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Abstract

The space S of finite-dimensional positive density operators (quantum
states) is studied in a differential geometrical viewpoint. We suppose that a
generalized covariance for arbitrary two observables (Hermitian operators)
is specified at each state in S, which includes the symmetrized inner product
and the Bogoliubov inner product as special (but important) cases, and in-
troduce a triplet structure (g, V®, V™) on S via the specified covariance,
where ¢ is a Riemannian metric and V© and V™ are affine connections.
The structure (g, v(©) v(m) ig regarded as a quantum analogue of the triplet
of Fisher metric, exponential connection and mixture connection on a space
of probability densities introduced in the information geometry by S. Amari.
Some aspects relating to the quantum state estimation and the relative en-
tropy are treated in terms of the differential geometry, where the duality

between V(©) and V(™ with respect to ¢ plays an essential role.

1 Introduction

The work [12] of C. R. Rao (1945), which stated that a Riemannian metric is
naturally defined on a manifold of probability densities by means of the Fisher
information matrix, was undoubtedly one of the most important pioneering works
in the history of differential geometrical methods in statistics. However, in order to

see the real worth of this Riemannian metric (called the Fisher metric), we had to
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wait for the works of Chentsov [3] and Amari [2], who independently introduced one
parameter family of affine connections {a — connection | @ € R} (, where we use
the notation by Amari). In particular, the combination of the (o = 1)-connection
(also called the exponential connection, or e-connection for short), the (o = —1)-
connection (also called the mizture connection, or m-connection for short) and the
Fisher metric has been shown to be a useful framework in studying many statistical
estimation problems ([2]). This usefulness can be regarded as a consequence of a
fundamental relation between (e,m)-geometry and the Cramér-Rao inequality.

Nagaoka and Amari [9] (see chap.3 of [2]) showed that the a-connection and
the (—a)-connection are mutually dual w.r.t. (with respect to) the Fisher met-
ric in some sense, whereby a close relation between these connections and the
a-divergence (a squared-distance like function) was elucidated. When « = +1, the
a-divergence becomes the well known Kullback’s information divergence (classical
relative entropy), and thus the (e, m)-geometry can be regarded also as the geom-
etry of the relative entropy, which is connected to the maximum entropy principle,
the large deviation problems, etc.

In the quantum probability theory, statistical estimation problems on quantum
states have been studied ([6] [13] [7]) based on some versions of Fisher information
defined via symmetric logarithmic derivative (SLD), right logarithmic derivative

(RLD), etc. We also have the quantum relative entropy

K(p.o) =Tr p(log p —log ). (1)

However, it seems difficult to find any essential relations between the quantum
estimation theory and the quantum relative entropy. The purpose of the present

paper is to develop a general differential-geometrical framework for finite quantum



systems in which the world of SLD and the world of quantum relative entropy are

both geometrized, whereby the gap between these two worlds is elucidated.

2 Riemannian metric and affine connection

Here we give a brief review on some notions in the general differential geometry
(e, [8] [2]).

Let S be an n dimensional smooth manifold. We denote the tangent space of S
at a point p € S by 1,(S5), and the totality of smooth vector fields on S by X'(S).
When an inner product g, on T,(S) is specified for each point p € S and when
the correspondence p = g, is smooth, we call g a Riemannian metric on S. For
VX, VY € X(S), the mapping ¢(X,Y) : p — ¢,(X,,Y,) becomes a smooth function
on S. When a coordinate system (£°) = (£1,...,&") of S is given, ¢ is represented
by the component functions g;; = ¢(9;, 0;), where 0, o 0/d¢".

The notion of affine connection can be introduced in several different ways,
one of which is to represent an affine connection on S by a covariant derivative
V:X(S)? = X(S) ((X,Y) = VxY). The coefficients of the connection V w.r.t.
(¢') are defined by V5,0, =3, Ff}@k.

