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ON VON NEUMANN’S THEORY OF MEASUREMENTS
IN QUANTUM STATISTICS

By Masahiro NAKAMURA and Hisaharu UMEGAKI

(Received Sept. 25, 1961)

1. Introductio_n

It is well known, that the theory of von Neumann algebras, founded by 7J.
von Neumann himself, has its origin as a mathematical foundation of quantum

. mechanics, and that von Neumann wrote his monumental classic book [Q] basing
on his earlier studies of von Neumann algebras.

In recent years, however, the
modern theory of von Neumann algebras, which is developed by Dixmier, Kadison,
Kaplansky., Segal and the others and summarized beautifully in Dixmier[1], almost

loses touch with quantum mechanics.

Very recently, Segal [4] observed that the modern theory of von Neumann

, algebras has an oppotunity to rewrite partly [Q], especially he noticed that the

¥ toncavity of the entropy in qu: ntum statistics has an alternative proof. However,
L he did not e

:plicitly point out that his point of view gives an another perspective
. 00 quantum mechanics especially on von Neumann’s theory of measurements.

The present note is, in essence, an explanatory note which may give an

POSItion on some facts mainly contained in [Q; Chap. V] under the point of
W which is based on the rccent developments of the modern theory of von

ann  algehras. Especially, Proposition 1 is the center of the note which

¥ elarify in some sense hithei'to mysterious character of von Neumann’s theory

Casurements in quantum statistics.
I :[ﬂug

hout the note, for the sake of convenience, the technical terms and the
Bl used iy [Q] are employed. Also, the terminology on von Neumann

I Dixmier [1] is used without any explanation.

2. ‘fiatistical operator

Statistjcyy operator U of an ensemble in quantum statistics is introduced
£ 3197 an hermitean positive-definite completely continuous operator

Exp(R)=Tr(UR),
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where R is an observable corresponding to a physical quantity, and where Tr
means the trace of operators introduced in [Q; p. 181]. The condition (Tr)
therefore assumes that the statistical operator U is of the trace class. Von Neu-
mann [Q; p. 328] taught us that the most general statistical ensemble which is
compatible with our basic assumptions is characterized, according to the law (Tr),
by a definite statistical operator U.

It is interesting to observe, in the point of view belonging to the modern
theory of von Neumann algebras, that the staristical operator is nothing but
the Radon-Nikodym derivertive of Exp-functional with respect to the trace
Tr which is developed by H. A. Dye [2] and the others in 1950s. This view is
employed recently by I. E. Segal [4] to exploit his theory of entropy of states
defined on an operator algebra. The same view is also emplyed in the present
note to develop von Neumann’s theory of measturements under a light of the
modern theory of von Neumann algebras.

Since a statistical operator U is positive, hermit 2an and completely continuous,

it is expressed in

(1) U= ZZUnPn f
n=1
where wi, w,, -- are positive numbers and P, P, - are mutually ormr.'goﬂﬁ__l:_

one-dimensional projections. Since U belongs to the trace class, Tr(U) is fin
Conveniently, it will be normalized in the sense that Tr(U)=1. Since the t

is additive, this convention and (1) imply
n=1

Conversely, the statistical operator U can be defined by (1) and (2).
Neumann [Q; pp. 295-296] introduced the statisstical operator using (1) and
previously to his definition described in the aho ve.

Let ¢. be the unit vector belonging to the range of Pa, then (Tr) beg
(3) Exp(R) =§] wa( R, 2, ¢n).
n=1

The expression gives, according to [Q; pp. 3203-329], an intuitive descriPHos
the statistical operator: If several states @i, ¢s, +*+ (which are mutually ortf
and normalized) have the respective probabilit ies w1, ws, ** then the S
operator of the mixture of these states is the weighted mean (1) of the '.
tions belonging to the states.
ponds in 8
the

It may be interesting to note that a statistic al operator corres

sense to a trial [partition} in the theory of prc bability. Apparently’

Jdtom the cqus
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operator divides the Hilbert space into mutually orthogonal subspaces with certain

probabilities, and similarly a trial divides the sample space into mutually exclusive

subsets with certain probabilities. Moreover, there is a further affinity between

If P, is the characteristic function of a set belonging the trial and if .
is the probability of the set, then:(1) gives a bounded measurable function which

acts a role of the statistical operator on L?-space over the sample space. There-

them:

fore, the satistical operator can be considered as a non-commutative extension of
the concept of trial.

