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1, Introduction

It isl important to study the properties which a family of
probability distributions posgess as a. whole, since a parametrized
statistical model constitutes a family of distributione. Such a family
forms a geometrical manifold in many cases, and geometric structures,
such as Riemannian metric, affine connections, divergences of two points,
c¢an be shown to be Iintroduced naturally, These intrinsic geometrical
structures represent some important properties of the family. which are
not mere aggregates of the properties of the distributions in the family
but are 3iven rise to by the mutual relations of the distributions. The
present paper aims at elucidating the intrinsic geometrical structures of
parametric families of probability distributions from the
differentisl-geometricsl point of view, . - o o

Rao. [20] seems to be the first who explicitly introduced a
Riemannian metric in a model of probability distributions with the help
of Fisher information matrix. Cencov [6] used the differential—
geometrical method to study the properties of families of probability
distributions by introducing affine connections, while Csiszér [?], [8]
used the f-diVergence including Kullback divergence [16] as a specisl
case as a quasi squared distances to study the geometry of a family of
distributions. (See also Ingarden [13];) However, statistical roles of
these geometrical structures have not yet been sufficiently elucldated
and their important works have remained not widely known.

It was Efron [l1] who studied the role of the curvature of a
statistical model in the framework of theory of estimation. Dawid [9],

[10] pointed out the geometrical fertility of Efron's rather intuitive



appreach. Amaril [1], [2), [3] defined a one-parameter family of affine
connections (a-connections), which turned out to be tightly connected
with encov's, to give a differential-gecmetrical foundation of the
asymptotic theory of statistical inference. (See also Madsen [19]). The
work has further been developed in related papets (Amari and Kumon [4],
Kumon &nd Amari [17]), where the cutvatures due to these connections play
a fundamental role. Amari [3] has also defined e-quasi-distances or
a~divergences between two probability distributions, and has shown .that
the a-gecdesic is essentially related to rhe eriterion of minimizing the
o~divergence, Thus, the a-geodesic is shown to play the role of the
straight line in the geometry of the a-divergence.

All of the above works suggest that there exist beautiful
geometrical structures in a family of probability distriburions. We
elucidate 1in the present paper such structures by introducing a
Riemannian metric and o-connections (a being a real prameter) in the
manifolds of parametrized families of not only probability distributions
but also of finite meaéures. There exists a dualiatic structure between
a- and -a-connections, so that we can prove that an o-flat manifold is
—a-flat. The geometry of an o-flat manifold is studied, in which it 1is
proved that a-affine and -a~affine coordinate systems are connected by
the Legendre transformation. Moreover, a-divergence is naturally defined
in an a-flar space, which reduces to the Rullback divergence for o = -1,
to Hellinger distance for a« = 0, and equivalent to the Chernoff distance
in general, Tt is proved that the 'a-geodesic (complemented by
—a-geodesic) plays a role of the straight line in the geometry of the

a-distance. Thus, along the line shown in the appendix of Amari [3], we



generalize and unify Csaiszar's geometry, Cencov's geometry, and Amari's
arguments in the sense that the intrinsic relation of the c-divergence
and c—connections are elucidated. The properties of the a-projection or
a-approximation, by which a distribution is mapped to one belonging to a
family of distributions which is closest to the former in the sense of
the a-divergence, are fully studied.

It seems important to extend the theory to an infinite-dimensional
function space of distributions.l However, there are some difficulties in
constructing the differential-geom&try'- of ‘such function spaces (see
Yencov [6], Lang [18}). We touch upon the geometrical structures of such
spaces. We refer to [14], [15], [23] for differentlal geometry. -

2. Differential Geometry of Parametrized Measures

2.1. Manifolds of measures

Let 1 be a measure defined on a g-field of a sample space X, and iet
M be a set of finite measures which are absolutely continuous with
respect to u and are parémetr_ized by 6 & {), where §§ 15 an open set inm R".
The members of M can be represented by the density functions n{x,8) with
respect to |, x & X, satisfying JSm(x, 8)du(x)} < «. It ia assumed that
the natural mapping t : @ + M, 16 = m(x, 8) is a bijection between § aund

M. TFurthermore, the following regularity conditions are assumed:

1) w(x,8) has a common support X, in X, i.e., m(x,8) > 0, x exo
and m{x,8) = 0, x¢ Xgs for all o & §.

11) m(x,8) is sufficiently smooth in 8.



We can introduce M the structure of an n-dimensional differentiable

1 Tt M > @ as a coordinate function defining a

manifold, by considering t
coordinate system 8 = (Bi), i=1, vo., n, in M (ef. [14]). Moreover, it
ig asgumed that 9 itself is diffeomorphic to Rn, so that © gives a
coordinate system for the entire M, since we study only local structures
of M in the present paper.

Let Te(H) be the tangent space of M at 8. It is spanned by the

natural basis {31}. where 3, is the abbreviation for afaei. We use
R{x, B) = log m(x, @)

to define a linear space Tal spanned by the n functions ain(- +8) in %, 1

=1, ..., n. It is further assumed that

11i}) n funetions 31!.(- »8) are linearly independent, for any &, in

the linear space of functions in x.

We then have a& natural isomorphism between Te and Iel by which @ie Te
and 3, 4(x,0)€ Tel correspound to each other.’ We call Te1 the

l-representation of TB' A vector A = aiai & TB corresponds to
i 1
AL(x, 0) = A Biﬂ.(x, )€ TB .

where, and throughout the paper, the Einstein summation convention is

used 80 that the summation is automatically taken for those indices, such



as 1 in the above, that appear twice in one term once as upper and once
as lower indices.

Let jTH) be the set of smooth vector fields on M, and let A, B be
its elements. Then, ABL(x,8) ar © is a function in x but 1t does not in
genaral belong to Tsl. In the component form with A = A?(a)ai, B =

Bi(e)ai,
- ales Bly 1g3
ABL = A" (3,B°)3,i(x, 6) + ATBI2,3,4(x, 0) .

2.2, Metrie and e¢-connections
A metric Is introduced in Te by defining the inner product A, B

of two vectors A and B by
(2.1 {A, B = E [aB2] ,

where Ee{f(x)], which sometimes is abbreviated as E[F(x)), is the

integration with respect to m(x,6),
Eg[£G0)] = SE(x)m(x,0)du .

The existence of integrations is assumed, and the commutativity of the
integration with respect to u and the derivation with respect to 6 is
alse assumed. The metric tensor gij(a) in the coordinate gystem 8 is

given by

(2.2) %j-<%,%)-zwﬁ%u,



which is a positive-definite matrix because of 111). This reduces to the
Fisher iInformation matrix, when M 1s a space of ptobability
distributions. (Rao [20]), Tencov [6}, Amari [1], [3]).

