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Section 0. Introduction

Recently a number of new polynomial-time algorithms for
linear and quadratic programming problems were suggested which
require O(m'’? 1n(i/e)) iterations to obtain an approximate
golution to the accuracy € ( m 1s the number of constraints ;
the accuracy 1s estimated 1n some natural relative scale). The
first method of that type was developed by Renegar [Re. 1988],
Now (July, 1988) the-authors also know the methods of Gonzaga
[Go.1987), KoJima, Mizuno, Yoshise [KMY. 19871, Monteiro,
Adler [MA.198T7 11, Valdya [Va. 1987], Todd, Ye I[TY, 1987I,
Nesterov [Ne.1988 11, concerning IP problems, and of Goldfarb,
Liu [(GL. 19881, Mehrotra, Sun [MS. 1987, 19831, Nesterov [Ne,
1988 2,31, concerning convexr quadratic programming; eee
also [So, 19851, [Ja. 19871, I[Fr. 1988}, Being quite
different from the analytical viewpoint, these methods are
close to each other in their background., Namely, for each of
the methods one can find a fapily of smooth convex functlons
F,(z) defined on soine convex.regions @, < R and depen‘ing on
the parametur t « A (A <RJ1s an open interval), such that the
trajectory :z: = argmnin{ F (z) | @ -Q } cnn?argea to the
auluticm of the problem und&r cansideratinn tor t - t*, where
t* 18 an appropriate endpoint of A. The methods cnnﬁtmct
approximations z, Iﬂr the pﬁinta.r along a sequence t =1, « A

which converges tu t*. The trunﬂramation I, -~ 18 haaed
L1

on Newton's minimization method: z, is nhtamad Dy one step
t41
of the method as applied to F, with =z, chosen as the

f+1 i
starting point,
Of course, thisa scheme of path-following methods, 18

guite traditional; classical results on 1t are described 1n
[FMcC 1968].But the well-¥nown general results on this scheme
do not ensure the polynomial-time oonvergence even for 1P
problems. This 1s the reason for the complicated and vel

speclal analysis one can find in the papers mentioned abhove,
Therefore it seems 1lmportant to explain these methods from a
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general point of view and to understand which elements of the
constructions are the key ones and what is the widest class of
problems the methods can be applied to. For Instance, it 1s
interesting to find out, whether or not these methods can be
extended to non-linear and non-quadratic problems.

In what follows we try to develop an approach of that
kind. We guess we have found out a key property of the family
(Q,,F, 1, cpr Which underlies the polynomial-time results (this

oroperty originates from [Ne. 1988 21 and we shall call 1t
aelf-concordance).

Notice that below the polynomiality is understood 1in a
manner 8]l1ghtly different from the traditional one. Usually a
polynomial-time method 18 defined as a method which produces
the exact solution of &any problem from the c¢lass under
consideration and such that the total number of arithmetic
operatlons 18 bounded by a polynomial function of the problem
gize, L. (the 'ength of the input data). These operations must
be performed with O(p(L))-bits numbers and the accuracy of
Ofp(L)) bits, where p( ) 18 a polynomial. Such a definition 1s
oriented to reletively simple problems (LP, QP); really, 1n
more complicated situations the solutlon 1tself need not be
ratioral even for the rational data. Moreover, the above
definition, being convenient from the theoretical viewpoint,
contradicts the practice of computation, Dbecause of the
following reasons. (1) Usually numbers are represented not
with fixed, but with floating point, while the size cf a
number 1in the fixed point form 18 not bounded by the
polynomial of the size of the number 1in the floating point
form. (2) In practice arithmetic operations are not performed
with the desired, but with certain fl1xed accuracy. (3) All
known polynomial-time algorithms 1in numerical (excluding,
comblnatorial) optimization in their nature are "infinite" -
l.e. they are based on conceptual converging (but not finltely
converging) 1terative procedures using precise real
arithmetic. The polynomialily 1in the traditional sense 1is
obtalned by "external" (and standard) terminatlon and rounding
riules which, as far as we know, are not used 1in practical
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computation.

By the described reasons polynomial-time method below
means an 1terative procedure for a class of problems such that
the total number of operations of precise real arithmetic,
which is required to produce an approximate solution up to the
accuracy £, 1s bounded by a polynomial of In(1/e) and of the
problem's dimension. Above € 18 the .relative accuracy,
measured in some natural scale, and the dimension of a problem
usually can be defined as the sum of the numbers of varlables
and constraints.

In what follows we give summary of the results developed
by the authors and taking tiicim origin in (Ne, 1988 1,2,3,4]1;
some of these results were announced in (RN. 19881,

Below E (possibly, with sub- or superscripts) means #
finite-dimensional real vector apace, C(E) {Gﬁ{E}] means the
family of all convex subsets of F with & nonempty interior
(bounded convex subsets of E with a nonempty interlor,
respectively). IT F 18 a smocth function from E Into ®
then D*P(z)(h,,...,h,] means the value of its k-th
differential (taken at z « E) at the set of veclors h,..u.jhh
< k. ;

Other often used notations are as follows:

X o g gtve
E
W(A) = 1- (1 = 3173,
AHERE (T ~R)E,. 08K € A, ,

To simplify cross-references, they a-e abbreviated: T.1.2
means Theorem 1.2 (prefix 1. denotes the section number),
P.1.1 means Proposition 1.1, C.2.1 - Corollary 2.1, and so on.
The proofs of the statements are gilven at the latter
subsections of the corresponding sections; each of the
proofs 18 supplied by 1ts own numeration of the
expressions.

When necessary, the beglnnings of statements, sets of
rormilae and 8o on are marked by "o" and the ends - by "m".
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Section 1, Self-concordant functions and Newton's method

1.1. Self-concordance. To motivate this notion, 1let us
gtart with analysing the following traditional situation:
glven some convex smooth function F: R" - ®, one desireg to
minimize 1t by Newton's method. What are the sufficlent
conditions for the quadratic convergence? The usual answer 1is
that these are the Lipshitz continuity and the non-degeneracy
of the Hessian matrix of P. Notice that the answer requires a
Buclidean satructure on R™ 1in which the Hessian matrix
condition number and Lipschitz constant are to be evaluated.
0t course, the Hessian non-degeneracy and the Lipschitz
continuity are Independent of the manmner in which the
Buclidean structure 18 chosen, but the "numeric
characterization” of these properties and hence - the explicit
description of the "quadratic convergence region" do depend on
this choice and not on F only. Now notice, that the second
order differential of F induces an infinitesimal Fuclidean
metri¢ in R™, intrinsically connected with P. It turns out
‘that the Lipshitz continuity of D?F with respect to this
metric leads to very interesting consequences concerned with
Newton's minimization of F. The property described will be
called self-concordance. The precise definition 1s as follows.
Definition 1.1. ILet E be a finlte-dimensional real vector
space, Q bhe an open nonempty convex subset of E, F : @ - R be
a function, a > 0. F 18 called self-concordant on @ with. the
parameter value a (notation: P e S_(Q.E)), 1f F 1s C® - smooth
and convex function on @, and foreach r« Qand h « E the

following inequallty holds:

|D°P(z)(h,h,h]| € 2 a '"2(DPP(z)(h,h1)*/? (1.1)
A function F e S _(Q,E) 18 called strongly self-concordant ( F
« S (Q,E)), 11 the sets {z &€ Q | P(x) <t } are closed In E
for each t < R,

Self-concordance 1s an afilne-Invariant property:
Proposition 1.1, {1} Ll F e 5 (Q,2) (F < b';_fu,b')} and let 7 =

e e e e

i’
#(y) = Ay + b be an arfine {transformation from a Tfinlte-
dimensional real vector epace E' into E, such that @' = (y |
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#4(y) « Q) # @, and let F'(y) = F(#(y)): @' + ®R. Then F' <
S,(Q",E"), F' « 51(Q",E"), respectively.

(11) let F‘i = Sn {_QI.EJ. Py > 0, {t=12,0= Qr II'I'QE £ @,
o
F(z) = p,P (2) + PoF(2): Q@ » R and let a = min( PGy \ps0,

Then F e S _(Q,E). If under the above assumptions eihter ¥, =
Sq r’a,._.EJ, =12, or P, « S {Q,,FJ and Q. Q,, then Ba

S;_rQ,E} 5

The following statement 1s a finite-difference version of
Infinitesimal relation (1.1); this statement 18 the main
technical tool 1in what follows. :

Theorem 1.1. Let F <« S (Q,E), z « Q and e e E. Denote p,(e) =
(IPP(z)le,el/a)'’2, A, (e) (820 8p/e) 1), and 1let
r(a) = r + 8 e. Then
(1) For.each 8 « A z(€) such that z(s) « Q we have
VheR:(1-ap_ reuf DPP(z)(h,h] € D?Frzramh hl €
(1 -8p_(e)? DPP(x)fh,nl (1.2)

(11) If F  S7(Q,E) then z(8) « Q for each 8 < A 2(8). m
Corollary 1.1. Let F « §_(Q,E). Then the auhapace B,=(he E
| D°P(z)(h,h] = O } does mot depend on the choice of 7 « Q.
Corollary 1.2. Let Q be a convex region in E and let P «
Sa(QE). For 2« Qandr > 0let W (z) = (y « B | DPR(z)ly -

z,y - ©1 <arf). Then W () < Q for each z < Q. m

1.2. Newton's method and self-concordant functions. In
this I1tem we describe the behaviour of Newton's method on
self-concordant functions.

Let F < S,(Q,E). For z « Q denote

A(F,z) = int( A | wprz;mn < A a'"2(0PP(zx)th,h1))1/2

VheE) (1.3)
(1T the set on the right is empty, then A(P,z) = o by
definition). The quantity A(F,z) can be Interpreted as
follows. Let us consider the quadratic approximation

O.(y) = F(z) + DE(x)ly - z] + DPR(2)lY ~ 2,y ~21/2
of the function F at the point z. Then, cbviously,

a A°(F,2)/2 = @ _(z) - Int{ ® (Y) | y<E} (1.4)
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or, which 18 the same, )
a A%(P,z) = 2 supl DP(z)(h] - IPF(z)[h,h1/2 | he E }. (1.5)
- 1t is worthy to notice that
AP, y)=min{ A » O | ¥ h € R*: |DP(y)(h]| ¢
< a'/Z A (D°P(y)h,n1}72 ) (1.6)
(1.e. A(F,z) 18, within a constant factor, the norm of , the
Iinear form DF(z) in the metric defined by D°F(z)).
The quantity A(F,z) will be called Newton's decrament of
F at 7.
Pruponitinn 1.2, For P e S (Q,F) elther A(F,7) =  for all Z
Q, or A(F,z) 18 a finite continuous function on Q. =
: LetFquaEJ..raQandMsz < w, Then the form
® (y) 18 bolmdad from the below in y « F and thus attains 1ts
minimum over y. Let z%(F,z) be some minimiger of this form,
and let e(P,z) = 2*(P,z) - z. Obviously,
DF(z)(h] = - D'?F(:EJIE{F.IJ,M Vhee6E, (1.7)
D°P(z)le(F,z),e(F,z2)] = a A°(P,z). (1.8)
Notice that z*(P,z) 18 Newton's 1iterate of z.
The following result slmna how the quantities A(F, ) and
F( ) vary on the segment [z.,2 *(P,z)l.
Theorem 1.2. Lat FeS [Q,EJ. T e (and A(F,r) < w, 18t a, 0 <
o <min{ 1, A" (P,z) }, be such that the points z/8) =r + 8
e(F,z) belong to Q for s « A = [0,7). Then for 8 € A we have

- 2 . - :
A(F,2(8)) < —] ;_2:;93 . (1.9)

F(z) - P(z(s)) 3 ar? (8 142 L_,j, In(1 - ad) ), (1.10)
where A = A(F,z). ® :

The following version of the above theorem 18 sSome more

convenient. ‘

Theorem 1.3. let F e S _(Q,E), z « Q and A(F,2) < 1. Let one of
the sets X_=(y<Q | MF,y) < A(F,2) ), Y = (yeQ]| Fy)
€ F(z) ) be closed in E. Thepn

(1) F attains 1is minimum over Q: X, = Argminq F g

(11) If A(P,z) <A, = 2 - 372 - 0.2679..., then 2*(F,z) <,q
and

2
MRZ'(Rz)) « —2ABEL P2 01N)
(1 - AMP,2))°
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(1i1) For each Yy = Q'such that A(F,y) ¢ 1/3 and for each T'e

X, we have
a '(P(y) - ming F) € % WP (A(F,Y))

1 + WA(F,Y)) . (1.12)
1 = W(A(F,y))
o' PRzt y-2’.y-2*] < (1 - WA(R,Y)))2 WP (A(R,Y)), (1.13)

a-! PRyl iz*-y.2*-yl € W (MP.Y)),

Shee GEA) =t~ ( 1 ~ 387,
(iv) For each y « Q such that 8°(P,y) =2 a ' (Pry) - min, F)

4/9, we have ;
:{F y) € 24 8(F,y) B (114)
: (34 (9-128(F,y)) 723 ((9-128(P,y))""2-1)?

The following theorem summaries the above statements.
Theorem 1.4. Let F< S (Q,E) 7« Q and let the set X = (y « (
| P(y) € F(z)) be closed 1n E. Then
(1) P 1s bounded from below on Q 1ff it attains 1ts minimum
over Q. If A(P,z) < 1, then F attains 1ts minimum over Q;

(11) let A(F,r) < =», ?.,‘ =2 =- 3"‘}? s 0.2679... and A' =
" [A,.1). Consider the Newton tteral ton starting at z:

Tp=Ti Ty, z, 4 a'r?q.(F.:r{}J E(F..'r‘}. {t 2 0, (1.16)
where
e(F,z,) « Argnin(DP(z )[h] + % PPP(z,)(n,h] | h e E), (1.16)
S I -
u‘fl)={(1—lj ATT(3-A)7T A, ' (1.17)
1. A<A, .

The iterations are well-defined (i.e. for all { we have r, e
X, A= A(F,z,) < and a{F.xi} is well-defined), and the
following relations hold:

Ay > Al = F{r“,} SPz)-air -In(1 +A,)) <

' Fig s =8 AN > In{1 + A')); (1.18)

1')11;&1* =

6, - 1f =
1‘1‘" 45__?" ‘chi' 5—’?1.'

- Al { e . -
1 L‘” 3 (1 7"15 —J—_g ”: i.‘,i s} (1.19;
li{?«.,‘ﬂli”-al; H-—?i.;J fEIL‘- (1.20)
Moreover,

1T+ WA, )
-t 4 1 ¢
hg < 173 = F(z,) ming P < 5 a W?(A,) ok (42
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Comments. Tet P « S_(Q,E) be bounded from below on Q and let z
e Q. Assume that the set (y € Q | F(y) € P(z)) 1s closed in B.
By T.1.4 F attains 1ts minimum over Q and 10 = A(F,z) < =,
while the above described Newton's 1terations converge (in
obJective's values) to the minimizer of F over {. Moreover,
A+ 0, t » o The theorem shows that Newton's process can be
divided into three sequential stages with the values of
iteration number { as follows:

Let (1) =mn( t | A, €& A');
t,(1) €L <t (2) =min{ t | A, <A);
L3 102) -

At the first stage F decreases at each iteration by a quantity
‘which 1a not smaller than a (A' - In(7 + A")) = a AY; the
iterations number {,(1) of this stage 1s not greater than

t(1) = Nar®)"' (P(z) - min, P)L.

At the secrnd stage the quantities A, 6 decrease, and the
quantities (1 - h‘} Increase as a geometric progression with
the ratlo 2 = (5 - A')/4; the 1terations number {,(2) - {,(1)
of this astage 18 not greater than

y =%
t(2) a1+ 1Nn-'(z) 1n[-—;-h~i-§—]r.

At the third stage the quantities A, quadratically decrease;
it 1s important that the behaviour of A, at the second stage
depends on A" only, and at the third stage 1t does not depend
on any parameter of the objects involved.

The inequality A(F,z) < 1, which vrier the theorem
conditions ensures the boundness of F from below, can not be
weakened. This 1s demonstrated by the example

P(z) = In 1/7 « S}((0,0),8),
where A(F,z) = 1.
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1.3. Salt—umcLHmt functions and duality. It turms out
that the Legendre transformation of a strongly self-concordant
" function is stro.gly self-concordant with the pame parameter
value. The corresponding definitions and results are as

follows.
Let E be a finite-dimensional real vector space and E* be

the space conjugate to E. The value of a form £ « E* at the
vector 2 « E will be denoted by <f,7>, let a > 0. An
(a,B)-pair 1s, by definition, an arbitrary pair (Q,F), where Q
is nonempty convex open set in E and F « S5(Q,E) 18 such that
Ep = (0} (1.e. DPP(z) 18 non-degenerate for each z « Q). The
Legendre transformation of an (a,E)-pair (Q.F) 18 defined as
the pair (Q,F)* = (Q*,F*), where
Q" =9(Q) ( ®x) =DP(z)[ 1: Q-+ E),
F*(¢) = sup{<t, > - F(z) | = « Q).
The following statement is true.
Proposition 1.3. Let (Q,F) be an (a,E)-pair and (Q*,F*) be 1t
Legendre transformation. ‘then (Q*,E*) 1s an (a,E*)-pair and
Q* = (¢t € E' | the function Fe(z) = P(z) - <E,2> 18
bounded from below on QJ.
Moreover, (Q*.,F*)* = (Q,P) (we use the standard equivalence
between (E*)* and E). =

1.4, Proois

1.4.1. Propoeition 1.1 can be proved by a siraightforward
verification of the corresponding definitions. =

1.4.2. Theorem 1.1. _
(1). Let 8 « A, (e) be such that z(s) « Q, and let h s« F.
Let for A = [0,8] and p e A the function §(p) be defined a&s
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P(p) = DPP(z(p))le,e] and let §(p) = DPP(z(p))[h,h]. By vi
of (1.1) for each triple of vectors h <k, {=1,2,3, We
3

DPR(w)lh, hyhy] € 2 6772 1 (DPR(u)Ih 0y 1172, u e Q, whic

implies % :
10 (p)] €2 a "2(90p))%72, 10'(p)| < 2 a %! 2p0)0(p). (1
By the first relation in (1) either ¢(p)=0, p « A, and then
by virtue of the second relation in (1), ¢(8) = ¢f0J. or ¢(p,
1s positive over A, and then |(¢~' E‘fpu | € a2, p « &8
which implies

(D h"?rp} > 'Ii}_'f‘?foj f-f".l? [2T
In the latter case, by ¢(0) = pe(e) a, we have ¢~'72(0) > p
a'’2 tor p « A = Ayle), “and (2) mplies |

$'2(p) < a'’®p (e)/(1 - p pyle).
So the second relation in (1) can be rewritten as
1¢'(p)| € (2 p(e)/(1 - pp,(e))) ¢(p)s p < A.
Thus, either 4#=0 on A, or ¢ is positive over A, and in the
latter case |1n($(8)/9(0))| € 2 In(1/(1 - 8 p(e))), which, by
definition of ¢, leads to (1.2). Obviously, (1.2) holds in the
above situations ¢(p) = 0, p« A, and ¢(p) = ¢(0), p « A. (1)
i8 proved. :
(11). Let 0 = sup( 8 « A (e) | z(8) « @ }. We desire to%
prove that o = 1/p_(e) (1/0 = » ). Assume the latter does mt:;;
hold, so ¢ p_(e) < 1. Then, by (1.2), the function g(s) =
P(z(8)) has bounded second derivative for O < 8 < 0 and hence
18 bounded for these 8. Since F « S7(Q,E) this leads to z(0)

=119ﬁ.::{a} « Q; since Q 18 open, we have x(s8) « Q for certain 8
a

> 0. The latter under the condition o p_(e) < 1 contradicts
the definition of o. (11) 1s proved. ®

1.4,3, Corollary 1.1. The set ( z « Q | D°P(z)(h,h] = 0 )
= X, 18 closed 1n Q by virtue of the continuity of D°P(z)(h,h]
in £ and 1s open in @ by (1.2); hence this set 1s elther
empty, or coincides with Q. = |

1.4.4. Corollarv 1.2. This Corollary is reformulation of
T.1.1.(1). & '
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1.4.5. mpo.j-tiﬂ‘n 1.2. letr « Q. It 18 clear that
(MP,z) < ®) o (DF(z)[h] =0V heE,).:
Assume that A(F,T) < @ for given z, and let h « Er' For ¢(y) =
DP(y)(h] we have Dp(y)le] = D°F(y)th,e] = 0, 80 ¢ 1s a
constant in Q; since ¢(z) = O, we have ¢=0. Thus, 1f A(F,z) <
©, then DF(y)(h] = O for each h < B, and each y « E, and 1n
this situation '
a'/2 A(P,y) = min( |DF(y)[hl|(DPP(z)ih, h1)"'/2 | h « EF,
h#0 ),
where E° 18 a complement to E, in E. The form ™P(y)(h,h] 18
positive defiued on the subspace E, hence the contimuity of
the first and the second derivatives of F implies the

gtatement. &

{/4.6. Theorem 1.2, let e = e(F,z). Notice that, by
(1.8), » = p,(e). By T.1.1, gince 6 € 1/A, we have for all & «

A and h « E:
(1 - 8 A)2 DPP(z)(h,h] € D°P(z(8))(h,h] &
_ < (1 - 8 A)"2 DPP(z)(h,h), (1)
go (below 8 e A ) :
|D?F(z)[n,h] - DPF(z(8))[R,h]| < _
! - 1) D°P(z)[h,hl. (2)

€ {
(1 -8 M‘r
We see that ;

| & DP(z(3))(h] - DPF(z)le,h] |, <

< {(-;f—awﬁ - 1} (DPP(z)[h,h1)'"2 (DPF(c)le,01)'72 &

< {”’_ =t 1 WDPF(z)(h,h] )7 %al/? 3, (3)
or, by (1.7),
|DF(z(8))[(h] - (1-8) DF(z)(h]| <
2
< a'’/? (8A) » 172
e (DPF(z)(h,h]) (4)

Now, by definition of A(P,z),(4) and (1), We have:
2 sup(DF(z(8))[h] - D°P(x(s))(h,hi/2 | h « E )} £
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)

2
< 2 sup{ DF(z)[h] (1 - 8) + a'’/2 ”“‘"3” (DPR(z)(h,h])172 -
E -8

2
- LI=8A)" Ppz)ih,hl | R B ) <

2
< 2 supl @' A (1 - 8) (PPPz)(h,h1)""2 4 a'/2 ﬁ%‘

: 12
(PPR(z)(n,n1)"72 - (LS A DPpz)(n,n) | he B ) <
(1- 8A)2

which together with (1.6) implies (1.9) (notlce that (1 - 8) »

0 ). A
Let f(e) = F(x) - F(z(3)). Relation (4) with h

relation (1.7) lead to

I'(8) = DF(z(8))lel] < 4 s
< (1 -8) DR(z)le] + a2 (M (DPP(z)le,01)"/2 -

2
= ~(1 - a)IPR(z)le,e] + a'/2 (O (1PP(z)le,e1)'’? -

a2
:n—["l-ﬁjﬂle'ﬁﬂl —rggé}m.—,—l-

hence

a8
0)=ar2 [ €1-p- A ) do, .
f(8) € f(0) - a a; p —Tﬂf—ﬁ—r_ L dp

which implies (1.10) ®

e and

1]

1.4.7. Theorem 1.3.
19, Tet 6(A) = mnd 13 L2y ), &, = [0,0(A)] and

i 1 -8 - 8\ + 28° .
4&'[‘3.3 ff—ﬂl}é_ M

G (8) =8 52 + A% In(1 - 8A), a = A,
for 0 € A < 1. It 1s easy to show that ¢, decreases on 4, , and
¢, 1s nonnegative on A, . Iet X =X NY_and u < X; then A =
AMF,u) € AM(P,2) < 1. Lot

8" =gupl 8«4, | u+ae(f,u < Q1.
By (1.9), (1.10), for O € 8 < 8' we have

A(F,uiee(P,u)) < A ¢, (8) €A,
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Flutse(F,u)) € F(u) - a AZ §, (8) < F(u). it

The sets X_ and ¥, are closed 1n @ (since A(F, ) and F( ) are
continuous “over Q), and one of the sets is closed in E; hence
X 1s closed in E. By (1), u+se(F,u) « X, 0 <8< 8', and by
virtue of the closedness of X In K we have us8'e(F,u) « X, and
(1), by continuity arguments, holds for 8 = 8'. Thus,
usg'e(F,u) « X ¢ @; since Q 1s open, the inclusion u+s'e(F,u)
< Q 18 possible only 1f 8'.= o(A) (the definition of 8').

Thus, we gel
we X = u'(u)=u+ o(A(P,u)e(F,u) <X

and :
AMEu (W) € MEW 4y 5 o, (OM(F0)), 2)
Feu'(w)) € F(u) - a A°(F,u) @, 5, (O(A(F,u))). (3)

29. Assume that u < X 1s such that A(P,u) < 2 - 3'/2,
Then o(A(F,u)) 21, hence u*(u) = 2°(F,u) « @, and, by (2),

AR, (B, W) & (p.o,(1) = AR/ - MPu))? <

& (2 - 372)a3"% 2 1)° 1 R(R.u),

which leads to (1.11).
3%, Consider the following process:
L3 - ‘ — Ll
T,= T8 Ty, =uU(z) =z +0AF,2)eFz) t 3 0 (4)
(the process 1s well defined by the arguments of sect. 1%
namely, T, « X < @V { > 0). This 18 the Newton minimization

of F starting at z with certain step lenzth choice; we shall
ses that for all large enough { it turns out that O(A(F,z,)) =

1, hence for these { (4) 18 the usual Newton minimization.
Let JL{ = R(F.Il). Then, by (2).(3):

Aoy €A cp,\‘rcmln y Frx, ,) < F(z), (5)

which implies that A, - 0, { - o] in particular, for all large
enough t we have A, < A,, or o(A,) = 1, a8 was le'Dmiﬁe!:l above.

et L. =minC & & “22 =3 . Then IoT t 3 t+ we have, DY
EIETEY,
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2 2} 1/2
coy SM70 = AP en2, A < 2- 815 (6)

Notice, that the behaviour of A, depends on A, = A(F,z) only
(this quantity must be < 1), and A quadratically converge 10
0 by virtue of (6).

4%, let us prove (1). We can assume that A,> 0, { >* 0 -
othérwise (1) 1s obvious. Let ET be a complement to E, in E.
Let

A

V, = (yez, + B | PRz )ly-2,, y-2,) < 100 @A );

then Vv, 1s a compact .(because DPF(z)I , ] 1s positively
defined on EF). :

I.at
{3} =a(8°2+¢ (A, 8 # _,|‘ p2(1 - p) 'dp))

for € = +1, Assume that { > 2 13 such that for a, = 10 ?.,_ one
has
8,< 13
W, _,(8,)>0; w ,(8) <F(z,)~-Fz) 0€8<38;
u—a)*ffa+a—:.a}<ha,oca(a (7)

(since ?u. > 0 and l. - 0, (T) holds for all large enough t).
Letusverm that for chosen value of { the following
inclusion holds:

Indeed, let & « E* be such that D°F(z )le,e] = a , and let
= gup{ 8 « [0,1] | z(8,8) = 2, + 88 « Q).
By ®.1.1 for all 8 « [0,0,) and h <« E we have:

|DPF(z(8,e))Ih,h] - DPR(z )(h,h]| & ((1-8)72-1) DPF(z,)(h,h,
DPP(z(8,8))(h,h] > (1 - 8)% IPP(z,)IN,h],

which leads to

3, (DF(z(3,8))[R1) - DPR(z,)le,h]| <

<a'? ((1 - 8)% - 1) (PF(z,)h,h1)""2,

or

|DP(z(8,0))(h] - 8 D°P(z )(e,h] - DF(z )[R]| <

<a'’? & (1-a)" (DPP(z,)n,n1)"E,
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Hence :
2 sup( DF(z(8,e))[h] - 3 DPP( z(s,6) )h,h) | h = B} €

& 2 sup( DP(z,)(h] + 8|D°F(z )le,h]| +
+a'2 82 (1-8)”' (DPF(z,)n,h1)""2- L (1-8)% DPF(z )(h,h) |
he E ) < 2 supDP(z )R] + a'2 (8 + & (1 -

8)” " JDPF(z IR, R1)''Z - L (1 - 8)% DPP(z,)Inh] [ heB) £
2 supl @'’ (A, + 8 (1 - 8)" )PPz )ERRI)Z - S (1 - 8)?
D?P(z,)[h,hl | he B} <a (8 +A, -A,8)% (1-28)7%

which, by virtue of (I.6) and (7), leads to

AMz(8,68)) <Ay, 0O0€8<0,. (9)
Let f(8) = F(z(s,e)) -F(z,); then for 0 < 8 < 0, f"(3) =
DPP(z(8,e))le,e], 80

\7"(8) - DPP(z,)e,0]| <a ((1 - 8)2 - 1),
which, by virtue of 7'(0) = DF(r )le]l, leads to &
DRz, )lel +a (38 - [5p° (1 - p)7! dp ) < f(8) %
<8 DP(z,)le]l +a (%8 +[5p° (1-p)" dp),
so by virtue of

|DF(z )le]| € A, a'/® (DPR(z,)le, €])'/% = a A
we have ( G: = min{ G q' A -

r(s) <« w, (8), [f(8)>w, ,(8), 0<8<0, (10)
By (T) and (5) the relations (9), (10) imply the Iinclusion
z(s,e) « X for 0 < 8 < 0,. Since X 18 closed in E, we have
m{a:.e,l < X; since Q 1a.npan. the latter, by definition of u:.
is possible only when o, = 8,; this impli-s (8), since e 1s an
arbitrary vector from E* such that DPF(z, )(e,e] = a.

Notice that the points belonging to the (relative,
boundary 8V, of V, are of the form z, + 8, e, 6 e F,
FFia j:’&,&i = G; 80, taking into account (10) and (7), we get
Flu) } F(z,), u « 0V . Hence there exist a point z < V , such
that DP(z.)(h] = O, N« E'. By virtue of P.1.2 under the
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conditions of the theorem under consideration one has DF(u)(hl]
=0 foreachue@and he« E_; hence DP{.::,} = 1Y) . 18
proved.

6°. Let us prove (111), lete =y -a,, A = MP,y), @ =

= p,(e) (= (D°P(y)le,el/a)'’?), z(8) =z, + o8 y(8) =y - 8e =
z(1-8), £(8) = F(y(8)) - F(z,), 0< 8 < 1. We have

- DF(y(s))le] = - f'(8) >0, 0< 8 < 1. (11)

Let ¢ = min{1,0™"}. Since 35 ( -DF(y(s)tes) = DPR(yisile,el,
we, by virtue of T.1.1, get
s (-DR(y(s))lel) 3 (1 - sw)® DPP(y)le,e] = a «f (1 - aw)?,
Ng€a8<0o, thus
DP(y(a))le] < DF(y)le] - a o 8 (1 - pw)* dp <
Sawflh-8w(3-3w + 82u?)/3), 0¢ac%o.
This, together with (11), implies

3A290 (3- 380+ 8° ), 0<8<o. (12)

Ifw>1, then o = w™', and (12) holds for 8 = w~', which
implies A > 1/3; this contradicts to the conditions in (ii1).
Hence w < 1, 80 0 = 1, and (12) implies w(3 - 3w + ) € 3\.
In the latter 1nequality the left hand side is monotone in w >
0, 80

W<WA) 81 - (1 -3 (13)
(W(A) is the unique root of the equation w(3 - 3w + w?) = 3A);
(13) 1s the second relation in (1.13).

