorem and denote

Peat = R(P1) ) Yoot =R(B.), 8y = ma J. 2, 1-2, 18] Without
loss of generality, it is possible to assume &, =/°7 N
Otherwise, we shall renumber the events (renumeration
generates the invertible lMarkov map of distributions)
or renumerate the indices. lMoreover, if /b7 =2 the ine-
quality (5¢1) is trivially filfilled. This, we can sug-
gest @0:/"7 >2/->/2 . Let us denote %:/i /3'14_1 and
construct the points 6, = c’%;z L E=4, Y , Where

. / K <
9))_/>2/é N @yé.-z// sy SO that %:@l @9 >,.7L)

k=0 .., V-4 -By the monotone invariance of ¢ ,
the triangle inequality, corollary from lemma 5.2, and
the equalities (5.6) we have

VO ot |, Fret) 2 §(RE),RE) -+ R(B,,), R(6:)>
> e(ROB.),R(8) > ¢(R(Z), R(Z),
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Y /ﬁtvc'/" V"w// S& /(;“‘ 9’/%“#27;\#//@'
< ?/@‘, - @1//

We are to divide the first inequality by the second one
for (5e1) to be established in the case under considera-
tion, QeHeDe

For an asymmetric distance it is possible that CQ /’73
Then one must ‘construct the points (9 =f, % 7, = /’7,

6. Let us study the structure of natural loss function
in the problem of state estimating. It is assumed that
the function /. is defined on all the squares of ob-
jects 6)(;5/), is positive

L(@,@) :Oo ¢#¥n=>044(¢)¥04_400) (6.1)

and is monotonic under the restricted Markov categorys:

L(Eﬁﬂa 7-,L”/7) Z l (95) 2#) (642)

First of all let us consider the values of [_ on the
probability distributions on two-atom measurable space,
see (5.2)

Clzy)= L(R(>), R(3). (6:3)

Lemma 6.1 The function (/2,;) defined on the square
OALZ, Y 2/ vanishes on the diagonal *:=7% and is stron-
gly positive outsidee. The function

f(z)=cf €(ny) (68)

1322

is monotonic and strongly positive for all Z>c¢, f/c)-p
Proof. The first statements follow from (6e1)e The
monotonicity of 7[ is implied by the definition (6e4)e
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Let us consider the subset (7(%) - f(z',;/ H /Jc—;/ 2,
o<cx, g = 1} o« It is compact. Hence, for any Z the-
re exists a convergent sequence, (*X.,7.) —> (* . %")€dz

Lim €(*%,,3,) = #(2) » T the case x*f;* let us
take a segment /Z,,Y,/ such that ¥ < x, “y ez”
Then [#c,3,] </[*», -] for all 4:r. . Hence, by the
corollary from lemma 5.2, @(k;,yp/ £z, ) for allh>n,,
and Oég(fa,;,,) £ f/Z) « In the case x“>g* one must
consider the segments of the form /7%, x7/ »

Theorem 6.2. If the function /. defined on all the
squares of objects 6’@6) satisfies the conditions (6.1)
and (6e2), then

LY )= £018-%1)

where the function #/) defined by (6.3) is monotonic
and strongly positive for all £>0/ Fflc)=0
Proof. By the monotony of /  and lemma 4.1 applied to

the difference (’g’a-??ujé ,,7;*” we have A(ﬁ,?’p)z
2L P, Hoad )2 F1F et - Yol = $(15-27),

where the middle inequality follows from (6e4)e QeEeDe

If the monotone invariant F('Q, %) satisfies the
condition: @ # Y= ,:(_(p) ¥) # F(®,$) instead of (5.1),
then F(f, X)) =e + £()P-ysy) o+ Where ¢= F@@)—F(}q 3&
and the function 7[ is constructed accordingly to (6.4)
tor L($,%)- F(B%)c

7« Every invariant Riemmanian metric and its equivari-
eant differential quadratic form are of great importance
because the latter allows the corresponding information
inequality to be writtem out, see [12] .

Let us fixe some eigenbasis of state trace-class ope-
rator ¢ - © X 1In this basis § will be des-
cribed by diagonal matrix diag (] P, P>, .. ) wWhere p :z‘a‘é
are the corresponding eigenvaluese. A differential o b

(6¢5)
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will be described in the basis by the trace zero Hermi-
tian matrix

C’/P@L:CE:“/:?;; ipait)

whereg (respe. b ) is the real (resp.the imaginary)
part of differential, the symbol d being omitted for
the convenience of writinge There are relations

(tng Eeroepl ok I e (742)
Ce T =0,V g3 0. &, =0,

Thus, a complete system of real linear coordinates in a
tengent space of (5 is formed by the variables Z¢ end
. with k<¢ , and the variables & without one
of the latters. But a desired quadratic form is prefer-

red to be written out by means of all the variables £,

comp. [5], and with the coefficients 2w (9), U($), w ()
of polar bilinear forms:

- D, ;the +2Z_3;,‘el’§;&k +Zwa;&_c?:!