We next introduce In M a one-parameter family of affine connectlons
as follows (Amari [1]1, [3]}. 1Let A, B, C be vector filelds. The
a-covariant derivative VOB of B in the direction of A, where a 1s a real

A

parameter, is defined by

(2.3) < 233, c) = E[ABCL] +-1-§-“-E[umca} X

a
13k

The components of the related a-~connection T is written, 1n the

coordinate system 8, as

a
OB GV % 2
2.4 = E[2,2,2(x, 8)3,2(x, )] +-1—§£‘-E[_aiaajaakz] .

The covariant derivative ?:B can be regarded as the orthogonal projection

of the function ABL + (1/2)(l-c}ALBL in x to '[‘31 in the linear function
space ¥ in %, where the inner preduct of two functions f£(x) and g(x) is
given by Ee[fg].

The torsion T is a mapping from 7F x 77 to 7 defined by

(2.5) T(A, B) = VB - ¥2

" A = (AB - BA) .

By using the Tal—representation, we have



4 T(A,B)L, CL) = O

far arbitrary vector C. This implies that T{A,B) vanishes identically,

or the a-connection 18 torsion-free. Hence, the o-connection is

sympetric,
a a
(2.6) rijk rjik .
We give two typical examples. S <

Example 1. Exponential family. Let M consist of the {following

density functions
i
m(x,8) = exple x; = v{8)) ,

where % = (xi) is a pbint in XCRn, p o= (81, ..., Bn)eﬁ, p(8) 1z a

smooth convex function satisfying
exp{y(0)}= fexps'x du(x), /m(x, 0)dux) = 1 .

This M is composed of a family of probabiliry distributlons and 1e well

known ag the exponential family in statisticse. From the relatiens

3, h(x, 0) =%, = a,we) ., 3,9,8(x, 8) = - Biajwte) s

3

we have



gij(e) - aiaj¢(a) L]
o len
rijk(e) == 313j3k¢(3) ’
after a little complicated calculations (see Amari [3]).

Example 2. Let Mn be the set of measures on a finite number of
atoms, s Hgy ceep X Let Bi be the measure of an atom X, . We . then
have m{x,8) = 61' ﬁi(x) where Gi(x) is equal to 1 when x = L and is
otherwise equal to 0. The M forms an n-dimensiopal manifold with

coordinates 6 = (ei), ei > 0. From the relations

LA, ) = 607l W,

2,0,4(x, ©) = - (Gi)_zéi(x)éj(x) ,

where the summation is pot taken for 1 and j, we have

P e |
gij(e) = (e ) Gij ¥

iy

513 being equal to 1 for i = | and is otherwise equal to 0.



2.3. a-representation
Let Fa(m) be a function whose derivative F;(m) is homogeneous of

degree ~(l+a)/2. By the use of this function, we can define

(2.7 ¢%(x, 8) = F_Im(x, 8)] =

Since n functions
(2.8) : 2,0%(x, ) = m(l'“)“ain.

are linearly independent, the linear space ™ gpanned by 3 ¢u(.’e) is
) 8 1

o
a

vector A = Aiaie TB is represented by A@a - Aiai¢(x,9)e Tg.

isomorphic to Ta. The space T, is called the a-représentation of Te and
The inmer product of A and B 1s written as
(2.9) <a, }3) - Eu[m“w“] = ras®Be %du
where the a-integration Eg is defined by
E,[£(x)] = flm(x, 8) 1% (x)du(x) .
The metric tensor is written as
(2.10) (8 = E 12,4%2,8°) .

Bi 3

10



For vector fields A, B, C, the g-covariant derivative can be written as

a

o a On =
(2.11) {7}B, C)= E [AB4"C%] = JABSC du ,

o o o a -
(2.12) Iigi(®) = B [2,3,070,070 = 20,470, ¢ du -

Hence, the a-representation is convenient for studying the properties of
the a—connection, because VKB & TB is represented by the prejection of
the funcrtion AB¢G' to the space Tea. In other words, the vector V:B is

represented in T a by ABq:ol + f(x, 8), where f(x, 8) is a function

6
perpendicular to T u', i.e., Eu[f(x, 8) ai ¢“(x, 8)] = 0. It should be
remarked that the expressions (2.9} and (2.11) are .invsria_nt, because Fé

is homogeneous.

2.4, Dual connections and parallel displacements
Let ¢ ¢ I +~ M be a smooth curve in M, ¢ : t + 8(r) with the tangent

vector &(t) = éiai where 1 is a real interval and . implies the

derivative with respect to t. Let A(t) be a vector field along the

curve. When it satisfies
(2.13) ViA(t) = 0
for an affine connection with covariant derivative V, or

el 1,k27
AT+ Ty AT o,

11



in the component form, A(tl) is said to be the parallel displacement of
A(to) fromle(to) to B(tl) along the curve c. We denote the parallel

displacement along curve ¢ by Hc : Te '+'Te .
HCA(to) - A(tl)

Let ¥ and 7% be the covariant derivatives of two affiné connections

in 8 manifold with a Riemannian metric. Whea = -

%
(2.14) - adB, ¢y = {v,B )+ CRA c)
I
holds for amy vector fields A, B, €, thé two comnections are said to be
dual. Obviously, the duality satisfies V&% = ¥, By putting A = 31, B =

aj, c= Bk, the component form of the duality is obtalned as

*

(2.15) R rijk + rikj - Bigjk' .

This proves the existence and uniqueness of the dual of a compection, A

connection 1s self-dual, i.e., ¥V = ¥*, vhen and only when it ig metric.
Let ¢ be a smooth curve connecting two points 6 and 6', and let IIc

and Hc* be, respectively, the parallel displacements ?1th respect to the

connections Vv and V* from € to 6' aleng the curve c.
Lemma 1. For any A, B € Ta,

(2.16) <A, By, = LA, TBY,

12



where <A, B>e is the Inner product at the tangent space Te.

Proof. ©Let a{r) and B(t) be the parallel displacements of A, B & Te

along the curve ¢ with respect to the connections ¥ and V*, respectively.

*
From VéA(t) = 0, VéB(t) = ), we obtain the relation

), B« 6 <A, BDD
= {oa, By + (A, vEs) -0,

which proves the lemma.
This shows that Hc and H_C* are adjbint operators, where n_c* iz the
parallel displacement from 8' to 8 along ¢ with respect te 9%, in the

sense ' S A

. *
Lna, 8y, =< 1), .
Theorem 1. The o-connection and =a-connection are mutually dual.
The O-comnection iIs self-dual, and is the Riemannian connection derived

from the metric.

