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A NOTE ON LORENTZ SPACES WITH ORLICZ-TYPE METRICS

Thete are considered some generalizations of Orlicz spaces with Orlicz metrics generated by ¢ —
functions depending on a parameter.
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The theory of spaces LP was generalized by G.G. Lorentz ([4]) to a more general case
of spaces (see also [1], 1.3, 1.7, and [3], p. 145). B. Kotkowski ([2]) considered also
Lorentz-Orlicz space with a concave function. In this paper there will be investigated
some other generalizations of Lorentz space with Orlicz metrics generated by a
o~function depending on parameter.

Definition 1. Let ¢: [0,20)X[0,20) = [0,0) be a ¢ —function depending on parameter,
ie
1. ¢ (t,u) is a nondecreasing, leftcontinuous function of u, with o(t,0) = 0, ¢(t,u) >.0 for

u>0,¢(tu)~>0asu—>for ae.t&[0,)

2. ¢(t,u) is Lebesgue-measurable with respect fo t for every u = 0.

Let 1 be a & —additive measure on [0,%0), and let us denote by x* the monotone
rearrangement of a function x with respect to the measure u (see [2], p. 871, compare
also [3], p. 83). Then from the assumtions of Definition 1 it follows that (t,x*(t)) is
measurable. Let us consider for an arbitrary g —measurable function x on [0,29) the

functionals
RN RICROL
. X
iy = inffe>o0 n,, (<el
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{3 a0 a, 00<=),

R
" ={x >0
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Ag,“= {x: . T (x) <°°} .

In the case of Lebesgue measure m = j, we shall write Ny =My o,

*
=00, , A=A, A=A, A=A .
A¢,u [ 'Y 4 "0 ¥ A
Vet us remark that taking ¢ (tu) = t/P1 of where p >1, 1> 1, sets A,

* o : s
A, Aw are all equal to Lorentz spaces L | and I, isequivalent to the norm I -

in L (1], 1.3).

In general Wi I A  donot need to be a modular and an F-norm.
’ Ol
As an example we may take p=m, ¢ (t,u)= et u. Let A, B C [0, =) be digoint sets

of Lebesgue measure In5, Xx=x,, ¥ =Xg — characteristic functions of the sets A, B, re-
spectively. Then

v

1 2
'r)w(?x“r?y) >n‘p(x)+n‘o(y) and ||x+leA¢>||x||A¢+ IIyllAw

Lemma 1. Let g be a leftcontinuous p—function without parameter, ie. ¢ (t,u) =
= ¢ (v) and let Y(u) = inf { s=0: ¢(s)> u} . Then Y (W<t if and only if
u<op(t).

Proof. Since lim ¢(s) =00, so  (u) <eo. Moreover,

§—> oo

(1) W@, =)C {520 px)>u} C [¥ (@),
Then \p(u)<t=>t€{s>0: p(s)>u } =p(t)>u.
By (1) and the definition of y,
p>u= 3 p(t-g>u=t—ec {s20: p@>u} = te>v@=
=>t>yY () for t>0.
Fort=0 and u>0 the implication is true.
Lemma 2. If ¢ is a leftcontinuous o—function without parameter then ¢ (x*(t)) =
=[o I x(V)1]*.
4 Proof. By Lemma 1, we obtain for a function  (u) = inf. { s>0: p(s)> u}

(1) eIx@EN>ue Y (u) <[ x(s) |
and .

2 ¥ (0) <x*(s) ® u <o (x*(s).
There holds also

p(x,t) >s x*(s)>t, where p(x,t)=u { s>0:  [|x(s)I>t } ;
Hence for t = { (u) we obtain

3 p(x, ¥ (W) > s x*(s) > ¥ ().
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By definition, we have, applying (1) and denoting by - the composition R,
@ ploix,wy = (>0 @lx@I>u} =u {s>0: 1x0)1> ¥ W)} = pexp(w).
Next, by (4), (3) and (2), we get

[¢ (Ix(s)I]* = sup { u=>0: p(y°Ixl,u)> s} = sup {u> 0: p(x, ¥ ()>s } =

= sup {u >0: x*(s)>y (v } = sup {u >0: ¢ (x*(s))> u} = 0 (x*(5)).