Now let g(s) = F(z(s)) - F(z(0)) (= P(z(s)) - F(z,)).
Then g(0) = 8'(0) = 0, and for 0O< 8 £ 1 w_ have

g"(8) = DPR(z(8))le,e] € (1 - (1 - 8) w)~2 DPP(y)le,e]
(we have taken into account T.1.1), so

g(1) <awf [ {15 (1-(1-p) w=2dp)ds-=
=a((1-w'+In(-w)=a(w+P+r®+...)-
—ru+3u"+§w’+...}Jcaréuﬁnw’/n-mu-
=1 a1 L8

this together with (13) implies (1.12). Purther, by (1,13) and
T.1.1 one has
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DPF(z, )le,8] € (1 - w) 2 DPP(y)le,el,
which, mgethar with (13), implies (1.13). (1i1) is proved.

g%, Let us pruve (1v). let z, « Argniny, F and let y « Q Dbe
guch that 8% = 2 a”' (F(y) - F(z,)) < 4/9. 1et

0=y - Ty @ =P, (e) TA8)=3T,+0, 0841,

o =min 1, @'}, f(8) = F(z(s)) - P(z,).
gy T.1.1 for O < 8 € 0_we have f"(a) > aw? (1-ws)?, 8o, by

£'(0) = 0, Ve .
78) > aw? [3 ([} (1-20)7 de)at =

.t_.-uweszc’ﬁ—m+uzazj,0#ﬂtc.

ifw> 1, theno=w', and we get 8% =2a™" f(1) » 1/2 >

479, which 18 mealalble.
Hence w < 1, 80 G = 1, and our maqualitr implies

A P (6-40+ )0 and w< 1, (14)
and hanua

m?{:s-m)"’*‘(af-‘ and w < 1. | (15)
Porﬂéadfandhuﬁne. by T.1.1, have
3; Rz(s))inl| = |DPR(z(8))Ih,el] <

wﬁ'mraum h1)'72 (DPP(z(3))le,e]l)'/? £

<a'’? 0 (1 - a0 (PPR(z,)hn1)"%,
go by virtue of DF(z,)[h] = O we get

\DF(y)(h]| € @'/2 @ (+ - w)™" (DPR(z,)in,n1)"2.

By T.1.1 we also have D°R(y)(h,h) 3 (1 - 0)? D°F(z, JIh.hJ; the
inequalities obtained lead to A(F,y) € w (1 - m)‘ which,
together with (15), implies (1.14). ®

1.4,8, Theorem 1.4. -

19, Tet A(F,z) < w, Let J be the set of all integers J »
0 satistying the conditions as follows:
(1,) process (1.15) 18 well defined for 0 ¢ { € J, 1l.e. [for
tha above { one has z, « & ?n. < w, e(F, z, ) are well defined;
{€,) lor o< i< J lhﬂ impllcailﬂnﬂ (1s 1H} (1.20) hold.
Let us verify that J = (J0). First of all, 0O e J. Indeed,
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(2,) 18 obvious, and to prove (1,) we need to verify thag
e(P,z) 18 well defined; the latter fact follows from the above
agsumption that A(F,u) 1s finite for u = z and P.1.2. i

It remains to verify the implication J e J = j+1 « J. Let

J «dJ, 80 T, = X and e, s E{F.IJJ i1s well deflned.

Assume that lj > A, Let

o =supl 8 < (0, 0"(A,)] | Z(8) = z,

Then o € min{(7, ?1.,;'}. By T.1.2 (see (1.10)) in the case undex
consideration for O € 8 € ¢ one has

F(z(s)) - F(.rJ} € - 0a Jn.f [ 8 L;—f'i + ‘A,JE In(1 - &8 ?LJ}J £ 0
(we have taken into account that o < (1 + ;-u_fr' = n'rmjn'
Hence z(8) « X,0 €8 < 0, and, by the fact that X 1s closed,
we have z(0) « X. By definition of ¢ the Ilatter 1s possiblel
only 1f o = c'!?._!), which implies z, , < X; this, together
with {1J] and the above remarks on A(F,u) and e(F,u), leads to
[IJ”J. Sirnre Tyq ® X, the above 1nequality for F(x(s))
P{z'_j.l holds, by the continuity arguments, for 8 = o = o'(A, )
as well, wnich together with (2,) implles (2, ,). Thus, In thes
case under consideration we have f+1 e J. 4

Now let i.J < A'. By the arguments from the subsectlol

1.4.6.19 (where one must set u = T = Z,i the theorem 18
appliable since I is closed iIn E together with X, because z

J
<« X) and by virtue 01' og'(A) = o(A) for A < A' we have :I'J '
X, which, together with (1 ) implies {i ,). Relations (1. 13}.
as applied to the above U, pmve the 1mplications
(1.19)-(1.21) for t = J, which together with {EJ] leads tg
(2,,,). Thus J+1 « J, b
2. Now we: can prove (11). All the statements 1n (i1),
excluding (1.21), immediately follows from Citgde 2,0 | & ;%
O}. Let us verify (1.21). Let A, < 1/3. The aet 1

(Yy=Q| F(y) <F(z))
18 closed in E together lith X by virtue of z, « X 80 (1 21}%
follows from T.1.3.(111), where one must set z =z, Yy = z,. 'f_.
« X) and by virtue of a'/AL) = g(A) for A < A' we have s c
X, which, together with {1 ) implies {1 ,1)+ Relations (f 13),
as applied to the abova u, pm?a the 1implications

+aeJ¢c}}.

PN L]
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1a closed in E together with X by virtue of 2, « X 80 (1.21)
tollows from T.1.3.(111), where one must set T = T Y =72,
30, 1t remains to prove (1). Under the conditions of the
theorem the set (y « @ | F(y) < F(z')) 18 closed in E for each
o' e X; so by T.1.3 the implication

(Az'ekX: AP, ') < 1) » F attaing its minimum over Q (1)

holds. So to prove (1) it suffices to eatablish that 1f F is
pounded from the below then A(F,r) < «» and the premise In (1)
is true.

The first statement immediately follows 1rom the fact
that in the case of A(F,r) = « there exists he E such that

D°FP(u)fh,h] = O for all u e Q, while DP(z)(hi< O;- so on the.
intersection of theray (z+ t h | £t 20 J N Q F linearly
derreases; since X 18 closed and Q 18 open, the above ray 1s
contained in @, and F 18 not bounded from the below over @,
which contradicts our condition.

So in the case of F bounded from below we have A(F,T) <
w. Consider the process (1.15). By virtue of (11) and the
comment to the theorem the first stage of this process does

terminate, 8o z, « X and hrFumuJ < A' <1 tor some J: thus,

the premise in (1) holds. =
1.4.9. Propoeition 1.3.

Let Q' = (¢ « E' | the function Fe(z) = F(z) - <, 18

bounded from below over Q). Let us verify that Q' = Q*. The
inclusion Q' < Q' 1s obvious; let us establish the 1inverse
inclusion. lLet £ € Q', 80 FE{IJ 18 bounded from the below over
Q. It 1s obvious that a linear form is a' - self-concordant on

E for each a' > 0, 80 F% € S;fq,EJ (see P.1.1.(11)). Since

thie function is bounded from the below over Q, 1t attainﬂ
its minimum at a point of this set (T.1.4), which means
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that £ « ®(Q). :
Since DPF(z) is non-degenerate for 2« Q, Q' 1s open,

while Q' 1s obviously a convek set; so @° 18 nonempty, open
and convex. By virtue of the standard properties of the
Legendre transformation, the C’-smoothness and the convexity
of F together with non-degeneracy of D°F imply that F* has the
same properties with respeet to Q.

let us verify that F' 1s self-concordant with the
parameter value a. Let us fix r e Q and notice that for -all e,
h « E one has 3

DP(z)[h] = <®(Z),h>,

DF*(®(2)) (9] = <$,2>,

@' (z)h,e> = D°F(z)(h,el],

(®'(z)R) 'hh> = D°P(z)[h,h,h]
and

P(o(z)) = <¥(z),2> - F(z).

Taking the derivatives of these 1dentities 1in  the
directions h and e, we have

DF* (®(z2))[®' (z)h] = <®'(z)h,x> = DPP(z)(h,2],

PP (®(z) ) [0 (z)h, &' (z)e] = (DF*(D(z))[®'(z)h])'e -
_ DF*(®(z))[(®'(2)h)'e] = <(D'(x)h)'e,x> + <D'(T)h,&> -
- «(®'(z) h)'e,»> = <d'(z)h,8> = D°F(z)[h,e],

PP (0(2) ) (8 (z)h, 0" (2)h, D' (2] =
= (DPF* (®(z))[%' (z)h, ®'(T)h]I)'h - 2 DPF*(B(x))[®'(z)h,
(@"(z)h)'h]l = (<@'(x)h,h>) 'h-2 DPF*(@(2))(®' (2)h, (@' (z)h)'h] =
= D’P(z)[h,h,h] - 2 DPF*(&(2) ) (%' (2)h, (®'(T)h)'R] =
= D°P(z)[h,h,h] - 2 DPR(Z)(®'(2)} 1 ((®'(x)h)'h},h] =
= DPP(z)INRh] - 2 <@'(Z)@'(2))” ' ((®'(z)h)'h),h> =
= DPP(z)[hRh) - 2 <(@'(2)h)'h,h> = - DPP(z)(h,h,hl.
8o forall z« Qand h « E; :

\DPP* (8(2))(®" (2)h,®* (2)0,@" (x)h]| = |D’F(z)lh,h,h]| €
< 2 a”""2(0PR(z)Ih,11)VE = |
= 2 a”!/2(0PF (®(2))(8" (1), 0 (z)h])>2 (1)

While (z,h) passes through Q x E, (®(z),®'(x)h) passes
through @* x E*, 80 (1) means that F* e S_(Q%,B). It remains
‘to verify that P*(E,) » o for each sequence (f, < int Q*)
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converging to a point € < 6Q". Indeed, assume that (F'(f,)) 1s
pounded from above; then the functions Fh{;rJ are uniformly

in { bounded from below, so the same 1s true for F,; the
latter, by virtue of Q' = Q*, leads to ¢ « Q°, wnich 1s
impossible (since Q* 1s open and §{ <« 8Q'). Thus, F' e
+rq*,E*), which together with the above remarks demonstirates
that (@*,F*) 18 an (a,E*) - pair. The equality (Q*,F*)* =
(Q,F) 1s an immediate corollary of the above established facts
d the standard properties of the Legendre transformation. =&

Section 2. Seli-coiicordant familiee

sssume we desire to solve a problem

f(z) »min | 2« G < E.
e of “ the most traditional approaches to the numerical
olution puis Iinto -correspondence with the problem a
arametriged family of problems

FJIJ*NIH | TG, cE;
h that the trajectory 2z7(t) of the minimizers of F,
nverges to the solution oI the problem as, for example,.f -
: the trajectory z’(t) is approximated in an appropriate way
ong a sequence of parameter’'s valuee converging to =, which
ives approximate solutions. The approximation of the
Jectory usually is realigzed as follows: having produced &
enough approximation, z(t), to z'(t) for some t, we
place t by a close value t' of the parareter, regard z(t) as
approximation to a new minimizer, z'(t'), and then 1improve
his approximation by Bsome numerical optimization method,
roducing z(t'). _
In this section we shall study the above scheme under the
sumption that the family considered consists of
elf-concordant functions and that the improvement of the
vious approximation 1s performed by Newton's method. - We
esire to find out the conditions on the family which allows

or the polynomiality of the method resulted.
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2.1, Self-concordant families.

Definiticn 2.1. Iet E be a Ifinite-dimensional real vecton
space, ¥ = {Q:'F Bl be a family of functions derfined umr
nonempty open convex subsets Q, < E, A be an open nonempty
interval on the real axis and a be the set ((t,z) « E, =R x
R* | ted, zeQJ. Let a(t), 7(t), plt), E(t), 'q(t} be
continuous pr:-sitive scalar functions defined on A, where a, 7,|
i are assumed to be continuously differentiable, and let = e
(0,A,). The family » 18 called self-conccrdant with thaj
parameters a, T+ B+ € 1N, %=, (notation: ¥ = nm'T".i
pebam2)), 11 |
(1) Q, 18 an open pubset of E,; F,(z) 18 convex 1in z,
continuous in (t,r) « Q, and has three derivatives 1In z,
p'P,(z), continuous in (t,z) e Q, for { =1,2,3 and
cortinuously differentiable in t for { = 1,2;
(11) (V t « A) the functicn F,: Q, - R 18 self-concordant with
the parameter value a(t);
(111) the set ((t,z) « Q, | A(F,,x) < 2} 18 closed In A x E'*i
and there exists some neighborhood (in A x E) of this set, X,
guch that for each (t,z) e X and h « E the Tfollowing
inequalities hold: |

|(DF,(z)(hJ}; - (In p(t)}] DF (z)(h]| €

< £(t) a'’2(1) (D°F, (x)(h.n1s'72, (2.1)
|(DPF,(z)(h,h1)} - (In (1)} DPP(z)[h,R]] <
< 2 y(t) D°F,(z)(h,h] (2.2)
(henceforth, D and { J; mean the derivatives in z and in t,
respectively).

The family # is called strongly self-concordant with tha
parameters a, ¥, ¥, €, M (notation: # « If(a,7,u,6,M)), 1f .'Lt1
patisfies the conditions (1), (11) and (1?}. where
(iv) inequalities (2.1), (2.2) hold for each (t,z) « @, and h|
« E, and the set X(a) = {(t,z) « Q, | F,(z) € a) 18 closed 111.,i
A x K for each a « R, |

2.2. "Categorial” properties of self-concordant families.
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Proposition 2.1. Let ¥ = (Q,.F .. B}, be & family. Then

(1) The following implication holds:
7 e SO EM) = ¥ € BUATKENR) V@ (OA,)

(11) Tet z = #(y) = Ay + b be an affine transformation of a
¢inite-dimensional real vector space E' into B, Q) = (y « E' |

Ay + beQ) and F‘;{y} = F,(dy + b): @3~ R. Then the following
implications hold:

(11-1} ¥ ‘ EA{“‘!T!I"’IEI“I*JI ‘{.E+,} =E »
‘r+ . {Q:’F:'E*}t‘ﬁ < EL{'II-T,H.E,T].EJ'

(11.2) * « Z(a,Tupeb)s (Q, # PV T @ B) =
#* = (QPLLE ) 4 = Z(Q, 1o EaN)

(141) Tet ¥ = (Q,.F,.B) x « Zp(a.1efan) o #'= (QLFLE)
e sta*, €’ ’). po p’ >Oand let GG =Q N Q@ # @ for

each t « A. Let a’ be a positive continuously differentiable
function on A, such that

at(t) <minl p a(t), p* a’(t)), t <A,
and let
n'(t) = maxin(t),n°(t)},

g'(t) = 2(a*(t)) "2 maxt(part))'’? §(t).(p*at(t))'"? E*(t) ).
Then the family ** = (Q},F, = p F, + p' F{,B},,, Delongs to
A BTN A PR

2.3. Metric corresponding to self-concordant family.

Assume that » = (Q,,P,.F},_, & I, (%, T.ps M%), Let

P(,t) = (Y(t) act))'’2 pl(t) - (R.3)
and introduce metrice on A parametrized by v > O:

p,(#3t,T) = max {|In(Q(¥,u)(¥,v))| | U,V = [(t,sl} +
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18 T 3

v ¥ | [E(8)dB| + t{n(a)d&t. (2.4
t .

The following result shows that the property o
gself-concordance and the metrics corresponding tc a family ap
invariant under rescalings and parameter's replacements.

Proposition 2.2. let & = (Q,.F,.E},, < 5,07, En.2),
A' be an open interval on the real axis, p(t) be |
continuously differentiable positive function on 4 and %(t) b
a continuously differentiable one-to-one mapping from A* ont
+ 5
A. Denote # = (Qp +)s PIR(T)) Fgoqy E)reats

Then ** « Eh+ru*.1*.p*.£*,n*.:J. where

a’(t) = a(x(t))p(n(t)), p' (%) = WR(T))P(R(T)),

7' (%) = Y(%(T))p(%(T)),

£t (t) = E(R(T)IT (T, 0 (V) = N(%(T)) |% (V).
and for all v > 0, T, T'« A* one has

py(#?i%,7' ) = p(#i%(%),%(T' ).

2.4. Main result on self-concordant families 18
follows.

Theorem 2.1. Let ¥ = {Qt.F*.Ejuh < 'Eﬁfﬂ-'l’:l-‘rﬁnﬂrﬂj- Assume
that (t,r) « Q, satisfies the inequality A(F,,z) < 2 and that
t' « A i8s such that |

py(#it,t') < 2 (= - A(P,,2)).
Th-en rt'lm} - q' and
A(Fy1,2) € 2.

Combining this theorem with the above results on Nentan';
method, we obtain the following |

E
Corollary 2.1. Let ¥ = (Q,,F,,B),y « Zy(@,Tu.bm2), let
(t,»z_,) « Q, be a point such that ¥

ME, 1T_) < 2, 2.7)
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let 2 = /(1 - %)%, Assume (i, = “tw to be such that

pg(Fityaty,y) € (2 - 2')/2, {30 (2.8)

Let 2
"Ti — I ('Pt‘tmi'fj' {2-91
Then Z, are well-defined, belong to at‘ and
A(F, .1-“} € ® (2.10)
¢

forall t 20. &

Thus, being given a sufficlently close approximation,

Z_,s 10 the Ptﬂ— center of Q‘a' i.e. to the minimiger of P‘a'

we can follow the path z’(t) formed by the minimizers of F,,

using & fixed step-length in the parameter t (the step-lengih
18 measured in the metric corresponding to the family).
In the next Section we describe techniques which allows

for constructing a spectrum of self-concordant families and
the corresponding polynomial-time algorithms.

2.5, Proofe of the results
2.5.1. Proposition 2.1,

(1). It suffices to verify that ifws [’O.L,J then .I,,(EJ
i8 closed in E&. For t « A the function th ), considered as a

function of z « Q,, obviously belongs to Sy ,,(Q,,B), Bo, by
T.1.3, one has t e A, A(F,,7) €& = P.(z) - p(t) € a(t) g(z),
where ¢(t) =min( P (y) | y = Q;}. The function ¢ 18 upper

gemicontinuous by virtue of (2.7) and thus 1s Dbounded Ir
above on each compact set A* < 4; 60 ((1,2) e X (%) | t « A")
= X1(A*,2) c X*(a) for some @ « R. So there exists a et
Y(A*,2), which 18 contained in Q, and 18 closed in E, such
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that X(A',2) < Yf&*.a}. By (Z.1) the set I,rm) 18 closed
Q,» thus X(A",2) 1s closed in Q,. The latter fact is valid

each compact set A” which is contained in the interval A,
X,(2) 18 closed in E,, Q.E.D.

(11). Under the conditions of (11.1), a8 well as 0
(11.2), »* obviously satisfies (2.1) and (3.2). To verify
(%.3), respectively, (37.3), let us consider the mappiny
n(t,y) s (t,#(y)): Ey - E,; this mapping obviously 1

continuous. We have X;(a) = ( (t.y) | Fi(y) < a) = «'(((t,

| F.(z) € a}), 8o under the assumptions of (11.2) the setg
X (@) are closed in E} for each a « ®. It 1s clear that if

satisfies (2.2) and (2.3) for some (t,z) « Q,, then t.Q

corresponding Inequalities hold for #* for all (t,y) such that
w(t,y) = (t ). (11.2) 18 proved. To prove (11.1) by the same
arguments 1t remains to verify that for each #® the equality

Xi(e) = ((t,y) = Q, | MFLy) €2) = = '(X,(2)) holds.

inclusion of the second set In the first one 1s obvious; }
prove the inverse inclusion, let us nntice. that 1f (t,y) «
X,(2), then '

DP, (#(y))(4n]| < a'’2(t) = (DPF (#(y))(4h,4n1)""%;

when h passes through E*, 4h passes through F (since « is an
onto mapping), so we have %(t,y) « X (). (11) 18 proved.

L I

(111)..A11 the relations which must be satisfied by &',
at, 7, u, €, 0" by virtue of (3.1), (%.2), (z'.3), are|
obviously true, excluding the closedness of the sets '

Xj(a) = ((t,z) ek, |ted, zaQ}, Fi(z)<a), aek,

in E,. Let us verify that X}(a) 13 closed in E,. Assume that
(1,0 @) @ Xj(a) and (t,,z,) - (t,z) « B, \ Xj(a). Then (t,z)
does not belong to one of the sets Q,, Q) (otherwise (t,r)
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belonge to @), and F* 1s continuous on this set). If (1,7) £
Q,, then P, (z,) = ® for { - » because of the clﬂﬂﬂdﬂﬂﬂﬂ of
,l
the sets {{é u) € Q, | Felu) € const) in'E,, and ir (t,z) =
qQ,, then (F, ( T, )} is bounded from below by virtue of the
continuity of F on Q.. BY the same reasons (F: ‘{m )} 18 elther
pounded, or tends Lo +w. Since one of the sequences (F, Lx ),
{F rI )} tends to +o and both of them are bounded from beluu,
we havp F (3) = @ which contradicts the inclusion (t,, z,)

2.5.2. Theorem 2.1.

10, let 8 = (1 | Te 4, (1,2) « X'(2)). Then & 18 open in
4 and contalns t. Let us denote by 6% the connectedness
component of t in &.

20, Let us fix h « E and consider two functions of T e
8%:
a(t) = DF(z)(R], b(t) = DPF (z)(h,h] (1)

By (3.3) we have (( )' means the derivative in T):
la'(t) - (In(p(e)))* act)| € a'’?(x) £(v) ©'%(v),  (2)
[b'(t) = (In(y(T)))" b(t)]| € 2 N(T) b(T). - {3)
By (3) elther (the case I,) b(t) = U, T 8", or (the case II,)
b(t) does not take the gero value over 8". In the case I,, by

| (2) and by virtue of |a(t)| € A(F,,z) a'’2(t) b'/2(t) = 0, we
have a(t) = 0, T« 8%,
3% Now assume that the case II, takes place. Let

$(1) = (@?rt) a”(v) b (%)%, v « &%,
let t" « 3% be such that



pm(-:l"'.’. t") < pp(¥it,t!) (4)
Denote by t* the nearest. to t".point of the segment !t t"], 1n
which ¢ aguals gero, 1f such exists; otherniae tet 1Y = L

Let also 8" be the segment with the endpointe t* and t". We

have
Pop :r 151" ¢ Pp(Tit,t'); ;
w ') KA wA(F,Z); (1) 0, Ta(t?, t"] =05 (5)

For t « 8' the function ¢(t) 1s continious, and for T  &; 1t
18 continiously differentiable and differs from gero.
For © « 87 we have

20" (T)p(T) =2a2(T)(An(u())) (a(T)b(T))™" - a®(t)(In(Y(%)))"

itialt))~! - d2re)(Intat))) a(ub(t)) ! + wit),
where
W(t) = 2 (a'(%) - (In(p())) 'a(t)} a(t) la(s)v(t))™" -

_ a?(t) (b'(t) - (In(y(%)))' bit)) (a()v?(w))",

Since T « n;’. we have (%,z) « X'(®), and by (2.2),(2.3) we get
()| €2 a'’2(a) k(v arv) b'7Z(t) (a(od(n))! 4+ '

+ 2 d®(7) n(v) b(v) (a(e)bP(1))" = 2 §(n)E(T) + 2 N(T) $°(T).
Thus, for T « 87 We have

19 (%) + (In(p(rit)lg &(T)| € §(%) + §(TIN(T). (6)
Let ¢* = max( ¢(t) | t « 87). By (6)
19! (1) + (In(@(Fit)ig d(T)| € &(T) + ¢* n(v), T« d). (7)

Let ¢_ = minip(t) | T« 8%}, ¢, = max(p(t) | T « 0'); then BY
(7) and the continuity of ¢ on at

Ted" = () <explp,) (9(t*) +p, + ¢ p,l, (8)
where ' ; ¥
p, = (@A), P, = f’fl{_tfﬂ)d&l. Py = 1{.n(e)as| .

50 |
P, + Pyt Py = Ppl(Tit"it") < 2 (= - A). (9)
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By (9) P, + Py < 1, 80 €Xp(p,} py < 1, which, by (8), leads to

o' < (1 - explp,) p,)~"(@(t) + p,).
This relation, by virtue of (9) and the second relation 1in
(5), implies o* € .

The latter inequality together with the definition of s
meanﬂ that in the case II_ the implication
(t"<d”, pp(Fitit") < pagf’ t,t')) = max{ ¢(t) | T« [t,t"]) € @
holds. By the contimuity arguments this proves the implication

ft"ﬁ'ﬁ [] pi('?jtitﬂj € P!f’.t,t',” -
max{ ¢(t) | © « [L,1"]) € =, i (10)

Taking into account the aeifinition of ¢, we obtain from
(10) that : :
rtﬂeﬁ y Pp(Fital") € pu(#it, 1’ J} -
\DF, ,(2)(R]| € @'/2(t") @ (PR, (z)(M,h))'72 (11)

The relation (11) has been proved in the case II, ; 1n the case

(where, as we have seen, DF ,(z)[h] = 0, t" < 8%y 1t 1s
nhvinua Thus we have

{t"eﬁ'*' F'm{-?';tnt"') < ijf;t;t"]} - E{Pt" ,Z) € @ (12)

4°. o complete the proof 1t suffices to show that t' e
5* - 1t will allow us to take t" = t' in (12). It t' £ 8" then
there exist t¥ which 11es between t and t' and 15 a boundary
pnint of the 1nterval 8%, Assume that t, 11e 1n 8* between t
and t* and tend to t* as ¢ -~ ». Each t, satiariea the premiae
in (12) (aince t 1ies between t and t' g1d belongs to 8”);
hence by virtue nr (12) the inclusions (t ,z) « X_(®) hold.
For { ~ = the pointa (t,z) converge 1o (t*,z). The latter
point belongs to E_(A), ainca t* 11es between t « A and t' < A
and hence itselr belongs to A. Since X, (®) 1s closed in E, {A}.
we have (t',7) « X,(2). Hence for all T « A close enough to %
‘the points (t,r) belnng to X'(2), so these © belong to 8; the
latter fact contradicts the assumption that t* 18 a Dboundary
point of &°. m
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Section 3. Barrier-generated families and barrier method

In this Section we develop a barrier method for the
gsolution of the problem
J(z) - min | 2« G < K. (3.1)
Barrier methods are path-following methods which correspond to
families of the form
P,(z) =t f(z) + F(z),
where F 1s some barrier (interior point cost functlon) for the
feasible reglon G. |
Below we implement this scheme using the results
self-concorndant families. To ensure the sell-concordance
the above families we need some special barriers. So we begin
with the definitions and results on the barriers required.

3.1. Self-concordant barriers and barrier-generated
familiese.

Definition 3.1. let G« O(E), 4 2 1, p 2 0. .
(1) A function F: int G - R 18 called a 4d-self-concordant
barrier for ¢ (notation: P « 8(G,6)), 1T F < S;{L‘n G,E) and

A(F) = Bup(A(F,z) | 2 « int G } € 8'72,

(11) A function f: G - R U (+»} 18 called p-compatible with B
« 8(G,8) (notation: f « #(F,p)), 1f 7 18 lower semicontinuous
convex function on G, finite and ¢?-smooth on int G and such
that for all ze« iInt Gand h « E the following inequallty

holds:
\D?f(z)(h,hhI| € B (3 DPf(z)IR,h1} (3 DPR(z)(h,h1}/2. (8.2)

The following fact underlies our further developmentss:
Proposition 3.1. let G = C(E), 43 1, p 2 0, Fe 3(G,9) and [
e #(F,p). Denote A = (0,x) and consider a family

» =%(F, 1) = ['B'1ls = Int G, Ft{z'} =t f(z) + F(z), Bl _,.

Thigs family # 1s sBtrongly self-concordant with 3
narameters 1
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aft) = (1 +B)2 1) =L)=t,

gr) =872 (1 + p)/t, m(t) =1/(2 1), (3.3)
mn particulcr, ¢(#,t) = (1 + )" t7'/% and
pv{r;r.ﬂ ={1+(1+§) 472 1) |In(t/1)]|. (3.4)

9,2, Barriers’ prppartiu.

Po proceed, let us slate some useful properties of
e1f-concordant barriers.

sition 3.2. Let G « C(B), F « (G,9). Then

(1) let z = #(y) = Ay + b be an affine transformation from a
lgpace g* into E, such that #(E')N1int G # 2, let G' = #77(G),
it « #(P,B)s F'(y) = F(#(y)): 1nt Gt-w, fHy) = pay)):
int G* ~» R.

then F' « 2(C’,9) and f* « #(F',p).

(11) It /= #(F,B,)s Py 20, L = 1,2, then p,f, * pf, = #(F,
w{ﬂ,:ﬁgﬂ- It f 18 a convex quadratic form on E, then /] =

#(P,0), Moreover, F & #(FP,1) (P 18 extended to 8G by t"e value
+00) .
(111) Let G, « C(B), P, « 3(G.,8,), 1 € { <m, e such that ¢t

- + S +
= NG, « C(E). Jet ¥ =2 P, : It G° - R, Then ' o
i=1 t=1

3(G*, 39,) mnd A(P.p) < A(FL) VL.

(1v) let z,y « int G and let for w e G

% (2) = inf ( t 3 Olw+t'(z-w) «G)

be the Minkoveky function of G with the pole at w. Denote

¥(z)=(2<E| PPP(z)l2-2,2-2] < 12}, '

|Then :

(iv.1) W, (z) < int G;

(iv.2) The following inequallties hold
DP(z)z-y] € 9 :yf:.-:,!m - I"{IJ}; (3.5)
Dr(z)iy-z] € 6 (3.7
P(z) € F(y) + 8 In(1/(1-% (2),); (3.7)
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F(z) 3 F(y) + DR(y)[y-z) + In(1/(1-% (2))) - % (2); (3¢

|DP(z)(h]| €8 (1 - :ym}" (DPP(y)[h,h1)"72, heE; (3.
DPP(z)(h,h] € (1 + 30)% (1 - % (2))7% DPR(y)in,hl. (3.1¢

Noreover, 1f z e 8G and % (z) € ("% + 1)7%, then ]
DF(z)(z-2] 3 1 - -:‘r;r;m'ff s 1)E, (3.1
(v)G=G+E (cf. C.1,1) and F does not vary along

P
directions parallel to E,. f

F 18 bounded from below on int G 1ff the image of G !
the factor-space E/K, 18 bounded.

If F i8 bounded from below, Lt attains its minimum ,
int G at the set Ir of the form z(F) + E,, and the followin
ineclusiona hold:

(7 eB | D°P(x(F))(z-(F),z-z(F)] <1 } c Int G <

c (z a B | DPF(Z(F))z-2(F),z-T(F)] € (1 + 30)° ). (3.1
(vi) Jet z . Int G, heEand q (h) =8up ( t | T ¢ t hegG
Then :
(PPF(z)[h,n1)""72 € q_(h) & (1 + 38) (DPR(z)[h,h])""/2. (3.18

3.3. Barrier method.

Jet us fix the objects G « C,(E), P « 3(G,8) and f >
Our purpose 18 to describe a method for the solutlion of (3.
under the assumption that the objective J 18 p-compatibl
with F.