Proof. For vector fields A, B, C, we have

aqB, c) = ArBece™an = %8, ¢ + (B, V,%) .

13



Hence, v¢ and ¥ are dual., For ¢ = O, 7%is self-dual so that it ia
metric. Since V¥ is torsion-free the O-connection 1is derived from the

Riemannlan metric by the Levi-Civita parallelism,

2,5. Submanifolda

Let M' be a smooth submanifold in M, The tangent space TB(H') of M'
at § € M' is a linear subspace of the tangent space TB(H) of M at 8. The
geometrical structures, the Riemannian metric and the w-connectlons, can
be defined in M' in the same mahner as in M. Let A, B be tangent vectors
at 6 of M'. They can also be regafded as tangent vectors of M. As can
easily be shown from the definition, the imner product <A, B ' in

Te(H') coincides with that in TB(H)'
a o
LA, B)' =<A, BY =B [A47Bs") .

Hence, the metric of M' coincides with that ipduced from the metric of M.
Let A, B, C be vector fields im M'. From the definitions of the

a~covariant derivatives in M' and in M, the relation
<vSB, ¢)' =k [ABe%Ce"] = VB, €D,

where ¥'* is the covariant derivative of the a-connection In M,

Py a a
A B 1is equal to VAB. The vector VAB

Rowever, this does not imply that ¥
does not necessarily belong to Te(M'). The orthogonal projection (with
respect to the Riemannian metric) of V:B to TB(M') coincides with VA“B.

The a-connection of M' is induced from that of M in this sense.

14



A submanifcld M' of M is sald to be o-sutoparallel, when, for any

vector fields A, B belonging to F(M'), the covariant derivative of B
. t [ On o gt@

along A in M belongs to J(M'), V:B&TB(M ), i.e., V,B = V(B holds. 4
one-dimensional a~-autopsrallel submanifold 1s said to be an w-geodesic
curve, Let 'c¢c : B{t) be an a-geodesic curve. Then, it satisfies Vgé -0
or
=1

a4 @ 1gdgk 2 o

jk
by choosing an. appropriate parameter t. This paramefer is calleld the
u-afffne parameter of the geodesic.

A submanifold M' of M is said to be totally geodesic, when any
geodesic curve 6(t) in M remains in M' if 0 = e(to)e M' and é(to)le TB(M')
at a point 6. S5ince the present manifolds of measures are i:orsion-free,
an autoparallel submanifold is totally geodesic and vice versa (cf.

[15]). Let Té be a subvector space of the tangent space T We can then

g*
construct an a-autoparallel submanifold M' which includes & and whose
tangent space at 9/ coincides with Té. This M' is composed of all the
a-gecdesics which pass through 6 and which have tangents at 8 included in
Té. We call M' the a~autoparaliel submanifold generated by Té.

2.6, Manifolds of probability distributions

A manifold P of measures p(x, 8) is called a manifold of prcbability
digstributions, when fp{x, 8)du = 1 ° holds for all 8. An n-dimensional
manifold P of probability distriburions ecan be extended to an

{n+1)-dimensional manifeld M of finite measures consisting of the density

functions

15



(2.17) m(x, 8, t) = tp(x,8) ,

where t 1s poslitive and (t,8) forms an {ntl)-dimensional coordinate
system of M. This M is called the manifold of measures extended from F, and
denoted by M{(P). The original P is a submanifold of M{P) specified by t = 1.

i

Let 3, = 3/3t and 31 = 3/30° be the filelds of the natural basis

¢
vectors associated with the coordinates (t,8) on the whole M(P). When a
vector field A{8) = Ai(e) Bi is defined on P, it can naturally be extended

in M(P) by A(t,8) = AT(0)3,. From
3.logm{x, 8, t) -l (a 3> =1
0 » t ! o' ‘o TR

Cogr 3> =+ El3,logp(x, 9] = 0,

it is proved that 3 is the unit normal vector field onm the submanifold P

0
in M(P). B

Let ¢ and ¢ be, reapectively, the a-covariant derivatives in P and .
in M(P). The following lemma gshows their relationa.

Lemma 2. For vector fields A, B #(P), their extensions in u(e) ]

satisfy

(2.18) . vAn - v B - -1—+-9-<A BY 2,
~a a l-a

(2.19) Vg A= Vo) = S5r A,

16



{2.20) v
Proof. From the definition, we have
~o l-g
t{V,B, 3,) = E[4BL] + <= E[ALBL]

because of 30£ = 1/t. By using the relarion

0 = ABfpdu = E[ABL + AZB%] ,
e 1+a
e{WB, 3,2 = - 32 4a, B)

is derived. Hence, (2.18) is proved. We can prove (2.19) and (2.20)

similarly.

Corcllary 1. The space P is autoparallel in the extended M(P) in

the sense of the -l-comnection (a = =1),

Corollary 2. For any fixed 8 and for any a the cutve ¢ : t + {tp(x,

8)} is an a-geodesic intersecting P orthogonally at 8. -

Theorem 2. Let P' be a submanifold of P and let M' = M(P') and M =
M(P) be the extended manifolds of measures from P' and P, respectively.
Then, P' is a-autoparallel in P, 1f and only if M' 1s a-autoparallel in
M. Especially, a curve ¢ in P is an a-geodesic, when and only when its

extension M{c) 1s a—autoparallel in M{P).

17



Proof. Let A', B' be vector fields of P', and let N be a vector field of
P orthogonal to the tangent spaces of P' at P, Then, P' 1z

c-autoparallel in P, when and only when
(2.21) {7 BN D=0

holds for any A', B', N. The tangent space T(M'} of M' is the direct sum
of the tangent space T{(P') of P' and the wvector 30. Hence, M' is

g~autoparallel in M, when and only when

[ Lo ~
<VEB', ND =0, "¢V 8, N) =0,
(2.22)

<V A,NY =0, (T, N) =0

holds for any A', B", N, where A' 1s extended in M' when necessary.
However, the latter three holds automatically because of Lemma 2.
Moreover, (2.18) guarantees that (2.21) and the first of (2.22) are

equivalent. This proves the theorem.

Corollary of Theorem 2. Let P' be the a-l—autoparallel submanifold in
P generated by subspace TéCTB(P) and let M" = M{P') be its extension.
Then, M' 1s the a-autoparallel submanifold in M(P) generated by the

subaspace spanned by Té and 30, and P' = PAM' holds.