When a connection V is given, the parallel displacement of a tangent vector
X =¥, X0; along a curve £ = ¢'(t) is defined by the equation Xk—I—Zi’j Pffjé'in =
0, where the dot "means d/dt. The condition that the parallel displacement does
not depend on a curve but its end points is (locally) equivalent to R = 0, where

R : X(S)? = X(S) is the curvature tensor defined by

R()(, }7>Z = Vx<VYZ) — VY(V\Z) — V[X’ij, (2)

where [X,Y] ¥ XV — VX,



A vector field X € X(S) is said to be V-parallel on S when X is parallel on any
curve in S, or equivalently when Vy X = 0 for VY € X(S). A coordinate system
(€7) is said to be V-affine when {0;; i = 1,...,n} are all V-parallel, or equivalently
when Ffj = 0 for Vi,Vy,Vk. The connection V is said to be flat, or S is said to
be V-flat, when there exists a V-affine coordinate system. The flatness is (locally)
equivalent to the condition that R = 0 and 7 = 0, where T : X(S)* — X(S) is

the torsion tensor defined by
T(X,)Y)=VyY -Vy X —[X,Y]. (3)

Let M be a submanifold of S. When a metric ¢ is given on S, a metric on M is
naturally obtained by restricting g onto M. When a connection V is given on S,
on the other hand, the restriction of V onto M does not yield a connection on M
unless M is V-autoparallel in the sense that VyY € X(M) for VX, VY € X(M).
However, if both g and V are given on S, we can always define a connection on M
by taking the orthogonal projection of V xY w.r.t. the metric g for VX, VY € X(5).

The obtained connection is called the g-projection of V onto M.

3 Geometrical structures on a manifold of quan-
tum states

In this section we show that, when a generalized covariance is specified, natural
analogues of the Fisher metric and the e,m-connections are defined on a manifold
of quantum states.

Let H be a finite-dimensional Hilbert space, A = {A| A = A"} be the totality
of Hermitian operators on H and S = {p | p = p* > 0,Tr p = 1} be the totality

of positive density operators on H. Since S is an open subset of A, o {A] A€



A, Tr A = 1}, S is naturally regarded as a smooth manifold of dimension n aof
dim A; = (dimH)? — 1.
Let + be the immersion S — A; C A. Then a linear isomorphism 7,(5) —

Ao (A

A e A Tr A = 0} is established by D + 1.(D). We write ¢,(D) =
D™ and call it the m-representation of a tangent vector D. Since D™ is the
derivative of ¢ : p = p by D, it may be written symbolically as D™ = Dp. The
isomorphism D — D™ provides S with an affine connection, which we call the
(-1)-connection or the mizture connection. This connection is represented by the

covariant derivative V(™ : X'(S) x X(S) — &(S) such that, for VX, VY € X(S)
(V) = X (),

where the RHS (right hand side) means the derivative by X of Y™ : 5§ — A,
(p — Yp(m)). For an arbitrary affine isomorphism w : 4; — R", the composition
w o ¢ forms a V™ -affine coordinate system of S, and hence V(™ is flat. Such a
coordinate system (&) is represented as £'(p) = Tr (pF') by a set of operators
{F', ... F"} such that {1,F',... F"} forms a basis of A, where 1 denotes the
identity operator. The parallel displacement w.r.t. V™ of D € T,(S) to D' €
T,(S) is determined by D™ = D'm).

Suppose that we are given a family {(-,-), | p € S} of inner products on A,
where (A, B), € R is specified smoothly by p for VA,VB € A. We further assume
that

(A,1), = (4), E Tr (pA) (4)
for VA € A. Such a family {(-,-),} is called a generalized covariance. Two impor-

tant examples are the symmetrized inner product
1.,
(4, B), = 5Tr (pAB + pBA) (5)
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and the Bogoliubov inner product (also called the Kubo-Mori inner product or the

canonical correlation)
1
(4,B)y = [ Tr (040" B (6)
0
These examples are unified in the general form ([11])

(A.B), = [ T (o 4" By, ")

where v is an arbitrary probability measure on [0, 1] satisfying v(d\) = v(1 — d\).

For Vp € S, we define the mapping ®,: A — A by
(A, B), =Tr (A®,(B)), VA VB e A. (8)

Since @, is a linear isomorphism on A, we can define the e-representation D e A
of given D € T,(S) by

(D). (9)
Note that, for VA € A, the derivative of the function (A) : p — (A), by D is
written as

D(A) = Tr (D™ A) = (D A),. (10)

For the symmetrized product, the equation (9) turns out

Dp =S (pD" + Dp), (11)

1
T2

which means that D® is the SLD (symmetric logarithmic derivative) in the direc-

tion D. On the other hand, for the Bogoliubov product we have

-1
Dp:/o DO AN (12)



By a standard calculation in the operator calculus, D in this case is shown to
turn out the derivative of the mapping p — logp from S to A, which may be
written as

D = Dlog p. (13)

Although the e-representations depend on the choice of generalized covariance,

the range T(*)(S) YD |De T,(S)} is simply written as

T(S)={A| A€ A, (4), =0} (14)

P

This is verified as follows. For VD € T,(S), we have (D)), = (D 1), = D(1) = 0
from (4), (10) and (1) = 1. This means that LHS C RHS in (14). Since LHS and
RHS are both of dimension n, we have (14).