Denote by A' the value of the function * - A%(1 - A)72 g
the point A, and let {(A) = WP(AJ(1 + WA))(1 - w(A))™', If
1s bounded, then the form D°F(z)(h,e] defines a scalar produg
on B (P.3.2.(v)); this product will be denoted {h.E}n'F. Al

the corresponding norm - | |_ ,. We omit the subscript z,

T = z(F) 18 the minimizer of P over int G; notice that thi
minimizer does exist and 18 unique, see P.3.2.(V).
The barrier meihod is defined by the parameiers A; , Ag
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A, ;,,aur.‘hthat
5 0<A; €A <Ay <Ay <A,
Al <A< Ay ;U-g:-.'n.; (3.14)

L(r)) € 179, (1 +P)A, <A,
) Weil'? <1,

wi(r,) (1 - WA, 152 < 19, (3.15)
and by 8 atarting Pﬂf*“f
w e Int G. (3.16)°

The method works in two stages, the preliminary and the
m{ﬂ OBBB.

3.3.1. The preliminary etage produces an approximation,
u, to (F) such that A(F,u) € A,. To do this, we follow the

.niﬁimizerﬂ trajectory of the family
(1) = #(F,g) = (int G, P{'’(2) = t g(z) + F(z), E), ;. t = 0,

where

It 18 clear that g8 « #(F,0), 8o the family #‘'’ 1s strongly
\gelf-concordant (P.2.1); notice that for this family

a(t) = 1; py(r2t,t) = (1907 1012) In(tst')). (3.18)

The approximation under consideration is constructed as
\follows: let

-4 ' Ay = Ay
t, =@, 130, ® = exp( 1,rf+1.;’ﬁ""°') ), (3.19)
wp,‘lr-r“’;:‘.rh,} AT, =MD, 120, (8.20)
end let us produce the points z,:
z, =W I, -:rrF*':?‘ -SSP i (3.21)

Wz*¢ , ) 1s defined in Sect. 1.2).
Process (3.21) 18 interrupted at the first moment ¢* when
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the relation
MF,z, ) €A,

holds; the result of the preliminary stage 1s
u=3=

PRt

Proposition 3.3. (i) The preliminary stage 18 well-defineds
are well-defined and belong to Int G, -1 ¢ 1 < t*, t* ¢ o,
the following relations hold

(1) : 3.
1”"‘ II‘_'-F.J ‘ l’l : {an y

(1) 4

1{?:{ .-I-‘{J £ l;. [3_

(11) The result of the preliminary stage satisfies |
relations

AMPu) €A, (3.3

(111) The number (* of the preliminary stage mmt-
satisfies the 1neauullt: '

A |
1 L — (-3 _,)p 9 o (@
iy Ay Aam Ay U A T

3.3.2. The main stage minimizes f; at this stage
minimizers trajectory of the family

#@) - »(P,f) = (int G, F2)(z) = t f(z) + P(z), E),,
1s approximated along a ﬂequence t, = =, RNotice that
family 18 strongly self-concordant lith

art) = (1 + p)72,
Py 225t,80) = (1 4 v (14p)0"/2) | 1n(ts1 ).
let .

_ A0 )7 - MR

g '@y,

where 7' 1s the gradient of 7 with respect to the BEuclide
structure < , >w,p+ We Bssume that f'(u) # O (otherwise u 18
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aolution to (3.1)). Let "'al Y
o 25t t’ > 0, ®, = expl WE 1;'r1+ﬁ1ﬂ'??3 } (3.31)
. R e il MR (3.32)
P;gﬁf sbgrtes PR '
and let us produce the points I : |
T, =t T, " r*rFﬁf’.mi_,J. t 3 0. (3.33)
The points z, Aare regarded as the approximate solutions

prudueed by the barrier method.

Proposition 3.4. (1) The main stage 18 well-defined: z, ( >
=], are well-defined and belong to int G, and the following

inequalities hold:

u—f;-’:’-‘. Z,_4) §Ag (3.34,)
w‘”.z ) €A . (3.35,)
hi>0we he.?
(11) For eec e 8" + 8) S, tag) J
=it —_—
B s Rt
’_ - 4
il 2 ; ' 3.36
alp{ ?“ 0 s ﬁ)-ﬂ'ff .Frf) ( )

From now on z° denotes the minimiger of f over G, and
Voll) = sup( f(z) | 2« W, ( Z(F) )} -

- nf( f(z) | £« W, ,,( 2(F) ) ). (3.37)

3.3.3. Below we use the following statement, which
summarizes the results of P.3.3 and P.3.4:
Theorem 3.1. Let G « Cp(E), P « 3(G,8), f « #(F,0) (1.e. f 18
a quadratic form), w« Int G and let A, A}, A, A, A
' satisfy (3.14), (3.15) for p = 0. Consider the application er
[ the barrier method to problem (3.1) generated br J (the method

18 defined by the parameters § = 0, A A 3, 1' and by

i? f’ E#



the starting point w). Then for each € <« (0,1) the tog
number of the preliminary and the main stage iterations, N(e
which 1s required to produce an approximate solution, 'Te
int G, such that | "

F(z) -min, f € € Vy(f),
satisfles the inequality L v

N(e) £ 0( 9'7% Inl — ) ) (3.3

(1 - ‘nrr.:m” .
(the constant factors in O( ) depend on A,, Aj, A, A,
only).

Each of the above iterations can be raducad to a step @
Newton's method as applied to a convex combination of f and
(or of F and a linear form).

Good (approximately optimal for large 9) cheice of
parameters A , Aj, A . Ay, A In the case of ff = O 18

?..' = Ay = 0.193; ?..; Ay = Jh.; o 0.057; Ay = 0,150,

Under this cholice of the parameters and for large enough 4 th

principal term of the asymptotics (for € + 0) of the righ

hand side of (3.38) 18 ¢ 9'/? 1r1(1fe) , Where |
c « 7.36.

3.4, Examples of barriers.

The main question arising now 1s how tc obtain
self-concordant barrier for a given convex set. In whal
follows we describe some techniques which enables one to find
guch barriers.

Iet us start with the following useful statement.
Proposition 3.5. (1) Let G be a closed convex set in R™ with
Int G ¥ @, and let #(y): R® - R™ be an arfine transformation
guch that #(R™) intersects int G. If ¥ 18 a ¥-self-concordant
barrier for G, then  the function P(#(y)) 18 9-self-concordant
barrier for « '(G). |
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Let G, be closed convex sets In R" and F, be

(11) ‘rdant barriers for G 1€ 1 €k Aemme that the

ﬂi-aelt-ﬂﬂﬂﬂﬂ

get G = n G, has & nonempty 1ntpr1nr. Then the function F = E
-I ! t=1

F, 18 3 1, —gelf-concordant barrier for G.

The rollawing theorem gives a spectrum of concrete
.aplrﬁﬂﬂngcrﬂant barriers.
‘rheorem 3.2. FOT appropriately chosen absolute constants taken
as the conatant factors in the below O( ), the following
gtatements are true: ,
(1) (Barriera for the interseciion of r&gtans bounded by first
and second order surjfacea)

1f the function ®: R™ - R 18 & convex quadratic form auch
that the reglon G' = (z « K™ | ®(2) <O} 18 nonempty, then the
function In(1/(-®(z))) 18 & 1-pelf-concordant barrier for the
get G = (z « K* | ®(z) < 0}, Consequently, any set with a
onempty interior, which is an intersectlon of m convex sets
unded each by certaln first or second order surface (for
zample, 8 convex polytope with m facets) admits a
gelf-concordant barrier. a8

Notice that n-facet convex cone iIn R (a8 well as the

ntergection of such a cone with any convex set containing the
ertex of the cone 1n 1ts 1interior) admits no
-gelf-concordant barrier with 4 < n.

A. The function In(1/(t? - 27z)) 18 an 2-self--concordant
arrier for the set G = ((t,x) < R x K" | t > |z|,).

B. Let {(t) be a nondecreasing continuous and concave
unction on [0,«), C7-smooth on (0,®), satistying ((0) = O <
(t), t >0, and such that one of the quantities

E” =min{ a 2 0] |[{"'(t)] C(t) €a {'(t) |L"(t)] ¥V t > 0,
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|

af?’ s minC a » 0 | (€"*(t)] ¢'2ct) <a |EM1)1*2 vt >0

a{_“ =min{ a » 0| |{"'(t)| €a |{“(t))/t ¥t >O0)

18 finite. Let
a, = min(a 1, u{aj.:néa’} +1, :

Then the function
amf} In(1/(¢%(t) - ©°z)) - In t

is a Uﬁufj—aalr-cnnanrdant barrier for the set
G=((t,z) «sRXR* | t 30, {(t)» (%2)'7?),
Thus, the sets
Gh=((t,z) « RX R | t 3 (|7],)°), 1€p <,

admit O(1)-self-concordant barriers, O(7) does not- depend
p.
(111) (Barriers [for the epigraphs of functions of
variable) |

A. Let {(t) be a nondecreasinz C’-smooth concave functl
onn (0,«) such that the quantity

a = min{ a 3 O | |{""'(t)] < &.t;'{r)ift Vi>0 + i.
is finite, Then the function

0ag) (In(1/t) + W(IAL(L) = 2)))

18 an O{ufj -gelf-concordant barrier for the set
G=Cl ((t,z)« R2 |t >0 ¢(t) >z
Thus, the sets

@ =((t,x)e R | t2(2,)°), 1€¢p< o,
admit O(1) -self-concordant Larriers, O(1) does not depend
p.

B. Lei f(z) # const be a ¢% function on R, such that f
J". I"' 3 0. Assume that
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A e (3/2:2) and forall z. Let A =(z | f'(z) > Q)
.#(A) - A be the 1nverse to f:A - f(A). Then the

function
" o((2-M72) (In(1/(t - J(®)) + /(L) - 2)))
4g an O((2-1)72) -self-concordant barrier for the set

o= ((t,z) <K | t3 [

phus, the eplgraph ((t,z) « R° | t » exp(z)} of e* admity
an 0(1) _gelf-concordant barrier.
(iv) (4 parrier for the cone of symmetric posatilvely

gemidefintte matrices)
Let S, be the space of symmetric n x n -matrices with
real entries and let S! be the cone of positively semiderinite

natriuaa from S_. The function
h in(1/Det(z))
ig a n-self-concordant barrier for Sp»

(v) (4 varrier for the eptgraph of the matrir norm)
Let L . Dbe the space ofm x n - matrices with real

entries. The function

o(1) 1n( 1/Det(t? I, - * z))
ig an O0(n)-, and the function O(1)

In(1/Det(t? I_ -z a))
ig an O(m) - self- concordant barrier for the set

G= ((t,x)eRxL _ | 13|z}
‘Herein I, means the R ¥ k unit matrix and | | 18 the standard
patrix norm (the spectral radius of (4 4T)'/2),
(vi) (4 barrier for the epigraph of "fracitonal-quadratic”
function)

Let S_Dbe the space of n = n - gymmetric matrices. 'hen
rihe funciion

F(t,X,z) = - O(1) (InDet X + In(t - 2* X' 1))
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is an O(n) - self-concordant barrier for the set
=0l ((t,X,2) e R » §_~ H* | X i3 positive définite,
t > X' z ).

3.5. Coverings and barriers calculuse,

So far we have considered the barrier method under the
assumption that the objective f in (3.1) 13 quadratic (o
p-compatible with the barrier for the feasible region G). 0
course, this 1s not a severe restriction. Indeed, replacing
by the epigraph of f|,, one can reduce (3.1) to a problem of
the same type with'a linear f. We see that an appropriat
choice of extra variables may simplify the situation. This
idea can be implemented as follows.

Definition 3.2. 1) Let G « C(E) and let I' = (',G',%, F) be &
collection consisting of:

a fin.te-dimensional real vector space E', dim E' = dim E
+ i3 |

a set G' « C(E');

an affine transformation ®m:E' - E, such that =®(G') = G
and each compact K < G 18 w-1image of some compact K' < G';

a 9-self-concordant barrier F for G'.

In this situation we call I' a (4,1)-covering for G, and G
itself 1is called (9,1)-regular.

2) let Ge C(E) and let ¢: G - R U (+0) be a lower
semicontinuous on ¢ and finite on Int G convex function. The
pair (G,¢) 1s called a functional element (f.e.) on E. A
(9,1)-covering, I', for the epigraph ®(G,9) = {((t,r) « R x E =
E. |lze G, t 2 f(z)}) of the f.e. (G,§) 1s called a
(6.1)-covering for the f.e. (G,9). A f.e. (G,p) 1is called
(8,1)-regular, if 1t admits a (9,1)-covering.

We do not distinguish between a continuous convex
function ¢: E -~ R and the f.e. (E,¢); thus, we can speak about
(4,1 )-regular functions.
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our purposes now are as follows. In this subsection we
describe some kind of calculus for regular sets and functional
elements. In the next subsection we show that a convex
'prﬂgrﬂmming problem with regular components can be reduced to
a problem of the form (3.1) with linear f and ¢ possessing a
Eelf,cgncorﬂant barrier; the latter problem (and hence - the
original one) can be solved by the apove barrier method.

we start with some calculus of coverings.
pheorem 3.3. (1) Let T = (E',G',%,F) be a (9,1) covering for G
c C(E) and let 0 ; B~ E, be an affine transformation such
that G, = 0(G) < G(E,) and such that each compact contained in
G, is u;imagﬁ of Bﬁme compact contained in G. Then I' induces a
{ﬁ 1+ (dim E - dim E ) )-covering I', for G,

(11) Let I' = (E',G',%,F) be & (9,1) - covering for G « C(E)
and let ¢ : B, ~ E be an affine transformation such that o(E )
N int G # @. let G, = 6°'(G); then G, « C(E,), and T induces &
(9,1)-covering I', Ior G

(111) Let ', = {E',F{. F,) ba (9,,1,)-coverings for G, e
O(E), 1 €1 £k, and let & m{P G, « C(E). Then the coverings

I, induce a ( E ﬂ E 1 ) cnvering I' for G.
R e

The above reductions are "explicit® - 1.e. they are
straightforward and require only the application of "rational”
linear algebra techniques to the initial coverings.

Now we state the Tfollowing superposition theuram for
regular functional elements:

Theorem 3.4. Let (G,,,) be {ﬂi.li)-ragular functional
elements on B, 1 € { < R, and let (G.,$) bs a (4,1)-regular
functicnal element on R®. Assume that

k
the set H = N Gi has a nonemply inte~ior;

each of theif&netians ¢, 1s bounded on bounded subsets of
G, 1<l sk, and the function ¢ 18 Dbounded on bound¢"
subsets of G;

the image of H under the mapping f = (0,......0 ) 18
contained in G, thus the function g(z) = (¢ef)(z): H » R 18
well-defined.



._44..
Moreover, assume that for each x « H the set f(z) + (R*J+

ig contained in G, and on this set ¢(u) > ¢(f(z)) - (herein
r{R*J is the nonnegﬂtive ortant in Rh}

Then (H,g) 18 a ( E 9, + 9, F t, + 1 + Ek)-regular

functional element. The cavering Ior thia element 18 1nduceg
in explicit form by the coverings of the initial f.e. ‘
The following corollary of the above theorem 18 more
convenient:
Corollary 3.1. let f = (f,,..0sfy) ¢ E » R* be &
vector-function which components f,  are (ﬂi.l ) regular, and
let ¢: R® = ® be a monotone (with respect to the usual partial
ordering on R®) and (9, 1)-regular runctian Then the

superposition g(z) = ¢(f(r)) : E~ R 18 (iE’ﬂ + 9, tzil + 1+

k)-regular, and the corresponding covering for this
superposition i1s induced in explicit form by the I1nitial
coverings.

The abu.ve statement holds, 1if ¢ 18 monotone on (R®), only
and f 18 nonnegative on E.

The following simple statement 1s also useful:
Proposition 3.6. Let (G,¢) be & (9,1)-regular f.e. on E and
let the set H' = ( 2« Int G | ¢(z) < O ) be nonempty. Then
the set H =C1 H' 18 (% + 1, 1 + 1)-regular, and the
corresponding covering is Induced in explicit form by the
covering for the initial f.e.

We summarize the above results on regularity in the
following statements. |

i

A. Composition rules.

(1) The product of a (9,1) - regular function by a
poslitive constant, the sum of such a function and an affine
form and the superposition of the function with an affine
transformation of the argument are (8,1) - regular;

(11) It functions f, : R™ - R are (8,,1,) - regular, 1 ¢
{ s R, then the maximum of these Iunctions over t is
( E B, E 1,) - regular, and their sum 18 (1 + E ﬂ kR + 2 L)

t=1 =1 = =1
B T'F*glllﬂf,
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(111) The superpositlon of a (9,1) - regular and monotone
on R® (or on the nonnegative ortant in R®) function ¢ and a
p-dimensional (k-dimensional nonnegative, respectively)
yector- Iunctioi 7 PDBBEEﬂinghrﬂt.I‘J -regular components, 1 €
{ <R, 18 (O _*L%f‘ﬂ;. R+ 1 +£§r1‘) regular.

B. The regularity of certain functions of one variable.
For appraprmtely chocen absgolute constants taken as the
constant factora in the below O( ):

(1) the funetion f(z) =z 18 (1,0)-,- ana the function
7(z) = (2), 18 (2,0) - Tegular;

(11) the functions |z|P, (z )P, 1 ¢ p < =, are (0(1),0) -
regular (where 0(1) does not depend on p);

(111) the function exp{(z} is (0(1),0) - regular.

C. The regularity of certain functions of many variables.
For appropriately chosen absolute congtants taken as the
conatant factora in the below O( ):

{i) a convex quadratic form on R" 18 (1,0) - regular;

(11) the function |z|, 1s (2,0) - regular;

(111) the matrix norm JzJ] on the space of m x-n -
matrices 1s (O(min{m,n}),0) - regular;

{iv) the functions (Jz])® : " +®, 1 € p < «», are

(0(n),n) - Tegular; the functions {|.r|p}1"’3: R*+R,2€<p <

w, are (0(n),n) - regular (the constant factor in O( ) does
not depend on p). '

3.6, Barrier method for problems with regular components.

Consider the convex progranming problem
Io(x) ~min | 2=G,,, <R [ (2) €0, 1 <1 <m (3.39)

3.6.1. Assume that the objects Involved into (3.39) are
ag ifollows:

the set - belongs to C(E), and a (8,1)-covering, I' = (B',
G'.,%,F), for this set is g'ven;
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the functions Ii are represented by (ﬂ{.I¢)~regular I.e,
rﬂi.f{). such that G < G‘. -and (ﬂ{.ttj-cuweringa. I
(E;.G;.xi.FiJ. for these elements are glven;

the Slater condition holds: the set H' = {r e 1int G
J,(2) <0, 1 €1 ¢ m) 18 nonempty;

the feasible reglon # = (T « G | f,(z) €0, 1 <1 <m} of
the problem is bounded. 1

L]

Under these assumptions problem (3.39) can be solved as
follows. let BE' =R x E, G' =R x G, G:-—*E x G, and letg

¢, (t,z): Gy - ® be defined as f, (z) for { > O and as fgf.r) — 8
for ¢ = 0. The set G' and the epigraphs of the f.e. (G, ). 1
< { <m, are the inverse imsges of G and the epigraphs of thai
f.e. (G,w J,2s respectively, under appropriate linear
epimorphisms. By T.3.3.(11) the coverings I', I',, t > 1, induce
coverings I', I't for G* and the f.e. (Gj.f ). The epigrapt

u{GE.¢bJ = ((1,t.,x) e Rxy(R x E) | (t,T) = GE' T 2 §y(z))
of the f.e. (G},¢,) 18 the inverse image of ®(G,.f,) under the
1inear epimorphism (%,t,z) - (T + t, ), thus by the same
theorem T, induces & covering I’} for the f.e. (G,¢,). Notice
that the parameters of the initlal coverings coinclde withg
these ones for the induced coverings. -

The coverings I'}, 0 € { € m, induce a (9" = E Py s
1=0
P m
i"EﬂlJ_,r_1-411::-11'9.-1"'11113 I''* for the f.e. (Q Einaﬂ*. ¢ = max ¢
= : = = |
(T.3.3.(111); this theorem is appliable, because N int * Gy

nonempty). Since (3.39) satisfies the Slater concition, ¢
covering I'**, by P.3.6, induces a (1 + %', 1 + 1')-covering,
Pr, for the set Q' = ((1,z) « Q | ¢{t, ) € 0} =Cl ((t,2) ¢ Q
| &(t,z) < 0} (the latter equality holds because ¢ 1s lower
gemicontinuous on Q). The Slater condition also Implies that
int G* N int Q' # @, 80 I' and I'* induce a (¢* = 1 + ¢ + #*,1°
a1+ 1¢1")-covering I* = (E*,¢*,x*,F*) for the set |
"= g'nQ -
((t,x) « ' sRxE|2eG, f,(2) €0, 1°s L <m, 1 2F,(T)]
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1t 1s clear, that the problem
o(u) = t(e(u)) »min | ue ' (3.40)

(where t(z) =t for z = (t,z) « E') 18 equivaleﬁt to the

blem
pmtaﬂ]lﬂlft.z}*ﬁc#r

and the latter 18 equivalent to (3.39). Now notice, that
problem (3.40) "almost satisfies" the conditions under which
st can be solved by the barrier method: this*prnhlem 1s of the
torm (3.1), the objective is linear, and F° is a 9" -gelf-
concordant parrier for G*. Notice that this barrier is induced
in explipit torm by the initial barriers. The only obstacle
for application of the oparricr method to (3.40) 1is the
pussibility tor G* to be unbounded. This ohstacle can be
removed as follOWS.

The tfeagible set H was asaumad to be bounded; assume thgt
we are given some constants t, < t* such that fD{zj a« (1.t )

tor r < H. Let ¢** = ((t,2) < G# | t, <t <t*); then * 18 a
bounded subset of G*; since I'* 1s & covering for ¢*, then **

15 contained in w*(G**) for certain bounded G** < ¢*. Without

loss qr gﬁnerality we can assume that s\
¢** = (u < G* I Jul, < R}

for an apprnpriate R and that int G** # @. Now let

Gh= (ueG | Jul, <R, t(n’(u)) < [t,,t"1).

bv1uus1y. G e C(E*) and «* {GHJ ‘™, Moreover, G; 18 the
art of G singled out by one quadra ic and two Ilinear
onstraints, thus F* induces a (8" + 3, 1*) -self- concordant
fer, Fp, for Gp. "By the above arguments, ¥ .=

R

Gy,x',Fy) 18 a rﬁ* + 3, 1%)-covering tor G*™, so the
roblem

t(x*(u)) » min | u e Gy (3.41)

s equivalent to the problem ¢t - min | (t,7) ¢*™, and the
atter 1s equivalent to (3.40) by definition of T, o
blem (3.41) can be solved by the barrier method, because G
bounded.
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3.6.2. Under some :-more resirictions on the obJects
involved into (3.39) this problem can be solved by the barrier
method in slightly different manner. Let us assume that G 1s
bounded, the problem i1s consistent and that we are given the
following data:

a 9-self-concordant barrier F for G;

apoint z<Int Gand o > 1, such that G< 2 + 0 (G -~ 2)|
N(z - G)} (1t means that z 18 a "symmetr? center of G within
the factor o%); -

a congtant V, such that |7o(z)] < F. f () gV, 1.€ 1 €
m, for all 7 « G. |
_ Suppose that, being given € « (0,V), we desire to Iind an
g-goluttion to (3.39), 1.e. a point z, « G, such that

fﬂf ) € fﬁfﬁ ) + & [z ) <€, TSl <m,

where z° 1s a solution of (3.39). Obviously, we can restrict
ourgelves to the case of € < V.
Let
() = 4 V/e;  O(e) = g2/(4 V8), (3.42) |
and
={(t,z2) «eRxE | 2<CG T <3VI(e), T 2 [ (2)+V,-
t 2 Q(e) f,(x), 1 €1 sm),

By definitlon of V the point w = (3Vil(e)/2, z) obviously
belongs to the interior of the corvex compact G*, hence G e
Cg(R x E). Moreover, lev G' be the intersection ol G with the
image of G under the symmetry with the center-at z. Then the
convex setl

Q= ((t,z) | =G, |t - 3VQ(e)2]| € Vi(e)/2}
is symmetric with respect to w and is ccntained in ¢*, while
the image of @ under the enlargement with the center at w and
the ratio o, = max{o,3) contains G*. So

ff{?—w (w)) £ 0, (3.43)
for each v  G".

It is clear that the Iunction

in
Fit,z) = P(z) + Fo(t -V,z) + 5 F (LANE)Z) +
=1

T £ 8 SRS s AT il
] B R - = = Pt
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_self-concordant barrier for G*, where

i8 & By &
=% ¥+ .8
% 4=0 *
Now consider the problem
+ »min | (t,z) e G, © (8.44)

Jet us golve it by the barrier method, generated by the
parrier P* and the starting point w (the method corresponds to

- 0; the parameters A ., A}, A,. A, A5 are assumed to be
qome fized absolute constanis satisfying (3.14), (3.15)). By
(3,43) and ?.3.1 1t is clear, that after

N(e) = 0(81721n(82 0,/8(€))) = 0(31/2 In(d, al/2 V/e)) (3.45)

jterations of the preliminary and the main stages an
approximate solution, (t',z') e int G¥, to the problem (3.44),
@11l be produced, such that :

¢t - min{t | (t,z) € G*) € 8(e) (BQ(e) V) =¢ (3.46)
(motice that f () + V > Oand hence 0 <t € 3 Q(e) V for

(t,2) € el A
Let us verify that z' 1s an &-solution to problem (3.39).

deEd- let

p(x) = max{fb{rj + V, (&) f,fIJ----- ((e) fm(IJJ.
and let 97 be the minimum value of ¢ over G, Then, by
definition of G and by virtue of (3.4%3), we have

o(z') <t' < 0* + &
Moreover, ¢* < ¢(z*) = fo(z*) + V (notice that fy(z*) + V 3 O
> 7,(2"), 1 &t &m), We get

Fo(2') + V& p(2') §9* + e < fo(x) +V + &,
or f,(z') £ 7o(z*) + €, and, by the same arguments,

Oe) f (x2') s fo(z) +V+eE2V +EL3Y
for 1 € 1 < m. This leads to

J,(z') €3 VAe) £ €
tor 1 €1 €m. So z' 18 the desired e-solution and 1ts
generation requires no more than

Nie) < O((m + )2 (m + n) n?) In(2(m + R)V/E))

iterations of the barrier method as applied to (3.44).
3.7. Application examples.
Let us describe the application of the barrier method Lo

a specirum of convex programning problems of the Torm 1.049)
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(the method 18 applied 1n the manner described 1n Beeﬁ
3.6.2). In each of the below examples we give expressions fg
two efficlency estimates: N(e), the upper bound for the numbegj
of 1terations required by the above described barrier methgg
to obtaln an e-solution, and M(e), the upper bound for th
total number of the arithmetic operations performed at thegg
fterations.

The constant factors In the below O( ) are absolute
congtanta.

For simplicity sake, G In the examples A-D is assumed
be an Euclidean ball of the radius R centered at O.

A. Linear and quadratic programming. Assume that f., O
t € m, are convex quadratic forms (possibly, degenerate or
linear). The problem can be reduced to the form (3.44) with "

F(t,z) = E In(t - ﬂ(EJIifmj} = e =¥ = fd®)) =

{=1 :
- In(R? - |z12) - In@ace)V - t),

9, =m+ 3, _
which impli:s (we assume that m > 0)

N(e) <o(m'’2 In(2mV/e)),
¥e) < om'’2m n? + n?) In2mv/e)).

The barrier method of the above type was 1independently
developed in [Go. 1987] for LP and in ([Ne. 1988 2,3] - for IP
and linearly constrained QP,

Notice, that in the case of linear fopp1< L € m &
quadratic f, the total number of apﬂrationa can be reduced 1n
order (see Sect. 6 below).

Notice also, that the Mehrotra and Sun method for
quadratically constrained quadratic programming (MS. 1983] has
0(m®’?) times worse efficiency than the above barrier method
(given a good initial point, their method converges at thé
eame rate as the latter one, but the initialization scheme of
[MS. 19881 1s worse than our preliminary stage).

B. Geometrical programming (in the exponential form).
Assume that

C, exp{ z)+d, c 20,0 94 €me

ft{:'-'"}: 1' . J- {‘I i'lj

J

[ o B |
-Eh.
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Iet K be the number of -different elements, Q,....,a,, In

the 8rTay (G 4 | Ostsm 1€ /<r ), and let s, 1 <p <
g pe the largest (over the constraints and the obJective)

- T
gmong the coefficlents c at the term expla, z).

ret us Introduce the extra variables vector =«
(T __.,TE}T and a function i({,f) taking values in T,K, such
1’ -

that L(t.J) = Wi, J'y 111 @Gy 3= Qp gue Then the problem

under consideration 1s equivalent to the problem
™

0

»
g,( %) = J‘E, 0.4 Y1c0,9)

+ 4, » min |

T :
SE{T,I} = 8, expla” 11 - Ty € 0, 1 <p<K,
* r“ *

(1,%) € G' = ((1,2) | |z)5 < R®, 0 ¢ 1,6V, 1 <p<h,

gg_'{_rq:llr) = + d" .‘.U- 1 4 i % m,

where -
0 ;= Cp g Byep.yy ST V' =maxiV + |d,| | O <t &m),

The set ' admits a (K + 1)-self-concordant barrier
K

- — IN(R? - I718Y - @ .
P(T,T) = In(R? 1zl3) ~pj’1ntmp{?r = TFJ}.

(it is easy to verify that the barrier parameter is K + |
instead of 2K + 71, the value implied by our general theory).
The latter problem satisfies the conditions from the beginning
of Sect. 3.6.2; 1in pariicular, the corresponding V can be
taken equal to V* = (K + 1) V'. Obviously, G' 1s symmetric
with respect to 2 = (v'/2,0), BO 0 = 1,

By T.3.2.((1),(11),(1v).B) under appropriate cholce of
absolute constants in the below O( ) one can take as F* the

function .
K '

# _ . -1 -1 -1 3 7 B

Ft,t.z) = GIUPEI{ ln[ﬂ (€) 8, t+8, T expmp :HJ

. 1n[ln[u"'t‘e:) a;' t +8 't ] - a;f .r]} —:Iln[n"{sj $a
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. Jz’ ct 5 Borgi™ dt] - 1n[t = e gb(¢.$J]. +

+ F(1,7) - In(3V ﬂ{a) ~ §)a
with ﬂ{a} 4 V*'/e , which results 1in
9, = O(m + K).
S0,
N(e) <0((m + B)'/Z 1n(2(m + K)V'/¢)),
Me) €O((m + K)'2 K (n+m) (n+K)In2m + K)V*/g)
(the estimate for WN(e) corresponds to the computation o
Newton's direction by the conjugate gradient method).
C. Lp -approximation. Assume that

J

For simplicity sake, f,(z), 1 <t <€ m, are assumed to be
conveXx quadratic forms. Introducing an extra variables vector
o T }T, we can rewrite the problem as

N AT
To(Z) =JE’|aJ Z-b0% z,a, « B (p e [1,0).