18



3. Geometry of a-flat Manifold
3.1, a-flat manifold and a-affine coordinates
A torsion-free manifold M 1s said to be a-flat, when the a-curvature
{the curvature due to the o~comnnection) vanishes. The curvature R
associated with covarlant derivative V is a mapping from #4{(M) = () x
F(M) to T(M) defined by

(3.1) R{(A, B, C} = [V, V. ]C

A' 'B _v[A,B]C
where A, B, C are vector fields and [ , ] implies the alternation, for

example

VB] =9y9, - 9.7 [A, B] = AB - BA ,

[v N R

A’
When M is a~flat, there exists a (local) coordinate system & for which

the followings hold,

5 =0 r‘;jk(e) -0.
On the contrary, when the above holds for some coordinate system 5, M is
a—flat, This 8 1s called an a-affine coordinate system of the o-flat
manifold M. All the o-affine coordinate systems are related to each
other by affine transformations.

When M 1s a-flat, the parallel displacement of a vector A from B, to
6; does not depend on the curve comnecting them, and vice versa. Hence,
the parallel displacement of a wvector A along a loop 1s invariant,

provided M is simply connecred.

19



Theorem 3. An o-flat manifold M is aleo ~g-flat.

Proof. Let ¢ be a loop in M, and let Hz be the operator of the parallel

displacement encircling the loop. For amy vectors A, B,
a -0
<1, 1B = 4, BY

holds because of (2.16) and Theorem 1. Since M is w-flat, H:A = A, 80

that n;“n = B holds, implying M is -a-flat.

3.2. Dual coordinate systems and Legendre transformations

Let § = (ei) and n = (ni) be two coordinate systems in M, where the
lower index is used to describe the components of M. The natural bases
of the tangent apace TG(M) are given by {Bi} and {Bi}, respectively,
where 31 - 3!361, Bi - B!ani. When they form blorthogonal bases, 1i.e.,

when the inner product of 31 and a3 sagi@fiea, for any 9,
(3.2) 3, B3 =6l ,

where di ig the Kronecker delta, being equal to 1 for i = j and otherwise
equal te 0, the coordinate systems o and n are said to be mutually dual.

In this case, froem (2.3) and ajz - (aekfanj)akg, we have the following

relations
gt i any,
(3-3) an_ 1 » m‘g gjk »

4

20




where the metric tensor gij defined by gij(n) = E[aizajz] is the inverse

of the metric tensor Sji'

Theorem 4. When M has a set of dual coordinate systems (6, n),
there exist convex functions F(&) and G{(n) such that § and n are obtained
from dne another by the Legendre tramsformations

(3. ol = alG(m 4 ny = 3,F(8)

and that the two functions are related to each other by
(3.5) F(8) + G(n) - 6'n = 0 .
The metric tensors are derived by

=337, gd=aladg.

(3.6) 844 1%y

On the contrary, when there exists a coordinate system 8 (or n) and a
function F (or G) for which (3.6) holds, there exists the dual coordinate

systems (6, n} in M.

Proof. When (8, n) are dual coordinates, aigjk - Bjsik = (} holds because
of (3.3). Since gij is symmetric, the Poincare lemma guarantees the
existence of the potential function F(8), provided M is simply conmnected.
Similarly, the existence of G{n) is derived. The relations (3.4} and

(3.6) hold for them. The functions F and G are determined to within

21



linear and constant terms, and we can chooge them puch that (3.5) holds.
On the con£rary, if there exists a function F for which (3.6) holds, the
dual of 8 is obtained by n; = 31F.

Theorem 5. Let M be a torsion-free flat manifold with respect to am
affine connection ¥ whose dual V* iz also torsion free, and let 0 be &
y-affine coordinate system. Then, there exists a coordinate system n
such that (8, n) are dual coordinate systems. Moraover, M iz flat with
respect to the dual connection and n ie a V*-affine coordinate system.

Procf. Since § is V-affine, T = ) and since V* is torslon free or

ijk

l"*ijk = r*jik’ we have from (2.15}) ngk - %Bik

existence of the potential F(8). The related dual ccordinate system n is

= 0., This proves the

derived from F(8). Applying (2.14) again to the natural basis vectors ai

of 6 and Bk of n, we have
k * k
EEROMDERCENENS oy ¥y 2 v

*
" <aj' vai3k7'

*
a1 aj = (} is used because O is V-affine. Hence, we have vaiak =

*
0. Since V*B is linear in A, we obtain ¥ aiak- 0, which implies n 1s a

where ¥

v*-affine coordinate system.
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Corollary of Theorem 5. When M is a-~flat with an a-affine
coordinate system 0, there exisrs a dual coordinate system n which is a

~g~affine coordinate system.

3.3. oa-divergence
Let M be a manifold admitting dual coordinate systems (8, n) with

potential functions F and G. A funcrion D : M x M + R is defined by
' 1
3.7 D(8;, 8,) = F(8)) + Glny) = & ny,

in terms of the coordinates Bl and 82 of two points in M, where ei and

Ny 8re the components of 8, and Ny = n(az) which is the dual coordinates

of 82. This function satisfies the following relationa.

Lemma 3.

1) D(o, £) > 0. The equality holds when, and only when, 8 = £,
2) »/s61D(o, £) = 3/3tiD(e, £) = 0, at 8 = £.
»  Paetaehne, 0 = g @,
Proof. By differenting the definicion (3.7), we have
(3/261)D(8, £) = n (8) = n (O) ,

@raghnee, © = gy @l - oh)

(32/38136d)n(s, €) = 8;,(®)
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vhich prove 2) and 3). Since L is positive-definite, D{(8, £} is &
strictly convex function with respect to 6. Hence, D(8, £) > O when 8 %
£ is proved from D(B, 8) = 0 and 2}.

When d6 is "infinitesimally small”, the relation
D(o, 8+d8) = D(6+d8, 9) =L astaed
] » T ij

holds. Hence 2D(®, £) can be regarded as a generalization of the square
of the Riemannian distance on M, although it is not gymmetric D(8, £} #
D{{, 8) 1in general. It does not necessarily satiafy the triangular
inequality., We call D{e 11 6 2) the divergence from el to 82 in M.
Although the potential functions F, G are determined only to within
linear terms, the divergence is uniquely determined.

Let M be an o-flat manifold. Then, there exists the dual coordinate
aystems (6, n) with functions F and G. Hence, the divergence 18
{introduced in M, which we call the a-divergence and denote 1t by
Da(al’ 62). Since M is also -u-flat, it has the -a-divergence D-u(el’
82), too. Since n is the -o-affine coordinate system with potential

G(n), the -a-divergence is written in terms of n as
i
D_,(n;» n,) = Glnp) + F(8,) = 01495 »
where 02 = B(nz). The following theorem is easy to prove.

Theorem 6. The a-divergence from 91 to 92 is equal to the

-a—divergence from Bz to 81,
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(3.8) D (8, 8,0 = D__(8,, 6) .