Lemma 3. Let u, v be two Lebesgue measurable functionson [0, ) and let g be a
nondecreasing, nonnegative function on [0, ).

(o] (o] (o]
Then of g (t) [u(t) + v(t)]* dt < Of g(t) u*(t) dt + of g(t) v* (t) dt, where the opera-
tor * is defined with respect to the Lebesgue measure.
Proof. Since g=g* a.e. the proof follows from [3] p. 97,2.2.8.

Theorem 1. Let g bea positive, nondecreasing function on [0, ) and let ¢ be a left-
continuous ¢—function without parameter. Let ¢ (t,w) = g(t)*p(u). Then g is a modu-

®
Iar, 11 A isan F—norm and A ., A, are linear spaces.
® [

Proof. By Lemma 2, we have @ (x*(t)) = [ ¢ (Ix(t)D]*, whence

) 14@= [ 80 o (2ODI*

for an arbitrary Lebesgue measurable z.
Let us fix >0, =0 such that a+f=1 and let x,y be two Lebesgue measurab-
le functionson [0, =). Then

o (1 o x(t) + By®D) <o (X)) + ¢ (yOD,

whence

©) Lo(lex(®) + BYODI* < [0 (XD + ¢ (YOI
(we [2]p.871).
Applying (1), (2) and Lemma 3 to ut) = (I x()D, v@)=¢( y(t)|), we obtain

ng (@x+py)= of g(t) [p(lax (V) + B Y(t)l)]* dt<
< of g(t) [o (IX@®D + ¢ (y(®OD]* dt < of g(t) [p (x(®) DI* dt +

b T 80 [o QyOD]* dt = 7,69+ 1, O).
0
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The remaining part of the proof follows from the fact that 7 " is a modular, and from
definitions of |l IIA¢, A¢, A¢.

Theorem 2. Let ¢ bea p—function with parameter satisfying the inequality o(2t,u)
<Cy(tu) forall u=0 anda.e. tE[0, ), witha constant C>0. Then A¢

m 3
* 3
A‘p u ae linear spaces and

My @+ BY)<2C(n, () +n, (),

Ix + yll <C, (lIxl + lyl )
Ao~ O Mg Apu”

where C0=max {1,2C} , 0,20 and a+p<1.

Proof. We prove the inequality for LA There holds the inequality

@ (x +y)*(t) <x*(t/2) + y*(t/2)
and the equality
@) (ax)*(t) = ax*(t)

forevery t=0 and a>0.
Hence for arbitrary >0, >0 with a+ <1 and arbitrary M-measurable x,y we
have

¢ (t(ax + By)*(1)) <o (t, ax* (1/2) + By*(t/2)) <y (tx*(t/2)) + ¢ (ty*(t/2)).

Applying there inequalities, we obtain

M @X+BY) < ? o (tx*(t/2) dt + 0? o (ty*(t/2)) dt =

oo (o]
=2 [ (2txX(1))dt+2 [ o (2ty*(t)) dt.
0 0
From the assumed inequality for ¢ we get

1, WX B < 2C (0, () +7, , ().

The inequality for Il 2 we obtain in the same manner as for the norm generated by
o
an arbitrary modular.