8,(T,2) = E T, - min | g,(1,z) = |u z -0, 1” T, €0,

R
1< J <R,
Sh+{r¢l1) = fifm) L 4 Ul 1 4 { £m, |

(1,2) € G' = ((1,2) | |z], € R, 0% T, €V, 1€ J <R
The get G' admits a (R + 1} ae1t~cnﬂcorﬂant barrier '
F(t,2) = - In(R? - |z)3) ~ > In(t (V - %,)),

and this set is symmetric with Eteapect to its F—center
(z=0, ©, =V/2, 1 £ J € k),
l.e. 0 = %he parameter V for the transformed problem is the
same A8 Ior the initial one.
By T.3.2.(111), under appropriate choice of an absolute
constant 0(71) (which does not depend on p) the function
$p,(tst) = O(1)(2 In(1/t) + In(1/(t%/? - u2)):

H= ((t,u) «eR° |t > |uf)-R
is an 0(1)-self-concordant barrier for the set Cl1 H. Hence, we
can take as F' the function

PR (t,T,2) = E Bp) et + v S In@'e) t -

J. J bJ) _£=l

s f{fz}] - ln{r -V - E T ) + Fpr$} - 1ﬂ13Vﬂ(EJ = Eify
J=1 :
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results In

whiﬂhﬂ* =0(m + k).
4 N(e) = O((m + R)'72 1n@2(m + k) V/¢)),
ye) <0(m + R)'7Z2 0% (m+ n+ k) In2(m + RIV/E)).
p. Mairix norm minimization. Let n = kRl and let the
elements of R*' be regarded as k x 1 - matrices. Assume that

(z) = 12| 18 the standard matrix norm (corresponding to the
ﬁiﬂidﬁﬁﬂ norms in R® and R'); f,»1€1€m 88 above, are
convex quadratic forms. Without loss of generality, assume

that R € L. 5
The problem caii be reduced to the form (3.44) with

P (t,x) = - 0(1) 1n Det{(t- V)ZE I, - za™ - S in@'e) t -

=1
- 1,(x)) - In(R - |z13) - In(3vace) - t)

(7.3.2.4v1)) and with

9, = O(m + R).
So, ;

N(e) <O((m + kR)'/Z In(2(m + R)V/6)),

M(e) <O((m + R)'?m + n) n®) In(2(m + R)V/€)), n = &k 1.

E. Optimization over popitive-defined symmetric matrices.

Let n = (k® + k)/2 and let the elements of R™ be regarded
as symmetric B x R -matrices. Suppose that the constraints
defining G include the positively semidefiniteness condition.
For the sake of simplicity, assume that

G=(2]| 052Kk :
(the inequalities are understood in the operator sense). The
functions f, are agﬂumed to be convex quadiratic forms, O € { €
m. ;
(ne can take the function

F(x) = - In Det{z} - 1n Det(I, - )
as 2k-self-concordant barrier for G (T.3.2.(v)). Notice that G

1s symmetric with respect to 1ts F-center z = % I, (@ = 1).
S0, i :
m
F'(t,a) = - In(t = V - £(z)) = $In(@7 () ¢ - 2 (2}

it=1
+ F(z) - In(3Vi(e) - 1),
B, =m+2R+ 1,

#



e 54 -

N(e) <O((m + k)'/2 Wm(2(m + R)V/E)),

M(e) <O((m+ k)2 (m + n) n?) In2(m + RIV/E)).

F, Inscribing the maximal volume ellipsoid into a convex
polytope. The problem 1s as Iollawa Given a convex compact
polytope K of thﬁ form

{(r « R™ | a zgb, 1< 1 < ml
We deslire to Iind an e]lipsﬂid

WB,u)=(u+Buv| vl v < 1) |
contained in Q and having  maximum possible volume, Thig
problem is considered in Sect. 7.

3.8. Universal barrier

3.8.1. We have noticed ' that the main question which
arises in the comnection with the barrier method 18 the
problem of the cholce of & self-concordant barrier for a given
convex reglon. First of all, we desire to know 1f such
‘barrier does exist. The answer is positive. |
Theorem 3.5. There exists an absolute constant C such that fop
each integer n > 0 each set G « C(R") admits a C n -
self-concordant barrler. If G does not contaln any straight
l1ine, then one can take as the above barrier the function

P(z) = 0(1) 1n |G*(z)| : int G » R, (3.52)
where O(1) 1s an appropriately chosen absolute constant, '

6*x)=(peR" | ¢ ty-2) <1 Vyeh)
is the polar of G with respect to the polnt x and | | means
the lLebesque n-dimensional measure, -

In particular, 1f (G,g) is a functional element on R™ and
ite epigraph does not contain any straight line, then under an
appropriate cholce of an absolute constant O(7) the function

F(t,aw) =0(1) Inl [ (t -w' 2+ g w)™' aw (3.53)
: - '
is an 0(1) n - self-concordant barrier for the epigraph m{G,gJI
of the functional element (G.g): herein
gw) = suptw® 2 - g(7) | 2 &
18 the legendre transformation of the functional element |

L
1|"'"'J.'_.-

Notice that the above statemeui vain 1ot He  atrengihen:
Proposition 3.7. Let G be a convex polytope in R™, such that
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i boundary point of G Dbelongs exactly *to R

erta

GET,j-dimeﬂsiunal facets of G, with the normals to these
iﬂcﬁts peing linearly independent. Then the parameter value 9
o? any 9 - gelf-concordant barrier F for G 18 > k.

comments. 0Of course, the result of T.3.5 18 more
speoretical than practical: in general case the barrier given
this theorem 1s not "practicable. Nevertheless the result
qeems to D€ of great importance. First of all, in the case of
n = 2 formuld (3.52) seems to be "computable"; at all events,
it 18 not difficult to use it for polygones., Hence we can
congtruct an 0(1) - self- concordant barrier for the epigraph
ot a glven convex fimetion of one variable (may be 1t would be
necessary to approximate the ruuction by a plecewlse linear
one). So we obtain -a  “regular® method to construct:
qe]f-concordant barriers for sums of convex one-dimensional
munetions, and hence can apply the above techniques to the
geparable convex programming.

Moreover, even in multidimensional case the above result
gometimes help 1in construction of "computable" barriers, as 1s
demonstrated by two examples which follow. ;

3.8.1.1. A self-concordant barrier for the cone S, of n x
n - syymetric positive semidefinite matrices. Such a barrier
(- In Det z, the parameter value 1s equal to n) has been
described above (T.3.2.(lv)). It turns out that (3.52) leads
to "almost™ this barrier. Indeed, we have

G'z) = (¢ | ¢« S, Trip 2} .< 1)

(notice that Tr{¢ x} 1s the usual scalar product on the . space
S, of symmetric n » n - matrices). Hence '

f(z) = |G*(z)| = [ a4y,
| Q(z)
where 7 e int S; and

Qz) = (pe S, | Tripz) < 10,
Under the change of variables ¢ = 2772 ¢ 27172 (the
corresponding Jacoblan 1s equal to Det™™*7)/2 z) we get
F(z) = | (Det~ ™12 25 gk,
ax_)

50 {3.52) gives F(x) = - 0(n) 1n Det x + const. By our theorem
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this 18 an 0(dim S ) = O(n) - self-concordant barrier for S!.
0f course, the result 1s too rough, but the harrier obtained
can be easlly Improved: we can try to find a better barrier of
the form A P(x), choosing A as small as it 1s possible under
the restriction that A P(z) must be a 1 - gelf-concordant
function. This leads to the above mentioned n+ -
self-concordant barrier - 1n Det z; the latter has the best
possible value, n, of the parameter (notice that an
appropriate n-dimensional cross-section of S! 1s the  usual
positive orthant in R™, so by virtue of P,3.7 the parameter
value of any self-concordant barrier for S* 18 2 n).

3.8.1.2. Now let us construct a barrier for the eplgraph
of the function

gfu} =2Xx 'z, u=(Xz) e int G,

=((X,x)eS R | Xe& ),

i.e. & barrier for tha get

G* = C1 ((t.X,z) s RxS »K" | X « int 5, t;t.rTX'

Assume that g 18 extended from inf G onto G as a lower
gemicontinuous convex function taking values In R U {+w); the
extended function is denoted by g, too. Now (G,g) 1s a
functional element, and we can use (3.53) to obtain the
desired barrier. A straightforward computation (which 1s
omitted here) leads to

n+i

P(t.X,z) = 0(1) (-1n Det X < 1n(t - 22 X' 2)J,

with the parameter value O(n®). As in the above example, .the
barrier can be improved; the resulting barrier is

FP*(t,X,z) = 0(1) (-ln Det X - 1n(t - ¥ X!
with the parameter value O(n) (see T.3.2.(v1)).

Remark. Notice that the fractional-quadratic function g
is connected with the approach to  the combinatorial
optimization suggested in (Sh. 19871. Namely, let us consider
a quadratic programming problem of the form
(%)2 K,(z) »min | 2« R, K (2) =0, 1 <1 <q,
where K., 0 € { € ¢ are (nonconvex) polynomials of the second
degree. FDP example, we can t8ke A (v - vy f, 1 £1 £g =
n, which means Boolean restrictions on the varlablceg. The



- 5? -
Plj_catlﬂn of branch and bounds methods to such problenms

uires & lower esimate of the objective's optimal value, =°,
for (x). 10 [Sh. 19871 such an estimate 18 taken in the form

gs f01l0WS. Let
- nA) = mint K(z,A) = K () + 3 A, K,(2) | ¢« K.
=1

phe function K(z,A) considered as a function of z 18 a
quadratic form which coefficlents are linear in A. Let

A= (A} K(z,A) {8 positive dsfintte form of 1);
then A 1s an open convex set, and for A « A we have
n(r) = 0T(A) A71(A) b(A),

ghere (M), A(A) are some linear in A vector and amptric
patrix, respectively. Assume that A 1s nonempty, and let A* be
the closure of A; let h be extended from A onto A” as a lower
gemicontinuous convex function taking values in R U {+w} (the
extended function also 1s denoted by h). The quantity

o* = - Infth(Ad) | A e A™)

1s a natural lower bound for 2*, So we can produce a lower
pound for z* by solving the problem

h(A) -~ min | A e A7,

The latter problem can be solved by the barrier method, which
requires & self- con{,ordant barrier for the epigraph, @, of the
functional element (A\*,h). ® ig the inverse image of the
eplgraph of the above introduced functional element (G”.g).
The latter set posesses & self-concordant barrier with the
parameter value O(n) (see T.3.2.(vi)). An 1teration of the
corresponding barrier method costs ne more than O(max’in,ql).

3.8.2, Above our barrier method was extended from the
regions which possess self-concordant barriers to the reglong
which possess coverings. The following statement shows, tha:
this generalization, belng considered from the theoretlcal

viewpoint, does not extend the family of regions.
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Proposition 3.8, let G e C(E) and T = (B',G',%,F) be

(9,1)-covering for G, such that G' does not contain g

straight line and such that i"(tj N G' is bounded for each
« G. Then the function

Oz) =Int { F(y) | ye Nt G, m(y) = }: iInt G- R
ia a O-self-concordant barrier for G. =

(f course, this proposition does not depreciate the aboyg
congiderations connected with coverings. Indeed, we need t}
computation of the btarrier and 1its derivatives, and thaé;
operations can be easy for the covering set and complicateg
for the original one. |

3.9. Procfs of the results

3.9.1, Proposition 3.1. Let us verify that under ¢th
parameters choice described in (3.3) the relations (3.1)
(5.2), (8%.3) hold. (3.1) 18 obviously fulfilled. To prov
(2.2), let w = (1 + ﬂ]" and notice that, by virtue of P
§}(int G,E), for z « int G, h « E we have

|D°P(z)th,h,h1| < 2 (DPF,(2)(h,h1)77%, (1)

Let us fix x and h and let

p = (DPf(x)(h,n1)'"3, q = (DPF(z) (h,hi)'"2;
then, by f « #(F,f), we have:
|D?tez)th,hhl| £8%2ppPqg=2p3°2 2" pP g =

-2 ((3273 p-2/3 pafs £2/9) (3113 q2/3 4-2/9,3/2

q

Pt

TRt E {3?!’3 ?-EKS pda"\? tEr"'E'}S.-"E +

"l

SETT LT 4 P BT R,
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¢nich by (1) implies ¢ \D37(z)[h,hhD| + |DPE(z)Ih,hRI| <
(2 (1 + B) (DF (2)nD'Z, and the latter relatton
gogether with (3.3) leads to the inequality required in (Z.2).
1t remains to verify (3*.3). The closedness in E,(4) of
tne sets ((t,z) | t « A, P, (x) € a) 18 an immediate corollary
of the inclusion F < Sj(int G,E) and the continuity and

poundness from below of f over each bounded subset of int G.
1et us prove that for r e« Int G, h<« E the relations (2.2),

(2.3) hold. By F < 3(G,8) < S{(int G,E) we have:
|(DF,(2)(R1)} - t™'DF (z)[R]| = t'|DP(z)IR]| €

¢ ME.z) t(DPR(2)(M,h1)17E < 9172 ¢ f-D?Ftrx)!h,h””E’ &

_ 92 (1 + ) 7! a'2(t) (PR (2)In,h1IV72,

which 18 required in (2.2). Furthermore, |fDEFt(:er,h”; i
$~12F (2)(NhI| = 171 DPRC z)(h,h] & 71 PP (z) (RN,
which leads to (2.3) ®

3.9.2, Propoeition 3.2. (1), (11) and (1l1) admit a
straightforward ?erizicatiun (sf. P.1.1). Let us prove (1v).
(1v.1) 18 contained in €.1.2, Let us verify (iv.2). Denote the
lett hand side of (3.5) by 7, and let
. As{teR|y+t(z-yeintGl)=(-7,1),

P, P> 0. Tet @(t) = F(y + t(z-yl)): A~R; by (1) ¢ ¢ 3(Cl
A, 4). It 18 possible thﬁt ¢ is a constan.; then (3.5), (3.6),

(8.7) for r and y under consilderation are obvious. Moreover,
in this case » - y « E,, thus elther =z = Yy, or the whol.
straight line (z,y) 1s contained In G; in both of the cases
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ﬁy{':r) = (0, 80 (3.8} holds.

Now assume that ¢ 1s not a constant. Since ¢ 18 a barriep
for C1 A, we have ¢"(t) > O (C.1.1) and (¢'(t))°/9"(t) < 9,

< A, or ¢"(t) 3 977 (¢'(t))2. Let ¢(t) = ¢'(t) and P(t,) >
for some t, « A. By the comparison theorem for n(t) = 4§
Pt )(d - (t - t )b(ty))™" (notice that m' = 0~' v%, m(t,)
P(t,)) we have ¢(t) > m(t) for each t > i, 8uch that ¢ and
are well defined at t; thus, T - t, < 9/(t ). ) |

let us verlify (3.5). This relation 1s obvious fop
DP(z)lz-y] € O; now assume that DP(z)lz-y] > O. Since
DP(x)(z-y] = §'(1) = P(1), we have T - 1 <8 / (1), 80 (3.5)
holds. It 18 clear *that (3.5) holds for y « 8 G as well.

Now let us prove (3.7). The application of (3.5) to the
barrier ¢ for C1 4 gives for 0 < t < T < w : ¢p'(t) € /(7 =

1
t), so P(z) = (1) € ¢(0) + g #T-t)"'dt = Ply) +

In(?/¢(T-1)), which implies (3.7). If 7 = @, or, that 1s the
same, % (z) = O, we have by (3.5) (the latter relation 18
applied to ¢): ¢'(t) €0, t € A, 80 (3.7) 18 obvious.

Now let us prove (3.6). Since ¢ is conver, then ¢'(t) 3
$'(0), 0 <t < T, and by (3.6) for T < w we have ¢'(t) < /(T
- t). 50 ¢'(0) € /T = 8% () < 9, or DP(y)lz-y] < 8. It T -
o, then, by (3.5), ¢'(t) €0, t >0, so 1in this case again
DF(y)lz-yl < 9; under necessary renotations the 1inequality
obtalned 1s (3.6).

Let us prove (3.8). ¢ is a barrier for C1 A, so 1n the

Cage 0l T < w Lhe reiaiion U € © < T implies, by (1v.1), the
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jnequality t * (¢"(t)) <7, m*jq} (t) 3 (7 -1) 0
P(z) = $(1) = 9(0) + 9'(0) + { O™(X)(1 - 1) at 3.F(y) +

I
- E -t)%at = DF(y)(z-y]
, DP(y)(z - Yyl # ﬁf* t)T - t)™° dt = P(y) + DF(y)lz-y] +

, In(1/(1 - TF#(E'}J} - & (2),

ghich 18 required in (3.8). In the case of T = » we have % (z)
_p, and (3.8) 18 an immediate corollary of the convexity of
5 Let us prove (3.9). The situation in an obvious manner
can be reduced to the case of E, = (0J. Let us provide E by
ene 6calar product of the form <h,e> = DPF(y)(h,sl, let | | be
the corresponding norm and let us 1dentifiy the first and
gecond order differentials with the gradients and Hessians. We
nave F"(y) = I, and the open unit ball V centered at y 1s
contained 1in int G ((1v.1)). Let y' - be the point of the ray
[y,2), Such that = lles between y and y', and let V' be the
image of V under the homothety with the center at y' and the
coefficlent a = Jz - y'|/ly - y'l; V' < Int G 1s an opened
pall with the radius a centered at z. Let 0 < a' < a, let h be
the unit normalization of F'(z) and let z =z - a'h. Then 2 e
int G, %, (z) < 1/2, which, by (3.5), glves <F'(z), T - 2> < 4,

or |F'(z)] € %/a'. Under an appropriate choice of y' and a'
the quantity 9/a' can be done a number arbitrary close to 9/(1
- %, (%)); the inequality |F'(z)} < 9/(1 - % (z)) 18, Dby the

choice of the scalar product, the desired (3. 9).
Let us prove (3.10). Since W (y) < int G, the set

V=1(2ekE | DPP(y)lz-z,2-2] < (1 - ‘II#['I)JE 3,

which is & union of the images of W, (y) under homothetles with

the centers in int G, 1s contained in int G. It suffices to

prove (3.10) under the assumption that, uro DP(z)[h,h] = 1;

moreover, it 1s possible to assume that DF(z)(h] > O

(otherwise we can replace h by --h). Under -the notations |
z(t) = & + thy ®(t) = DF(z(t))In],



-

O0<t<P=sup(t | z(t)eint G)
we have T > 1 ((iv.1)) and ¢'(t) > (1 - t)°, 0 <t < 1 (the
latter - by T. 1.1 and by D°F(z)(h,h] = 1). These relations
together with the inequality ¢(0) 20 for O <t <« 1 lead to
$(t) > t(3-31 + t°)/3, or to

DF(z(t))lz(t) - 2] =t ¢(t) > t%(3 -3t + t7)/3 = a(t).
By (3.5) this means that % LT(t)) 2 a(t)/(8 + a(t)). Taking t
being close to 71, we find nut that = _(z + h) > (1 + 3 9)7', so
the point z + (1 + 3 4) h does not be10ng to int ¢ and "hence
belongs to V. The latter fact means that

(1 +39)% DPR(y)IRDI 2 (1 - = ()7 =

= (1.~ *IF(IJ'JED‘?F{’E)IH.M.

which 1s required in (3.10).

Let us prove (3.11). let A=(t | z + t(z - 2) « int G),
Then A = (0,1), T = & '(z) > (1 + 9'/%)%. Let ¢(t) = F(z + t(z
- 2)); then ¢(t) 1is a barrier for Gl A, 80 " (t) 3 F =, t ak
((1v. 1)). When 1 <t < T, we have by (3.5):

toi(t) €9 /(T - 1)

(when T = w, we et 1/(T -1) = 0); 80

t
O'(1) + [T 2dt /(P -1), 1<t <T,

or ¢'(1) < P&;(T - t)-1+t7"), 7€t <P. If T < w, then in
the above inequality one can set t = (1 + ﬁ’fEJ‘ “’{x} (this
quantity, by the assumption, 13 2 1), which leads tu

¢'(1) &1+ (1+9"2)% 5 (z).
If 7' = w, then the sgame relatiﬂn follows from the above
inequality when t - «., S0

DP(z)iz - 2] = - @'(1) 21 - (1 +9'2)¢% x_(z),
Q.E.D. (iv) 1s proved.

(v): The fact that F 18 a constant along the
interscections of int G with E} +r, T € Int G, 18 obvious
because A(F, ) < w; Blnce F tends to « as the argument
approaches to a boundary point of G, the sets z + B, T « 1nt
G, are contained in Int G. When proving the rvemaining
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gtatements of (v) we can assume that E, = (0} (otherwise

ngider the reduction of F onto an intersection of G and some
zznspace which complements E, with respect to E). It 1s clear
tnat in the case of bounded G F attains its minimum over int G
gt an unigue point (since in the case of E, = (0} F 18
gtrongly convex. Now assume that G 18 unbounded; let us prove
tnat then F is unbounded from below. Indeed, int G contains a
ray L = [y,2), Y» T « Int G. By (3.5) DP(z)lz-yl €0, 2 a I;
gt ® (y) = O then int G contains the ray I[z,y), hence
ﬂf{zﬁ{yﬁf <0, 2« L, or D°F(z)[y-z} = 0, which contradicts
the assumption Ej = (0). Thus, n_(y) > O, and Lonce for z, = y

, t(z - y) we have lim '.'Ezti."yl = 1. By (3.8) we have

F(y) 2 P(z,) + DF(z )ly-2z,] + In(1/(1 - =x,
> F'Zrﬂ‘_"-] + In(1/(1 - '!:zt{y)}] -1

(42)) - %, (y) 2
t ¢

(gince DF(z, )y -2,] > O by the above
arguments), which implies
F(z,) € F(y) + In{1 - m:zt{y)) $1 +=-w, t+ .

- It remains to verify (3.12). The left 1inclusion follows
¢rom (1v.1). To prove the right inclusion it suffices to show
that 1f z(F) 1s the minimizer of Fover int Gand h « E 18
guch that DPP(z(F))(h,h] = 1, then the point z(F) + ph , p =
(1 + 3 %), does not belong to int G. Let #(t) = (F) + t h and
¢(t) = DF(z(t))[h]; then ¢(0) = O. S0, by the choice of h and
?.1.1, we have @'(t) > (1 - t)?, so '

G(t)3 LB -3 T+ 4)3, 08t % T,
On the other hand, by (3.5)
t p(t) £® nm“,j{mrt},uﬁ - {_,_,_,r:rm).

x
These results imply

|
% (EO1) 270 2397,

which 1s the right inclusion. (v) is proved.
Tet us prove (vi). The left inequality in (vi) follows

from (iv.1). To prove the right Inequelity ¢ sSuffices w

Y S e Wy =,
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consider the case of DP(z)(h,h]l = 1, DF(z)fhl > O and
verify that the point z + (1 + 3 8) h does not belong to inj
G; the latter can be done in the same manner as in the
of the right inclusion in (3.12). =

3.9.3. Proposition 3.3,

19, Let us prove (3.24,),(3.26,) inductively. "B
definition of g and t, we have L(F”J..r ) =0, B0 (3. '
holds. Assume that z, , are well detined, belong to int & am
(3.24 ), 01t <k, [3 25 )s 0 £ it <k, hold. Relation (3. 24,}
by A, « (O,A,) and T.1.3. {11} (the theorem is applied with P =
F*’:. z =z, ), implies that z, 1s well defined and (3.25,)

holds. Furthermors, by (3.26,), (3.20), P.2.1 and T.2.1 h:_
theorem 1s applied with 2 = ?u. , T =2, L=1,t' =t, .. Ff
= P('7), (3.24,,,) holds. The ' induction 1s over.

2. Let us prove that {* < « and that (111) holds. Let
rix ¢t < ¢* —ranﬂdenutar”"hyﬂ.* Then & « S}(int G,E) ¢

AM®,2,) €A} <A, < 1/3 DY ?:I.rtue of (3.24,). Henceby (1.13
we have :
o(z,) - ®(z(F)) < ®(z;) - Int{d(z) | z e Int &) €

< L(A})/2 € 1/18 ; - (1)
|

(we have taken into account (3.14), (8.16)). By T.1.,1 and|
P.3.2.(1v.1) we have |e], = 1, T « [O,1) = Z(F) + te « Int G,

52 F(z(F) + te) » (1 - )%,

or, by m' F(z(F) +tej|t S G,

lel =1, t = [0,1) = o(F) + te « int G,

F(z(F) + te) - P(z(P)) » t2(6 - 4t + t°)/12, (2)
and hence

lel, = 1, t « [0,1) = ‘B{.‘I‘{F} + te) - O(z(F)) 3

t2(6 - 4t + t2)/12 - t, t 18'1ps (3)
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. ¢ {g the gradient of g with respect to the Euclidean
- Mamﬁ defined by the scalar product < , >,. By virtue of

el = 10 t « [0,1) = Q(Z(F) + t8) - B(2(F)) >
(206 - 4t + t2)/12 -t t Q. . (4)
that
R e e A= M
t, » minlz——, =
{ 288 Q 20

Indeed. otherwise for 2 « 8 W, ,(Z(F)), by virtue of (4), we |

ve
o(z) - O(Z(P)) > 17/192 - 19/576 = 1/18 ,
and (1) leads to 2, < W, . (Z(F)). Hence by T.1.1 we have

@', ,» €2 181, <20, or MRS, €
cMz) H 1 18Ny p S Ay 2t 0 € Ay,

yhich contradicts the assumption ¢ < 1% - 1,
' © It remains to notice that (3.26) 18 equivalent to (3.22);

relation (3.26) by (1.13), (3.16) implies (3.27). =
3!9I"I Wltlm a-"l

12, By (3.14) we have A,(1+£)”" > A, 3 A(F,u) (the latter
' 4s & corollary of (3.26)), 80 t, > 0. Tet us verify that
Ay = L1 2 Ping

NP —
2 I 1+pIV (1)
Indeed, by (3.27) we have u « W . (2(F)), 80 by T.1.1

lel, » € lely(1 - 1/3)7" = 5 jel,. € « E.
Hence the ellipsold W, .(u) 18 contained in W, .(z(F)), which
leads to |7'(u)l, » € 9 Vp(7), and (1) follows.

2°, Let us prove (3.38,), (3.39;) inductively. We have

(1)

?L{Fi-;?.u) = a™"/2(t )eup(|DF, (w)[R]|(DPF, (u)lh,h1}" "%
0 .
h#O0) < (1+f) supl IDF*a(uj[h”{pi’p(u”n'h“-?fz L B0 <



o B ]
< (1 + ) supl (|DP(u)thi| + to|Df(u)thl|I<h,h>;'42 | h # gf
<(1+8) AFu) + tolf" (W, p) = A, :

(the latter - by mo (3.34)), so (3.38,) holds. Assume that j
O 18 such that (3.38,) holds for O € { € k, and (3.39,) hol
for O € { < k. Relation (3.38,) by T.1.3.(11) implies that |
1s well defined, belongs to int G and that (3.39,) holdy
Furthermore, by T.2.1 and (3.36) relation (3.39,) leads |
{3'351»”}‘ (1) 1s proved. :

. Let us prove (11). Let us fix { and denote t,6 = {
P”-" wt = 2. By (3.39,) we have A(®,z) < A} < 1; moreovej

b e S*{intGE}. =(1 + p)%. By T.1.3 the function |

attains its minimum'over int G in some point v, and (1.12)
(1.13) and (3.16) imply:
O(z) - B(v) € Ja CAS) = v, DPO(v)(z-v,2-v] < a. @
Let us verify that 4
DF(v)(z-v] 3 .
Indeed, by virtue of the second relation in (3.42) and C. 1 -
the point 2' = v + (v - 2) belongs to int G; (3.6), as appliet
toz=v, y =2', implies (3.43). |
Let z*' be the minimizer of f over G (the point does exist
gince G 18 bounded and f 1s lower semicontinuous on G). W
have
7(z*) 3 f(v) + Df(v)(Z* - vI;
further, by definition of v we have
Df(v)(h] = - t~'DP(v)(hI,
80 ;
7*) 3 f(v) - t7'DP(v)iz* - vl 3 f(v) - 7o 1'
(the latter - by (3.6)). At the same time by (3.42) we have |
1(2) € f(v) + (P(v) - P(z) +v) t™" € f(v) +
+ (DP(v)fv-2] + v} t™! € f(v) + (8 + v) t~!
{tha latter - by (3.43)). The above inequalities imply
fiz)<p2*) +t7'C294+ v ),
which inequality together with (3.41) proves (3.40). m
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3,9.5. Theorem 3.2.
In what follows the quantities denoted by p (with sub- or
. epgeripts) ar:2 nonnegative.
i 3,9.5.1. (1):

py virtue of P.3.2.(1) and P.3.2.(111) 1t suffices to

ve that 1f &(z) 18 a convex quadratic form on E and the set

(zE | ®2) < 0) 18 nonempty, then the function P(z) =
jn(1/(-8(z)): Int G = ® belongs to 3(G,1), where G = (z« E |
GII):GO}.FGI‘.I‘:IntGandhi E we have: |
“ pp(z)(h) = - @ '(z) DB(z)IhI;
PPP(z) ] = - 8" (z) DPO(z)(h,h] + &4(x) (DB(Z)[R1)? =
_ 107 (@) Po(z)th,h] + @ 2(z) (DO(z)(h]Z;

\DPP(z)(RARI| = | 3 @7%(z) DPO(Z)(h,h] DB(z)(R] ~
_207%(z) (DB(2)RI)|. .
Henco

\D°F(z)(h,h,h1| €34 p + 2 p°,
ghere A, p > O are such that

A + p? = DPP(x)[h,hI,
and we get

(D°F(z)(h,h, h1| € 2 (DPP(z)(h,h1VP/3,
go F = S)(int G, R").

The inequality

\DP(z)(hi| & (DPF(z)(h,h1}!/2,
or, Wwhich is the same, A(F,r) € 1, 18 obvious by virtue of the
gbove expressions for the derivatives of F. @

3.9.5.2. (11): ' :

A). Let ¥(z) = - In(®(2)), ®(2) = T2 - t2, z = (1,2) « R
g R* (f and ® are defined on H = int (s« R x K" | t > |z|) =

int G). :
19, Let h = (8,u) « R x K", For z = (t,2) « H we have:

Di(8)h] = 2 (z¥ u - t 8)/7, (1)
PPe(z)thhl =2v 12 (a-2tv!at uw+
+ 477 (FFz) (uTw) - (WP + 2 v W b, @)

D*B(z)h,h0) = 12 Y2 (2Pu - ta)(u'e - 8%) +



+ 16 Y2 (2¥ u - ta)®,
where

T=1t2-2%2, v=12+ 22; _-
relations (1)-(4) can be obtalned by a straightfory
computation.

By (2) & 18 convex (and, of course, C*) on H.

29, let us verify that

¢ = 2 sup(-Dd(2)(h] - § D?8(z)[h,h] | h « RxR"} € 2.
let us fix h = (t,u) am 1at N = 7u. Assume that £ # O;
(?) and by virtue of uTu » n°/(z"z) the following 1inequa
holds: '
Pocz)hhl 3272 v wa-2tn)?+2 v! 2/2lz).
Hence for z # O we have

¢ <28up-2 7'(m-ta) - 12 v (va - 2tm)? -
- v '/ (z"z) | 8, N« R).. _
Introducing new variables instead of (s,7m) - namely, (0 =%
- 2tn, M), we get '

t<2eup-27"n0-2t3m)+ 2ty o -
-1 2v! 62 - v! ¥2/(2¥z) | 0, M « R),
But 1 - 2t°/v = - 1/v, 80

t<28uplien -/Af2)I v + (2t 0 -0°%) 72 v
o, ne®) =2 (v 2z + v~! t?) = 2.
Thus, in the case of z # O (5) 1s proved.