From this fact, we can define a linear isomorphism D — D' from T,(S) to

/

P

T,(S) by D@ = D — (DE)) . We write this correspondence as D' = [D]

D =[D'],. Now we define the exponential connection or the I-connection V'® by

(V(;)Y)P = X/J[Y]p

for Vp € S.VX,VY € X(S), where the RHS means the derivative by X, of [Y], :
S — T,(S), 0 — [Y,],. The correspondence D + D" = [D], can be regarded as
the parallel displacement w.r.t. V() and hence the curvature tensor R of V(©
vanishes. Note that V(® is not necessarily flat because the torsion tensor 7(© does
not necessarily vanish.

Define the inner product g, on T,(S) by
9,(D1.Dy) € (D DIy, = Tr (D™ D). (15)

Then g = {g, | p € S} forms a Riemannian metric on S, which we call the Fisher

metric.



Suppose that a coordinate system (£7) of S is given and that each element p
of S is specified by the coordinate { € R" as p = pe. The mixture representation
a}fﬂ) of 9; = 0/9¢" is written as d;p = J;pe. Denoting the e-representation 3}6) by

L;, we have

g; = 90,9)) = (Li, L) = Tr (9ip- Ly)
Lol = 9(V5795.00) = Tr (9,00 - L) (16)

T % 0(V50),00) = (DL, Li) = Tr (9,1 - p),

which may be more tractable than the original definitions. For the Bogoliubov

product, in particular, we have from (13 )

gij = Tr (9ip - 9 log p) (17)

FE;“,; = Tr (0;0;p - O log p), F(;)k = Tr (0;0; log p - Orp). (18)

i

Let M be a submanifold of S. Then the Fisher metric and the e,m-connections

on M are defined by taking the restriction and the g-projection of (g, V(m),V(e))
onto M. When a coordinate system of M is given, these quantities are represented

in the same form as (16).

4 Duality of e,m-connections

In general, if a Riemannian metric ¢ and two affine connections V and V* on a

manifold M satisfy
Xg(YV,Z)=g(VxY,Z)+ g(Y, Vi Z) (19)

for VX, VY,VZ € X (M), or equivalently if digjr = L'ij . + 17, ; for Vi, Vj, Vi, we say

that V and V* are mutually dual (or conjugate) w.r.t. g ([9] [2] [10]), and (g, V, V*)
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is called a dualistic triplet . We can easily see from (16) that the e-connection and
the m-connection are dual w.r.t. the Fisher metric on an arbitrary submanifold M
of S (including the case M = S). The geometrical meaning of the duality is that,
if t — X; and t — Y} are vector fields defined along a curve t — p; in M and if X
and Y are V-parallel and V*-parallel, respectively, then ¢(X,,Y;) is constant on
the curve.

Suppose that we are given a two-variable smooth function X : M x M — R
satisfying K(p, o) > 0 and K(p, p) = 0 for Vp # Vo. For an arbitrary coordinate
system (&%), let

9ij = —K(ai|8j) = K(&a]|) = K(|020]) (20)
Lijr = —K(0:0;]0k), 17, = —K(0k]9,05), (21)

where we have used the Eguchi’s notation ([5]) such as

ag,agj [X (p7 p >|p:p’ )

. d SRR .
K(9,]05) : p > o6 0e Kp.p) =y K(0:0i]) 1 pr=

etc. If [g;;] forms a positive definite matrix, these quantities define a dualistic
triplet (g, V, V) by gij = 9(9;,9;), Uijk = 9(V,0;,0k), T5; . = 9(V5,0;,0k), being
independent of the choice of (£) ([4] [5]). This is an important origin of the duality.
For instance, the equations in (17) (18) for the Bogoliubov triplet (g, V™ V() is
written as (20) (21) if K is chosen to be the relative entropy (1). It should be noted,
however, that a triplet (¢, V, V*) is obtained in this manner only when both V and
V* are torsion free, because (21) implies I'y;x = I'j;p and I'};, =T, . (Conversely,
it can be shown that an arbitrary torsion free dualistic triplet is obtained in this
manuner.) Note also that such a function K is not uniquely determined by given

(9, V,V").