Any unitary transformation S of e% generates the

completely positive Markov map [[l¢ @(%)9 6‘(02_/ ac-
ting by formula

= ¥ s ¥ o

@UJ‘S:QS'?\S‘ 9(4%6) "(S't)'gej (7'4‘)
These simplest maps [L/; are evidently invertible, and
é’V@UJ\g for all Pe .

Lemma 7.1+ If the differential quadratic form (7e3)
is unitary equivariant, Q¢ﬁ/f}=QSPS¢(JS§jy;

)
- Qs(d %) , then it must be identically equal to
the sum

(7+3)
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2o 2 ul, [ (Y], (7.5)

Proof. Let us consider the symmetry S ot K being
the reflection in the first axis Y, k- « A map
changes the sign of all elements of the first row and

of the first column without the diagonal elements ;;

A
andf, o AS

(8,d%) ~(Blll; o iury, L

Qo) = Q5 A B) 40 s(4 %) Qg (4D
The form (7.3) differs from that of (R g (/%) in signs
of terms being indexed by 4 once or three times. In
the halfsum of () sand (9 this terms amnnihilate while
the other ones are preserved . Beiterating such an ope-

ration at = 245y see leads us to equivalent forms:

Qg 18) = Z a5 (51T 2 )8 s

(7.6)

FIZWL(E e e 2 e,

T zuiG))”

where the summation is taken as in (7.5).

Now let us consider the rotation of the first axis
Z(')} ., , onto itself induced by multiplying of f ¢/
by [_1) 72 o It can be prolonged up to the unitary trans-
formation S leaving the orthocompement @f(’) to

be fixed. Then - Ps* &, .8 Z;e?) ,g&’g *_ -2}

at € +1 while the other variables will remain
fixed. Producing the half- sum of & and R” we anni-
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hllate the terms with and join the summands
6 Z

G& (76) o Further, if we assume all ? ({d

except ;4 , then the invariance of A will imply

/z,(,;; = ZJ;&{ , and so for all ¢ . Reiterating such

an operation at £ = 2,3,ess will lead us to the form

(7+6)e
Theorem 7.2. If a differential guadratic form 6295(49)

is equivariant under the restricted Markov category,

Qf;[/f)z Qew (A [l]) , then it must be identically
equal to the form

As(d%)- 0%5%/-1@%72+2%6//3,/2)/42@’/) (7.7

where C[l;) is a real function in the domain f[z,g) :
04X,y 2ty <15 and ¢c/%, %)= clpr) cmE)= cx”
Proof. In the commutative theory a Markov equivariant

field of differential quadratic forms is proved to be
unique up to a scalar factor. Hence, by (1.10) 4?;‘; =&

when Ul'i £ , and %4é = c//o‘)" .Thus, the first
two sumsof (7.5) reduce th the first sum in (7.7). Now,
let us construct two Markov maps connected with some
state @ and with von Neumenn algebra oz z:g'/éZOJ

(4)
® <L J@ C Z(d/ and Q’( ) being eigenaxes
of ? ///  maps the collection 6’(%) onto
Gi),( 15(0?2,1) by the rule 2%C//)-[@® ¥

I =(€j +E4 ) Y(E;+Eg) J‘:j—'%z{i‘f;, 3‘2"_ (7.8)
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M maps 6;,1 into @)(D’ZZ) by the rule
(Foy )K=t (H-E-EJF @9

By the criterion (3.4) /// and M are easily proved
to be completely positive. Further, the maps Z./ and K
are reciprocal on the operator and the differential

a/? = }2 Hence,
(P.&Z) (B, 3110, J(D)-1-p -, 2t (§)-
= UL (Pll)= 2l (PR) =c(Pup)

In the case P =P, any rotation Gl of the plane
W ooet)? 1 *
;/ ® v 4 leaving fixed its orthocomplement does
not change the operator @,GCPG = P When a ro-

tation G reduce the tensor Qi‘i )?z.) to the principi-
al axes (their angles of inclination being J7/4 ),cép

is n;apped iz:lto oéf—fsdr* =(§'j.l ;éi) , where
3= B, (37 (3= () (5)) + men

c(/:, P)= c~/9" by invariance of <15 +QeEeD,
Lemma 7.%. When a Markovly equivariant differential
quadratic form @95 is weakly continuous in ¢ , the

function ¢(z, 7) of its decomposition (7.7) is positi-
vely homegeneous in degree - 13

c(z’y) ",)‘C(ﬂx)’ly) s vq 049‘ z [x-;-?)‘z (7010)