Theorem 7. Let ¢y be the o-geodesic connecting two points 8, and

2
81. let cy be the =-a-geodesic connecting two points 82 and 83 in an
a-flat manifold M. Let y be the angle of the two geodesics N and Cos
i.e., the angle between the tangent vectors of ey and c, at 92. Then
¥4
{3.9) Du(al, 63) 2D,08), 8,) + D, (6,, 93)

according as coay < 0, cosy = 0 or cosy > 0.

Proof. We have Ceh

Dy(8ys 85) + D (65, 63) = F(9;) + G(ny) = 6)em,

+ (el - 92)‘(713 - nz) = Da(el' 83) + (B]. = 82)'(713 - nz) y

where 91- ue for example, implies ei Since 8 1is a-affine

1M21*
coordinates, the a-geodesic curve ¢, ean be written in the form e, 3 B(r)

= Bz + t(B1 - 62). Hence its tarigent vector at 82 is given by 81 - 82 =
(Bi - ei)ai. Similarly, the -a-geodesic curve c, can be written in the

n—eoordinates as C, ni{c) = n, + t(n3 - "2)’ and the tangent vector at
i . ,
n, is Ny = Ny (n3i - nZi)B . Hence, (61 - 82)-(n3 n2) has the same
sign as cosy. This proves the theorem.
The theorem shows that Da gatisfivs the Pythagorean relation as the

squared distance does in the Euclidean geometry, and ta-geodesics play
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the role of stralght lines in an a-flar M. This can be shown in the

following discussions more clearly.

3.4. o-projection

Let M' be an m-dimensional smooth submanifold of an n-dimensional
a—flat manifold M (m < n). We consider the problem of obtaining the
point &' & M' which is closest to a given point 8 € M in the sense of
the a-divergence Du(s’ 8'). This is the problem of approximating a
measure 9 € M by a measure Iincluded in M'. Such a problem has been
studied by Kullback [16], Csiszar [7], [8] and Cencov [6], where the
Kullback divergence is used. Amari [3] used the w-connection to solve
the problem where the a-distance ig defined as the criterion. He proved
that the a-projection to M' givesi the __best approximation of a
distribution by one belenging to M'. Here, the a-projection of & to M’
is the point H'E€NM' such t_hat\l;:he _q—geodesic ¢ connecting @ and 8’ .are
orthogonal to M.' at 8'. Thus, the role of the a-geodesic or the
u-connection is elucidated in the geometry of the o-divergence. We
generalize his results by giving a more general and rigorous framework.

A point 6'€&M' 1s called an  g-extreme point for 0&M, when it

satisfies, for any A'é€ Te,(M')
A'D (5,8') = 0,

where the vector A' operates on the second variable &',
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A'D_(p, 8') = A'i(a!aa'i)nace, ') .

The a~divergence Da(ﬁ, £'), E' & M' attains the extreme wvalue at an
a-extreme point £' = 8' of 6. Let OQ(B'.M') be the inverse Image of the
a-projection. Then, it consists of all the points on the a-geodesics
which intersect M' perpendicularly at 6'. We call 0, (6 ', M') the
orthogo.nal a-submanifold at &' of M', because it is the a-autoparallel
submanifold generated by the subspace of Ts,
complement of Ta.(M'). When 6 belongs to 0, (6', M'), there is an

which are the orthogonal

a-geodesic ¢ connecting 9' and @, c : 0(t) = @™ + (8 - &') in the
a-affine coordinate system B and the tangent vector 8 - 8' of ¢ at &' is
perpendicular to any A'GTB.(H'), A", 6 -8') = 0

One more definition is necessary before stating the relation between
the o-divergence and a-connection. A subset $5 of M is Bald to be
a-convex, when there exists inside $§ a unique a-geodesic of M connecting
any two points 81, 82 €85.

Theorem 8. For am o-flat a-convex M, the a-projection of 9 €M to M'
glves the a-extreme point, and conversely, if 5'€ M' ia the extreme point

for 6, &' is the a—projection of 9. .

Proof. Let 6 be a point for which 8'€M' 1s the o-extreme point. Then,

for any A' & TB.(M‘),

0= a'n (6, 8') = AJ3T(G(n") - o'n}) = ~La', B - 6"
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holds, where (8, n) are the dual affine coordinate systems. Since M is
a-convex, there exists the a-gecdesic (L) = &' + t(8 - 0') connecting O
and 8' and its tangent vector at 8' is § - 8'. Hence, 8' is the
a-projection of €. On the contrary, when the o-projection of & 1is e',
A'Du(a, 8') = 0 holds, 8o that 8' is the a-extreme point of 6.

The theoreth shows that the a-projection gives the best approximation
(the o-approximation) of & by the distributions in M' in the sense of the
a-divergence provided the minimum of Da(e,e') is giveth by the a~extreme
point. However, the a-projection might not be unique. We give

conditiona which guarantee the uniqueness of the o-projection.’

Theorem 9. 1) The o-projection to M' is 'unique, when M' 1is a
—g-convex submanifold. 2) The a~projection from M-¥ to the boundary 3V
of V is unique, when V is a closed -o-convex set having a smooth

boundary. - e

Proof. It should be noted that a ~a-convex submanifold is
-oa-autoparallel, We prove only case 2), because the proof of casé 1) is
almost similar. Let M' = 3V, We assume the contrary that there exists a

point £ of which both 6, and 8, (61%02) are the o-projections to M'. We

1

connect £ and ei by the a-geodesics e and connect 91 and 82 by the
~a—geodesic €y constructing a triangle (g, 81, 92). Since ¢ ie
orthogonal to M' = 3V and lies outside V while ¢ is included in V, the
angles L between ¢y and S at Bi gsatisfies costTy :'0.' Hence, Theorem 7

vields

DG(E’ 82) : Da(gl 81) + Da(sl’ 62) »
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DG(E’ Bl) Z Da(ﬂ’ 92) + DG(BZ. al) .

It then follows Du(el, 82) + D‘; %, Ea) < 0, which 1s a contradiction,

proving the theorem.

We next study the problem of the a-projection in a manifeld P of
probability distributions whose associated manifold M(P) ie a-flat. The
u-diveraence. can be Iintroduced in P by restricting M(P} to P. The
a—projection in P alsc gives the a-approximation, even though P itself is

not a-flat.

Theorem 10. Let P' be a smooth submanifold of a manifold P of
probability distriburions whose extension M(P) 1is a-flar. Then, the
a-projection of 8 to P' is #' when, and only when 8'€P' is the o-extreme

point.

