190

1986

ANNA MUSIELAK

A NOTE ON LORENTZ SPACES WITH ORLICZ-TYPE METRICS

There are considered some generalizations of Orlicz spaces with Orlicz metrics generated by φ — functions depending on a parameter.

Key words: measure preserving function, a monotone rearrangement of a measurable function, Lorentz space, Orlicz space, modular, Luxemburg norm, φ – function with a parameter, φ – function.

The theory of spaces L^p was generalized by G.G. Lorentz ([4]) to a more general case of spaces (see also [1], 1.3, 1.7, and [3], p. 145). B. Kotkowski ([2]) considered also Lorentz-Orlicz space with a concave function. In this paper there will be investigated some other generalizations of Lorentz space with Orlicz metrics generated by a φ -function depending on parameter.

Definition 1. Let $\varphi: [0,\infty) \times [0,\infty) \to [0,\infty)$ be a φ -function depending on parameter, i.e.

- 1. φ (t,u) is a nondecreasing, leftcontinuous function of u, with φ (t,0) = 0, φ (t,u) > 0 for u > 0, φ (t,u) $\to 0$ as $u \to \infty$ for a.e. $t \in [0,\infty)$.
- 2. $\varphi(t,u)$ is Lebesgue-measurable with respect to t for every $u \ge 0$.

Let μ be a δ -additive measure on $[0,\infty)$, and let us denote by x^* the monotone rearrangement of a function x with respect to the measure μ (see [2], p. 871, compare also [3], p. 83). Then from the assumtions of Definition 1 it follows that $\varphi(t,x^*(t))$ is measurable. Let us consider for an arbitrary μ -measurable function x on $[0,\infty)$ the functionals

$$\begin{split} \eta_{\varphi,\mu}\left(\mathbf{x}\right) &= \int\limits_{0}^{\infty} \varphi\left(\mathbf{t},\mathbf{x}^{*}(\mathbf{t})\right) \, \mathrm{d}\mathbf{t}, \\ \|\mathbf{x}\|_{\Lambda_{\varphi,\mu}} &= \inf \left\{ \epsilon > 0 \colon \eta_{\varphi,\mu}\left(\frac{\mathbf{x}}{\epsilon}\right) \leqslant \epsilon \right\} \\ \Lambda_{\varphi,\mu} &= \left\{ \mathbf{x} \colon \exists \quad \lambda > 0 \quad \eta_{\varphi,\mu}\left(\lambda\mathbf{x}\right) < \infty \right\}, \\ \Lambda_{\varphi,\mu}^{*} &= \left\{ \mathbf{x} \colon \quad \forall \; \lambda > 0 \quad \eta_{\varphi,\mu}\left(\lambda\mathbf{x}\right) < \infty \right\}, \end{split}$$

and sets

$$\Lambda_{\varphi,\mu}^{0} = \left\{ x: \quad \eta_{\varphi,\mu}(x) < \infty \right\}.$$

In the case of Lebesgue measure m = μ , we shall write $\eta_{\varphi} = \eta_{\varphi,\mu}$

$$= \parallel \parallel_{\Lambda_{\varphi,\mu}}, \quad \Lambda_{\varphi} = \Lambda_{\varphi,\mu}, \quad \Lambda_{\varphi}^* = \Lambda_{\varphi,\mu}^*, \quad \Lambda_{\varphi}^0 = \Lambda_{\varphi,\mu}^0 \; .$$

Let us remark that taking $\varphi(t,u)=t^{r/p-1}u^r$ where $p\geqslant 1$, $r\geqslant 1$, sets Λ_{φ} , Λ_{φ}^* , Λ_{φ}^o are all equal to Lorentz spaces $L_{p,r}$ and $\| \|_{\Lambda_{\varphi}}$ is equivalent to the norm $\| \|_{p,r}$ in $L_{p,r}$ ([1], 1.3).