Now let £ = O. Then, by (1) - (4), ;

¢ < 2 sup(2 8/t - 8°/t% - wTwit? | (a,u) s R X R*) = 2,
and the proof of (5) is completed. |

39, Agsume that h # 0. Let us evaluate the quantity

¢ = |D°0(2)[h,h,h1\/(DPF(2)(h,h1)%/2,

By (1) - {4i this quantity is invariant with respect to
change of 2 by A 2z (A > 0).

3°.1. Assume, first, that z # O; as we have noticed, we
can restrict ourselves to the case of 'z = 1. In this
situation (1) - (4) lead to

p‘? = D?0(z)(h,h] =2 v T'E (8 -2tv! 2%u)® +

'3



-Eg;

! Wfu - (Fu)?) + 2 v wu=p% + o3+ 0%,  (6)
+

'mgrﬂpe =2 1‘2 (8 -2t v! 2%u)?,

f

e« 4 ot wlu - (2 w)?), p§ =2v'uly, (M
2

ot E s [D°B(z)(RMh]| = | 12 772 (2fu - ruJ(u’u - &%) +

e

'ml.r.,.-r‘?-?}ﬂ, v=1t234 1, (8)
Let us first ?eriry that i
b, = |27 - te] 7' &2 WE ot vl s, (9)

Mm,19t5=($ru'tﬂ,}/1.ﬂ :"u, theu, bv ufu 3> 7°-
{nmﬂeif-"'- 14 W 28 s 8
Capir2r (Y (n-av)Vti?s 2 92/ =
v (m-0v2t2en)r2v! 02 d?/(1 + t2)) = 2 2,
m:m let us evaluate the quantity
|uu-at/'|r
I.atu qm+u.v"x=0-undartnemtat1an12 vTv we have
Wu=17°+%, 2zt u=n. (10)

I

p2=2v 12 (8 -2t W), pg =47 v! 12,
p2=2v"(f +7) p,= |+ - .

2+ p2-2 1w =y v 2v!) P
s2v'vlce+t?2-1) =27 5,

bl €3 P+ 05 -2 ')+ P - i/ =
sl o+ p3-27v") e p. (11)
Lﬂtu=v'r"rem2t'ry'v); then
=7 v? +4t11*-2£!1]+4t21!'21]2—7]2u
'r?-u ro‘? 112)+41"r'u n
and n° + 0% = v (p° +2112fw/’2 much leads to
qs'?unzif-rq*rv max(io? - 12 + st an 7| | 2+ P <
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< v(p? + 2n°/v)/2) = W2 max( -r* cos2 + 2ty "'r?sin2g |
<v (P2« 20°mi2 ) = (p% +.2 Prv)/2
(we have taken into account that (7 + 4 t2 172) = (v/7)?))
which, by (f1) and (6), implies 1
byl € pP/2. (1
(g}i {IE} and (3} lﬁﬂd to . 3
10%0(2)(h,h,hI| € 6 p2 27172 (p2 + pB)172 4 rsfz-”’-‘-’fpf
+ p21'72)° & 9 (DPu(z)Ih.1)>2. (13
" 3%,2. Now assume that z = 0. By (1) - (4) in the ca
under consideration for h = (8,u) we have
DP0(z)th,h] = 2 82 t72 + 2 vTu t72, ,
\DPW(2z)[h.h, hi| = |12 t72 8 (67 - uTu) + 16 77 87| =
=14 t73 8% + 12 t72 8 ulu| < 9 (DPU(z)(n,h1)P2, §
and the resulting inequality in (13) holds. Thus, (13) 18
proved. .

4°, (13) means that for ¢ = (9/2)? and
P(t,z) =c U(t,z): H-R
the inclusion F « S (H,R x R™) holds; in fact, obviously, F «
St(H,® x K*). In view of (5) we have 6(F) < 2 c. Thus, F 18 &
2c - self-concordant barrier for G. &

B). Let
¢ = ((1,2) s R x B | 12 (22)7?),
#*(1,z) = - In( - o¥2): B = int ¢’ ~ &,
o(t,z) = ¥ (y(t),z) - In t: H = 1ht G~ K,
It 18 clear that G 1s closed and convex, and
H=(t,x)a® xR | {(L)> |z]). ‘
Moreover, the relations {(0) = O < {(t), t > O, 1mply that
2, -Handﬂl-rznﬂﬂas { - w, then’l'{zij-'m.

19, Let us fix z = (t,2) « H and set ©, = ((t) (> O}
then 2* = {t,,z) « ¥*. For h = (8,u) « R x R" let h* = (8, ,u)s
8, = L'(t) 8. We have : :.
Do(z)(h] = DB*(2*)(n*] - 8/1, (14)
DPB(2)(h,h] = DP¥ (2" )W R +
+DU*(2* )0(C(t)82,0)] + (8/1)%, (15)
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pPucz)(h,hhl = P z*)n* ,hPn') 4+
+302@*{E*,”h*rfEH{E-}32-D}J+m*r3',’fi(cﬂfftjﬂjlﬂjj -2(a/t ). (16)
= one has D¥*(2*)I({"(t)9%,0)] = 2 1, (E-z"x)"" |L"(t)| 8°
(we have taken into account the concavity of (), whence

P6(z) (Ml = P8 (2*)n* \n*) +2 ¢ (v2-2%2)7 " |("(t)| 82 +
s (s/t)2 > U (2°)IMT,nT) + (8/1)". (17)
1n particular, ¥ 18 convex (and, of course, ¢?) on H.

00, By (17), (15) and (5) we have
o pup(-D(2)(h] - % DPB(z)(h,h] | he R x R*) € 3.  (18)
30, Let
¢ = |P(z)IRDY, 7 = DPO(2)[R,R) = py + p2 4+ pE,

2
ghere (see (17)) =
pé; - Do z*)nt.nt, pg =2~ ey Lr)). 85,

and leb us prove that
O R R S

from (16) and the resulting inequality in (13) we get, with
the help of Cauchy's inequality:

t<2n, (12 -2yt gnue) 82 #9074
33 |0 (2") [(L"(1)s%,0),0% | + 2 pJ €
2 r:,r'ff - zz)”! |gn(t) 8] + 9 p‘? + 3(DPY*(z*)n* nt1)1/2

DPa’(z")((L"(1)8%,0),(C"(t)8%,0)1)"2 + 2 p3; (20)
but $ . 8 2 . : afﬁi *
VW (2% )((L"(1)82,0).(L"(t)e?,0)) = -ﬂ;%ifc“ma?}f =
=2 (%2 + TNl - 2)72 (("(t)8P)P ¢
g4 12 (12 - 7'2)72 ({"(1)8%)? < p!
(we have taken into account that 1.'% » 7). Thus,
Ec2 v, (C-20)7" |"(t) 8% + 997 + 3 P, P53 + 2 p3.(21)
‘Let ug evaluate the quantity

t* = 2 «, (2 - 227 |Cve) @0,
Under the assumption that
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)

aE”{m

we have |{"'(t)| « ag™’C'(tJ|¢"(t)| {7'(t), whence. in view.
1, = {(t), one has ‘

t* <2 (v - )7 Q)L 18 af') =
= at') (C'(t)am,) @, (] - o) IgNe))| &) =
= é” P2 18,1/,
Thus, in the case of (22)

£* ¢ uE” 02 18,1/%,.

By defmitinn of h* and by virtue of (2) '
p2 =2 (18 4 :Iz:mi’ £z)8 (s, - 2 1, Lu (1 + :c"m,l"'.lz

+ 4 (124 a:’:.'} ' (8 - o) « r:rrz)(u u) - (:rfuj"-’} +2 (T
+rz) " uur 2w 1" (s, -2, v 2 + 2v' vTu =
" 05,4 Py :
whare p, . = (29 7%/ g - 25, v rtul,

P, o= (2 v Wwl, y=of - 2%, v=154+ 2.

(24) implies :
19,] €21, v |y +y @vy"%p |

and, besides this,

|2fu) € (2%3)'72 (tw)E ¢ ()2 2y R p, L.

Hence : j
= 1/2 1/2

18,1/%, € 2 v (2%2)!72 tv/2)'2 o, 4

vl @ert® Pyt =Py Pyy *Bafy o0 (21)
shere A, =y 5! @uwrte . = 2 (F0F 2 v 50
We have p% +ps=2v)y " (P2 +4a22)= 12 v)-!
~2E T+ 4 2P = (2 v 27 (v

:rwz = ('l:z + T22)/(2 *tzj €31
Bo (26) &lld (24) lead tﬂ 18,1/, € p, Pz aE”

Thus, in the case of (22) (see (23) and (21))

(25
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£ <90+ 30 P2 +af'’p 0z r 205 (28)
Now assume that ﬂEEJ ¢ w. Then

B of 1P e 2, (2 - 2)" |8)° =

~ o2 (en(t)) & 2%, (1 - 22 PR -

) ' 01012 < af® -

gince L(t) = Ty» 80 (i2 - z) ;' ¢'(t) € 1. Thus, 1n the
e under consideration
e<9p]+3p,p5+af o]+ 20p;. (29)

pelations (28), (29) in view of p¥ + p + pj = p° prove (19).
Now assume that
af?’ < o (30)

In this case we have ¢* =21, (2 -2z 1gne) 8| <
c2 1, (12 - 2z)" |Lnt)| 8® Jast af?) = af? 02 Py

ghich results ing<9p)+3p, p§+2p§+a{3" p5 p, and
proves (19).
4°, let o = max(9,3 + aE}.«’E. P(z) = nf ®(z). Then 1n

giew of (19):
\D°F(z)[h,h,h1| < 2 (DPR(z)IN,h1)%/%, 2« B, h«® xR,

shich together with the remarks from the beginning of the
proof means that F « S}(H,R x R*). By virtue of (18) we have
9F) $2C. W |

3,9.5.3. (111):

A)Let G= ((t,z) « R° | t >0, {(t) » 2); then H = int €
= ((t,z) «e B2 | t >0, {(t) >z}, Let

B(t,z) = - In(t) - In({(t) - 2): B - R, -
It 15 clear that G « C(R®) and that @ tends to « as the
argument approaches & boundary point of G. Norsover, it 18

clear that & is a C? - smooth on H.
10, Pirst of all, let us verify that @ 1s convex and

gatisfy the inequality (V z = (t,r) « H): :
2 sup(- D¥(2)(n] - § DP8(2)(h,h] | h« B®) € 2. (1)
Indeed, the functione ®(t,r) = t and H(t,z) = C(T) - T A&ar¢
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concave, C?-smooth and positive on H, so (1) 18 an 1
corollary of the following general statement. : ;
Lemma 3.1. let @ be a C’-smooth concave positive funct:
on a convex open subset of H < R™ and let F(z) = - 1n(®d(z))
-+ R, Then P 18 a C’-smooth convex function such that for es
T « H we have
2 sup(- DP(z)(h] - § DPP(z)(h,h] | h <« K™} < 1.
Proof. We have DF(z)(h] = - ® '(z) 0B(z)(h]. Hene
IPF(z)(h,h] = 2(z) (DB(z)(Rh1)° - & '(z) D°O(z)[h,h] 3
> (DF(z)[h])?, |
Q.E.D. =
29, Let z = (t,z) « H, h = (8,u) « R, We have
Mi(z)[h] = -8/t - (L'(t) 8 - u)/(L(t) - z),
DP0(z)[h,h] = 82/t2 + |L"((t)] S2/(L(t) - ) +
+ (L'(t) 8 - wl/L(t) - 2),
D’v(z)ih,h,h) = - 2 8%/t% - "' (t) /(L) - z) +
+ 3 L"(t) 82(L'(t) 8 - w/(l(t) - z)° -
-2 (U'(t).a - wrt) - z)°.
 Let :
€ = |070(2)(h)|, p? = DPU(2)IRR] = o2 + p2 + o5,

p, = |81/, p5 = |L"(t)| 85/ (L(t) - 2),

p5 = (L'(t) 8 - wP/(L(t) - z)2. 5)
Then : .

E<2p) +3p5p,+2p3+ 18" () 8°\12(L(2) - T),
which in view of |{"'(t)| € af [{"(t)|/t, of = ap - 1, implie
¢ €207 + 302 p, + 2p3 + ruE 1L"(t)) 82c¢(t) - z)°') (|8]/t)
<2pj+3 pg py + 2 pg + uE pg Py
hence, in view of (5), 2

1D°8(2)h,n,hI| € (3 + ap) (DP8(z)(h,h1)%2. (6)

Relations (6) and (1) in our standard manner (see subsect.
of 3.9.4.2) imply (111).A. =

B). 1%, We have f" > 0, 8o A = (2*,®), and, since f"*



= T5 -

nave f(A) = A* = (t*,@) (we do not exclude that z* = -
and/Or t* = —»). Obviously, the inverse to f|, function {; A"
") 18 C-smooth, increases and is concave. It
c=((t.x) e B |13 1)),

j = 1int G = ((t,z) « % | t > f(z)}. The function

g(t,z) = - 1n(t - f(z)) - In({(t) -z): H -~ R
sbviously 18 ¢? - smooth and tends to « as the argument
gpproaches 8 boundary point of G. L.3.1 1implies that & 18
convex on H and satisties the condition ’

2 sup(~ D¥(2)[h] - £ DP¥(2)I,h) | h < R2) ¢ 2. (1)

mo complete in our standard manner the proof of (i11).B, 1t is
pecessary 1o establish an inequality of the form

\D°0(z)[h.hh1| € O((2 - A)™") (DPW(2)Ih,n1)>¢ (8)

for all z < H and h « R%. This will be done in what follows.
20, Tet us fix z = (t,7) « H and h = (8,u) « R%, We have

% & DPB(2)[R,R) = pU(2) /(L - f(2)) + (£'(2) u - &)/

(t - 2% + 187(1)) 82/(L(t) - z) + (L'(t) 8 - w)?/

(wt) - 22 = 05+ 05+ 95 + 5. 0% = 1(2) /(L - 1(T)),

g 02 = (f'(z) u-8)P/(t-1(x)%, p§ = IL"(1)18°/(L(t)-x),
o2 = (L' (t)e-w)?/(L(t) - 2), . (9)

pP0(z)(h,h01 = 170 (x) W/ (t-£(2)) - {U'(t) 87/(L(t)-7) +
+ 3 f"(z) U° (2'(T) u - 8)/(L - 70x))2 + 2 (2'(2) u - 8)°/(t -
- 1(2))° + 3 |L"(t)| 82 () 8 - w/(K(L) - )P -
-2 (¢'(t)e - wi/(L(t) - z)°. " (10)
(9) and (10) imply that

t = |D°0(2)[MA,RI| € (" (2P |/(t - 2(T)) +
$ 1L (1)8% |1 /(L(t) - z) + 3 p";' p, + 2 pg + 3 pj Pyt Epi. (11)

30, Let y = {(t), thus t = f(y), Y « A, J'(y} > O. Let
also 0 = aff'{g]. Let
3, = |f""(x) WAL - fiz)) = |7 (@) WI/Y) - 1(2)),

0, %€

8, = |L"'(t) &7i/(Lt)-z) = X" (t) (£ ()’ O\ /ty - 7).
Notice that



- 95 =
T<y: fly) > f(x); r'(y) > 0.

4°. In view of the correspondence between 7 and { |
have:

L'(t) = 1/2°(y); L") = - 1 (y)/(1" ryJJ"

£Pt) = = S 0 O nyJ' + 3 (f"(Y))e/(L" (y))°.
Hence (see (9) - (13))

p2 = f(x) VE/(L(Y) - 1(2));

P2 = (£'(x) u - L'(y) O)2/(L(y) - 1(2))?;
p2 = 1my) Ay Ny - 3); |
p2 = (0 - wi/ty - 2)%; (14
5, = 17°(2) WP|/(f(y) - 1(2));
8, = (7" (y) &°| (2 ) (y-2)! 4 1
£ ULWE P (N -2 =0, 430,
8, , = 11" () & £y y - 2!, _
8,2 = '(IMWZ ) (2 (yE (y - 2. (16)

By the assumption of the statement under consideration
0& "' (y) €A (2"(y))Z (f'(y))',

hence 4
8, < (3+1)0, ,. {1?ﬁ
59, Assume first that E |
r"z) > 0;
then f'(z) > O.

By virtue of (14) we have:

|| € p,((f(y) - L(z))/f"(2))'72,

191 < p,(1(y) - £(2))/1"(Y) + 1*(2) (7' p,l(Ly) -
= .rrxnxf"rzn =p, (J(Y) - [(2))/1'(y) +
+p, ((2(2))2 (f(y) - f(2)) (F'(x))2 (#"(z))")173,
whence

7y 18] ('Y € p, 1Y) (L(Y) - 702) ('(y)2 +

£, I (1)) (@ (sey) -
= F@EN LRI (P ex) VR, (18)
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| gence for 4 = 1"(Y) ('(y))”

-TT_

79, For w « 4, under the assumption that f"(y) # 0 and
dently on the positiveness or equality to .0 of the
'wﬁy f"(z), we have. by definition of A:

{%ﬁ {(f"(w) (1'w)™) < o0, _
Aand z < w € ¥ the inequality
@) (1™ > 4, |

_ - 171 G (@ D1y 5 4,

. Thus
ﬁﬂldﬂf‘f'{wﬂr‘h 5 f.f'fy,*}'
whence _
7h00) €LY (1 + (A~ 1) A(y-w) (prey))s ")/ A-1)
for £ €W € Y. Afler Integration over w « (z,y], we establish
she implication :

gy) # 0 »

B R ey

) - 12) < ('W)P (")) er), o) =

| *E [+ (A - 1) w31 g (19)

(18) and (19) under the assumption that f"(y) # O imply
1"(y) 10171'(y) < p, C(A) +

Lap, ) (/IR sty (20)

Noreover, f"(2) > A (£'(2)* = fy) (f'(2)/f' ), which
together with (20) leads to \

1Y) 10147 (y) € pyelr) + pe'’2n) tpr(z)/e(y)) A2 ¢
€p,cr) + p, c'2a) (22)

(We have taken into account that 1 - A2 2 O m f'(7) € I'(y)).

In view of (22), (14), (16) and (17) we get In the case

ot BET) # O:

8, € (3 + 1) (py c(h)+ p, c'"2(A)) P2, (23)

. 0 :
8°. Now assume that f"(z) = 0. Let us prove that (23) 1is
true In this situation, too.
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a). It 1s possible that f'(z) = O. Then, by (14),
ja| € p, (F(y) ~ J(2))/1'(Y).
Ir f"(y) # O then (19) holds, and we have
7yl (1)) € p, c(r),
which together with (14) and (16) implies O, , € pa P, eff
the latter together with (17) immediately leads to (231,
I"(y) = 0, then (23) 18 obvious sinte in this situation p=&
= 0. ,

b). Now assume that f"(z) = 0, ?'(z) # O. Then, 1n ¥
of the condition of the statement under consideration,
0 <L) €2 rr"ruu"xr (W), © > 2,
or, for g(w) = f"(w):
0<8'(w) €2 g W/I'(z) 8(z) =
(we have taken into account that f'(w) it I'(z) tor w 2 7). T
resulting inequality implies g(w) =0, w2z, 80 [f"(y) =
0, = 0 and (23) holds. s 4

. 9%, Now let us evaluate d,. One can assume that f'(z)

0, f"(z) > O - otherwise f"'(z) = O, and hence &, = 0. Thus
we assume that E
fr0z) > 0, £7(x) >0, (24,

By the condltion f'"(:r} €2 rf"rmn"f_f'{.z',l. nhich implies

0, €2 (r"z))2 () ¢/ (x)" (fy) - ezt (28

By virtue of the conditions on f we have: s
zEOEyY = 55 (2'0)/1W) € .172.

Assume first that

F'y)ry) 3y - z.
Then (26) implies

y -y € (rzi/fn(z)) + (y - /2,
BoYy-z<2f'(x)/f"(z) and pr(y)/I"Y) € 2 P'(x)/f"(x)s
Hence, in view of (14), :

o] € py (2°(y) (Y - 2/1"W)'2 <20, f(2)/1(2),
which by the same argument gives us

lul € 2 (p, + py) 7' (2)/F(Z):
Therefore (25) and (14) imply
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5, € 2 (£"(2) W/(1(Y) - £(@))) (") |ul/1'(2)) €

4 ps Pyt Pl _ (28,)
~ Now assume that -
/Iy <y - & @7,)
, by (14), 10| € p, (2'(y) (y - 2)/f"(y))'72, B0 (14) &nd
.12'7 ) 1ead to

ul € P (Y - T+ P, (1Y) (y - /(YT & (pgtp Iy - &
{25] 1mplleﬂ
8, € P f’f"{.'rJ) (1'(x))"" (fty) - J’f:r))"'{p_., +p ) (y-z) =
s i? (py * pd“] S
= {f"(.r})‘? (£'(z))"" (fey) - ftx))”! {y z)°. (29,)
rorx ¢w<ywe, In view of the coaditions on f, have:
(27 W)/ (W)) 3 (Fr(w)/f (w))/2,
or (IN(/"(w)))" ?% (In(f'(w)))', whence
W)/ 3 (W (z)) 3, w >z, (30,)
et k= f"z) (2'(2))"""2, gw) = p'(w). We have
g'(w) (8(w) "2 3 x, or g'"%() » g'%(z) + % (v - z)/2,
whence
1(y) - f(zx) 3. I ((r' r.::n”? + x t/2)2 at =

= (z) (y - 2) + % {J' (2))'2 (y - )2/4 + %2 (y - 2)%/12 3
=2 (y - 2712, 31,
Therefore }

S<(r"z))? y - z)° (1'(x))"! (12 (y - z)°/%2) = 12
(we have taken into acmunt the derinition’of «). Thus, (29,)

1np1iea :
3

Implicatmna (27,) = (28,), (27,) = (32,) together with
+ (23) 1mply
3, + 8, €01 + c(A)) p° (33)

®ith an absolute constant in O( ). (33), (11) and (12) lead to
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inequality ¢ < O(1 + 'e¢(A)) p’. The latter relation
definition of c(A) coincides with (8). m *
3.9.5.4. (iv): |

- Tt 1s known that the function (Det z)'/™: §' -+ R
concave. Therefore the function P(z) = - 1n(Det z): int S*.
18 convex, ¢’ - smooth and satisfies the relation -

" 2 sup(- DP(z)(R] - § DPP(z)INh] | heS) <n

(L.3.1). Morsover, this function tends to « as the arg .*..
approaches & point from 4S; . Therefore it suffices to ven
the inclusion
+
P e S, (iInt S1.S ).

For z « int S;. he S, we have: DF(z)[R] = - gf't:ﬂ 1n(Det ‘-.
sth))=-%|,  (ndet z) + + InDet (I + t 2! h))) =
triz”'n), DPR(z)R) = - &y, Tri(z + th) ') = Trizt
'y, PR =S, iz 4 )T Rz 4 th)] "
-2Mz ha! ! n.

Let h* = 272 b 277/2; then 3
DPF(z)(h,h] = TrC(n*)?), |D°F(z)(h,h h}| 2 |Tr{(h*)’
In other words, 1f (v } denote the elgenvalues of ¢
(symmetric) matrix h*, tlmn

\D°P(z)[h.h,hI| €2 8 1v,1° < 2( 3 el

=1
= 2 (DPP(z)[h,h1)%/2,
which leads to (2). =

3.9.4.5. (v):

Let

| - )

Fon(t:2) = - In(et (1% I_ - 2" 2)):

Hes ((1,7)« RxL_ _|1>]|z])~R. |
We shall prove that in the case of m > n under an appropriaf
choice of absolute constant-factors in the O( ) which follo

the function O(1) F'.“f-z".l is an 0O(n) - self-concordant be
for : :
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G_c]_H:-{{t:{,'JGEIL | t 2 )z}l

pirst of all, let us verify that this ract implies (v) as

je. Indeed, 1f m < n, then L _ 18 in a natural gense
w into L, _ (we add to matrif.:aa (n-m) zero rows); this
yppedding preaervea the matrix norm and therefore can be
’mmeu to a linear imbedding of the epigraph of the matrix
porm Of the first space lato similar epigraph on the second
gpace- The latter- 1imbedding 1induces  an "inverse"
M_fgrmtiﬂﬂ of barriers, which transforms A F_ _ 1into A
T . o the second function is a self-concordant barrlar. 11
t;é“rmt is. In other words, our hypothesis implies that O(1)

18 ar O(n) - aelr—conmrdant barrier fo~ the epigraph of

matrix norm on Ior allm and n. In view of the

patural isometric isﬂmrphiﬂm between L and L, . the latter

,mment 1s equivalent to (v).

Thus, from now on we assume that m 3> n and consider the
_ ction
% P(t.,z) = - ln(Det (t% g o st 21

= ((t,z)e®Rx L | t> |2))~R,
Let also

¢=ClH={(tx)e®xL |13 |z|}
for the sake of brevity we write E in-tead of L, . end E'
instead of R x L_ . Below Greek capitals demote n x n

-matrices.
{0, Tt 18 clear that P tends to o as the argument

pelonging to H approaches a boundary point of G.
29, Let us rix 2* = (t*,2") « H and h = (8,u) « E*, such

that :
pet (z*)%x* > 0. - (1)
let us derive . the expressiors for  DF(z")I(hl,
PR(z*)in,ni, DPR(2*)th,n,hi. Let
= (" I~ e Ve @)
and
J(t,z) = -In(Det @ (1% I_ - zz) Q) = B(t,z) + const. (3)
Let for z = (t,z) « H
Qz) =0 (2 I_ - z'z) O; (4)
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then
Qz*) =1, J(z) = - In(Det Q(z)).
We have
DP(2*)[h] = (2" )th) = - Tr(Q"(2") DQ(z* )(n1),
PP(z* )th,h] = DPJcz* )in,nI =
r(Q "(2”) DQe2” )tn) Q7' (2*) DAcz¥)(h)) -
TrQ '(z*) PPQcz”)th,n1},
0°P(z* )th,h,h] = - 2 Te(Q ' (2%) DAcz”)h1 )%y +
3 1r(Q "(2*) PPacz”)tn.ni @ '(2*) DQ(z*)in1)
(we have taken into account that D°Q(z*) = 0).
In view of (5) we get from (6) - (8)
DF(z*)[h] = - Tr@2 t* a I - (2")" u - u” 2")0) =

= 2 rt* a @7 - ()T (z'n)), ©
PR(z*)[h,h] = Tr(c2 t* 8 07 - (u)T(z"0) - (2*0)Tu0))?), (10
DF(2*)(h,hh] = - 2 TrL2 t* 8 (P - ()" (2"0) - "
- (') (u0))?) + 3 Tre(2 & P - 2 (u)T()) (2 t* 8 P =

il

-

-

-~ ()T z*a) - (2T (). (11
3%, Let
c=8/t"; v=u; t*n=0; z'0-=¢,

which, in view of (4), (5), implies :
o =I +¢Te=1I_ +P. (13)

Furthermore, let : :
veE=N+d N=0% &=-097; (14)

and .
Pl=t (% ek (15)

then P, 1s an orthoprojector of rank n, such ‘uat
M+ @) 2" (1 + )T =T P_v, (16)

thus ; 3
Wao=mM+®) P (1+ 3T +T (I, - 2) v. (17),
4°. Now we can rewrite (9) - (i1) as J

DP(z*)(h] = - 2 Tr(o (I_ + P) - I, ' (18).

PPz )R] = 2 T80 (I, 4+ B) (I, +2P) - 400 (I, +7) 43
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LomE s (MO P M+ @)y ¢+ 20007 (I - PY V. (19)

57, Expressions (9) - (11) for the differentiale of F
not very under the substitution r - z U, u - u U, where U
an orthogonal n x n - matrix. Therefore below we, without

joss of generallty, can assume that
P = Biﬂﬂﬂ-;’.---._l:l. Ay >0, 1&1Lgn. (20)
ider the function
KE) =T+ B) P! @+ E)D) 21)

on the space C skew-symmetric n x n - matrices. This 1s &
trom below (and hence attaining 1ts minimun over ()
quadratic form; let E” be the minimizer of thie form. Then
(VE<C:M™{(M+E+EH)P " m+R+E)N >
3 Tr((M + ) P!+ EY)D,
or, taking the derivative in E:
e EP' M+E)T)=0VEaC,
qhence (@~ '(0 + E*)T) = 2~ + B*)")%, or P'(n - B*) - (0 +
g)p’, thusP' I -0P' =P "E* + B P, or, wnich {s
the same, ;
(b, - ) By = (A, +2) B}, (22)
et ' be the symmetric matrix which 1s produced from 0
when the diagonal entries are replaced by &gzeros. Then (22)

means that
. 2 -1
E” = (?.i A‘JH"'{. + LJJ !1”. (23)
Let A be a diagonal matrix coinolding with the diagonal

of 1. Then X
2 -1
”]“"EJ‘J Ell fﬁ.‘ i'lJJ H‘Jx

o M * .
sh t2ra A 4 I, @+ EY, -

-1 ¥ ’
=22, (v + A7 I (24)
6°. We have
K@) = K(E*) + Tr((® - B*) 7' (@ - E*)D), (25)

80 (19) can be rewrittien as
2 DPP(z*)IMK] = d + dg + dg, (26)
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where A
d=1Tr(® (I +P) (I, +2P)-400 (I +P)+2L

(0 + B P a1+ BN,
dg = Tr((@ - E*) 7' (@ - ")) > 0,
=Tﬂﬂr1-9;v};m

Lat q, be defined by the relation
=@+A)" @21 +a")o+q

then thﬂ firat sequence of equalities in (24) implies thag
{a (1+ A1+ 287 ) - 40 (1+47") 2+ 78
(1 - 'j 0+q)+2 (2 +A)2 @2 (1 +A")0 4 q, o

5 (1 JE +A, M2, 4 4 3 13 A, (A + A )72 ()2 } 3
J=1 J=1 1
(1+agen) ! 4 g @)+ 2 z (g% 4 I

+ﬂ§ﬁx (ry + A2 @ P )

In pai .lcular, d » O; hence, in view of (26), (28), (2
1t follows that D°P(z*)(h,h] > O for each h « E* and each 2
1 satisfying (1). By continuity arguments we have E?F{z*)iﬁ
> 0 for each 2* « H and h « E*, thus F 1s convex (and,
course, C° - smooth) on H. 3

79, Tat : ,
a, = 302 (1+a)@+A)": dy= 3 ¢ 2+ a7
= =1 ]

AR é rn* 2; d,= 3 3 hf Ay (Ay + A Yy mroEa
2 (=1 J=1 : 4 t=14=1 i g i * =

80 in view of (26) - (29)
’ﬁﬁznnm d, +d,+2d,+4d,+d; +d,
and each d, 18 nonnegative.

8%, Let us verify that 3
1= - DPP(z*)th,n] - 2 DP(z*)[h] < 2 n. (3
Indeed, in view of (18) and (28), (29), (32), (33) we have

5 -1 = .
7 < 2 sup{ Eleo+apn -2@o0+a7")+q) @



_35 i
! - Z(+r)+A) -q @2+2)7" | 0.q,...09,

o -1 -13}.2
‘R}}é‘?{ifi (1 +A )2 +A)"" + (2+A)"}1)=2n,

ghich implles (34).
Thus, (34) holds for all h < E* and all z* « H satisfying

(); by continuity arguments (34) holds for all A « E* and z *

th
" g%, Now let us prove that under an appropriate choice of
on absolute constant O(1) identically in z < H and 1 « E* one

e = DRz mammll < 01) p°, p = DR(z)Imni; (35)

tnis relation together with (34) and the remarks from 1°
ves in our standard manner the required statement.