5 Divergence of a dually flat space

First, we give a brief review of the results of Nagaoka and Amari [9] [2]. Suppose
that V and V* are dual w.r.t. g on M, and let R,’R* be the curvature tensors
and 7 ,7T" be the torsion tensors of V,V* respectively. Then it generally holds
that R = 0 iff R* = 0, while the corresponding property does not hold for 7, 7.
If (M,q,V,V?*) is dually flat in the sense that both V and V* are flat (i.e., R =
R* = 0and T = T* = 0), there exist a pair of coordinate systems ((£%),((;)) of
M and a pair of functions (p,¢) on S such that (') and ((;) are V-affine and

V*-affine, respectively, and that
(=0, £=0v p+ib=3 ¢, (22)

9(0:,0") =687, gy o 9(0:,0;) = 90,0, g" o g(0',0") = ', (23)

where 0; o a/o¢, o & 0/9¢;. These quantities have some degrees of free-
dom, but the following function K defined on M Xx M is uniquely determined by
(-’7\'11 9, vv V*>

K(p, o) =¢(p) + (o) — Zf"(p)&(a)- (24)

Indeed, this function is characterized by the condition that K(p,o) > 0 and

K(p,p) = 0 for Vp # Vo together with one of the following mutually equivalent

properties:
92
——K(p1,p2) = gi;(p1), Vp1.¥pa € M
SLZS| J
02 ..
K(prsp2) = g7(p2). Vp1.Vp2 € M
9C2:0Ca; K(p1.p2) = 97 (p2). Vp1,Vps

where (£') ((;), resp.) is an arbitrary V-affine (V*-affine, resp.) coordinate system.

We call K the divergence of the dually flat space (M, g, V, V™).

10



Clearly, the above properties characterizing the divergence K imply (20) (21)
and is much stronger than (20) (21). Indeed, the divergence I has the following
generalized Pythagorean property. Let pi, po, p3 be arbitrary points in M, 7
be the V-geodesic connecting p; and ps, and 735 be the V*-geodesic connecting

p2 and p3. If 719 and ~;; intersect orthogonally (w.r.t. g¢) at p,, then we have
K(p1.p3) = K(p1. p2) + K (p2, p3)-

Let us return to the triplet (g, V™, V() on S.

Theorem 1 For the Bogoliubov product, (S, g, V™ V) is dually flat, and its

dwvergence is the relative entropy (1).

Proof We have already seen that V™ is flat and R = 0 on S for an arbitrary
generalized covariance. For the Bogoliubov product, 7 vanishes as is seen from
(18), and V® is also flat.

Let {F',...,F"} be an arbitrary set of operators such that {1, F' ... F"}

forms a basis of A, and let &(p) & Tr (pFi) = (F'),. Then (£') becomes a

Vm_affine coordinate system of S as mentioned in chap.3. Since log p belongs to

A for Vp € S, it is written as logp = ¥; GF' — 4 by (¢1,..., (. 00) € R™™L. Since

dim S = n, we can choose ({1, ...,(,) as a coordinate system of S and regard ¢ as

a function on S. Thus we have
p= e[S o). )
i=1
Owing to (13), the e-representation of &' = 9/9¢; is written as 0" log p = F' — 0.
Recalling (14), we have £ = 9'¢ in (22) and (9°)® = F' — (F"), the latter of

which means that 9" is V®-parallel. Hence ((;) is V() affine. Next, let ¢(p) o

Tr (plogp) = —H(p), where H(p) is the von Neumann entropy. Then the equation

11



o+ =3, 6¢ in (22) follows from (25) and & = 9", Furthermore, using (17)

we have
9(0;,8) =Tr (Qip- & logp) = Tr (Qip- (F! = &)) =Tr (0ip- F7) = 0,8 =6/

The remaining equations in (22) (23) are derived by simple calculations from the
equations obtained so far. Finally, it is easily shown that (24) is reduced to (1) in

this case.

(QED)
6 Torsion of e-connection

Suppose that an element A of A is arbitrarily fixed, and consider the mapping
¢.(A): p— O,(A) from S to A. Since A is a linear space, the differential of this
mapping at a point p is regarded as a linear mapping from 7,(S) to A. We denote
by ®p(A) (€ A) the value (derivative) of the differential for D € T,(S).