In general $\eta_{\varphi,\mu}$, $\| \ \|_{\Lambda_{\varphi,\mu}}$ do not need to be a modular and an F-norm.

As an example we may take $\mu = m$, $\varphi(t,u) = e^t u$. Let $A, B \subset [0, \infty)$ be disjoint sets of Lebesgue measure ln5, $x = \chi_A$, $y = \chi_B$ – characteristic functions of the sets A, B, respectively. Then

$$\eta_{\varphi}(\frac{1}{3} + \frac{2}{3}y) > \eta_{\varphi}(x) + \eta_{\varphi}(y) \quad \text{and} \quad \|x + y\|_{\Lambda_{\varphi}} > \|x\|_{\Lambda_{\varphi}} + \|y\|_{\Lambda_{\varphi}}$$

Lemma 1. Let φ be a leftcontinuous φ -function without parameter, i.e. φ (t, u) = $= \varphi$ (u) and let ψ (u) = $\inf \{ s \ge 0 : \varphi(s) > u \}$. Then ψ (u) < t if and only if $u < \varphi(t)$.

Proof. Since $\lim_{s\to\infty} \varphi(s) = \infty$, so $\psi(u) < \infty$. Moreover,

$$(1) \qquad (\psi(u), \infty) \subset \left\{ s \geqslant 0: \quad \varphi(s) > u \right\} \subset [\psi(u), \infty).$$

Then $\psi(u) < t \Rightarrow t \in \{ s \ge 0 : \varphi(s) > u \} \Rightarrow \varphi(t) > u.$

By (1) and the definition of ψ ,

$$\varphi(t) > u \Rightarrow \exists_{\epsilon > 0} \varphi(t - \epsilon) > u \Rightarrow t - \epsilon \in \{s \ge 0: \varphi(s) > u\} \Rightarrow t - \epsilon \ge \psi(u) \Rightarrow t > \psi(u) \text{ for } t > 0.$$

For t = 0 and $u \ge 0$ the implication is true.

Lemma 2. If φ is a leftcontinuous φ -function without parameter then $\varphi(x^*(t)) = [\varphi \mid x(t)]^*$.

4 *Proof.* By Lemma 1, we obtain for a function $\psi(u) = \inf \{ s > 0 : \varphi(s) > u \}$

(1)
$$\varphi(|\mathbf{x}(\mathbf{s})|) > \mathbf{u} \Leftrightarrow \psi(\mathbf{u}) < |\mathbf{x}(\mathbf{s})|$$

and

(2)
$$\psi(\mathbf{u}) < \mathbf{x}^*(\mathbf{s}) \Leftrightarrow \mathbf{u} < \varphi(\mathbf{x}^*(\mathbf{s})).$$

There holds also

$$p(x,t) > s$$
 $x^*(s) > t$, where $p(x,t) = \mu \{ s > 0 : |x(s)| > t \}$.

Hence for $t = \psi(u)$ we obtain

(3)
$$p(x, \psi(u)) > s \Leftrightarrow x^*(s) > \psi(u).$$

By definition, we have, applying (1) and denoting by • the composition operator,

(4)
$$p(\varphi \circ |x|, u) = \mu \{s > 0: |\varphi| |x(s)| > u \} = \mu \{s > 0: |x(s)| > \psi(u) \} = p(x, \psi(u)).$$

Next, by (4), (3) and (2), we get

$$\begin{split} & [\varphi(|x(s)|]^* = \sup \big\{ u \geqslant 0 \colon & p(\varphi \circ |x|, u) > s \big\} = \sup \big\{ u \geqslant 0 \colon & p(x, \psi(u)) > s \big\} = \\ & = \sup \big\{ u \geqslant 0 \colon & x^*(s) > \psi(u) \big\} = \sup \big\{ u \geqslant 0 \colon & \varphi(x^*(s)) > u \big\} = \varphi(x^*(s)). \end{split}$$

Lemma 3. Let u, v be two Lebesgue measurable functions on $[0, \infty)$ and let g be a nondecreasing, nonnegative function on $[0, \infty)$.