Proof. Let 5;(8',P') and oa(e‘, P') be the orthogonal a-submanifolds at
o' of P' in M(P) and in P, respecrively. Since O (8',P') = ﬁ‘u(e',p')np
holds (Corollary of Thecorem 2), the a-projection of 9€P to P' is 8',
when and only when Giﬁa(a‘,l’), and this holds when and only when 8' is

the a-extreme point of 8.
Theorem 11. When M(P} is a-flat, 1) the a-projection from P to a

smooth -a-convex submanifold P' is unique, and 2) the a-projection from

P-V¥ to the boundary P' = 3V of a closed -c-convex set V is unique.
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Proof, We prove only case 2). Let M(V) be the set of measures extended
from the probability distributions of V, Then, M(V) is also -a-convex.
Since ﬁa (a ",P'y i oa-autoparallel and since it includes the
one-dimensional submanifold M(5') extended from 8' € P', the a—projection
of aeﬁa ©', P') to M(V) s included in M(8'). TLet 61, 8} be two
distinct points in P'. Then, ‘6&(8', P') and 3a(9', P') are disjoint in
M(P) - M(V), because, if they have a common point §, its g-projection to
H(V) is on M(Si) and on M(Bé) at the same time, contradicting the
uniqueness of the a-projection in M. Hence, Ou(a',P‘) and Oa(eé,l") are
also disjoint in P, proving the theorem.

Let us define the a-sphere Sa(ﬁo,r) with center 8§, and radius r by

0

§,(8> ¥) = {6 | D_(85, 0) = £’} |

Thecrem 12. The u-geodesic connecting 6. and a point 8 Sa(ﬁo,r) in

0
the sphere is orthogonal to the sphere in an a-flat M or in a P whose

M(P) 18 a-flat.

4, oa-Famillies of Probability Distributions
4.1. Complerely a-flat manifold
A manifold M is said to be completely a-flat or shortly c. a-flar,
when, for any vector fields A, B & J(M), ABy" belongs to Tg.

case, the a-representation of the covariant derivative is written as

In this
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“%.10 (vgs)qa“ = AB¢®

because of (2,11), implying that the function 3,9 ¢a(x,'8) is included in

i’y
a
6

T
Theorem 13. A completely a-flat manifold is a-flat.

Proof, From {(4.1), we have
[7,, 951Cé = (ABC - BAC)) = V

so that R(4,B,C)}¢ = 0, proving the theorem.

Let 6 be the a-affine coordinate system of c. a-flat M. Then, vgiaj

=0 or aiaj¢“(x, 8) = 0 helds, so that we have
(4.3) 8% (x, ) = 8lo (0 + 4. (0) .

Hence, Tg is spanned by n functions ¢i(x). The metric tensor gij(e)'ié

given by
(4.4) 245() = E [0, ()¢, (00} .

8ince the density function m(x, &) is connected with ¢a(x, 8) by

{2.7), we have
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ds2iehe, ) + 0112, ad 1,

m(x, 6) =

exp{ﬁid:i(x) + ¢0(x)} , a=1,

1f we further agsume that, for real t > 0, tm{x,0) is also included in M,
we can choose an e-affine 8 for which ¢0(x) =0 (a ¥ 1). In the case of
a = 1, by changing the dominating measure from duy to e-¢ (x)du, we can

eliminate the term ¢0(x): Hence, we have

{1-;—“61_¢i(x)}(1'°‘)."..2 , o 1

4.5 mi(x, 8) =
i
exp{a ¢i(x)] » a=1
In order to obtain the potential functions Fa and Gu explicitly, let
ue define two functions of 8. One is the total measure T(8), and the
other is the entropy-like function H(8),
(4.6) T(e) = /m(x, 8)du ,

(4.7 H(B) = - /m(x, 6)logm(x, 6)du .

Theorem l4. The potential functions of ¢. o-flat manifold M are

given by
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m T » o * -1 .
(4.8) F (e) =

~-H-T, o = =1
(5.9) c (n) = F_(8) .

Proof. By differentiating (4.8) twice with respect to 8, it can be shown
that aiajFu = By (8) holds for sll a. The potential G {(n) can be
calculated from {3.5), gifing {4.9). It should be noted that c. g-flat
manifold M is -a-flat but is not nécessarily c. ~o-flat.

In order to obtain the a-divergence in a compact form, let us define
a one-parameter family of convex functions, .

(4.10) fa(u) =f{ ulogu ~uw+1, a=1,

-logu+u=-1, a=-1, - :

Theorem 15. The a-divergence DQ(BI, 92) ig written as

. . mix, 0;)
T D8y 0 = Byt B )

,:_:.,' ER

in e. a-flat manifold M, where El -implies the integration with respect

to the measure mix, Bl)'
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4.2, a-family
A manifold P of probability distributions is called an o-family,

when 1ts extended manifold M(P) of measures is completely a—flat.

Theorem 16. A manifold P is o-family, when and only when

u ]
(4.12) aia ¢ (%, E) A

i

k o
Soaeton 0 - g e,

holds for some functions Ai k(E) in any coordinates & = (Ei).

i

Proof. When P = {p{x, £)} is an o-family, the extended M{P) = {ep(x, £)}

is c. a-flat. In the coordinates 6 = (t, E) in M(P), we have

@ Con ks a 0, o
3,840 (x, E)-l‘ij ()9, 8" + Ty 940

evaluated on the submanifold P fn M(P), i.e., t = 1, where 89 = ¢ and 1,
j, k are indices for the coordinates £ in P. Sincefaiaj¢a is a linear

combination of ak¢“ and 30¢a from (2.18) we have

a0
Iy

2 Biy

)(1‘Q)f2.

so that (4.12) holds because of an¢“ (x,8,E) = p(x,E On the

contrary, when (4.12) holds, 3 3 j¢°‘ belongs to Ty spanned by 3,¢% and

Bo¢u. It is easy to show that 3 @ ﬂa and Boao¢a also belong to ?g.

Hence M(P) is c. a-flat and P is an a-family.
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By choosing an (n+l)-dimensicnal a-affine coordinates 0 in M(P) for

an n-dimensional a-family P, it can be represented in the form

(ke ei¢i(x>}2"“'°‘) . adl

(4.13) p(x, 8) =

exp{si¢i(x)} s, a=1

where n among ntl components Gi of % are independent because of the

constraint
(4.14) T(6) = fp(x, B)dp = 1 ,

It should be remarked that the coordinates (t,£) is not In general
o-affine. The ntl affine coordinates & can be regarded as homogeneous
coordinates of P (a ¢ 1), since T(0) 1s a homogeneous function of degree

2/(l - a). The following theorem is clear from Theorem 2.

Theorem 17. A submanifold P' of an a-family P is a-family, when and

oply when P' 15 a-autoparallel.