Proof. Let us consider the Markov maps of multiplying

M. : 6’(‘%) ——>6)(£f @%ﬁ%hy acting by the rule
Y Y, g (7.11)

where ﬂh is an identity operator on #, , dim %, -

On the image G)(oﬁ/ /], + it may be invered by parti-

al trace operation 7, .Hence, (g/f} N(ﬁﬁ)d ﬁ[])
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. . / -1 [T 4
The congruency implies c/x/?j:;z,c(x/}z A ) =
._\;c(w'j?q,-y. If 4 is rational, A =p. 4%
(7+10) follows from the second equality, z=2" h,")

’;L =y'- nt . By the presupposed continuity (7.10)
is valid for all A .

Theorem 7.4. Any equivariant weakly continuous dif-
ferential quadratic form satisfies the information addi-
tivity principles

A g ?:L“(Gz[ﬁﬁ‘)yf]} - Qe )+ Quefd¥45) 712

Proof. Let us fix the eigenbases _of @ and.)zLr «Then
there are matrix representations P = diag/p., Pry- ),

%Lf’ -_diag;( ) . Their tensor (Kronecker) product
Yi, e
is diagonal, and the matrix of differential & (P® %#)-

- ¢®a{2ﬂ’”{¢@%}f is sparce. So.
QUALPOL) D () [pid # 1 0 1]%

o2 o SRt w2 el r sy Ay
G4 ¢ e

- Zu) (0D 2 A )
r2Z e ge) W ) 2 Z g ) M

where the rule (7.10) and the equalities

Jp =gt ZdY s Zd w0
have been used.

8. When a Eiemann metric defined by form & is not on-
ly invariant but also monotone under Markov category,
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the bounds of the coefficient c‘/z,g.) in (7.7, can be
given.
Lemma 8.1 If a Riemann metric S’ is monotone, then

cl(z,3)> @*c(B2,0y) ¥ 8 0c <L (8.1)

Corollary. Under condition of the lemma the homogeni-
ty property (7.10) is valid without the weak continuity
assumption.

To prove the statements we'll construct the complete-
ly positive Markov endomorphism //J of collection

CS>2,{ _‘@)(aZ/Wa)@C) by the rule

<175UJ = @(EI+E2/) ?(E{’Ez) ?(4—67)E39—7E3)
where ¢ diag[fx,g) 1-=-%), Pl = diag/ &%, by,

1-BOx - @3), The detail calculation is omitted.

In view of homogenity (7.1), let us study the boundary
behaviour of ¢(Z, %) i.e. when z+g:.(, 7:1—2:_‘

Theorem 8.2+ If a Kiemannian metric § is monotone un-
der restricted Markov category, then

Cl$:2)ciara) e [yutrz)] c(t.F); (8D

(8e2)

clx,12) 2 21 E), 7 =% £ (844)
(2 r-2)dn 2 (1-%) dc (%, 1- %), (8.5)

where in (8.5) the right differential is takeRH.

To prove these inequalities some irreversible Markov
endomorphisms of é/% ) have been constructed.The dimen-
sion of their tensors meskes it impossible to write them
out here.

As the collections 6(&) are convex, it is possible
to consider the quadratic form values of finite diffe-
rences. For the classic Fisher information, ard, con-
sequently for the couples of commuting operator ¢ and
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difference A ¢ we have

Q@@y_r(d [95®?1m]) =&¢/4-¢) 4'@%#"(4%74'
tQRp(8P) Quu(a¥).

A form Q satisfies (8.6) in a general case of non-
commuting couples provided ¢ (/944,;/@') fc/qu/u) =

(8.6)

=2 C{F»?’) c[u,ZJj everywhere in the domain of admissib-
le values of the arguments. This functional equation is
satisfied by the functions c/u, )=/ wy G r™]

X (u ,,5)'% Ot L When -7/ TreSPe /=
) VRS Z 7z 0 o1

then @ gs(ﬂlp): ¢ .T,z[¢"(,4 55)"] ,TESDe
Qp(AP)=cTo[(A B)PUE)P "] | secle 2].

9. The statistical problem of estimation of unknown
probability distribution P on E :/x.-pe sc+¢f Dby means
of independent P -distributed observations without ad-
ditional a priori information about P is proved by us

23 to be incorrect if the error of estimate P*\ is me-=
asured by the variance |[P¥ - PI .Being the special
cases of theorems 5.1 and 6.2, and, in their turn, the
far generalizations of results [24] ,[25] , the theorems
1.4 and 1.5 implies this statistical point estimation
problem to be incorrect whether a Markovly invariant
measuring of estimation error is made by a metric or
by a loss function.
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