Then $\int\limits_0^\infty g(t) \left[u(t)+v(t)\right]^* dt \leqslant \int\limits_0^\infty g(t) \, u^*(t) \, dt + \int\limits_0^\infty g(t) \, v^*(t) \, dt$, where the operator * is defined with respect to the Lebesgue measure.

Proof. Since g=g* a.e. the proof follows from [3] p. 97, 2.2.8.

Theorem 1. Let g be a positive, nondecreasing function on $[0, \infty)$ and let φ be a left-continuous φ -function without parameter. Let φ $(t,u) = g(t) \cdot \varphi(u)$. Then η_{φ} is a modular, $\|\cdot\|_{\Lambda_{\varphi}}$ is an F-norm and Λ_{φ} , Λ_{φ}^* are linear spaces.

Proof. By Lemma 2, we have $\varphi(x^*(t)) = [\varphi(|x(t)|)]^*$, whence

(1)
$$\eta_{\phi}(z) = \int_{0}^{\infty} g(t) \left[\varphi(|z(t)|) \right]^* dt,$$

for an arbitrary Lebesgue measurable z.

Let us fix $\alpha \ge 0$, $\beta \ge 0$ such that $\alpha + \beta = 1$ and let x, y be two Lebesgue measurable functions on $[0, \infty)$. Then

$$\varphi(|\alpha x(t) + \beta y(t)|) \leq \varphi(|x(t)|) + \varphi(|y(t)|),$$

whence

(2)
$$[\varphi(|\alpha x(t) + \beta y(t)|)]^* \leq [\varphi(|x(t)|) + \varphi(|y(t)|)]^*$$

(see [2] p. 871).

Applying (1), (2) and Lemma 3 to $u(t) = \varphi(|x(t)|)$, $v(t) = \varphi(|y(t)|)$, we obtain

$$\begin{split} \eta_{\phi}\left(\alpha\,\mathbf{x}+\beta\mathbf{y}\right) &= \int\limits_{0}^{\infty}\mathbf{g}(t)\left[\varphi\left(|\alpha\,\mathbf{x}\left(t\right)+\beta\,\mathbf{y}(t)|\right)\right]^{*}\,\mathrm{d}t \leqslant \\ &\leq \int\limits_{0}^{\infty}\mathbf{g}(t)\left[\varphi\left(|\mathbf{x}(t)|\right)+\,\varphi\left(|\,\mathbf{y}(t)|\right)\right]^{*}\,\mathrm{d}t \leqslant \int\limits_{0}^{\infty}\mathbf{g}(t)\left[\varphi\left(|\mathbf{x}(t)|\right)\right]^{*}\,\mathrm{d}t \ + \\ &+ \int\limits_{0}^{\infty}\mathbf{g}(t)\left[\varphi\left(|\mathbf{y}(t)|\right)\right]^{*}\,\mathrm{d}t = \eta_{\phi}(\mathbf{x}) + \eta_{\phi}(\mathbf{y}). \end{split}$$

The remaining part of the proof follows from the fact that η_{ϕ} is a modular, and from definitions of $\| \|_{\Lambda_+}$, Λ_{ϕ} , Λ_{ϕ}^* .

Theorem 2. Let φ be a φ -function with parameter satisfying the inequality $\varphi(2t,u) \leq C \varphi(t,u)$ for all $u \geq 0$ and a.e. $t \in [0, \infty)$, with a constant C > 0. Then $\Lambda_{\varphi,\mu}$, $\Lambda_{\varphi,\mu}^*$ are linear spaces and

$$\begin{split} &\eta_{\varphi,\mu}\left(\alpha \mathbf{x}+\beta \mathbf{y}\right) \leqslant 2\mathbf{C}\left(\eta_{\varphi,\mu}(\mathbf{x})+\eta_{\varphi,\mu}\left(\mathbf{y}\right)\right), \\ &\|\mathbf{x}+\mathbf{y}\|_{\Lambda_{\varphi,\mu}} \leqslant \mathbf{C}_{0}\left(\|\mathbf{x}\|_{\Lambda_{\varphi,\mu}}+\|\mathbf{y}\|_{\Lambda_{\varphi,\mu}}\right), \end{split}$$

where $C_0 = \max \{1,2C\}$, $\alpha, \beta \ge 0$ and $\alpha + \beta \le 1$.