By continulty arguments it suffices to prove that, under
an appfbpriate choice of O0(1) relation (35) holds Ildentically
inmeE' and in z = (t,z) « H, such that Det 'z > 0; So we
can deal with (35) tor 2z = 2%, M = h; we shall use our

vious notations.

By (11) we have

£ < 16 |Tr(B%)| + 12 |Tr(8 (0B(I_ + P) - v'v)}|,

8 =0o(I, +P)~0(=8%). | (36)

Let for a matrix 4 |4| means the operator norm, and |4], the
Hilpert-Schmidt norm. Recall that 1f A', 4 are such matrices
that 4' A" 18 well defined then

14" A"], € JA'] 1471, 1AL, = 1471, 3T
and 1f A', A" are R x 1 - matrices, then

ITr(4* (4")T}| < |4"], 14"],i (38)
notice that for each matrix 4 one has

141 < 4], (39)
and for positive semidefinite matrix 4 one has

14], < Tri4d). (40)

10°. Let us verify that
ITEPXL R a8,y p AR (41)
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Indeed, 8 18 a symmetric n x n - matrix; thererlore
e’y < (%),
and to prove (41) it suffices to establlish that
Tr(8%) = |35 < d, +d, + d,.
In view of (30), (32) we have ‘
Tr(a2) = Trio? (I, + P)? - 0 (I, + 2)1 -0 1 (I, +2) + IF)

{azru:.ﬁ’ 2 _2g (1 +AA; T+ 0, ¢

i:f

v 3@}, =3 [o? (14 A2 A2 - 402 (14 W) A2 @
J=1 t=1

s 2o ead A @en)T g 408 (1 + AR
CREWEEPENIREWEARCER WA TR ACRE W
+ 8@y ?) =3 {07 (1 #2,2 r2+:~.)'2-2arrn.ue-

t=1 :

gt
+A)2 g + @ (2 +2)7F) 4a, q”{ofnu.ﬁwz ;;.:

+an2+{:+a.)a2}ra+:.J*2+d <
{oa' nn.}rzu.‘“q?rzn.‘)} @+r)2+d,=

= 302{1+JL}{2+1J"+;Eq"f2+a.)'+d =
t=1 =1

’df fde'fdai
which 1s required in (42).
119, Let us denote.
A=02 (I +P)-vTv
and verify that
IAl, <54, +5d,+d,+ 124, + 10dg + d,.
We have :
A=- z:n
where (see {1'?} anu the dsfinition or A)

A, =-0® (I +P)+ AP,
a -ap"’ m"w}’—af
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s, =AP' (@-E DT+ @-E) P A (48)
; @ +E) ! a* + ®), (49)
A = (@- B P! (B4 1T = a7, ' (50)
f - @-E) ! @-E)T, (51)

4 (L =Py W (52)

Le:usevaluate 1Al Iitcy.
since (I_ - P ) 18 an orthoprojector, by (40) one has

Ml € Tr{v"" (1, - P) v) = d,. (63.9)
the same arguments
4 hol, < (@ - EY) P71 (@ - E)T) = 4y (53.8)
IAgl, € Tre@* + EY) P77 @ + BT, (54)
Furthermore,

51, = A0, = 1@ - B P77 (B + 1)), =
@72 @ - BYT) (272 (8 )T, <
¢ IP-—T!"ffﬁ o E*JTIE IP—’J’E rE‘ 4 HSJI‘IE
_or'/2¢@ - B*) P(@ - BY)T) 2r'/2((B" + I*) P (E" + ),

&l‘
1A, = 1Al, € a2 Tr'/2¢(E* + 1*) P77 (B* + *)T). (56)

In view of (32) and the resulting equality 1n (24) we have
mp!/208" + ) PTIEY + 1T = B B A, (@), + E,)? =

t=14=1 4
':Erﬁ 4A2 A, (A, #2072 (@2 = 44,
go (54) and (55) 1mply :
1Al 1As0, € 4 df/2 a2, (53.6,7)
1A.), € 4 d,. (63.5)

Now let us evaluate |A,|,. We have in view of (30):

#'a =47 =0l + P7'AY, A" = Diagl(o + q,)/(2 + A)}; (56)
since ® - E* 1s skew-symmétric, we have

A, =-AP' @-E)+ (@®-F)P A=

=@-E) (I +P'4%)-(0I +P' 4*) @-F)-=



=B
- (@-FE) P! At - p? ®- &) = (@ - ) P’ 4%
¢ ((® - E*) P! A%,

whence ]
A0, €2 277 &% @- BT, =
=2 |a* P71%) (@ - B") P25, <
=2 P2 20 - BY) P (@ - E*)T) = 2 aP7/2) gl
Thus, ' 3
1 g,
B LV PR ay® At A,
Purthermore, by (56) one has
1a* P72} = max, (jo + q,| A2 (2+n,)7") <
< (max, (A, (0°+20q,+q) (2+ AIZNZ < .
< {m X0 111"“-‘[10"’ (11 +A,) + 1)1+ 2 ({1 + A )“”:'

+11]} {m: {:., P +r)t @A 1+ (2

+ Ay f}} < (d, +a,)""?

(we have taken into account (32)), which together with
leads to 3
1A,1, < 2dl? (4, +d,)"2. (534
Now let us evaluate |A,),. Let 4 = Ii* + E*; ihen in vi
of (30) and the resulting equality In (24) we have

A , :
A= 2 DB, A2 zz“‘=33 (2+A,)" (20 (1+4)
14212 t=1 6 419=1 { ¢

2 ;42 \=2 2 -2 7
+ 4, g fF 442 m.t_ + a0 () =lzuzlr2 tr2fa0?

tAZH4an g (14 h) v @A} 4A2 (A + 2072 (g,

< 3 3 {2+L}'E{402f1+l}‘+?u nu.Jr—MuJ*-
t=1j=1

X AREA ] R R OAE W PR isz (2 + A2
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T;'ff + M) (1 4 E Ay # 1 (8 + 9 Ay) qz} 4 LE [h +

| fﬂz 1 =1 ! a
2 )t < jufi (1+a) 2" @+ ((8+

@420+ A (849N (24 M)V (G (24

3 {8 (1 +A) & "2 +a,07"'1 494, (G fen.;-u}
536 ; : .

. -2 q¥ 2 2
B2 (1, + 1) 7° () € ¢Br Er{f d, + 94, d} 425 (A,

e, P <54, 3 2 40,2 +94d 21 ouatin
+Ay) t=14=1 tJ 2intg=t 7

”f?;;—ﬂ (H{J)E <18d,d,+364d,d,

v have used (32)). Taus,

b 'Il e 1Al €3 (23,8, +4d,d)"% (53.2,3)
It remainﬂ to evaluate |A ],. In TlEl of (30) we have
o f‘ 5 T2, - 0% 7" (141, )12 = }: Ay (2 4 A r"’
'-':.- t:j‘

W+ PP a1 N og, qzj s (1+ :r’:}
'_{nm, ){2+?~.J*2H{1+1J02+41 aq, +

e, (1 4 li')" -40°-40° A, - ¢? la}}

e 3 {0+ n) 2 FEM N0 qpr En, (1 #2717 -
2 3

Lo 12)) - E{t§+hJE (4 (1+X,)0Qq +q A, +

v r, (1 s A} € B {2+ A )F (4 (1 42, (0] 1q,] ¢

| z
.q’-'a. + 0% A, {f+1)}} ¢ Sfezs2, )% (1 4000065

\ t=1

#2242 (1 Ay {o’ (1+A0"72+ @ (14277} 4
 E (2 + A J"’-} < {{rfe # A7 (14 A d®) (@ 4
“H.,r’ (h, + 2 (1 +1J”2}1 ' [nf 23k e !

i.
f-w, 42u+:-.ﬂ”-’}}} <4 3 (24 8,07 ¢ 5,00 4
{=1



2
FUg 2+ Y < a4 a2
(we have taken into account (32)). Thus,
141, €2 (@, + d,).

Combining relations (45) and (53.1), t = 1
(44).

reesy 9,

12°. Combining (36), (38), (41), (42), (33), we
Inequality of the form (35), which, by the arguments fy
completes the proof. = '

3-9:4-6# "1)= .
Let

H=(zw(t,X,2) aE=R+5 x|

X ls poat?iue definite, t >
Uz) =-1nDet X - In(t - 2T X! z): § - -,
h = (1,R,u) « E.

It 18 'lear that @ 1s C® - smooth on ¥ and tends tc
the argument approaches a boundary point of H.
We have

DUE)NI = TrQX'R) - (t - 27 X' 2)7! (- 2 50
+ ¥ x! R X! x), .

D20(z)(hh) = TrX' R X' RY # (t - oF ! 1
U X' u-da® X' RE " us 24 1! g gt RX' o
AU 2 GUIF ) Rl C S 1 GLITIPIPL J e ey z)?

D’0(2)hhh] = - 2 20X R R Ry (t =
X ! -6 X RX w12k Ra R g
ER AR PR URY Y 21 & (t -2 1! 2)2 (ol
-2 X' w2 XTRY 2 2 uTH 4 - 4 ZTx-! Ryt
t28 X" RETRI 1) - 2 (1 - 2! 2)79 (g - 2 271

+ 22 X' R 2)3
Let

I—I.r'"E Rr’f-? - n- t = mr I_’ =0 D’ -
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.-, X'2u=v,

-2 X" u+Z X' RXT 27U

ns gbove expressions can be rewritten as

- g)inl = - @ - o *q (4)

B - rrm‘?} + o ‘?'F + 207w -0 €13 = 0% + p2 + 202,

2P, P, =9 N Py =0T u-i tle i)

3g(z)(nhuhl = - 2 Trm"} —602 7 p-agRe-

P -60 (v-0 £)T 0 (v-0E). (6)
' geo that ¥ 13 a convex function and that

pa2)nd| € n'’€ pytpy (T)

- |p’i{£}mﬂm| <2p;+6p,p53+2p5+ 605 101 ()

woe [01 € (DP0(2)(R,1I)'VZ (8ee (5)), (8) implies
,Ipsm)m.n. nl| € 0(1) (DPa(z)ih,n11/2

Jith an absolute constant O(1).

i m above remarks immediately lead to (vi). m

4 3|9l6l Mm 3.3.
. (1) 18 obvious: one can set I, = (B',G', Oex,F).

~ Let us prove (i1). Without 1usa from generality we can
;.-;_.___;;;,. s that E' = E ~ R', % 18 & projector from E' onto E with
R', E, = H » R® and that ¢ 18 a projector from E, onto
gwith Ker o = R*. Let G] =G N H, 80 G, « C(H).

" It is clear that

~ I'=(H« R, C"=GN(H ~ R), ®lg oty B E Pl )

18 & (9,1) - covering for G| (see P.3.2. li}ll. Furthermore, we
have G, = G« R*. Let G* = &" « B® < C(H x R » RM), let x! he
pmjectar from H ~ R* « R* onto ¥ = R® with Ker ©° = K,
and let F'(u) = 4 (x*(u)): int G* - R, It 18 clear that

BT = () = k' » R, G, %', F')

18 the desired (®,1) - covering for G,.
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Let us prove (111). Without loss of genarality:i'
agsume that E; = E -~ H, dim H, = 1, and that -
projectors from E; onto k with Ker =, = H .

E' = E ~ H, H=H, » ... =H,, 5
and let ® be the natural projector from E* onto E and

G) = ((Z,Uy4enety) « B' | (Z,4,) < G}) |
(herein z « E, u, « H,). Let

Fi(Zol, yaunsthy) = F (z,u,): Int G, » R, _
Then F; are 9, - self-concordant barriers for G, (P.a:;:

It z, e " int G, and {:c ,u9) « G (such uj obviously
=t

then (2,,u0,...,ul) « n 1nt Gi, thus the above intersectis
nonempty; n:,r P.3.2. [111: the function "
F {-I] ' llu J = z F {I u --luh}: mt Gj =* m-

=1
b
G+ = i G:j
i=1
h
is a 249, - self-concordant barrier for G'. let us
i-I
b A
+ + + -5
that '* = (E*, G', %, F') 18 a (4?,ﬂ*'¢f l,) - covering £¢

It 18 necessary to prove that ®(G') = G and that &
bounded subset of G 18 a ®-image of some bounded subset of
If (Z,4,,...4,) « G*, then (z,u,) « G for each {, hence 2
G, for each {, 1.e. z « G. At the same time 1f z < G, then
each { there exists u, such that (z,u,) < G;, he
(ZT)U,y000,u,) @ G'. The above arguments mean hat x(G*) =
If Q < G 18 bounded, then there exists R < w such that
dem Hm‘.ull « G | I(zu)], €R))
for each {; it 1s claar that Q < EfQ ), Where

Q = ((ZyUgpeoe,slhy) @ " | I(z,u )] <R 1 €t <R)
i8 a bounded subset of G'. =m
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3,9.7. Theorem 3.4. .

- 4op the assumptions of the theorem g obviously 1s a
1o convex lower semicontinuous function on H, thus (H,g)
a:"ﬁmctional element.

" et 8 = dim E; consider (s + k + 1) - dimensional space
| ,ﬂh the coordinates  (t,2,,sees2y 0T ss++2Ty)s  Where

i
i

3"5-_55; are coordinates in E. Let for 1 € { < R

.- ﬂ_‘ = {(ranl-l-rmﬂ’Tf""'ThJ e E' I (mf-'.."xﬂ} vy G"'
| Ti ; @If.rf.---.mu)}l
,: Q:{fl-i'fl""‘Tu‘{.’“'.lthjEE; 1

(%50 ). @ 19 ¢{1,.....¢h)]..

1t 18 clear that the sets Q,, 1 € { < k, and Q admit (8,,1,) -
woverings I', and a (9,1) - covering I', respectively, and that
coverings are induced in a straightforward mamner by the
aven coverings for the initial functional elements (Indeed,
of the above sets 1s of the form % '(®), where @ 1s the
raph of the corresponding initial functional element and %
{s a projector from E' onto an appropriate coordinate subspace
ot B')- ; 3

. et T < Int H and T =(T,,...,%,) > J(Z); then, in view of
the conditions of our theorem, T < int G . Let t > ¢(T). It 18
yr that the point w = (6,2, ...,%,,T,,...,T,) belongs to
gt @ N int @, N ... N int Q,, hence the above Ilntersectlon 1s
nonempty. By P.3.2.(111) the cn:&rmgs e 'fmucea- in a
\gtraigntforward manner a (9 =¢Erﬂ‘ v+, 1= ‘zizi + 1) -
‘covering r* for the set @° = QN ( ﬁ’Q‘J. '

Now let us verify that if w: E' « ® x E 18 defined as
W(L.T,0. 1T,y +eesTy) = (6,8,,000,3,), then « maps Q" onto
®(H,g), and each compact in ®(H,g) is an image of & compact
belonging to Q* (this together with T.3.3.(1) will complete
“the nroof), :
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First of all, lel us establish the equality %(Q*) =
®(H,8). FOT U = (1,Z,,v..0T, }a ®(H.g) let 1, = ¢, (z); then
= (1%, 1T Tys eees ) « @ (obviously) and trw) = v, thy
G{H,g} = :{Q ). To prm'a the inverse inclusion it suffices ¢
verify that if w = (t.w,.....mﬂ TyoeorsTy) © Q*, then =(w)
®(H, g). Indeed, let ¢ = (%,,....,%,); thenT e G, ¢,(Z) €
1 € o I SR )< Gend't > ¢(t) (by detinition
@*), hence £ < H and 7 ,f{:c) + (R®),. By the conditigns of
the theorem this implies ¢(1) 3 O(7(Z)), 80 t > O(T) > B(Z),
or ®(w) = (t,z) « ®(H,g); the inverse inclusion is proved.

It remains to verify that if X is a compact balanging to
®(H,g), then X < ®(Y) for some compact Y belonging to Q. ILeg
Z = f(X); then Z 18 a bounded subset of G and ¢(t) 1s bounded
on Z (by the conditions of the theorem); hence there exists
bounded subset Y' < E' containing all the points w of the form
(8(2),7.7(z)), T « X; 1t 18 clear that X < x(Y' N Q*). Hence

for ¥ = C1 (Y' N Q") we have X < %(Y) while ¥ obviously 18 @&

compact ®

3.9.8. Proposition 3.7.

After an appropriate choice o’ the coordinates Wwe car
assume that the point involved into the statement is O, while
in the neighbourhood of this point G 1s’ described by the
inequalities z, € 0, 1 < ¢ € k. Jet :

8 t) = -t 3 e, 1<t <R
1<y<n 4
g7t

(E‘J are the orts of our coordinate axes); then for all amallg
enough t > O the points z(t) belong to Int G, the points|
2(*2(t) belong to 4G and 1
(z(t)) - 0, T~ 0.

h
r(t) =-t 2 e

wrlj{tJ
The latter fact, by virtue of (3.11), Ilmplies
1im DP(z(t))[z 42 (t) - 2(t)] > 1,
t—=0
hence
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) -
p < lUm 3 DP(z(t))(z*'(t) - z(t)] =
t=0 =1

= 1im DP(z(t))0 - z(t)] € .
10
(the latter inequality by (3.6)), Q.E.D. =

3.9.9. Theorem 3.5.
" (3.53) 18 a simple corollary of (3.52), so we must prove
the first statement of the theorem only. Without loss of
erality we can restrict ourselves to the cese when G does

not contain any straisht line.

19, For z « int G one obviously has 6*(z) « Cy(R") (int
Glz) 2 9 since G does not contain any atraight lme and the
poundness 0f G (z) Tollows from z « int G). Hence the function

Jiz) = |G (2)]
ig well defined and positive nn Int G. If z, «eInt Gand z, -
z < 0G, then all of the sets G” (z,) conrain certain fixed npen
nonempty set (since the sequence {.:': } 18 bounded) and at the
same time are not uniformly boumed (since lim 7, « 6G). Since
g*( ) 1s a convex set, we have f(z,) » . Thus. the function

o(z) = ln f(z)
1s well defined on Int G and tends to « as the argument
belonging to int G approaches a point from 4G.

29, et : .

p(¢o) =supl T y | ye G}z R® = R U (+w)
be the support function for G. For z « int.G we have

G'z)=(t¢ | =S, 0<TEr ()= (p(§) - ¢7z)7"),
whence

7z) =n" [ (p(¢) - ¢Fz)™™ dS(¢)
(the integral 18 taken with respect to the ILebesque area of
‘the unit sphere in R™; of course, (+)™ = 0). It 1is clear
that f (and hence - ®) is C* - smooth on int G; moreover,

DT R e h) = (=1)Y (mel=1)1 1)) (@R

(p(9) - ¢"z)" ™ as(e) = (1) (L)t (1) 5 TR gy =

: 23 er J
& (=1)" (n+l)! (n!) Ilfh}
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(We have used the description of G*(z) by means of r
straightforward computation gives us (z « Int G; I,
depend on h):

DO(z)(R] = - (n+1) I, (M)

D20(z)ih,h] = (n#1)(n#2) T,(h) I;' - (ne1)? (I, (h) .-"
DP®(z)(h,hh] = - (niB)(n+2)(n+1) I,(h) I,
+ 3(ne2)(nt1)% I,(h) I,(h) 1% - 2(n+1)° I3(h) 153. |
Iet us 71X 7 « int G and h « R® such that ], = 1,

let
=(teR | 3y « G*(z): y* h = t),

P(t) = (IHEE“;’ fy & G*{:ﬂ) I yTh e I}jh"fﬂ'—!)’

mes 1s the (n-1) - dimensional Lebesque measure,

-1
obviously,
I I, = § tYa™let) at,
A
n(t) = P(t) €f ¢~ '(a) vy /1),

A :
hence 1(t) » 0, t « A, and [ 7™ '(t) dt = 1. Notice that |

A
Junction n(t) s concave on the segment A (the letter 18 "

Brunn-Minkowsky's theorem).

We see that the quantities I,(h) I,', by means of wh
the differentials of @ are expressed, can Ue interpreted
the moments of some random variable € (which takes its valu
in A with the density of the probability distribution of -§
torm 0™ '(t)). Let us express the initial moments by means ¢
the central ones, 1.e. let us denote (E means the averagir
operator) - "

p=IMm I =B¢;

o = I(h) I;' - w* = B (€ - BLJ5;
6 = E (F - BE).
A stralghtforward computatlion leads to

DO(z)[h] = - (n+1) W;
DP®(z)[h,h] = (n+2)(n+1) 0% + (n+1) uZ;
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b Po(s)haah] = ~(M3)(Rs2)(n41) © - 6(ns2)(n+1) o p -

3(1#” l"
o 18 convax and

\Do(z) (]| < (n+1)"2 (DP%(z)(h,h1)"2,

~ paking into account the results of 1° we see that to
K the theorem 1t suffices to verifly that @ 18
B soncordant With an appropriate absolute constant being
W as the parameter value, 1.e. 1t suffices to establish
the inequality

o |m+3){n+2)m+1} 8 + 6(n+2)(n+1) 0% u + 2(n+1) W) €
<o) ((n2) (1) 0% + (n+1) p2P72,

The latter inequality, in tum, follows from the
ity
19} < 0(1) 0%,
90, Thus, we have reduced our problem to that one as
follows. We are given a seguent 8 = [-a,bJ <R, a, D > 0, and
a contnuous nonnegative function ¢(t) on 8, such that

;rqa""ft,r = 0, R i

'-I-l ﬁ:‘

qr""ftj dt = 1. (2)
-n

et .
b :; b
=Lt ¢ (t)at and o= [ 1% ¢*'(t) dt)'’?;

-a -a
‘it 18 necessary to prove that under an approprlata choice of
an absolute constant 0(1) we have © € 0(1) ¢°. :

Pirst of all, let A = 1/oanda=Aa, b =A Db,
llprtj " l!fﬁ'l-—’} %{1*-':.)‘

E o -
0= ftI¢%(t)dt =A% 6 =0/°,
-a
g
=([t2PvT(t)dt)'’2 =00 =1,

-a
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and also, as above, [ ™ '(t) dt =1 and [t ¢"'(p)

-a -a h
So the situation can be reduced to the case when
a, b, ¢, satisfy (1),(2) and the condition

b
ft2¢vct) at = 1;
.
under these assumptions we desire to prove that
18] € 0(1). '
It 18 convenient to introduce the body
C* = ((tyu) «® » B* | t « B, |ul, € §(t)).

Under appropriate choice of the volume unit we have:
¢* 18 a convex compact body of unit volume (the lat
by (2))3
the center of gravity of this body 1s at the origi;

Without loss of generality we can assume that

b

18] < f t? ¢ '(t) dt = 9",

so it suffices to evaluate from above the quantity e*.
Bach hyperplane passing through the gravity center
convex compact body of unit volume divides this ;-up;

parts with the volume of each part being > exp(-1} (Gr. {
In particular,

b
[ “Tet) dt = V > exp(-1},
Let T be such that
b
?'-£$”ﬁjm=rwmnu“ﬁ

in view of (3) and (5) - (6) we have ("the Chebysh
inequality") |

T € 0(1)
(from now on all the constant factors in O( ) are abso.
constants). Therefore (3) implies |

i 3 n-1 :
£t ¢ (t) dt € 0(1). )
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1et us introduce a linear function ¢(t) and positive
ing the relations

h
o) = $(v); iq:""(t) dt = V', (9)

- I“ ”
= ﬂguﬂ'
. jet us replace the part of G* situated to the right of
18- °  lane t = T by the cone of the same volume and the
m;grgaction with this hyperplane. It is clear that the
of ¢ 18 @& Becant for the graph of ¢, and the
tes of the Intersection points of these graphs are T
-p“' > 1. Besides this, h > b. Notice that

h h
' E 9 v at - [0 ¢ ) dt = t? y(t) at,

ghere 7 4g a function with the gero value of the integral over
ﬁ',wm [t,h], such that 7 18 nonnegative on [7,8] and
‘ponpositive on [8,h] for an appropriate s (we have taken I1nto
oot the convexity of ¢ and the linearity of ¢). In view of

ihese properties we have
I £3 (t) dt < O,

A T
e cftPvt)at + | t2 " ct) at = e** + 0(1),
1 (]

B-‘* - }I’ ta qJﬂ--’rr‘j dt
T
(see (8)). Thus, 1t aun:lcea to prove that

g** < oc1).

Let us verify that h € n ©. Indeed, consider the cone

K=((t,w) | 0Kt <h Jul, € ®(t)i.
Tne part of this cone situated between the hyperplanes t = 0O
and t = © contains similarly defined part of G*, and the part,
I', of the cone K, which 1s situated to the right of
pyperplane t = 1, hes the same volume, V', 88 the
‘gorresponding part of G'. Therefore

V < |K| = ((h+t)m)™ |K'| = ((h+T)/M)" V' =
= ((h+T)/R)™ (/(n+1))™ ¥
(the latter - by the definition of V'), which implies h < n 7.
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Thus, we have
h=mnt, n<1, T<0(1)
and

A ;
0** = 5 ! t? ((h-t)/h-%)""dt, v =n"5 (n

wherein S = ¢"'(1). We have

8** =85 * }:“13 ((m-1)/(qn-1))*" dl =

s
=5 ¢ (mm-1) ™! { (r°n® - 3n°° 8+ 3 me? - %) g
=St nn-1) {n’*’n’-sn’-q"mm" (nn-1)4+
+3nn(m2)"" (nn-1)2 - (+3)"" (n —1}3} =
=V {n {t’n"" v’ - (n+3)"" (n 7 -1)°), - :
- 3nf 1 (ne1)” (nm-1)-3nnm2)! (nm-1)2)
expression denoted by ( J, - ( ), does not exceed orn";
will lead to the desired estimate ' < o1 ).

straighiforward computation, using the relation 0 < 11
leads to

i'} =% +3n+2)" 3n° 2 (e1) - 31 nnw
hence ( }, - ( J, 18 of the desired order. m '

Section 4. Another self-concordant families and
polynomial- time methods

We now give two more examples of self-concordant ramI

and three more examples of polynomial-time barrier——gauerq'
methods. 3



()¢
1. Method of centers and Renegar's type family.

Let F be 8 9-self-concordant barrier for G e C,(E) and
f(z) be a convex quadratic form on E. Iet us fix a

1et _
Let |
t* =min (f(z) | 2« G}, A= (1", +m),
and let |

Q, = (z<Int G| f(z) < t),
F (z) = ¢ In(1/(t - f(2))) + P(%) : Q, - R
fﬂr t 4 A. Thl.lﬂ. a Iamlly
ot =R = (Q,.F B},
18 defined.
Theorem 4.1. For each-A « (0,A,) and 2' e« (A,)., under the
ters @, Ts Ko E» Mo 2 chuica in accordance with the
relations
a(t) = 1; Z”} = 1; w(t) = 1;
ect) = (M2t - t7);
nt) = Wt - t¥),
®=A, (4.1)
where
=1+ (8 + )L,
d=(2' (1-p)"1)(p(1-p)"4+14+340%),
o' =9+ L, .
uf!'). (4.2)
the tamily #*(F,f) 1s self-concordant ‘with these parmtm
In particular, for this family we have
Pt)=1,t « A, ; (4.3)
and |
* : -1 1/2 t -t
Pacr st ke 6=l Pt el < A
Moreover, the following implication holds:
ted, T<Q,, lfft,-ﬁ'){k »
= (t - .rr:r.u" S -1, (4.5)

Now we can describe the method 'of centers for the
solution of the problem
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)

f(z) ~min | z e« G.
Let us fix constants A, A' such that
AT KA <A <A,
and assume that we are given {, <« Aandz_ , « Q
the relation
-Ji..('}?t WZ_y) €A

We pm:luce a sequence oI points 7, and numbers t, e A ;-_;:-
follows: !
being gi?en t, and m‘ ,. such that

we Iind a point z, aatiarﬂ.ng the relations ',
Cr‘ = Q ¥ ?oth lir J £ Ae {4'1'“’
4 i b

Notice that under condition {4.9,) the point z, = (¥, .z, )
satlsty (4.10,) (T.1.3.(11)), 3
is produced, we define t _  1in accordance nithr
(z,) A=A 4
lﬂ[ i-'l" f ] - - If’“’. :

- fz,) BT +4)

(slnce z, = Qt 1t 1s clear that t > .rm‘J. thus ¢,

{

well-defined).
Lat us verify, that (4.10,) implies the inclusion t .

A and relations (4.9{_”}._ as well as the inequality

after z,

- Y. {4.11:;

fiz) -t < t,,, - t* cexpl-v) (1, - t*), (4.12)

= In(@/(Q - 1 + exp{ - %})). 3
We have t, > f(z,) » t*, s0 t,,, < A. We also have 1
1> (b, — (8 = 17) > (b, - @)/, =~ (Z))s

which, by (4.11) and T.4.1, leads to
P (F¥it ut ) < (A~ AT /A

The latter relation, by T.2.1, 1implies (4.9, ,). To verily
(4.12), notice, that (4.11) and (4.5) imply '
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g - expl- %} = (L, - t 4/ (t, - f{zl)} <

E
B (1, -t 08 - P

B 1, -, -t 20T (1 - et - g,

which leads to the second inequality 1n (4.12); the first one
 gollows from the inclusion in (4.9“,}.

(4.12) leads to the estimate
f(z,) - ming £ < expl- (L + 1) V) (ty - t*). (4.13)

phe value of v depends on A, A' and { only. Assumé that A and
3! are absolute constants satisfying (4.T7), Th-n, maximizing v
over {, we obtaln i

¢=004) and v =0(0"""%) :
phus, the rate of  convergence of the method under
consideration 1s the same as of the FP-generated barrier
method.

The rational choice of the parameters for the method 1s

A=0.136, A'=A"wo0.025, (=340
for large 9 this cholce results in

v« 0,011 97172,

To initialize the method of centers, one needs a  pair
(t., T ,) such that z__ < Q, and A(F, ,z_,) € A. To produce
B! “-1 1 to ty' -

guch a pair, we can first approximate the F-center of G using,
tor example, the preliminary stage of the barrier method. The
gtage 1s terminated when a point z, A(F,z) € A/2, 18 produced.
This point can be taken as z_,. Then, obviously, A(F,,T_,) € A
for all sufficiently large t, which allows® us to choose an
appropriate i,. :

Notice that, being considered as geometrical objects, the
minimizers trajectories Tfor the barrier and the centers
‘methods corresponding to (f,F) colincide (although the
parametrization of the curve depends on the method). The
approximations to this curve, generating by the methods, of
course differ from each other. v

The polynomial-time method of centers originates from
[Re.1988] (where LP problems are congidered and G = (r « B* |
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af 23, 1€t <nl, F(T) = - E In(a; z - b,), / 18 linegn

This method 18 used 1n'most Of the papers mantionad in Seet,
(excluding (Go. 1987) and [Ne. 1988 1,2,3,41), ,

.4.2. Dual parallel trajectories method and
; nll-cmuﬂmt families. i

The next self-concordant family (we call 1t

18 defined as follcws. -
Let E* be the space conjugate to B. Let for 4 > 1 »(B*,9

be the set of all functions F' « S (E',E*) satisfying th
relation

9*(F") = sup(DPF*(9)(9,0] | ¢ < E")< 9. (4.14)
let E) be a hyperplane in F*, kodim E* = 1, and let b o

'\ E,, 1 (0,») and P’ « »(E’,9). These objects ganarnto
rann:r of functions defined on E’: 3
#** u " E0) = (Q, m B}, F,(0) = F'(t &+ 1 D), Ej), .
{‘ii*

Proposition 4.1. For each ¢ » 1, r* « .:-(B’ ), E;. b, and fop
each # « (0,A,), the femily r“ff“ E;.n} is salt—cnnca
with the parameters
art) = 13 p(t) = t; Y(t) = t%; §(t) ='n(t) = ¢"%/1; . u.m
In particular, ¢(*#**,t) = 71 and
py(#*it,%) = (v + 1) (8)'/2 |ln(t/m)|. “. 11"

The functions P* of the kind mentioned above arise as the
Legendre transformations of self-concordant barriers. More
precisely, let G « C,(E) and let :
R(G;¢) = max{ {¢.z> | T«G) 1

be the support function for ¢ (from now on <¢,z> means mn
value of & functional ¢ « E' at z« E). Then the following
proposition holds: |

Proposition 4.2, A. Let G « C,(E), F « 2(G,8), and let
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; r,{¢J,m{<¢.:r> - F(z) |z« int G) : E' - R
\ B egendre transformation of F. Then

4 s(E',8) and DPF* 18 non-degenerate on E';
A ' (7 i) = ]i_'i: DF'(t ¢)(¢) = R(G:¢).