Let Ix IIA <o |y ||A < oo andlet €>0 be arbitrary. We take a=||x||A +
Pk o Q1
€ € .
+— , b=yl + —— . Since a> Ixl , b>llyll andsets e > O:
2C0 Aw.n 2C0 Agp,p, A {
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n (Z~)< e} are of the form [ lzll ,0) or (lzll, ~ *eo), there hold the inequa-
Lol Ao Ao
s X y x+y a X
=)< —)<b. i
lities nw‘(a) a and L (b ) <b. Hence R (C (atb) )= Moo (a+b COa +
L X Yy X Yy <
f b Ty ) S Mo (T ) P20 (25 ) <Co M ()P (5) S

< CO(a +b), because L (o x) is nonincreasing with respect to « for fixed x.
By the definitionof I I\~ ,weget lix+ yl, <C,a+b)=C, (el +
" ol @1

+ 1yl )te
Ao

Consequently,

Ilx +yll <C, (Il + lyl ).
Ao O AL T Ay
Definition 2. (see [S] p. 43). Let ¢, ¢, be ¢functions with parameter. We say
that ¢, =3¢, if there exist constans K,.K, >0 and a nonnegative, integrable func-
tion h such that (*) ¢1(t,u) <K, ¢2(t,K2u) + h(t) forallu>0 and a.e tE€[0, ).
If (%) holds with K, =1, we shall say that ¢, 13 @y

1
Theorem 3. Let the ¢-functions ¢, @, Wwith parameter satisfy ¢, =3¢y Then

A° C A°, .
@k Y'u

Proof. Since x € A"W.’JL is equivalent to x* € L‘g, where L‘g is a generalized Or-
licz class, so the theorem follows from [5] theorem 8.4a), p. 45.

In order to prove a converse theorem, we shall need some auxiliary definitions and
lemmas. First, we recall the following

Definition 3. Let A, B C [0, ) satisfy the condition m(A) = m(B) > 0, where m
is the Lebesgue measure. A function h : A =~ B is called measure preserving, if for an
arbitra}'y m-measurable set E C B there holds m(h'l(E)) = m(E) (see e.g. [3]).

Lemma 4. Let x be a simple function on [0, %°). Then there exists a measure presery:
ing function h: [0, %) —>[0, ) such that x(t) =x*(h(t))a.e.
k
Proof. Let x= X a "X, o where m(An)<°°, AN Aj =¢; for i#j,n=1,.,k.
n=1 n
We may always suppose that the sequence (an) is decreasing. Then

” k
=3 a ‘Xp ,where B =[ .
n=1 n i

jﬂl"l::

n
m(A), £ m(A)]. By [3]p. 96, there
i=1 .
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exist measure preserving functions hn : An - Bn for n=1, ..,k and h0 : A0 = BO,
k k k
where A, = [0, <)\ = A, By,=I[0, o) \ 2_ B,. We define h = Z_ b %, -
n=1 n=1 n=0 n

The function h satisfies the conditions of the lemma.

Lemma 5. If the function h : [0, %) = [0, ) is measure preserving, then gh s
integrable in [0, «) if and only if g is integrable in [0, «). Moreover, for g integrab-
le in [0, ) we have

[ a(h(v) dt = | g(t) dt.
0 0

Proof. First,suppose g to be a simple function, ie. g = él an~xAn, where AN
n=
ﬂAj =¢ for i#j. Then g-h= ;_31 an-xBn, where B =h'1_(An).Since m(A )=m(B),
- n
[eS] k k oo
JgM)dt= X a m(A )= m@B )=/ gh(t)dt.
0 n=1 n=1 0

If g is an arbitrary measurable nonnegative function, then we apply the above result to
simple functions 0 < g, < g with g,tgand the thesis follows, by Beppo-Levi theorem.
For an arbitrary integrable g, it is sufficient to write g as the difference of its positive and
negative part.