Proof. We prove the inequality for $\eta_{\omega,\mu}$. There holds the inequality

(1)
$$(x + y)^*(t) \le x^*(t/2) + y^*(t/2)$$

and the equality

(2)
$$(ax)*(t) = ax*(t)$$

for every $t \ge 0$ and a > 0.

Hence for arbitrary $\alpha \ge 0$, $\beta \ge 0$ with $\alpha + \beta \le 1$ and arbitrary μ -measurable x, y we have

$$\varphi(t,(\alpha x + \beta y)^*(t)) \le \varphi(t,\alpha x^*(t/2) + \beta y^*(t/2)) \le \varphi(t,x^*(t/2)) + \varphi(t,y^*(t/2)).$$

Applying there inequalities, we obtain

$$\eta_{\varphi,\mu} (\alpha x + \beta y) \leq \int_{0}^{\infty} \varphi(t,x^{*}(t/2)) dt + \int_{0}^{\infty} \varphi(t,y^{*}(t/2)) dt =$$

$$= 2 \int_{0}^{\infty} \varphi(2t,x^{*}(t)) dt + 2 \int_{0}^{\infty} \varphi(2t,y^{*}(t)) dt.$$

From the assumed inequality for φ we get

$$\eta_{\varphi,\mu}(\alpha x + \beta y) \leq 2C (\eta_{\varphi,\mu}(x) + \eta_{\varphi,\mu}(y)).$$

The inequality for $\| \|_{\Lambda_{\varphi,\mu}}$ we obtain in the same manner as for the norm generated by an arbitrary modular.

Let
$$\|\mathbf{x}\|_{\Lambda_{\varphi,\mu}} < \infty$$
, $\|\mathbf{y}\|_{\Lambda_{\varphi,\mu}} < \infty$ and let $\epsilon > 0$ be arbitrary. We take $\mathbf{a} = \|\mathbf{x}\|_{\Lambda_{\varphi,\mu}} + \frac{\epsilon}{2C_0}$, $\mathbf{b} = \|\mathbf{y}\|_{\Lambda_{\varphi,\mu}} + \frac{\epsilon}{2C_0}$. Since $\mathbf{a} > \|\mathbf{x}\|_{\Lambda_{\varphi,\mu}}$, $\mathbf{b} > \|\mathbf{y}\|_{\Lambda}$ and sets $\{\epsilon > 0:$

$$\begin{split} &\eta_{\varphi,\mu}\left(\frac{z}{\epsilon}\right) \leqslant \epsilon \; \Big\} \quad \text{are of the form } \left[\; \|z\|_{\Lambda_{\varphi,\mu}}, \infty \right) \; \text{or} \; \left(\; \|z\|_{\Lambda_{\varphi,\mu}}, \infty \right), \; \text{there hold the inequalities} \\ &\eta_{\varphi,\mu}\left(\frac{x}{a}\right) \leqslant a \; \; \text{and} \quad \eta_{\varphi,\mu}\left(\frac{y}{b}\right) \leqslant b. \; \text{Hence} \; \; \eta_{\varphi,\mu}\left(\frac{x+y}{C_0\left(a+b\right)}\right) = \eta_{\varphi,\mu}\left(\frac{a}{a+b} \; \frac{x}{C_0a} \; + \frac{x}{C_0a}$$