1‘, B 1f F': E' - R satisfies (1) and !'ﬂ": ) 18 [inite,
m gomain of the Legendre transformation, P, of the
et on F' 18 the interior of a set G e Cy(B), and F s«

4).

* ahe following fact 18 obvious:

—ﬂ 4.1, 1et F‘: s .F{'E'.'ﬂ‘). P, ? i1, ¢t = 1,2, (¢) be an
gffine form O E*and let ¢ =4 ¢ be & homogeneous affine
':wmmtmn trom #* into E*. Then

[ﬂ Py F:{¢J t P2 F;f'q:lj * 'J'{B" Pf*f + Pﬂﬂz)"
) Fl(0) + T(®) « F(E',9,);

(111) Fy(4 ¢) < r(H*,8,).

mlm 4.1. It G'I . GB{EJ and P.‘ - ’{Gi'ﬁij' 1€ [ € R,

the %
gmits 8 (I 9, )-self-concordant barrier.
- i=1
Indeed, the desired barrier for G 18 the Loagendre

\ransformation of the sum of P,, the Legendre transformations

of the given barriers.
Now we describe the -dual parallel trajectortes method for
1p problems (the method 18 close to that one described in (Ne.

1988 1,41).
let G = GB{R'J. P be a 9-self-concordant barrier for Gj

agsume that we know the P-center of G (10 simplify the
description, let the center be 0). Let 4. rank 4 = n, be a n x
g - matrix and b @ A™. The dual parallel trajectories method

golves problems of the form
t-max | Az =10, G, (4.1%)
If G is a polytope, then (4.18) 1s a LP problem. Notice that
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the assumption P'{OJ = 0 18 not a severe mtrlet:lm,
demonstrated by the following example: =

TemaX | T« R Az =D, 2|, <1, ¢

where G = (T« H* | |7], € 1), 9 =mand F(z) =2
t=g
:cf}] + 2 In(m) (1t 18 easy to show that the paramete

for the barrier F equals m). Notice that {4.191

"universal®, in some natural sense, format for LP p
Without loss of generality, we can assume that
A(P(0)'A" =1, -

(because the system 4 r = © b can be replaced by an equi

system such that the rows of its matrix are orthonormal

respect to the scalar product e”(F"(0))~'n).
Define a function on R™ x int G:

L(¢.z) = - F(T) + ¢ A z,
and let X

F'(¢) = max(L(¢,z) | = « int G).

F' 18 of *alned from the Legendre transformation of '
barrier F by a homogeneous affine transformation of argm
80

F' « »(F*,m)

and D°F' 18 non-degenerate. Notice, that 1in the -f._";
problem (4.19) P* has an explicit representation: h,

(af ¢)?
P () = 8 ( ¢ —In(1 + {1 + (GT9)%))), (4
¥ T gy T e T ¢ GOTIN

. =t

wharea‘. 1€{ <m, are the columns orf 4.
Denote the minimigzer of L(¢,z) in z « int U by X(¢) -5'_'{
point 1s well-defined). For problem (4.15) one has
X,(9) (a; 1 ¢t < 4.

= # m. 4.

1+ [1 +ra’¢1"'1”§ e

Let FY(¢) = P*(¢) - 1 bT ¢ for T » O. The mcxgmmn
the method is formed by the following

m#-';lﬂty:mlt}ol
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e, - ¢ " | ¢ D=t DT DI,
__:'{ ot 7, pe the restriction of F* onto B' . Let also A.q. a
) < 173 b8 such that 10T Ly = W(ky) (1 - W(hg))™' and g,
(- ‘0) one has t@ < 1. Then
V ) the golution, T ¢* to the problem
T:_: ;4 max | "{Pltl¢) <1 :

y w1 degined and pSLiive, and A(Z 0.0) = 1;
= (1) the projactim. *(¢), of the point X(¢) onto the
. '..u-. J:-tth:.l. orthogonal in the Euclidean

on K*, induced by scalar product
BP0 = DPP(X(9))(h,el,

w to Gl "
‘-.fl (111) the inequality
R AR R L v0), (4.26)
oids, where 18 the optinal valus in (4.14).

~ fhe above results lead to the following method for
‘(4.18). Let us choose A > O, such that
D<A <A, WA) < 172,

) (1-00)) (1-20A)7% <1, (4.27)
‘and let t, be the solution of the equation
 to(1-t8)2a=a, &= (bT02)73, (4.28)

pelonging to (0,1/8).
. Let¢_, =ty beE =R and

A =iAF '
= expl Y8, .0 450 (4.29
Fe Iprnun”’ )

Having produced ¢, , « E} O 1ind ¢; « E; , Newton's 1terate

(Newton's method is applied to the mtr:lutlnn of F!
to E’ ) and then define
|, :

O (ty,,/t) [ < B .

fhen the next iteration is performed. The appmximate soluticn
to (4.18) produced at the i-th iteration 18 7, = x* (9,).
By virtue of the above stated properties of the family
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»**(F",E},b) (Bee P.4.1 and (4.17)), our standard
prove that the implication
AGF g 8 o) S o (V4D ME 9 < A, AP,

holds, which, by L.d 1, proves th& implication
M.l’t ) &A= (VU)2 «G A2, =T D,

g -(t - x /t* <0 expl - A= A! {3,
L f'*l-} ﬂ,ff?

n=e/t" i bt b).

Let us Teriry that the premise in (4.30) is true. n’_:;.:
obviously ?..{Ft $_,) SA(F',0_,). We have

PP ()LL) = (AP (OATC, = AP (014
_ 1 P &
=38 G 3
which implies D?F*(0)(b,b] = 8%; 8o, by T.1.1, we have for.
<tdci:r

|DPP*(1o)(b,L1| € (1 -t 8)72 8 (DPFHcO)IL,80)172,
which together with the relation DF'(0) = O leads to

IDF*(t0)IC)] € t 8 (1 - t 8)~" (DPPH(O)IL, 800172
for each {, or, by virtue of T.1.1, to '

|DP*(tO)LI| € £ 0 (1 -t 8)2 (DPF(td)IL,01)"3,

which means that A(P',tb) €t 8 (1 - t 0)™2. The resuls
inequality, by virtue of the cholce of t,, leads to.

desired relation A(F, ,¢_,) MP'.9_,) €A,

To obtain the efficiency bound for the auvove methan-
remains to evaluate (). Let us prove that 0 < 2'/%6/A. Ind
since A(F"(0))~'AT = I_, the point.w = (F"(0))"'A" b 18

nearest to O (in the Euclidean metric on K", induced by
gcalar product (h,e) = hT F"(0) e) point of the plane (z |

= bJ. The ellipsoid W =(z « F™ | Z"F"(0)z < 1) 18 contained
G (C.1.2), which implies t* 3> ' Fv0) w)'? = i



109
pesides this, obviously t, » A/(20) = a(2'72vl,), hence
a=29/0t"t, IbI3) <272,

ﬂ_E.Di
Now we obtain from (4.30) the following bound for the

relative accuracy of z,:
c2"2 92 expl - A=A t ). (4.32)
El (1% %) ﬂfz“é— ’
- Phe optimal choice of A 1s
A = 042{5---;
under this cholce for each € « (0,7) the inequality €, € E
nolds for all i such that :

{>NeEe)=8.89"21n(Tee") + 1. (4.33)

Notice that the implementation of the aual parallel
trajectories method needs an explicit representation of the
Legendre transformation of F; this condition 1s satisfied for
[P problems formatted as 1in (4.19).

The arithmetlic cost per iteration for the above method as
applied to (4.19) 18 O(m n®). A Karmarkar's type speed-up for
this situation which reduces the cost to Om'/? n®) 1s
described in [Ne. 1988 1,4]. .

4.3. Primal parallel trajectories method [Ne. 1988 2,3).

Consider a problem
¢cTz+max | = eG, . (4.34)

where G < Gﬂrﬁ‘“). Assume that we are given a f-self-concordant
barrier F for G and we know the F-center of G; let this center
be O:

O« int G, P'(0) = 0 (4.35)
‘(from now on FP', F" are the gradient and Hessian F with
respect to the standard Euclidean structure on R"). Without
loss of generality assume ¢Tc = 1. - .

The primal parallel trajectories method for (4.34) 1s
defined by parameters A, , A,, such that :
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O<A, <A O<A, ¢ 1/3;
: -1
AT HAL (1= A)T €A {1 = A,).
The method 18 as rnllm.

1. Intttalization. Let
Ty = mAX(T < 1 |7 (1 __,,”-z“ ),
e = (cT (PO)I7" ¢)172 rr-m}r' ¢,
z_, =%,e,

-

2. The (~th step. Iet 2, , « int G be the
approximate solution. Denote tha set

(yaint G| e¥ (y-2z) =0) i
by E(z), and the restriction of F onto E(x) - by F_(y). I.at
« E(z,_,) be Newton's iterate ol I, _, {Haltr:na netllnd r
lppliadtuP ( )i 1t will be shown that z} e int G).

)
41
produced r;, we define z, ae

-1 o )-1/2 ~1
2, =z} + Ay (0T (P(23))7" )12 Pz ¢ (4,39)

(1t will be shown that z,  int G). The {-th step 18 over.

.,-_

Let t* = max(c™z { 2« @), A = (0,t%) (t* > O by u.

and 16t G* = (e G | 0" > 0). For eech t « A the set G, =
(z« G | ¢® z =1t) 18 defined. The restriction P,. of P onto
the relative interior of G, , by virtue of P.3. 2.(1), 18 @
9-self-concordant barrier er (the latter set 1s regarded
as a full-dimensional subset of tha ‘corresponding hyperplmt
Since G, is bounded, F, attains ltnlinlllomtha relative
mm of G, at tha wique point z°(t) (P.3.2.(v)). By
definition of z°(t), we have

Pi(z'(t)) =0(t) o  (4.40)
for certain 8(t) (3(t) » 0 by (4.35)). C°-smoothness of F and
the nondegeneracy of D°F fmply that z*(t) and &(t) '_f

C-amooth on A.
The main result on thu primal parallel tra:lmtorlw
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thﬁ'd 1g as follows.

ition 4.3. The primal pamllel l:ruautoriaa method 1s
11-darined' for all { the pointn .r‘ g .r and z, are
wu..aeﬂned and belong to int G. Moreover, for aach i » ﬂ we

pave: |
t, ,=¢" 2, >0 | (4.41,)

l{?t‘_r.mi-jj "L'I s t"l"‘zl‘l

ot (1 +09E) Bt ),
Q=2 (1- 10 -300)%%),4.43)
t* - t, <887 (t,). ' (4.44,)
Moreover, the relative error of the (-th 1terate
patisfies the 1nequaiity *
" L o B |l R s R -
<7 expl-t In(1 + @ 8°'/2)), (4.45)

where 7 depends on A, A, only.

We see that the rate of convergence of the primal
parallel trajectories method is the same as that one for our
previous methods: it needs no more than 0(9'/? 1n(20/e))
iterations to produce an appmnmatim z, such that g, £ £t e
(0,1), the constant factor in O( ) :Iapemta oni, A, nnlr.

Rational.choice of the parameters 1s

A, = 0.266, A, = 0.09;
under this choice (4.45) leads to
€, € 11.78 9 expt- { In(1 + 0.107 ¢ /?)),

3.4 Proofe of the results.

4.4,1. Theorem 4.1.
Let us verify that relations (2.17), (2.2), (2.3) hold.
(%.1) 18 obvious.
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By T.3.2.(11) the function
7,(z) = In(1/(t -.f(z)))
for each t « A belongs, as a [function of 2z,
8((z|f(z)<i),1). Since { » 1, we have { f, e 3((Z|/(z)<t),
Therefore by virtue of P.3.2.(111) the inclusion &

Py ﬂ#(ﬁlﬂt.'ﬂh ‘ﬁ--»ﬁi-{

holds, so ¥, « S}(Q,,E), which 18 required in (2.2) lhen
chosen in acnord.anua with H.1) ki
Lat us verify (2.3).

X(z) = ((t,7) «Q, | MPt.::J <@')

‘(from now on we use the notations from 2.1), It 18 clear
X*(2) 18 a neighbourhood of X(2) in Q,.

Let us verify that the set x{aej 1s closed in E,. Indeed
let ft‘l-:t} « X(=) and ft‘hr (t,r), where t « ﬁ,.

I
T.1.3.(111) and in view of P, « S7(Q,,E) we have
P, () <9(t)+cC
i
for certain constant ¢, where
¢(t) = min {P,t{mj | 2« Q). TeA

The function ¢ 18 obviously bounded along the scquence (t,
(because this sequence converges to & point from A), &
(F, r:‘}.l 18 bounded. The latter in view oI the definition

F. 1@11&9 the inclusion r « Q,, OT (t,z) < Q,. Thus,
ulomn'a of X(®) In E, 18 cuntuned in Q. since A(®)
obviously closed 1n Q,,. X(2) 18 glosed in E,, Q.E.D.

It remains to verify that under the parametam cholce

hold.
Let us fix (t,z) « X'(»); then

A(P,.z) < &',

uﬂt

z* = argnin{P, (z) | Z < Q,)
(the existence and the unlqueneaa of z* follows from P.3.2. hr] |
gince Q -18 bounded and P - S rQ, ,E);: nptice that, Dy thﬂ
same n=aﬂﬂna IFF, 18 mn+degenerate on Q,). Let us lntmdunaif
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idegn structure on E with the help of scalar preduct
s DPF, (2" )(h,81;

vn the GGI‘I‘EB"]GHGJ.I’IG norm by | |. Let ¥ be the open unit
;,_-."_' at z'. By P.3.2.(v) and in view of the inclusion
B s(c1 a,.0") we nave:

ac{y||y~x|irf+3-ﬁ”. (2)
ermore, in view of (1) and T.1.3.(111) we have (p = w(@')

-'_-Dertm_-”z‘ -z, 2 -2 <pPP, |z -2%) € Pt - B), (3)

T

onoe by T.1.1
pfp (z*)(h,h] 3 (1 = B)Z DPP,(z)[h,h]. (4)

1 view of (1) and (4) we have
9P, (z)) < @'/(1 - B). (5)

 * be the minimizer of / on Gl Q, (or, which 18 the same,
r Then, taking into account (2}. we have

= {2 H-ﬂ)"'l fﬁl’t-—ﬁ)' +1+3%%) 3
@tm. z-u' = (t - @) ¢ wf(z), T-uH 4
.":-..rJ. B(t- po))" ¢ (1) -1%) -

(se have taken into account (3.6)). .,

S - @) @ -t <0 s 0 -, (6)
B - o) <nt - ) (7)
(4.5) 18 proved. '

Now we have

DR ()R] = L (t = f(2))7"|Df (TR &

&L (t - 2x)7" (Pt (2)in,N1)172 &

€L7% (t - @) (PP (2)(h, K1),

which together with (4.1) and (7) implies  (2.2) (we have
taken into account that f, e 3((z|f(z)<t},1)).

By the same arguments

|(DPR (z)[hIDY| & 2 ¢ (t - ()" |1Pf (2)InNI) <
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<2 (t -~ f(x))" PP (z)[h,h],
which in view of (4.1) and (7) implies (2.3). m

4.4.2. Proposition 4.1.

(2.1) nbvioualy holds; (2.2) immediately
tnclusion P* « S (B',E*) and from P.1.1.(1). 1.31;
(%.3); namely, let us prove that (2.2) and :3.3,-);-
X'(#) = Q, = A x Ej . Indeed, let us fix ¢ « E,
@-tqutb Then for { < E, we haye:

DR, (9)IC] = t DP*(®)IL], DPP, ()LL) = t2 DPPAg

| (DF,($)IL1); - (1n(t)); DP,($)IL]] = w’-’f"m.n
<t ! (PP@)19,00)"2 (12 PP L)' 2
<t "2 (PR@)ICL)T2 = k(t) o' (t) (DPR, ()G,
Furthermore,
| (DPF($)I8,L11] = (In(t2))] DPP, ()| = t |p~"1="'mrg1
<2t PP D)L, 0l w"r"mm an”f -
<2t PR @)L,L1 972 = 2 n(t) DPF (9L, LI,
Inequallities (2.2), (2.3) are proved. =

‘I"lal mpﬂlitiﬂll i.z. '“

A. Since G 18 bounded, F 1s strongly convex on
(P.3.2. (ﬂ}. Therefore (int G,P) 18 a (1,E) - pair (see
By P.1.3 (E,F*) 18 & (1,E") - pair, 80 F' < Si(E,E%
DPF* 18 non-degenerate on E'. A straightforward comput
(see the proof of P.1.3) gives for &(z) = DP(z)[ ]: int
E': ‘
PP (0(2))18(z),8(z)] = DPR(2)[ (D' (2))”'®(z), (@' (z))~"D(z
= (1), (®'(x))7"'0(z)> = A?(F,7)

(the latter - in view of DP(z)(h] = <®(z),h>, DPR(z)ih,}
= «@'(z)h, h>, h € E).

We have ®(int G) = E*, thus (1) and the inclusion F*
St(E*,E*) imply (1). (11) follows from the standard propert
of the Legendre transformation. A is proved. B can be pI
by di~ect inversion of the above arguments. =
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:e chat DF*(0) = O (since DP(0) = 0) and F' 1s
v convex (P.4.2; recall that 4 1s a mairix with full
B k) Hence P'(¢) tends to » as |¢] - «, and the
L igers ¢ of F, are well defined. It 1s clear that vF' (97)
: _:-_.:.f. j b and tnat the function =°(t) increases on the
gtive TV

wtﬂ ¢f vy 9", "w*(t) by «*, and let &) = F*(¢).

E () conaidar E' as being provided by a scalar product
S = pP0(¢*)(u,v] and let | | denotes the corresponding
o'(u), ®"(uw) denote the corresponding gradient and
Cesaian of O, respectively. By (4.23) and by virtue of the
#= nts from the beginning of the proof we have & <
- JE'). Applying T.1.3.(111) to the restriction, 8, of the
ton @ onto Ej and taking into account that A(2,0) = Ay <

H we get 19 - 1’ | € (g Since Ly < 1, we have
n(e” + 89" - el < (1 -8 ()% 08¢t
t-il- Moreover, ®'(¢*) = 0; thus

|2' () <€ Cq/(‘l = {4,.!.

A0D) g T.1.1, we SB't
MB0) < (1 - L)
j_., condition of Lemma the latier quantity is € 71, thus 't¢
18 .an derined and positive, Moreover, we have :
e, > t'(1). (1)
1a ter equality in (1) 18 obvious. (1) 1s proved.
E (11): let P’(v) be. the Legendre transformation of F, thus
) = F'(d" ¢). Let

L z=X(9), B =F() - e, t-=

Replacing first and second order differentials %y gradients
'and Hessians corresponding to the standard Kuclider™
gtructure, we get, in view c¢f the standard properties of tha
sl.a@ndre transformation:

= AB,0)) = ((B'($)T u< it'S"{clJ}uJT 172, ue if*) »
5-'rm z-10)" ugl(4 H"{ATW Au)® e, ws @) o
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o ((Ax-ab)T uc< (4 (P (z))" ATu)T UJFIE ﬁ:%.

let * be the prﬂjectinn 1nv01ved into (11). Then
Fzi(z -z') = AT u !
for certain u* e K", and
AT -tb=A(z - Z°);
the latter inequality in (2) as applied to u = u

(A (x - z*))F u* < 104 (F'(z))"" P"(2) (z - :’;Er
in view of F"(z)(z - 2°) = A" u” we get
(z - %) P*(z) (2 - 2*) < l(z - *)7 P"(z) (2 %
whence (z - 2°)T P"(z) (z - z°) < 1. So the ellipsold
(y « R* | DFP(z)ly-z,y-x) & 1) b

contains z”. This ellipsoid is contained in G (P.3.2. (1
hence z* « G. (i1) 1s proved. '

(111): by the standard duality arguments, X(¢*)"
belongs to the set G' = (z« Int G | 4 2 = ©°(t) b), ming
F over this set, and L

(VweR): dw=0 = of P'(z) =0; F'(z*) = A" ¢

Let y* be the solution to (4.18), and let
s ) !
Then the premise in (3) holds for w =-y* - u*, which leads
w* -z P 2?) =y - )T Pat) < 0 R
(the latter - by (3.6) and since P is a 9-s.c. barrier ¥
G). The equality in (3), together with the obvious relation
A -2 =(t"-*t) v

and (4), implies rr - t*(t)) T ¢* < 9, whence, in view of ¢
« B}, 1.e. of b" ¢* = t DT ¥y, )

t* - 2*t) <9/(t BT D).
This inequallty together with (1) proves (111). m

x 4 r;

4 4 5. Proposition 4.3, E
. Let us establish some properties of z*(t) and Grtﬁ;

Taking the derivative int 1in (4.40) and 1n the 1dﬁnt11g
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"“J t, we get

B oty = o (Pt e,

'{x’{tj)' - (e Pt e ! ezt er ! e (1)
e fix T < A, and let |nl, = (h? prz'(v)) hJ’fE. (1)

L_ J(2* (1)) g = (" (P2 ()17 e)™"72 = (7). (2)

wreover, by T.1.1 and in view of (2) we have

jz*(t) - 2t <1 .

o ) Ny € O(E) (1= J2' () - Z)) )T

1 (1))'1, < O(t) (1 - j2¥im) - ZhE)),)E (3)

By C.1.2 the set (y « K" | |y - z'(t)], < i} 13 contained 1In

int G, which, together nith (3), provea the implication

B g<t-t<(3 ¢rtn -

«t<d, |2(T) - 2'(t), €1 - (1 -3(t - t) ¢ct))"?,
5'(t) > ¢2(t) (1 - 3(% - t) (t))*"? (4)

_3__,}; have taken into account that

o cliFn(z (1)1 e 3 (1 - Jat() - 2], PP PRt ) e

hee T.1.1) and have used(1)).

~ Now let us prove (4.41,) - (4.44 ). Let

d=(120] {4.411}. {4.42J] wld for 0¢€ 1<%,
[4.433']. {4.441} hold for 0 < J < {,
z, , <t G, 0¢J<t, " «Int G, 0K S < 1)

f{e desire to prove that J = {{ 2> 0J; 1t 18 sufficient to
‘yerify that O « J and that
i Jed = (J+1)eld.

Let us first verify that O« J, 1.e. that z , « iInt G,
‘t_, > Oand (4.42,) holds. By (4.38) we have e P"(0)e = 1,
Whence Tee Int G for 0t < 1, and, In vilew of T.1.1 and
the relation F'(0) = O, {P'(te)], € T (1 - ©)~', or:

[T Preve)| <t (1 - v " T P(0) n1'72 <
€1 (1 - %)% (hT P (1e) h}'/Z,
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whence A(F,7,e) € A,. It:18 clear that
_ MFL’. 1,e) < AMF, T£),
which implies (4.42,). Furthermore,
t_, =of v, e =1, (e (F(0))" o),
Ihit’.‘:h. by virtue of the obvious unequality <, > A /2,
o 3 (T (P 0))7" e)'E a2

in part:lculnr. . >0.80ed. 2 j.?
Now let { « J; let us verify that then ¢ ¢ 1 « J. B
of all, in view of A, < A, and the fact that F, 18 a

for the set G, , (4.42,) implies (see T.1.4) thB relatics
"- ’ , f.'

:r: - m"ah : < int G, ?"{Ft‘ ’

(int, denotes the relative interior). Purthermore, let
o, = (C° (FY(z})I™" )12 (I 6
then

.'.'.'l = .:.': + a. ;s -i’ P"(z*j e, = 1,

whence, in view of C.1.2 and the mclualm ?. s [(0,1);

intG.lEh:ﬁ S
il + Bt
t,=c"z =c a't+1ac"e‘-c :r¢+

¢ Ay (0F (PzT 0172 2t ¢ Ay (T [P(3}))" 0},
In particular, t, > t,_,. 8nd (4.41 ;) holds.
By virtue of (6) and ¥.1.3.(111) we have
@*(t,_,) - z) Py (@t ) - 2}) <P,

whence, by T.1.1,
(1 - wa?) o' (t,_,) < (c" [Pz} e}'/? ¢

< (1 -0l e, ).

Therefore (8) implies
t, 2T, =t , +4, (1 -a}) ¢7'(t,_,)-

Since ?"z < 1/3, the relations (9) and (4) imply the relatiora
8'(v) » %, (1 - 3(s-t)prt, )20, t,_, <t €T, . (10N
whence, since & obviously 1s increasing, i

T3 €A

z Sy -
X ¥ . =
s L L i 3
. # o filn il il -
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a{r{} > o(t, )+ Q¢t, ./,
g=2(1-(1-3A,(01- w(r}))1%7?). ' (11)

l Tﬂﬂ!";'l' o |

Lsmﬂe¢{rj g (GT !FH{I*{I}J}—fI EJ-HE A
st (t)))” [Pz ()17 Praz®ct))y 172 » ot 92,

get 2
.aftij 2 ﬁ{tt_,) (1 +010

gnis 18 (4.43,). .
furthermore, let z* be the solution to (4.34). Then, by
3.6), We have
'[ t"—tt:—'ﬂf {I’_It_.l:bq‘ {TJ"I‘{t{J‘}:'
_o ety (Pt )T (@ -2t )) €007t ),
shich implies (4.44,).
po prove the inclusion i + 71 « J 1t remains to verify
that (4.42,,,) holds. Let ¢” h = O and let
z(8) =T, + 9 e, 0<8 <A,
Then

If;?j.
L |

& (Fr(z(8))® n) = [T P(z(8)) Bl %
¢ (eF F(z(8)) e )72 (WT P'(z(8)) M2 &
< (1 - 8)2 (6% Pr(z(0) €,1"72 (T P(2(0)) h)'72 =

(1 - 8)°2 (nT Fr(z(0)) n)'/2
(we have taken into account that a; F"(x(0)) e, = 1, and have
used T.1.1), By (6) the relation ¢® h = C 1mplies

\nT P'(2(0))] < AL 4T P (z(0)) h1'/2,

E0
InT P(x(A,))] € (A + A (1 = A,)7") (WT P"(z(0)) h}'/% <

€1 =207 (A # A, (1 -2,)7") (T PU(z(A,)) RI'/E

(we have used T.1.1). The resulting inequality means that
AP, 43 € (1= )™ (8] # Ap(1 = 2)7T), &

which, by virtue of (4.37), leads 1o (4.42{+,). The

propogition 1s proved. -
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Section 5. Acceleration of the barrier method. I,

5.1. Introduction. |
In this Section anﬂ in the next one we consider ppm
as follows:
(#):  Gz)= ':rr.d:c-uf.r-mm | = « K,
: ffI‘Jl-ﬂ{:r+b 20, 1<t gm, #
where 4 18 a positive semidefinite symmetric n » n - mg
G, G,u.0.,0, « % b,,...,0 « R. In other words, we n.':_;“;
a linearly constrained convex quadratic programming probi
From now on let g
G=(re«R"| f,(2) 320 1 &t gm
We assume that G 1s bounded set with a nonempty I1nter
(hence m > n); without loss of generality we suppose 'i_
a ¢#0, 1¢stigm
Then
¢'=1nt G=(zaR* | f(2) >0, 1&1L&m. *
§.1.1. "Multistep" retum to the trajectory. Recall | _-
1f we know a starting point w « (', then we can solve (5.1)
application of a path-following nathod for a:ampla,
parrier method from Sect. 3, generated by the
gelf-concordant barrier

F(z) = - ‘E' In(f (2)): G' = .
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E wter vaiue for this barrier equals m, B0 &N

* olution. Zg» R el

% o ¢! and ¢(T) - min, ¢ € € (max, ¢ - min. ¢J (5.4)

be uced Ly our method in no more than

2" ye) = om'2 1nm o 'e")) (5.5)

| _iyons with no more than O(m n?) arithmetic operations per

> '_ ation; herein 8 = 1 - ‘I‘Pflﬂ}. L 1s the MNinkoveky's

* ation of G with the pole at the minimiger, z(F), of the
opr, Thus, the total arithmetic cost of an &-solution does

¥e) = 0(m®?2 n? Inm o' €7')). (5.6)
It 1s well-known that the cost given by (5.6) can be
_auced. The ldea of the acceleration originates from [Ka,
-'l” 1t 18 based on the use of approximations to the
'f-"wed Hesslans instead of the exact inversed Hesslans when
smouting the Newton directions. The compatibility (within a
ootor of order 1) of ‘these approximations and the exact
,'.-: sed Hesslans 1s maintained by 171-rank corrections; 1t
: uces the average (over the iterations) cost of an 1iteration
wy & factor om'/2), so the total arithmetic cost of an
g-golution becomes

¥'(e) = 0(mn® Inm 6" &7")), (5.7)
 fhis Karmarkar's speed-up 1s implemented in most of the papers
' gentioned in Sect. 0.