3. Measurement and conditional expectation

To avoid the complication, let us assume hereafter that R, an observable
corresponding to a physical quantity, is bounded and has a pure discrete simple
sectrum. Let @1, @3, *++ be the complete orthnormal basis corresponding to the
propervalues 21, Zs, *++ of R respectively. Von Neumann [Q; p. 347] observed
that R has the value 1, in the fraction (Ugn, ¢n) after the measurement, and
that we obtain a mixture ‘with the statistical operator

(4) U’:ni;l(U@n, (DH)P[(Pn]

after the measurement. This change, given by the process

1. U-U,

is the isti ' :
s statistical development of a state by measurements, and it differs esszntially

E: al development of a state given by the process
2. Ofe={T= e—(27ri/7l)£IIUe(27ri/n)tH’

€ H is the Hamiltonean.
98] taught us,

real world,

Just as in classical mechanics, von Neumann [Q;
Process 2. does not reproduce the most important property of
namely its irreversibility, the fundamental difference between the

direct' & 23
10,] » (14 23 . - . -
. » “future” and “past”, whereas 1. is certainly not prima. facie

ble,

1€ preg Ot ¥ :

fp Sent note is interested in the process 1. under the light of the modern
2AY 0 VO N )

v n Neumann algebras. It seems that the secret of von Neumann’s

f meas
easureme . C . .
Hrements in quantum statistics is condensed in the following pro-

OPOS (1
\ ITION - e .
. N L The process 1. is nothing but the conditional expectation

: the S y
! ense of [=1 . i
. of |51 conditioned by the von Neumann subalgebra 9 gene-
£ the obserogple R:
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(5) U'=E[U|¥], responding to two systems I and II, von Neumann [Q; p. 422] taught us that

. - e PR, . the composite system I-+II corresponds to the direct (tensor) product D:9::.
or alternatively, in the convention of probabilists, the conditional expectation po Y ' PO ( ) p 1) D1z

of U conditioned by R;

If Ur and Uy are the statistical operators of I and II respectively, which are
the restrictions of a statistical operator U of I41I, von Neumann [Q; p. 425]
(5" U'=E[U|R].

taught us, that their interrelations are given by
It will be recalled that the conditional expectation of U conditioned by A ) Ur=E[U|%), Uu=E[U|%],

LSRGl Clatiee oy e ey where 2 and Uz are the algebras of all (bounded) operators on A; and Wir

(6) Tr(U?A)=Tr(UA),

for all A=Y, where UP=E[U|R] is the unique operator of U satisfying (6).
Therefore, it suffices to show that

6" Tr(U'A) =Tr(UA),

respectively.  According to Proposition 1, it is possible to describe these relations
(7) in terms of measurements, that the restriction U: of U in I is nothing but

the mixture after the measurement of 2I; in a statistics U.

4. Entropy
for egery AU, Since it is assumed that R has the pure point simple spectrum,_ o

After the thermodynamical considerations through [Q; Chap. V, §21, von
and since ¥ is generated by Pige.1, Pies, ***, it needs to show that

Neumann [Q; p. 379] determined the entropy of a mixture U expressed in (1)

(6" Tr(U'Propn) =Tr(UProm),

e . (8) H(U)=—Tr(U logU
for m=1,2, «--. It is easy to show that (4) implies (6"): @) r(Ulogl),

Tr(U'Pip.1) =Tr([Z(Upn, ¢1) Pioal Prem) -
=Tr[(Ugn, ¢n) Proa]
=U¢m, o) Tr(Prpa)
=Uem, ¢n)
=Tr(UPrem);

. (81) H(U) == iluhz log Wh .

arly, H(U) is non-negative. By (2), H(U) vanishes if and only if exactly
. wn=1 and wn=0 for m7n, that is, H(U) vanishes if and only if U =P
BE & certain vector ¢. Otherwise, H(U)>>0.

| B It is Interesting to note, comparing with a remark at the end of §2, that the
this completes the proof of Proposition 1. N ek . . N