$$+ \; \frac{\mathsf{b}}{\mathsf{a} + \mathsf{b}} \; \frac{\mathsf{y}}{\mathsf{C}_0 \; \mathsf{b}} \;) \leq 2 \mathsf{C} \; \eta_{\varphi,\mu} \, (\frac{\mathsf{x}}{\mathsf{C}_0 \mathsf{a}}) + 2 \; \mathsf{C} \; \eta_{\varphi,\mu} \, (\frac{\mathsf{y}}{\mathsf{C}_0 \mathsf{b}} \;) \leq \mathsf{C}_0 \; \eta_{\varphi,\mu} \, (\frac{\mathsf{x}}{\mathsf{a}} \;) + \eta_{\varphi,\mu} \, (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \, (\frac{\mathsf{x}}{\mathsf{a}} \;) + \eta_{\varphi,\mu} \, (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \, (\frac{\mathsf{y}}{\mathsf{a}} \;) + \eta_{\varphi,\mu} \, (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \, (\frac{\mathsf{y}}{\mathsf{a}} \;) + \eta_{\varphi,\mu} \, (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \, (\frac{\mathsf{y}}{\mathsf{a}} \;) + \eta_{\varphi,\mu} \, (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \, (\frac{\mathsf{y}}{\mathsf{a}} \;) + \eta_{\varphi,\mu} \, (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \, (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \, (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \, (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \, (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \, (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \, (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \, (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \, (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \, (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \; (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \; (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \; (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \; (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \; (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \; (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \; (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \; (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \; (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \; (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \; (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \; (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \; (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \; (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \; (\frac{\mathsf{y}}{\mathsf{b}} \;) \; (\frac{\mathsf{y}}{\mathsf{b}} \;) \; \leq \; \mathsf{C}_0 \; \eta_{\varphi,\mu} \; (\frac{\mathsf{y}}{\mathsf{b}} \;) \; (\frac{\mathsf{y}}{\mathsf{b}$$

 $\leq C_0(a+b)$, because $\eta_{\alpha,\mu}(\alpha x)$ is nonincreasing with respect to α for fixed x.

By the definition of $\| \|_{\Lambda_{\varphi, \mu}}$, we get $\| x + y \|_{\Lambda_{\varphi, \mu}} \le C_0(a + b) = C_0(\| x \|_{\Lambda_{\varphi, \mu}} + \| y \|_{\Lambda_{\varphi, \mu}}) + \epsilon$.

Consequently,

$$\|x+y\|_{\Lambda_{\varphi,\mu}} \leq C_0 (\|x\|_{\Lambda_{\varphi,\mu}} + \|y\|_{\Lambda_{\varphi,\mu}}).$$

Definition 2. (see [5] p. 43). Let φ_1 , φ_2 be φ -functions with parameter. We say that $\varphi_1 \mapsto \varphi_2$ if there exist constans K_1 , $K_2 > 0$ and a nonnegative, integrable function h such that $(*) \varphi_1(t,u) \leq K_1 \varphi_2(t,K_2u) + h(t)$ for all $u \geq 0$ and a.e. $t \in [0,\infty)$. If (*) holds with $K_2 = 1$, we shall say that $\varphi_1 \mapsto \varphi_2$.

Theorem 3. Let the φ -functions φ_1, φ_2 with parameter satisfy $\varphi_2 \stackrel{1}{\mapsto} \varphi_1$. Then $\Lambda^o_{\varphi_1,\mu} \subset \Lambda^o_{\varphi,\mu}$.

Proof. Since $x \in \Lambda^o_{\varphi, \mu}$ is equivalent to $x^* \in L^{\varphi}_0$, where L^{φ}_0 is a generalized Orlicz class, so the theorem follows from [5] theorem 8.4a), p. 45.

In order to prove a converse theorem, we shall need some auxiliary definitions and lemmas. First, we recall the following

Definition 3. Let $A, B \subset [0, \infty)$ satisfy the condition m(A) = m(B) > 0, where m is the Lebesgue measure. A function $h: A \to B$ is called measure preserving, if for an arbitrary m-measurable set $E \subset B$ there holds $m(h^{-1}(E)) = m(E)$ (see e.g. [3]).