Theorem 4. Let the following conditions be satisfied:

L. A% G A%,
?1 L)

2. ¢, isaconvex y-function without parameter,

3. there exist a constant C >0 and a nonnegative function g such that for arbitrary
sequence (h ) of measure preserving functions h :[0, ) > [0, ) the sequence

R 1
( S g, (1), t)dt) is bounded. Than ¢, =3 ¢,.
5 :

Proof. Let us suppose the theorem to be not true. Arguing as in the proof of theorem
8.4 in [5], p. 45, we construct a sequence (;(n ) of nonnegative, simple functions such
k
that

) oo
1 X (t)dt=1,
(D Of 0, ( n, (D)
where (A, ) is a sequence of pairwise disjoint sets, and
\

& b“k(t) B <p2(§nk(t)) h 2nk‘pl (t’}nk(t)) >0.
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We define

M -

X, "Xy -

o0
X=2 X_ *Xa» Vi=
= n A 1 1 nk k

1 'k Tk k

We shall show that n‘pz(x) =0 and n‘pl(x) < oo,

Let hl 1[0, %) > [0, ) be measure preserving functions such that y;k (hl(t)) = yl(t)
(existence of such h1 follows from Lemma 4). Since x>y 1 =0, we have *> y;‘ -
arbitrary 1€ N (see [2]). Hence, by Lemma 5, convexity of ¢, and (1), we obtain

1,,00= S0, (KON A> [oy(y; O)di= [ g, 4f (hyO) e =

o 1
= d = ~
Of ¢, (v, (D) dt kél Afk 0,( %, () dt=1.

Since | is arbitrary, we thus have n, (x) = oo. Moreover, lex implies yf"T x* ([2),

whence ¢, (t,y](t) 1 ¢, (,x*(1)). Consequently,

©) Ty, Q0= lim [, (Ly*(0) dt= lim n, (v,)

1

Applying the assumptions of Y1, Yy and Lemma 5, we get

“4) n, ()= J ¢y (Ly[(1) dt=of ¢y (hy(D), y,(h (1)) dt =
=0f o1(hy (©),y,(1) dt<C0f o, (t,y, (1) dt + :fo g(hy(1), 1) dt <

<C of g (ty (D) dt+A,

where [ g (h,(t),t) dt <A/C forevery 1EN.
0 \

From the definition of y, and from (2), (1) we have

(o)

1
(5) Of o (t, (1) dt = 121 Afk 0 (t,xnk 1) dt <

<z (12 oy (X, ()di— f b (dt] <
k=1 AL k A



26 Anna Musielak

1
<3 12 ¢2(x M) dt=32 1/2€<1.
k=1 A k=1
k
By (3), (4) and (5), we finally obtain
n x)<C+A,
?1

Let us still remark that the function g(t,s)‘= g,(t) 8,(s) with g,,8, € L2 satisfies the
first of the requirements in condition 3 of Theorem 4.

Definition 4. Let X, X be u-measurable functions, x € A¢ and x € A for largen.
If Ny, (a(x,~x)) >0 for some a > 0, then the sequence (x| Ywill be called convergent to
X in A«p,n in the weak sense. If llxn~x|| -0, then (x ywill be called convergent 10 X

. . Pl
in A‘p L the strong sense. ’
*

. Theorem 5. The following conditions are equivalent:

Ix_—xI =0
n b
Ao

Ny (a(xn—x)) -0 forevery a > 0.
The easy proof is omitted.
Theorem 6. Let u be a fixed measure on [0,). Let ¢, ¢, be ¢ —functzons with
parameter and ‘925’ ¢y Then A. CA and A* A*2 . If moreover, ¢, is

ol Pyl Pk
locally integrable with respect Lebesgue measure (see [S], p. 47), then convergence in
weak sense (strong sense) in Awl,u is stronger then the convergence in the weak sense
(strong sense) in A b
Proof. By theorem 8.5a) of [5], p. 47, we have L CL and the required inclusions
follow from the definition of the spaces under consideration. If Ty pyob (a(x —x))—>0,

then pwl(a(xn—x)*)—> 0, where ,o(p1 is the modular in L 1 . Applying theorem 8.5a, we
obtain pw2 (a(xn—x)*) -0,ie. n¢2 (a(x—x) )~ 0.

Theorem 7. If AW1 CAW2 and there are satisfied conditions 2.and 3. from Theorem 4,
then 9,4 ¢;.

The proof is ommited.
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