The following theorem gives a representation of the torsion tensor 7 of the
e-connection on S for an arbitrary generalized covariance. Note that, although
T® was introduced in (3) as a mapping : X(S) x X(S) — X(S5), it also induces a

bilinear mapping : T,(S) x T,(S) — T,(S) at each point p € S.

Theorem 2 ForVD;,VDsy € T,(S), the m-representation of T'(Dy, D) € T,(S)
15 given by

{T(Dy, Do)} = @, (DY) — @, (D).
Proof For given Dy, Dy € T,(S), define Xy, Xo € X(5) by

(X)) =D — (DN, eT(S), VoeSs.
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Since these vector fields are V(®)-parallel on S, we have Vg?)Xi = ( for VY € X(9).
Applying this to the definition of the torsion tensor (3), we obtain T (X, X5) =
XoX| — X1 Xy, which is evaluated at p as 7' (D, Dy) = DyX; — D1 Xo. This
implies that

{TO(Dy, Dy)} ™ = D X{™ — Dy X{"™, (26)
where Din(m) is the derivative of Xi(‘m) 10— (X;)™ by D;. On the other hand,

from (9) we have

(X = @, (X)) = 8,(D) — (D), @, (1).

g

Since ®,(1) = p from the assumption (4), we obtain

DjX,(m) — (I)Dj (D(e)) B (Dj<D(e)>)p . <D(e)>pD([r1)

3

= @, (D\) = g(D;, D))p, (27)

7

where the second equality is derived from (10) (15) and (14). The proof is com-

pleted by (26) and (27).

(QED)
Corollary 1 For the symmetrized product, we have
(701, D)} = (D1, DY ),
where [-,+] is the commutator for operators.
Proof From ®,(A4) = 1(pA+ Ap) and (11), we have
), (D) = i(DE@ Do+ D pD\ + DI pD\ + pDI” D),
which leads to the desired equation.
(QED)
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This corollary means that the e-connection for the symmetrized product is not
torsion free, and in this case we cannot expect the existence of the divergence such

as the relative entropy or even the existence of a function K : S xS — R for which

(20) and (21) hold.

7 Cramér-Rao inequality and e-autoparallel sub-
manifolds

let M be an arbitrary submanifold of S of dimension m (< n) and (£') = (&4,...,&™)
be an arbitrary coordinate system of M. For an arbitrary operator F' € A, denote
the restriction of (F) : S — R on M by f dof (F)|y - M — R. Tts differential
(df), at p € M belongs to the cotangent space T;‘(AI), on which an inner product
is induced from g, , and so the norm || (df), ||, is defined. Letting G~' = [¢"] be
the inverse of the m x m matrix G = [g;;] = [9(9;,0;)] (0 ©9/0¢%), it is written
as || (df), ||§: Zi,j(,q'ijaifajf)p :

Lemma 1 ForVp e M and Ve € R, we have

(F—c, F =), = (@), |2,

where the equality holds iff F — ¢ € T\ (M) “pe|De T,(M)} (C TV(S)).

Proof Let D be the vector in T,(M) whose e-representation D' is the orthogonal

projection of F' — ¢ onto ’T‘p(:e)(ﬂ/f) w.r.t. (-,-),. Then, for VD' € T,(M)

—_

* (k)

gp(:D7D/) = <D(e‘)le(e‘)>p =(F—xq DI(E))/J = (F. Dl(e)>p = DY(F) = (df)pu)’)v

N

where the equalities (%) and (xx) follow from (14) and (10), respectively. The above
equation means that D is the gradient vector of f at p, and we have || (df), ||2=
g,(D, D) = <D("),D(‘°)>p. This proves the lemma, becanse D is the orthogonal

projection of F' — c.
14



(QED)

The following theorem ([11]) is a generalization of the quantum Cramér-Rao
inequality based on the symmetric logarithmic derivatives (Helstrom, 1967), which
corresponds to the case of the symmetrized inner product. For other generalized
covariances, however, the meaning of the theorem is not clear in view of the param-
eter estimation. Note also that we do not take into consideration the simultaneous
estimation problem of the multi-dimensional parameter (£'). Since the theorem is

a direct consequence of the previous lemma, we omit the proof.