The co-families 1include some famous families well knowm 1n
statisties. For example, when o = 1, we can choose first n components Ei
= ai (1 =1, .v., n) of 9 a8 a coordinate system in P. By taking an

adequate dominating measure du, the l-family can be written as
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p(x, 6) = exp {aidbi(x) - ()}

where exp[ y(®)] = Iexp[§i¢i(X)]du. This family is well known as the
exponential family and plays a fundawmental role in statistics. The
parameter T is known as the natural parameter. We have already seen in
Example 1 that an exponential family is 1-flat fand ia hence -1-flat)
with the affine coordinate system 6, Since an a-family is not in general
a-flat for a ¥ £ 1, this 1s a special property for a = 1.

When o = -1, we have p(x, 08) = 91¢i(x). We can choose the scale of
Bi such that f¢i(x)du = 1 always holds. Then, the conatraint (4.14)
becomes zei = |, This family in well known In statistics as the mixture
family. We can use the firat n components of € as the coordinates 9 of
P, with

plx, 8 =83, +7¢_ (0,

T ) =g (x) S0 (x) .

This shows that a -l-family 1is ¢. -1-flat, and hence is 1l-flat (but not
c. =l-flat). This 1s a special property for o« = =-1. The special
property for o =21 1is given rise to by the fact that P is
=1-autoparallel in M (Corollary 1}.

The a-geodesic of an a-family can easily be obtained in terms of the

homogeneous coordinates.

Theorem 18, The a-geodesic connecting two pointa Bl and 02'19 given

by
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(4.15) 6(t) = .:(t){a1 + :(62 - 91)} » 0¥ 1,
(4.16) B(r) = &, + £(F, - 'a'l) R a=1,
where c(t) Is determined from the normalization condition T[6(t)] = 1.

Proof. The a-geodesic connecting 01 and 82 is given by 6(t) =« g + t(e2

1
- 81) in M{P). Since the two~dimensional submanifold given by B(tl’tz) -=
tlel + tzez is a-autoparallel in M{P}, the a-geddesic in P 1s given by

the intersection B(tl, t2) \P. Hence, we get (4.15) or (4.16).

Example 3. The functions m(x, £} of the manifold H of the measures
on a finite number of atoms are given by m(x,f) = E 5 (x) (see Example
2), where 5 is the measure of atom X, € forming a coordinate system of

Mn. By defining the new coordinate system Bu depending on u,

_%E (Ei)(l-a)/Z . agl
ol -
a

lOSEi » ¢ =]

o 1 o
we have ¢ (x,ea) » eaéi(x)_ao that % % ¢ (x, aa) = 0. Hence, Hn is e.
a-flat for any a and the Ba is the a-affine coordinateg.
The probabiliey distribution Pn-l on n atoms iy reny x is an

{n~1)-dimensional x-family for any o, because its extended manifold is
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Mn. Hence, we can define the e-divergence, the a-projection, etc. 1in
P . It can also be shown in Mn that B_Ol plays the role of the dual of

Ba. This defines the dual (homogeneous) coordinates Ny in Pn—l'

4.3, Duality in a-families
The dual homogeneous coordinmates n are obtained in an a-family (a ¥

1) by

2 12 .
R T IR vl I

Obviously, n should satisfy the constraint T(n) = 1. It is interesting
that the normalization constraint given by T plays the central role in
both the Legendre and ita inverse transformatioms. The.normal vectors of
the conatraint su;face T = const. give the dual coordinates in the both
transformations.

For the exponential family P where a = 1, the dual coordinates W of
B 1is glven by Ty ai¢(§) since P itself is 1-flat, The dinverse
transformation is given by ¥ 1 -ai¢(ﬁ), vhere ¢(R) = - H(A) - 1, (¢,¢)
being the potential functions. The dual coordinate system T is known as
the expectation parameter.

For the mixture family where & = -1, the dual coordinates n are

given by

Ty m £ G0 (L + logp(x, B)}du .

s



The dual coordinates (6, n) of the mixture family P have the potentials

¥(B) and (M),
p(8) = - H(®) , ¢(6) = - [¢ ., Jogp du
and are related by ﬁi = 31¢(§). B . 3i¢(ﬁ)-
4,4, o-divergence and c—entropy in c—family

Because of the constraint (4.14), the a-divergence has a eimpler and

more familiar form in the a-family. For the functions

P Tt - WIFI2Y g
4.1 hglu) = \ ulogu o =1
L ~logu , o= -1

the a-divetrgence is expressed as

(x' al.
(4.18) D, (0,5 0,) = B In (B tedy)

in the a-family.

The -1-divergence is well known as the Kullback-Leibler divergence,
and its geometry has extenslvely been studied so far (Csiszar [8], Uencov
[6], Efron [12], Ingarden [13], Amari [3]). The l-divergence is the dual

of the -l-divergence, 1.e., D_l(el, 82) = Dl(ez, 91). The w«-divergence
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{a ¢ *1) coincides with the so-called Chernoff distance (Cherncff [5]).
Especially, the O-divergence is well known as the Hellinger distance.
The D-divergence is symmetric and it satisfies the triangular inequality.
As will be seen later, the Hellinger distance is related to the
Riemannian distance.

1t should be noted that the a-divergence 1is closely related with
Rényi's a-entropy or o-information (Rényi [21], [22]). Since the
a-information is defined for 0.< a £ 1, we put a' = (1 - a)/Z. The

a'=-information Ia'(p,q) of p relative to diaeribution q is defined by
1 o' 1-a'
(4.19) TPy @) =577 logl/p(x)” q(x) du} .
When o' = 1, the limit a' » 1 is used. When a' » 1 and qdu is the uniform

measure, it reduces to the ordinary Shannon entropy. The a¢'-information

and the a-divergence is connected by
(4.20) I .¢ q)--a-{lﬂ:n( y - 1}
‘ at ‘P 1+a & o'Pr 4 '

where the limit is taken for a = =1 (a' = 1).

5. Remarks on the Geometry of Function Spaces of Distributions

We have so far treated only parametrized families of distributions,
because there are some difficulties in constructing a
differential-geometrical theory of infinite-dimensional function Bpaces

of discributions, (cf. Bencov, [6]). Here, we suggest the structure of
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the geometry of the space of density function, without rigorous
arguments. The function space is expected to be completely a-flat for any
a in analogy with the case of Example 3 where the dominating measute is
concentrated on a finite number of atoms.