Lemma 4. Let x be a simple function on $[0, \infty)$. Then there exists a measure preserving function $h: [0, \infty) \to [0, \infty)$ such that $x(t) = x^*(h(t))$ a.e.

Proof. Let
$$x = \sum_{n=1}^{k} a_n \cdot \chi_{A_n}$$
, where $m(A_n) < \infty$, $A_i \cap A_j = \phi$; for $i \neq j, n = 1,...,k$.

We may always suppose that the sequence (a_n) is decreasing. Then

$$x^* = \sum_{n=1}^k a_n \cdot \chi_{B_n}$$
, where $B_n = \left[\sum_{i=1}^n m(A_i), \sum_{i=1}^n m(A_i)\right]$. By [3] p. 96, there

exist measure preserving functions $h_n : A_n \to B_n$ for n = 1, ..., k and $h_0 : A_0 \to B_0$

where
$$A_0 = [0, \infty) \setminus \sum_{n=1}^k A_n$$
, $B_0 = [0, \infty) \setminus \sum_{n=1}^k B_n$. We define $h = \sum_{n=0}^k h_n \cdot \chi_{A_n}$.

The function h satisfies the conditions of the lemma.

Lemma 5. If the function $h:[0,\infty)\to[0,\infty)$ is measure preserving, then $g\cdot h$ is integrable in $[0,\infty)$ if and only if g is integrable in $[0,\infty)$. Moreover, for g integrable in $[0,\infty)$ we have

$$\int_{0}^{\infty} g(h(t)) dt = \int_{0}^{\infty} g(t) dt.$$

Proof. First, suppose g to be a simple function, i.e. $g = \sum_{n=1}^{k} a_n \cdot \chi_{A_n}$, where $A_i \cap A_j = \phi$ for $i \neq j$. Then $g \cdot h = \sum_{n=1}^{k} a_n \cdot \chi_{B_n}$, where $B_n = h^{-1}(A_n)$. Since $m(A_n) = m(B_n)$, so

$$\int_{0}^{\infty} g(t)dt = \sum_{n=1}^{k} a_n m(A_n) = \sum_{n=1}^{k} m(B_n) = \int_{0}^{\infty} g(h(t)) dt.$$

If g is an arbitrary measurable nonnegative function, then we apply the above result to simple functions $0 \le g_n \le g$ with $g_n \uparrow g$ and the thesis follows, by Beppo-Levi theorem. For an arbitrary integrable g, it is sufficient to write g as the difference of its positive and negative part.

Theorem 4. Let the following conditions be satisfied:

1.
$$\Lambda_{\varphi_1}^{o} \subset \Lambda_{\varphi_2}^{o}$$
,

- 2. φ_2 is a convex φ -function without parameter,
- 3. there exist a constant C>0 and a nonnegative function g such that for arbitrary sequence (h_n) of measure preserving functions $h_n:[0,\infty)\to[0,\infty)$ the sequence $\int_0^\infty g(h_n(t),t)dt$ is bounded. Than $\varphi_2 \overset{1}{\to} \varphi_1$.

Proof. Let us suppose the theorem to be not true. Arguing as in the proof of theorem 8.4 in [5], p. 45, we construct a sequence (\widetilde{x}_{n_k}) of nonnegative, simple functions such that

(1)
$$\int_{0}^{\infty} \varphi_{2}(\widetilde{x}_{n_{k}}(t)) dt = 1,$$

where (A_k) is a sequence of pairwise disjoint sets, and

(2)
$$b_{n_k}(t) = \varphi_2(\widetilde{x}_{n_k}(t)) - 2^{n_k} \varphi_1(t, \widetilde{x}_{n_k}(t)) \ge 0.$$

We define

$$\mathbf{x} = \sum_{k=1}^{\infty} \widetilde{\mathbf{x}}_{\mathbf{n}_k} \cdot \chi_{\mathbf{A}_k}, \quad \mathbf{y}_1 = \sum_{k=1}^{1} \widetilde{\mathbf{x}}_{\mathbf{n}_k} \cdot \chi_{\mathbf{A}_k}.$$

We shall show that $\eta_{\varphi_2}(x) = \infty$ and $\eta_{\varphi_1}(x) < \infty$.