Theorem 3 If an m-tuple F = (F'.....F™) € A™ of operators satisfies the

unbiasedness condition
(F, =€(p),  Vpe M,Vi, (28)

then the matriz V(p) — G(p)~* is nonnegative definite, where V(p) = [v¥ (p)] is the

m x m matriz defined by v (p) = (F' — &' (p), F7 — & (p)),-

Next, we show the theorem which describes the condition for the existence of
(F',..., F™) achieving the bound in the above theorem. This corresponds to the
classical result giving the condition for the existence of the efficient estimator. In

(m)

the sequel, we write the m,e-connections on M as V", V(f,) to distinguish them

from the m,e-connections V™, V© on S.

Theorem 4 For given (M, (¢')), there exists an m-tuple (F',..., F™) € A™ sat-
isfying the unbiasedness condition (28) and V(p) = G(p)~" for ¥V € M, if and only

if M is V' -aqutoparallel in S and (¢') is a Vg}l)-aﬁine coordinate system of M.

15



Proof It is clear from Lemma 1 that the necessary and sufficient condition for

(FL ..., F™) € A™ to satisfy (28) and V(p) = G(p)~! (Vp € M) is that
Fi—¢(p) e TO(M) for Vpe M,Vi. (29)

Assume this, and define X* € X (M) by (X)) = F' — &' (p) (Vp € M) for
i = 1,...,m. Then the vector fields { X', ..., X™} are all V®-parallel on S and are
linearly independent, which implies that M is V(®)-autoparallel in S. Furthermore,

since { X!, ..., X"} are also V(le,) -parallel, and since

g(X7,0) = (F7 = &, ) = (F/, 0y = 0:(F7) = 0,¢ = 4,

it is concluded from the duality between V({gf) and V(ﬁl) that {J,...,0,,} are all
Vf?)—parallel. Hence (¢') is V&l}l)—aﬂine.

Conversely, assume that M is V(®-autoparallel and that (&) is Vfﬁ)—aﬁine.
For each j = 1,...,m, define X7 € X(M) by the condition ¢(X7,d;) = &7, Vi.
Since {d,...,0,} are all Vg;)—parallel, {X!, ..., X"™} turn out to be Vg})—paraﬂel
due to the duality. Furthermore, {X', ..., X™} are V{®-parallel because M is
V) -autoparallel in S, and therefore there exists (F',...,F™) € A™ such that
(X)) = Fi — (F7) | It is easily shown that 9;(F7) = ¢(9;, X7) = 67 = 9,7, and
hence we can choose (F',..., F™) such that (F’) = & (Vj), which satisfies (29).

(QED)

Suppose that M is V(®-autoparallel in S. Then V({? inherits the vanishing

(m)

curvature from V() and by the duality, V};” also turns out curvature free. Since

the m-connection is always torsion free, we see that Vf{;) is flat. Thus every V(-

(

!

autoparallel submanifold has a V r?)—ancﬁne coordinate system. On the other hand,
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M does not have a Vg})—afﬁne coordinate system in general, unless the torsion 7(¢
of V() vanishes.
For the Bogoliubov product, M always has a Vf{})—afﬁne coordinate system ((;).

In this case, M is shown to be written in the form

p=exp | FO+ 0 GF — 6(0)] - (30)
i=1

which includes (25) for S as a special case, and that the V() _autoparallelness is
characterized by the form (30). We can see that there are close analogies between
the structure of this form and that of exponential families in the classical case
(D).

For the symmetrized product, M does not generally have a Vf{})—afﬁne coordi-
nate system or such a representation as (30) characterizing the V) autoparallelness.
In particular, S itself is a V(®-autoparallel submanifold of S with no V®-affine
coordinate system. However, there are V(®-autoparallel submanifolds having van-
ishing torsion, although the torsion of S does not vanish. For instance, since every
I-dimensional manifold is torsion free, an arbitrary e-geodesic M has a fol)—afﬁne

coordinate system (. We can show that M is generally written in the form:

p = exp [{CF —v(0)}/2] po exp[{CF = ¢ ()} /2] (31)

It is noted that (M, g, Vf{}l), er[)) is dually flat and has the divergence. For arbitrary
points p,o € S, let K be the divergence of the e-geodesic connecting these points.

Then we have

K(p.o) =Tr [plog A],



where A is the positive operator in A satisfying AY20AY? = p, or is explicitly

written as

This A is another quantum analogue of the Kullback divergence.
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