Let M = {m(x)} be the set of density functions on the real Euclidean
space X with respect to the Lebesgue measure dx. It is assumed that m(x)
> 0 and that m{x) has the moments of any order. M 1s a subset of LI(x).
Let P be its subset, defined by

(5.1) T{m) = /m{x)dx = 1 .
The a-representation of m(x) is

Zeneo ™2 a4
—-a
(5.2) 9% (x) =

logm{x) , o =1

The set Ma - {¢“(x)} is obviously a subset of LB(x), B = 2/{1 - a), with
the convention that Lm(X) {z = 1) implies the set of functions £(x) for
which exp{f (x)}} 1is integrable. The following lemma is obtained

immediately from the Minmkowski and Htlder inequalities.
Lemma 4. For a ¥ 1, Ha is a cone in the sense that, for

¢ ¢ze Ha and ‘¢, d > 0, ¢ 11 + d¢2'él“la. For a' = 1, Hl 1s a convex set

in the sense that c¢1 + d¢2 € Hl for ¢pr 4y G-Ml, e+d=l,c,d>0,
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Let m{x, t), 0 < t, be a smooth curve in ¥ in a sultable sense (ef.
Yencov [6]). We assume that its derivatives with respect to t belong to
L1(X). We call the one-sided first derivative A(x) = n{x, 0) at t = O,
where ' denotes d/dt, the tangent of the curve at m(x, 0). The
a-representation of the tangent is given by

m—(l+q)f2 o

(5.3) A, x) = o%(x, 0) = ’
where ¢u(x. t) is the a-representation of m(x, t). When ml(x, t) and

mz(x, t) are two curves starting at m(x) with ¢ = 0,
n(x, t) =4+n, (x, 2ct) +Lu (x, 2de)
' 2 1 2 2

is another curve starting at m(x) for ¢, d 3 0. TIts tangent is given by
o(x, 0) = cﬁltx, 0) + dﬁztx, 0). Hence, & non-negative linear
combination of two tangents 1s alsc a tangent. Hence, the set of all the
tangents at m(x) forms a cone. The set Ta(m) of the os-representations of
the tangents at m forms 2 cone, . Unfortunately, the set Ta(m) is
not necessarily a linear space, because m(x, t) can mnot necessarily be
extended for negative t. Hence, the space M of distributions does not
form a manifold. The inner product of two tangents A(x) and B(x)} is

defined by

(5.4) {4, BY = E[A (X)B (x)] =/ A (x)B_ (x)dx

where Au is the o-representation of A.
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The tangent Set can similarly be defined for the set P of all the
probabiliry distributions jmbedded in M. The tangent of a curve plx, t),
t >0, in ? is given by A(x) = p(x, 0)., VFor the curve mn{x, ) =
(1 + o)p(x) in M starting at p{x) & P, the tangent Bo(x) is given by 30 =
p(x) or by its a reptesentation ¢%(x). (When a = 1, 30(x) = 1.} A

tangent A(x) = ﬁ(x, 0) of a curve p(x, t} in P always patisfies
Eu[aogx)aa(x)] =0

because of Eu[p(l- )k ¢"]1 = 0. Hence, 35(x) sives a normal field

orthogonal to P.

The a-geodesic connecting two points ml(x), mz(x) & M is defined by

the curve
(5.5) - ¥ (x, t) = ¢‘;(x) + t{¢;(x) - ¢':1‘(x)}
in Ma, where ¢: 18 the a-representation of m, { = 1, 2. This suggests

that M is completely o—flat. The a~-geodesic connecting pl(x) and pz(x)

in P is given by

% (x, £) = (O[]0 + £le300 - 470N, a# ]
(5.8)

elx, t) = c{t) + ll(x) + t{£2(x) - ﬁl(x)} . a=1
where c{t) is determined from the normalization condition T[m{x, t)] = 1.

Let
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2
1+a T, atl

o
(5.7 Fu(¢ y =
-H-T, a=1

be one-parameter functionals on M, where H is the entropy-like function

as in (4.7)., The Fréchet derivative of Fa is a linear mapping Fc; : '1‘ﬂ -+

R, and the second derivative F: is a bilinear symmetric mapping F; ¢ T X

Tu + R. 1t is easy to show that, for Au’ Bae Ta,
" - - . : .
(5.8) (A, B)=E[AB] = <4, B .

Hence, F; is equal to the u-expectation operator E_ which defines the
inner product i1in Ta. From Theorem 4, we 8ee Hu is an oa-affine
representation of M, which is completely w-flat for all o.

A linear mapping K : LB(X) + R can be represented by a function fKG

1B (X), (1/8) + (1/8') = 1, such that, for A € LP(X),

KA = J'A(x)fk(x)dx .

Since 'l‘Ol is & subset of LB(X), B = 2/(% - u), the linear operator FC‘I‘. is
T
represented by a funcrion in LB (X), B' = 2/(1 + a). We have by

calculacions

(5.9) FLO0™A = 1 ¢ 0A)dx

&



for A€ Tu‘ This implies that the -a-representation ¢—a is the dual of

a

¢
(5.10) S = F (%)

This 1s the Legendre transformation, and the Iinverse transformation 1s

given by
(5.10) ) =6 (67
with the functional Ga satisfying Gu(') = F_a(°) and.

F (%) + 6,067 - 7 % "dx = 0 .

The a-divergence from m, to m, is then defined by

D, (67, 83) = F_(4]) + G_(63) - 1 ¢Je, ax ,

which can be written in the form
(g (x)

Da(ml, m2) = ffu{ﬁffif}ml(x)&x .

The important Theorem 7 1s valid in this case, too.
The a-projection can alse be defined in M and in P. By defining a

reglon V having a smooth boundaries, the relation
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A'D_ (@, m") = - (A", o - 0D

holds for a tangent A' of the boundary, where A" is a Fréchet derivative
operator operating to the second variable in Da. Therefore, Theorems
912 hold 1in this case, too. Hence, the inverse 1image of the
a-approximation is given by the orthogonal a-totally geodesic setf. It
should be remarked that the sets M and P are a-convex for any a. A
statistical wodel § is a parameﬁrized family § = {p(x, 68)} of probabilicty
distributiona. We often treat a smooth model 1imbedded in P. The
g-approximation of a distribution p(x) by & member in 5 1s an important

problem in applications, and is solved in this way (see Amari, [3]).

6. Conclusion

We have treated the geometrical structures of a smooth family of
probability distributions by introducing a Riemannian metric and
a-conneccions. The a - {-a} dualistic structures are elucidated. It has
been shown that the a-divergence i1s naturally introduced in an a-flat
family, It is closely related to the o-geodesiecs, and they together
conatitute the a-geometry. The a-family of probability distributions are
also defined. These geometrical gtructures play important roles in
atudying the properties of various statistical models. We have also
discusgsed the geometrical properties of the function space of
distributions. However, there remain many problems to be studied
further, because we need to mbdify or genera.lize the concept of manifold

to treat the geometry of function spaces.
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