Let $h_1:[0,\infty)\to[0,\infty)$ be measure preserving functions such that $y_1^*(h_1(t))=y_1(t)$ (existence of such h_1 follows from Lemma 4). Since $x\geqslant y_1\geqslant 0$, we have $x^*\geqslant y_1^*$ for arbitrary $1\in N$ (see [2]). Hence, by Lemma 5, convexity of φ_2 and (1), we obtain

$$\begin{split} \eta_{\varphi_2}(x) &= \int\limits_0^\infty \varphi_2\left(x^*(t)\right) \, \mathrm{d}t \geq \int\limits_0^\infty \varphi_2(y_1^*(t)) \, \mathrm{d}t = \int\limits_0^\infty \varphi_2\left(y_1^*\left(h_1(t)\right)\right) \, \mathrm{d}t \, = \\ &= \int\limits_0^\infty \varphi_2(y_1(t)) \, \mathrm{d}t = \int\limits_{k=1}^{\infty} \int\limits_{A_k} \varphi_2(\widetilde{x}_{n_k}(t)) \, \mathrm{d}t = 1. \end{split}$$

Since I is arbitrary, we thus have $\eta_{\varphi_2}(x) = \infty$. Moreover, $y_1 \uparrow x$ implies $y_1^* \uparrow x^*$ ([2]), whence $\varphi_1(t,y_1^*(t)) \uparrow \varphi_1(t,x^*(t))$. Consequently,

(3)
$$\eta_{\varphi_1}(\mathbf{x}) = \lim_{1 \to \infty} \int_0^\infty \varphi_1(t, \mathbf{y}_1^*(t)) dt = \lim_{1 \to \infty} \eta_{\varphi_1}(\mathbf{y}_1).$$

Applying the assumptions of φ_1 , y_1 and Lemma 5, we get

$$\eta_{\varphi_{1}}(y_{l}) = \int_{0}^{\infty} \varphi_{1}(t, y_{l}^{*}(t)) dt = \int_{0}^{\infty} \varphi_{1}(h_{l}(t), y_{l}(h_{1}(t))) dt =$$

$$= \int_{0}^{\infty} \varphi_{1}(h_{l}(t), y_{l}(t)) dt \leq C \int_{0}^{\infty} \varphi_{1}(t, y_{l}(t)) dt + \int_{0}^{\infty} g(h_{l}(t), t) dt \leq$$

$$\leq C \int_{0}^{\infty} \varphi_{1}(t, y_{l}(t)) dt + A,$$

where $\int_{0}^{\infty} g(h_{l}(t), t) dt \leq A/C$ for every $l \in N$.

From the definition of y_1 and from (2), (1) we have

(5)
$$\int_{0}^{\infty} \varphi_{1}(t, y_{1}(t)) dt = \sum_{k=1}^{1} \int_{A_{k}} \varphi_{1}(t, \widetilde{x}_{n_{k}}(t)) dt \leq$$

$$\leq \sum_{k=1}^{n} \left[\frac{1}{2}^{n_{k}} \int_{A_{k}} \varphi_{2}(\widetilde{x}_{n_{k}}(t)) dt - \int_{A_{k}} b_{n_{k}}(t) dt \right] \leq$$

$$\leq \sum_{k=1}^{1} \frac{1}{2^{n}k} \int_{A_{k}} \varphi_{2}(\widetilde{x}_{n_{k}}(t)) dt = \sum_{k=1}^{1} \frac{1}{2^{n}k} < 1.$$

By (3), (4) and (5), we finally obtain

$$\eta_{\varphi_1}(\mathbf{x}) \leq \mathbf{C} + \mathbf{A}.$$

Let us still remark that the function $g(t,s) = g_1(t) g_2(s)$ with $g_1, g_2 \in L^2$ satisfies the first of the requirements in condition 3 of Theorem 4.