_ = ical B Py of a statistical operator is completely same with the entropy of a trial in
Proposition 1 tells us that the conditional expectation is a mathematical Ii8

of the measurement in quantum statistics. Therefore, it may be possible tOTE
co :

1eory of information introduced by Shannon. The entropy of a trial in the

of Shannon is equal to the entropy of the statistical operator corresponding to

i iti ion in seneral von Neumann algebra i '
sider that the conditional expectation in gener s — I on Lspace over the sample space. It may be surprised to know that von

s t. Even in quantum mecha |
to an extension of the concept of measuremen q _ 0 [Q; p. 400, footnote 202] wrote as follows: In general, £log2 is the

is easy to give that the measurement for an operator having not 1 odynarsi
discrete spectrum is defined by (5). Moreover, using (5), it 13 also poss

s of -vable qué
the measurement of a set of not necessarily simultaneously observa

e q sasurel
is introduced. It seems to the authors that the formulation of meds :
as M-nets) it}

_ :al value” of knowledge, which consists of an alternative of two cases.
€€ Process 2. defines an automorphism of the factor of all (bounded)
which preserves the trace, it is evident that the entropy is constant

cess 2. [Q; p. 388], whereas process 1. increases the entropy:

a role of non-commutative martingales (discussed in [5] POSITI( o

[Q; pp. 380-387]. The measurement increases the en-

statistics. -8
-
It may be interesting to observe that [Q; Chap. VI, §2] g{;bt :
' ilber ‘ =
of “non-commutative measurement”. If ©r and 9n are the Hi - HU)<HU®).
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IFf U is simultaneously observable twith R, then HU)=H(U®).

The first half of the proposition is proved recently by Segal [4; Thm. 2]
and by us [3; Thm. 3] in different ways under more general settings. The
second half follows from the fact that the hypothesis implies U€W or U=y«
according to a property of the conditional expectation, cf. [5], since ¥ is maxi.

mally abelian.

It is to be remarked that the converse of the second half of Proposition 2
is true [Q; p. 387]. However, the detailed proof will be omited here since it
is somewhat complicated. We hope to discuss it in future under general C1rcum.
stances.

By (9), there is a non-negative quantity:

(10) » I[TU[R] = H(U*) — H(U),

which is called in [3] the information of U with respect to R. From Proposi-
et . Mo )
tion 2 and a remark in the above, it is obvious that the information of U with

respect to R vanishes if and only if U is simultaneously observable with R.

Therefore, it is possible to consider that the information of U indicates the degree

of the unsimultaneous observability of U with R. However, it is more nntura,l
and reasonable to consider, as in the theory of information, that I[U|R] i
measure of the knowledge which is obtainable by the measurement. Using this
measure, the increment of the entropy by the measurement is compensated
balanced by the increment of the knowledge. One of the authors wishes tol
discuss an extension of [ [UIR] in [6] under suitable general circumstances. :

It seems remarkable that Proposition 2 presents a paradox of the quantum §
tical entropy: Doubtlessly, one enforces a measurement to reduce the ambigul
a statistical state, whereas the quantum statistical measurement increases the el
(the measure of the ambiguity). . However, the paradox is possible to €
away i one remembers Proposition 1: Since the conditional t‘:.‘ipectatio_ﬂ-

kind of averaging, quantum statistical measurement is really an observat

Finally, it will be noticed that the entropy satisfies the following con

ProproSITION 3. [Q; p. 390]. If U and V are two statistical o]
then the mizing of U and V is not entropy-diminishing:

(11) H(aU+pV)ZaH(U) +gH(V),

where a and P are positive tumbers with at+pf=1.
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Proposition 3 is proved by Segal [4; Thm. 1] and is given an alternative
proof by [3; Thm. 2] basing on the theory of operatorconvex functions. The
authors awared by a letter of C. Davis, that he obtained an another proof also

basing on the theory of operator convex functions.
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Added in Proof (April 19, 1962). Very recently, C.Davis published

C.Davis, Operator-valued entropy of a quantum mechanical measurent, Proc. Jap.
» 37 (1961). 533-538.

paper, Davis employed a similar point of view. According to his formulation, a
tum statistical measurement corresponds to a “pinching”. Furthermore hLe gave a
plfied proof of the operator-concavity of the operator entropy as mentioned in the

the present note.