Definition 4. Let x_n , x be μ -measurable functions, $x \in \Lambda_{\varphi,\mu}$ and $x_n \in \Lambda_{\varphi,\mu}$ for large n. If $\eta_{\varphi,\mu}$ $(a(x_n-x)) \to 0$ for some a>0, then the sequence (x_n) will be called convergent to x in $\Lambda_{\varphi,\mu}$ in the weak sense. If $\|x_n-x\|_{\Lambda_{\varphi,\mu}} \to 0$, then (x_n) will be called convergent to x in $\Lambda_{\varphi,\mu}$ in the strong sense.

. Theorem 5. The following conditions are equivalent:

$$\begin{aligned} \|\mathbf{x}_{\mathbf{n}} - \mathbf{x}\|_{\Lambda_{\varphi,\mu}} &\to 0, \\ \eta_{\varphi,\mu} \left(\mathbf{a}(\mathbf{x}_{\mathbf{n}} - \mathbf{x}) \right) &\to 0 \quad \textit{for every } \mathbf{a} > 0. \end{aligned}$$

The easy proof is omitted.

Theorem 6. Let μ be a fixed measure on $[0,\infty)$. Let φ_1 , φ_2 be φ -functions with parameter and $\varphi_2 \not\subset \varphi_1$. Then $\Lambda_{\varphi_1,\mu} \subset \Lambda_{\varphi_2,\mu}$ and $\Lambda_{\varphi_1,\mu}^* \subset \Lambda_{\varphi_2,\mu}^*$. If moreover, φ_2 is locally integrable with respect Lebesgue measure (see [5], p. 47), then convergence in weak sense (strong sense) in $\Lambda_{\varphi_1,\mu}$ is stronger then the convergence in the weak sense (strong sense) in $\Lambda_{\varphi_2,\mu}$.

Proof. By theorem 8.5a) of [5], p. 47, we have $L^{\varphi_1} \subset L^{\varphi_2}$ and the required inclusions follow from the definition of the spaces under consideration. If $\eta_{\varphi_1,\mu} (a(x_n-x)) \to 0$, then $\rho_{\varphi_1} (a(x_n-x)^*) \to 0$, where ρ_{φ_1} is the modular in L^{φ_1} . Applying theorem 8.5a, we obtain $\rho_{\varphi_2} (a(x_n-x)^*) \to 0$, i.e. $\eta_{\varphi_2} (a(x_n-x)) \to 0$.

Theorem 7. If $\Lambda_{\varphi_1} \subset \Lambda_{\varphi_2}$ and there are satisfied conditions 2. and 3. from Theorem 4, then $\varphi_2 \prec \varphi_1$.

The proof is ommited.

References

[1] Berg J., Löfström J., Interpolation Spaces. An Introduction, Springer - Verlag,
 Berlin - Heidelberg - New York, 1976

- [2] Kotkowski B., Symmetric Space I, Bull. Polon. Sci., Ser. Sci. Math., Astronom. at Phys., 11 1968, pp. 871-875.
- [3] Krein S.G., Petunin Yu., Semenov E.M., Interpolation of Linear Operators, Moscow 1978 (in Russian).
- [4] Lorentz G.G., Some New Functional Spaces, Ann. Math. 51 1950, pp. 37-55.
- [5] Musielak J., Orlicz Spaces and Modular Spaces, Springer Verlag, Berlin Heidelberg — New York — Toky 1983.

(Technical University, Institute of Mathematics, Poznań) Received on 27.9.1984.