~ Notice that the above speed-up does not change the size
' of steps in the trajectory's parameter, t. But we can make &
' marge” step in t and then try to return onto the trajectory
‘using an appropriate multistep procedure. In what follows we
' pealize such an approach - 1t is the first purpose of this
gection. Our worst-case efficiency bound turns out to be the
game a8 in (5.7), but now 1t 1s the worsi-case bound and we
‘¢an hope that on the real-world problems ' e behaviour of thu
method will be better; at the same time the usual acceleration

pith rixed sige of steps In t gives no basla for such a hope,

5.1.2. "Advanced" linear algebra. The second purpose of
Sect. 5, 6 18 as follows, The improvement due to RKarmarkar's
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speed-up strategy depends on which linear algebra .}%
is used. The Iimprovement mentioned corresponds
traditional linear algebra where the inversion of 5
-matrix costs O(k®) arithmetic operations. it 1s 'Edi
that the inversion can be implemented with a lower |
0(k°*7) operations for certain 7 < 7 (the best known w
v 18 0.376... [CW. 1986]). Of course, such "Bﬂ?ﬂhﬁﬂﬂ“‘
algebra reduces the cost of the solution of r»). 'Wﬂh
question arises: what ia the upper bound ¥ for the
(over iterations) cost of an e-solution to (»),
efficlency of the inversion of a R x R-matrix 18 O(RS
some 7 e (0,11, ﬁ.
It turns out that Karmarkar's speed-up 1In guek
gituation ylelds . .
¥ =0m*T Inmd~" €')), ay) = (5 ¢+ Y2 =
(for simplicity sake we assume that n = O(m)). For
barriers method described above the authors have deve!
another speed-up strategy (1t does not reduce to Karmap
one even 11 the traditional case of 7 = 7). The new aq‘
yields .
N=0m" T 1nmd™" &), r(y) = 572 + zﬁxrma-; 72,1.
' Notice that .
r(o) = 8(0) = 5/2, r(1) = 8(1) = 3,
r{Y) < 8ly)e 0T <1, :
For example, r(0.376...) = 2.594... , 8(0.376...) = 2.688
The strategy mentioned (it 1s described in details in Sec ¢
1s based on Karmarkar's one and on certain properties of
conjugate gradient method. This strategy differs from tha
af Karmarkar even in the traditional cese of = 1,

5.1.3. Preliminary results. From now on we fix 7 < (0,1
guch that for all R « N the arithmetic cost of the 1inversi
of A k«k -matrix by certain method does not exceed c kE*T 1
la well known that under this assumption the multipl]catlun?;
two kxR matrices can be performed 1I1n DT{kE*TJ arithmetd
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_ations (henceforth the constant factors in ﬂ,rr ) depend on
.:],_ The following statement 1s a  simple corollary of
I o agsumptlons:

W 5.1, let 0(1,E,r) = LR r (min(1,k,r)T"" for 1R, < W,
ct of & Ixk-matrix A4 and & ER«~r-matrix B .can be
N puted at the cost of 0,((1,k,r)) arithmetic operations. ®
“"% ygsume that the data in (5.1) are represented in natural
_ o (by the 11st of ihe entiries of the corresponding matrix
gectors), and let ¢ be a similarly represented convex
Wﬁiﬂ form. Let forz e G', t > O

B i) - (57172 12U 2)0eenat T2 L D) S Y

Bit.o) = (07" LR it L5 S,

p(t,z) = D, (z) = dlag{d(t,z)} « 2, :
ghere ? is the set of diagonal m ~ m - matrices with positive
entries. Let Zbe a n«m - mairix with the rows
4...,0, and let M(®,D) = 9" + ZDZ", De 2. The mn -
;imx ¥(¢,D) 18 symmetric and positive defined (the latter -
i view of the boundness of G'). We use the notation ¥¥(z) tor
‘the matrix ¥(¢,D,(z)); notice that 1f ol
: P(z) = t ¢(z) + F(z) (5.10)

]

TR

then
| (R)riz) = t Bz), z < 6. (5.11)

\(from now on f' and f" denote the gradient and Heeslan of a
function f: G' -+ R with respect to the standard Euclldean
gtructure on R™).

For a couple h, a of positive m-dimensional vectors let

v(h,8) = m(h{s,,a,/h,....,h./sn,a‘fh'} = T

The following lemma holds:
Lemma 5.2. (1) Being glven z € G', t > O and D « 2, we can;

compute H"f)'{:r) at the cost of O(m n) operations;

compute D, (z) at the cost of O(m n) onerations;

compute the product of M(¢,D) and a given vector h « A" at
the cost of O(m n) operations;

compute N(¢,D) at the cost of O,(m n'*T) operations.
(1) Let us be glven D, D' e » and the matrix L =/¥(9,D)i™',
and let k be the number cf dlagonal positions 1n which the
entries of D differ from that ones of D'. Then the malrix

flf-p,D'H" can be computed at the cost of f).}{rﬂ y Lin,&))
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operations, where
H'.E HT' Rgn,

I(n:h} = { & ﬂ,’*T‘ n |

5.2. The main inequality. !

Iet us fix a convex qlmdratic form @ on R™ &]’ld ‘,;:

>0
z* (t) = mm{ﬂm z « G'),

EhE) = (t717F r Pt DI el (z*

(¥ 18 defined by (5. 10)). ‘
Now we shall prove that the trajectory t* zan nnt;-; :
gense, vary too quick. H
Lema 5.3. Let t,, t, > 0. Then _
N e (z(t,) - ‘()T " 2ty - 2004

+‘§’f£:rt,J E‘(IEJJE Qi) it o s
= W10 ELRI Bt IR E, " 5

Corollary 5.1. Let t,, t, > O. Assume that z(t ), #(t,) e
are auch that

ME Lz(t,)) <A £ 0.1, J=1,2.
J

iz 3

Then
(t, 1,012 (m(t,) - 2(t,0)" ¢ (z(t,) - 2(t,)) +

+ E (& [t,.I{t ))-b ftE.I(I }J}Efﬁ {t'.I{t ) )3 {tE.E{tE}ﬁEJ
¢ }Lﬂ{m (E17€5L ¢IrE)R & )i o tg?ﬁ‘} (t,t,071 /258,
with an absolute constant p, > 0. ® 3

-

5.3, "Multistep" barrier methods: preliminary remerks.
Recall that the barrier method, as applied to (5.1
deals with trajectory (5.12), where ¢ 1s some linear form
the preliminary stage and ¢ = ¢ at tha main stage. The meth
produces approximations, z(t), to z *t) along a sequence (t,
i 2 0) of t's values and maintains the inequality
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oA ) & h, :
A 1; an appropriate absolute constant. This inequality
'::‘t;r only restriction on the quality of approximations; the
" er in whioh these approximations are produced 1s not
; wrtﬂnt. In this section we describe two strategles of
‘_@m;mation which differ from that of Seot. 3.

g 70 simplify the descriptions, we consider a subproblem

,y) 88 follows. Given some T > O and y « G' such that

(1
A(FR,y) € A (5.17)
ge desire 10 produce y' « G' and ©' eatisfying the relation
a,r}ﬁ’.,y') <A, (5.17")

gith ©' elther < ©/2 {at the preliminary siage) or > 2 T (ai
the main stage). This subproblem will be called Notice that
'4¢ 4 1g a procedure which solves this subproblem (for each %,
gsatiﬂfylng (5.17)) at the cost of < ¥ arithmetic operations,
then the iterative application of A in the manner gimilar to
tpat one of Sect. 3 produces an g-solution to (5.1) in no more
than

¥'(e,5) =0 Inme™' 877))
arithmetic operations (that statement can be proved by the
arguments used in the proofs of P.3.3, P.3.4). '

In what follows we deal with the above subproblem and use
the corresponding notations F‘l’. K(z), 2°(t), &'(t) (see
(5.10) - (5.13)). let also :

o,(z) = (F)'(z), B,(2) = (B})"(z).

5.4. Sets K,(7).
For £ € G' and a > O let
K (z) = (y « G' | £,(2)/F,(Y)s F,(y)/] (2) <1 +a,
igti<ml. (5.18)
Notice that for cetrain absolute conatant u, > O and for each
r, 3 > 0 one has : '
1in(r/g)|2 < p2 (r - 8)% (re)”". (5.19)
Lemma 5.4. (1) let z<G', a >0, t, 8 > 0. Then for y « K,(z)
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one has
(@, (2))7""% B (y) ni (21" =L

<max (2a+a ;| 1-8/t|)
(11) There exists an abaolute constant u, > O such that
each t, t' >0, 2z, 2' « G' and A e (0, O.1) satisfying
conditions
AMH.z) < A, Mﬁ...r ) € A, 172 € t/8" < 2.
the Inllmllng lmpliuatian holds:
a3 p, mIn?(t/t")] + WP(A) » ' < Ky\(2). ® " (5.2
Let Inr a > 0and qe (0,1) the function g(t) = .;_-;-.:.
be defined as -
( - Inla/q) - (¢/a) (t' - na)+ (g/a)? (t - /q)?/2,
if t » aq;

g(t) ={-1In(t), 11 qast <afq; .
- 1n(g a) - (g a)'(t-qa)+ (q a) (t -q
: 110<t €qa. 3
Let also

a(q) = (1 - q)/q.

It 1s clear that the function g(t) 1s a G?-smoot

extension of the function - 1ln t from the segment [q a, {;

onto ® (the second derivative of the extended function |

cunatantmrt>aumrnrt<qu} A
For u « G' let

ﬂ-ﬂt’:} i E 8(f,(w).q, I f-'I-'JJ ™ - R.

The following atatenant is obvious.
Lemma 5.5. For each u « G' we have
T e Iarq)r“) - F“.q(:r} = P(z): (5.23)

moreover, for aanh T e R" lra have
q© P"(u) < F) (2) £ q 2 pr(u). = (5.24)

5|5| mtiﬂtﬂp" hﬂl‘riﬁr “M _— II '--j
let23p>1,2>n >0, A« (0,0.7). Let us describe a
procedure #(p,n,A) which gsolves the subproblem Z(T.Y). This
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__odure makes a "large" step in t (the slze of the step
__4s on 7, M, n; in the traditional case of 71 =1 and n =
' the uptiml glge 18 ,

o L (= (1Ot

atead of the usual

B . (1 :om'2)) 1)

| . then returns into the neighbourhood of the trajectory
| gininizing F}, with the help of gradient descent method. To
:'aTOId gome difficulties (for example, comnected with the
:fﬁﬂrmtlons reG') 1t 18 convenient to apply the gradient

gescent method not to P‘i’ 1tself, but to the fw >tion of the
W i o which coincide with P?, In a neighbourhood of

g(t'): the latter property 1s provided by appropriate choice
of u and q. 0f course, the gradient descent method corresponds
'pgot to the initial Euclidean structure, but to the structure
glose to that one defined by the matrix H‘f, } Je®

The procedure 1s as follows.
Inittialtzation. Let

0 be the positive root of the equation p2/(1 - B) = A2,

q=(1+p, min?n+?A)1)7",

h=(q%pm,

0 qa 8 (p n)~9/2,

Ty =Ys Lo =1

Compute d° = d(tﬂ.xb) and the matrices l?;{zb} and

G = (M )" _

The k-th atep, R > O. Assume that after k-1 step of *the
procedure we have produced a point z, e G', & vector @* < 2, a
numher 1‘,]Il > 0 and a matrix

Q, = (M(9,D,))"", D, = alag(a®}, (5.25, )

giuch that
v(a*,d(t,.z,)) € p (5.26,)
(notice that the initlalization rules provide (5.25,),

(5.26,)).
At the R-th step we:
a) set
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t,n at, the main stage
M1 {

ﬂ" at the preliminary stage

ph,( z) = H, ¢(x) + F rq{.r}:

b) minimize the function Ph,q OVEr Z « R by a

t

1.0, set 'T.n o= T and cmta

I, 001 " ml.i lﬂ‘ nQ, Pret(Zy, t)'

the process 1s t.eminatad at the step, I, where the condity

J !P .
(phl‘"’ ]-JJ h-rl Q,h p*"'f(:rh.tj € we .

c) set Toet = ‘Ill.l; ;
d) compute d(t,,,,z,,,) and d**' < 2:
- {d:' (14p)7" @} < d,(t, .2, )<(1+p)dy,
a,(t,, 4%y, Otherwise,
(notice that this updating provides (5.26, ,)) and, using ¢
compute @, , 1n accordance with (5.25, ). 4
The R-th step of 4(p,m,A) 18 over. ;
.t ./t, » 2 (at the main slage) or t, /t, < 1/2 {
the preliminary stage), then set ;
R* =k, ' =t, ,y' =2z,
and terminate, otharn:lsa perform the (k+1)-th step.
Theorem 5.1. All points z,, 0< k < k' + 1, produced. b
A(p,MA), belong to G' and patisfy the relation i

A Fi);'m )€

and our procedure solves (#). Moreover,
R < ot(m-1)"").

Let 7 satisfy the condition
m'/2m-1)31.
Then the arithmetic cost of «(p,m,A) does not exceed
quantity
PR O.rfq"' (-1)""mn Inm g’ A7") +
smaT + (- 1) (p-1)"T mY R2).
In particular, under the parameters choice '

neden (5-Y)/(8~Y) (n*/1n m)!/ @T), p = 1.5, A=0.1, (5. -f'i
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where

n* = max{n,m@-172 1n m) (5.32)
we have
.”J <0 {mfﬁf?'fjffa—'fl rn*‘JUE'—TJ‘f'fﬂ'-T} (1n IJ”‘TJ?’{&"TJJ <
; OTmrzmT.wa—'rJ (1In m)¢1-1)/(8-1)) (5.33)

gence under the parameters choice (5.31) we have
¥'(e.,0) < 0,7 Inm 87" e7")) ¢
0 {mf‘?""’”m"’" (In m) "1 @1 1nm 5" e77)). = (5.34)

€Y

Notice that in the case of traditional linear algebra (7
. 1) (5.33) - (5.34) transforms into

¥ (e,8) € 0(m (n*)? Inm 8~ 'e™")), n* = maxin,m'’? 1n m).

5.6. "Multistep"” barrier method -~ II.

It is known that the rate of convergence of the gradient
descent method as applied to strongly convex problems can be
jmproved. The implementation of the “optimal®™ smooth convex
optimization method ([Ne, 1983, 1988]) in the above scheme
Jeads to an lmprovement of the results. Let us describe the
corresponding procedure 4*(p,n,A) (the parameters of the

are subjected to the same restrictions as 1in 5.4),
he procedure 1s as follows.
Initialization. Let :
‘B be the positive root of the equation p°/(1 - p) = A%,

q = u; w, m 1n? q + )17,

¥=q°pn,

W = qa ﬂ {P ﬂJ—3JE’

To=Ys g =T

Compute d° = d(t,,z,) and the matrices i}

Q, - ﬂ?ar.'. '

The k-th step, R 3 0. Aspume that after k-/ step of the
procedure we have produced a point z, « G', & vector d* « 2, &
pumber t, > O and a matrix

Q, = (M(9,0,))"", D, = diagla™), (5,35, )

(z.,) and
0o ©
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aich that

v, d(t,,z,)) €p J
(notfce that the initialization rules provide ‘¢
(5.36,)). B+
At the k-th step we:
a) set
{ t,n at the main stage
M1 Lt y" at the preliminarystege
Pp,e(T) =ty &(x) +F  (Z);

b) minimige the function p over I e nﬁ‘ﬂ
"optimal® method for smooth convex optimizatlﬂn corresp
to the metric defined by the matrix Q7', 1.e. 3

B S0 T > Ao k0" Ih;

at the {-th step of the minimization process ({ ;ié-
f. compute a, , >0 as a root of the equation
2
B = (-0 )4 N
e. get

I, % Ons ”h. (T =0, )T,

NI e gery (1= Gy o) Ay
A

Taotor = Un,o ~ 0ty Q Payy(Yy, o)

el 1
Un,eey = (1 -0y AL h.l+1 v e

ity g q° d;flii yh.t - dn’¢+r ;!QHP;+1£%}
This process 1s terminated at the first step, 1, W

the condition
(Ppy (T, 107 tasy Qu Pryy(Zy 1) €6

= N, v

holds;
¢) Set x, . =Ty ;.
d) compute d{t,*,.mh+,1 and d**' e 2:
-1
et _ (G0 (10)7T ) <Aty .3, IR(140)05,
{ .
a,(t,,,+%y,,)s Otherwise,

(notice that this updating provides (5.36, ,)) and, uaimgﬁi

compute @ in accordance with (5.35

ke JH‘.']‘
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F
t The k-th step of J'Ip.'n.;kj is over. If t;.””ra 2 2 (st
;thﬁ main stage) or t, /t, € 1/2 (at the preliminary stage),
E get
B =k V=l Vo=,
- ﬂﬂ terminate, otherwise perform the t’hn.l—th step.

5.2, All points 7,, 0 € R < k* + 1, produced by

'rp-'ﬂ-”' belong to G' &nd patisfy the relation

MF" WZ,) % A (6.37,)
and our pmcﬁdure solves (»).
‘)IIBOTET!
B* cocm-1)7"). (6.38)
Let n satisfy the condition
& = 1) dcds (5.39)
pen the arithmetic cost of A*(p,mA) does not exceed the
quantity
¥2 =¢m)o0 {q"‘z Mm1)"mninmqg'AT) +mnT s
B - 1)1 fp—f)‘T nl n?), (5.40) .

ghere c(A) depends on A only,
In particular, under the parameters choice
a=1+m VATV ¥1n m)! /4T, p = 1.5, A=0.1, (5.41)

lhﬁre

= max{n,m2-772 1n m} (5.42)
we hava
IIEJ <0 mafrl—‘rl (n }ﬁ' T)/ (4-7) (1n MH-TJHJ—TJJ <
P ﬂT{m(lD -T)/ (4- "[J {’l.tl HIJ“ ']'Jlf{'# TJ"] (6,43)

Hence under the parameters cholce (5.41) we have
K'(e,0) < 0 2% mmo' e«

‘ﬂ”f{mffﬂ TJJ"IJ—TJ {1n njff'*']'ﬂff‘ 1) 1n(m a-* -’)J. B (5.44)
Notice that the optimal step sige 1. ¢t in the case of n =

O(m) of traditional linear algebra (7 = 1) 18 now
t - (tzom?'))t
fnetead of t » (1 + 0m™2/7)) t 1n 5.4.

5.7. "Multistep" barrier method - III.
¥rom now on we assume that (5.1) te a LP problem, i.e the
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function ¢ {8 linear. This 1mplies that the
involved into (#) ic linear too. N
The procedures described in 5.4, 5.5 are as followgs
thaa R-th step they transform given approximation, g .
z*(t,) into an approximation to z'(t,,,) tor some preson
tmr Our new procedure, 2**p.a, i\.). mnlizan another
t,,, 18, roughly upaaung a8 large as possible un¢ 5
restriction that z t‘t ) < Ky(z,), thus, we follo
trajectory until 1t daeu not leave the region in lhlﬁh
18 close to @, f 2, )

The parmtern of our procedure are subjected ta
restrictions

i<pgid; Pc<ca; O0<A<€O0.1;

A8 3 a>dp, PA) p(1+a)g1.25

(1t 18 clear that (5.45) can be satisfied by an approprig
choice of absolute constanta p, a, A). A
ForueG', t >O0Oand de 2 let
a“ = (K, ¢.diag{dm"~
((T) = 9(t &(z) + F, . o, (2)): - R,

qmj=(r +a}""
0,42 =2-(t""' @) e, (z): K

Lemma 5.6. Assume that p, a, A satisfy (5.45). Let u « G',
t >0, d s« 2 be such that
v(d,d(t,z)) € p, |1n(a’/t)| € 0.1 (5.46

A(Bu) €A (5.47).

Then

(1) for given @, 8, u, z the vector O, , .(z) can be computed

at the arithmetic cost O(m n);
(11) the relation

'S"' ff:‘? n'

u,d,8

m
el A

=8
i,

| (z) S'72) € 0.25 ¥ z <« K", (5.48)
where

e o E—f ad :
holds (] | 1s the usual operator norm corresponding to t
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gtandard Euclidean structure on ™) .
(411) the implication
in(a/t)| € m'72 (@2s,)'%, 172 o/t ¢ 2 -

. 2'(8) « Ky, (), O, , (2°(8)) = 2*(8) (5.49)

u,d,s
mldﬂ. [ -
The procedure is as follows.

mnmumtim. Let .
n = min( expim™'2 (a/2u,)'/?), exp(0.06) );
¥ = JIn""(16) Int4 p° ma® A72 (1 - 8)" "),
g = max((! + a)?, exp(0.1) - 1};
L=11nmI[;
I{} = Y. tﬂ = 1.
compute d° = d(t,,z,) and the matrices ﬂ (z,) and
) ' ;
= (¥ )",
Q o

me k-th step, kR > O. Assume that after k-1 step of the
procedure we have produced a point z, « G', & vector ®eo,a
pumber t, « [T,T'] and a matrix

Q, = (M(9,D,))"", D, = diag(d™), (5.50,)
‘guch that

vahd(t,,z,)) €p (5+51,)
(notice that the .initialization rules provide (5.50,),
(5.51,)).
' At the R-th step we:

a) set '
t =0,

- ={t_,‘;r;\stt the main stage
. Ltm' at the preliminary stage,
0 { -;oerpw:.as} at the main stage
T,exp(-0.05) at the preliminary stage.

yl'e = Ih; y‘." = nthitﬁ’t‘ry‘“’_’;'l 1 ‘ J ‘ -F-

t*~1, otherwise,
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y* = {yl.n' 112 Y,y < Eg(Zy) or =0,
y‘ !, otherwise,

E: 1z
1l+, (tt t'}

mhi =y _ tm =

and go to ¢).

oL cumputa dfth+:'”h+:’ and
=] _
- { dy, (1ep)7! A} < 3, (ty,03,,,) € (1ip)d)
fti'l’f'mlfijl Dthﬁﬁiﬂa. 3

(notice that this updating provides (5.51, .)) and, uﬂlns-gh
sompute Q,,, in accordance with (5.50, ).

The k-th step of 4**(p,a,A) 18 over. If Ly, 17l 22 TE;
the main stege) or t, /t, € 1/2 (at the preliminary nt;f$3
then set X .

B'=k, = YL Y' = Iy,
and terminate, otherwise perform the (R+1)-th step.
Comment: lLet y(r,d,a) be the N-th point of a sequence
Yo =%i Y= 0p.a,00Y;- Je 1€ J €N :
a) - b) describe the usual I-gtep dichotomy &S &ppliad,

tha prﬂblem 3
(%,): being glven z,, t,, find the greatest { < ' [ 111("0"‘;;'
ln{'r."/t )] such that '

y(:t'.,d* a(f)) = luf:cij. Eﬂ;) = I‘ exp{l}. [5_

Indeed, { 1g the dichotomy's step number. First of all (i = 0)
we verify if (5.52) holds for { = In(t/t,), 1.e. for 8(() =
1,. Let us believe for a moment that the answer i3 positive
(this assumption holds; the latter will be proved later). Y
i1t is not difficult to verify that 4

(2,,8% 5, ) « Ky(5,). (6.53)
Notice that the choice of 7 and 1* leads to i |

{i“” « D
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In 1 € [In(e'/t,)]|. : (5.54)
1t 18 not difficult to derive from a) - b) and (5.54) that

o1 ther . ;
: (In(x*/t,, )| € 27%,

or -L
[In(t/t, )| €2

for some t such that y(z,,a%t) £ Ky(2,)

Notice also that (5.54) implies the relations

2 n at the main stage

7t (5.55)
Epet”tn { < 1/n at the preliminary stdge.

The following statement 1c true:
gneorem 5.3. All points z,, 0 k € k' : 1, produced by
«*(p,a,A), belong to G' and satisfy the relation

o ME L3 <A (5.56, )
and our pmcedure golves (#). Moreover,
k' < om'’?), (5.57)

The arithmetic cost of 4" (p,a,\) does not exceed the quantity
c(p,arY) ma'tT + nm¥2 12 m + m¢1*T2 n2)  (5.58)
where c(p,a,A,Y) depends on r, a, A , 7 only. ® i

5.8. Concluding remarks.

We have described a number of "multistep" strategies
producing good enough approximations to the trajectory z"(t)
of the "conceptual"™ barrier method. We hope that the
"multistep” procedures with "large" steps -in t 1in practice
will be much more efficient than the barrier method with
Karmarkar's speed-up and "small" steps in f of the type

t - (1:0m?2))1t,
although all these methods posess simllar worst-case
efficlency's estimates.

5.9. Proofs of the results.

5.9.1. Lemma 5.1.
let 8 = min{l,R,r}. Without loss of generality we can
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assume tnat 1,R,r are divisible by 8. Dividing the n ri

and B into square sxs. submatrices, we get (1/8)x(k '
(R/8)x(r/8) - matrices A', B' with elements from the ,-iﬁ.,'
real sxa-matrices. The multiplication of 4' and B' in
traditional manner costs O(lkrs™’) mltipliuntim

additions of peirs of elements from *; each of
z-operations costs no ~more than O {aE*TJ ari
operations, -which implies the statement n} the lemma. ;

5.9.2. Lemma 5.2, : -'
(1). The first and the second statements are obvious; ;
third follows from the relation T
¥(9,D) h = ¢"h + (Z(D(ZTh))).
The fourth statement follows from L.5.1, eince the computaty
of then » m -matrix DZT costs O(m n) uparatimu, t
multiplication of Z and this matrix costs ° n!t
operations and the addition of ¢" to the result ogata
operations. :
(11). If kR = O, then the statement 1s obvious. Now 1
be a positive integer. It is clear that :

K, .= N(Q,D') = K(§,D) + 7, St st Tl s.'

{auhacripts mean the numbers of rm and columns), where ¥
and S, = can be computed at the cost O(m + n R) bpemtm. i

Let k € n. ay the well-knowh formula we have
I"l:;'ﬂ- Il = .!_Ir:!l- 1"7 h”l t sli n n h‘r’sl.ﬂ- n, nr.
where Il means the I " 1 - identity matrix. By L.5.1 th
matrix (I, + S, .V, 37! can be computed at the cost i
R'*7T); the resulting matrix can be 1inverted at the

n’*T}. each of the mmaaquant matrix multiplications cos -f%_]
nﬂ more than O, (n? k1), thus (l'. )~! can be computed in
more than u,rml rY) operations.

Now let B > n. We have

—
—=
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AR ¢ S L RS e T I
gpe matrix I, + (M, L)™' V. S, . can be computed at the cost
ok a'*7) (L.5.1), the resulting matrix can be inverted at the
'wmﬂmmmmmmmmmmmedu
the cost o(n?*7). Thus, fl"hnj" can be computed at the cost
of O(R n't7) operations. ®

5.9.3. Leomma 5.3,
We have

¢'(z%(t)) - ¢! E.r, rla't) =0

(notice that f; does nnt depend on r). Substracting such an
11ty for t = t, from thnt one Ior t =t and multiplying
the resulting equality by (2°(t,) - z *(t )}. we get

(z*ct,) - 2°(t,))T " (2%(t)) - 2t(1,)) =
. 37! 1r,2% ) - pte ) £t ))) -

t=1
- 15! (1,30t )) - 1@ 1,00 1@ (2,000
wence
37172 15172 (gl 50t,) ¢ RN /E (L)) 4

i=1
s (@(t,) - 2(t))T o (21, - 2'(ty)) = mry! 4 100D,

shich immediately laads'tp (5.14). m®

5.9.4. Corollary 5.1.
Let us define m-dimensional vectors and m » m - matrices

g8 follows (below t =1t ort = 1,):
n(t) = (£, (8))/f (2(1)) | 1 &L <m)T,
h_(t) = (BT (2 )yeeeehll (D)%,
H(t) = dlag(h(t)}, € = (1,...1)F
8= (630,060t ))"2] 1 &1 €«m)]
& = (B vennr s
net) = ((h,(8))"72, 00 n (2))17%),
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D"—'l‘f(.r{t}ﬁx (1)-2(0),2(1)-a(1)] = t (2"(1)-a(t))" g8

- Z(t)) + s (z*(t)-z(t))T 1102 12(2(1)) = |
-t @0 o (@ 0)-a(t)) + 3 (77" (z()) ¢

- 1,(2(1)))) = t(z"(t)-z(1))T ¢" r:: rn—:.-m: +
and similarly A
PRz (t))z" (t)-z(t) 2" (t)-2(1)] = s
=t (z'(t)-z(t))T o" (z*(t)- z(t)) + Jh (L) - 2.
Thus, T.1.3.(111) and (5.15) imply _,
t (z*(t)-z(t))T ¢ (2°(t)-z(t)) + In(t) - e)2 < w"*ru:;
and 8
t (z°(t) zrm’ ¢" (z*(t)-a(t)) + |h_(1) - el,.,,.- 3
< (1 - wr))?. i
Purthc-more, (5.14) implies
(t, t,0"72 (z*(t,) - 2*(1,0)T ¢ (2'(8,) - 2'(1,)) +
-m ”:KE - t;—.ff’l? {" -t!j.-ffl'.’ - 92_ -
Since for positive & we have (8 - 87')% » (8-1)% + (j‘
(5) leads to
(t, t,)"72(z%t,) - 2°(t,))T ¢" (2" (1)) - = rtau
+|g-eli+ig—e|eiaz f
By (3), (4) we have 1
t (z*(t)-z(t))T ¢" (@*(t)-z(t)) + In(t) - e)? < wzm. |
t (z(t)-z(t)T ¢" (z*(t)-z(t)) + I_(t) - )2 < 3

¢ PA)/(1-0A))2.
We have ¥
Cure, 1'% (z(t)) - 20,007 " (3(1,) - 2(1,)) £
+3 00 (t,..-rrt ))-d frz.zrtzm" (0,(t,,2(1,))0,(1,,2(t)))

t=1
= (1, t,0'72 (2(t,) - 2(t,0)7 O" (2(t,) - 2(t,)) +
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12 ) H1E ) 8 - 28,0 H'2(t,) 812 <

1t t,)!72 (2(t,) - 2(t, )T ¢ (z(t,) - z(ty)) +
jf?{tljﬂ"ffftzjs_e_lg + Elﬁffz{tajiﬂ?n-ff?{t"’su_elg' (9)

Ii- nﬂ'thﬂmmr
IE’KEft'}H“';E{tE‘}S e E'e ‘ Iﬂifzftijﬂ*ffeftzjfg = EJIE )

T L YA P W'72t,) e - el, €
‘ m{t,il,ln_ﬂgil..lﬁlz + It gIn (t,)-e), + In(t,)-e], &
¢ (o) R (1-00)) 7 %0+ (1s0A)) o) (1-0n))™" + W)

(we have taken into account (T), (8)). The same estimate holds
e 17272 H72(8,) 8_ - ef3. Thus, (9) implies

¢ & (t, 0772 (z(t,) - 2(t,))" ¢" (2(t,) - 2(t,)) +
ra {01+ 0)2 (1 - 0A))E 0 4
1/2 -1 e
b (1 + 02 (1 -0 + 1 un) (10)
We also have
(t, t,0"72 (z(t,) - 2(t,))T Q" (2(t,) - F(1,)) €
¢3(t, t0"72 {1 ) - 2t )" @ @aty) - 2ty 4
s (2t -zt )T o (2t ) - =)+
4 @'ty - 2100 9" (21, - a(ty))) €
¢3 (1, 1072 {at, 1,072 & 4 17! PM) ¢ 1 L))

(the latter - in view of (6), (7)). The resulting inequallty
together with (10) proves (5.16). ® '

5.9.5, Lomma 5.4.
(1). We have O_(u) = r ¢" + & Diag(s;%(u)) 2%, whence

wint 8/t, F2(2)/3(Y)e oor o FE(TV/.50Y) ) 9,12) &
< 0,(y) < max( 8/t, [{(T)/I{(Y)s ous 2y ) oz,

or
minC 8/t, L2(2)/150Y)0 oo o FELZVLGIY) Y &

< w2z 0 y) 9,3 <
¢ max( a/t, L2@)/2)e ven o LR Y
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The latter relation immediately implies (5.20).

(11). let 8 = (t/t*)"/2, and let v, = O (t.2)/5 (¢V,
Then, by virtue of (5.16), we have g

(1 - v )20, Sty (m (102 07" + PA) (1+ 0) o).

moreover, 1/2 € 62 £ 2. Therefore 2
max(v,,1/v,) € O(m 1n® @ + W*(A)).

It remains to notice that f,(z')/f,(z) = (t'/t)71/2 y

5.9.6. Theorem 5.1.
19, (5.28) immediately follows from a).

2°. Let us verify (5.27,). For k = O this relation ho

by virtue of the mitialiaatian rule and (.17). Assume ¢
(5.27,) holds for eome R < k* and let us prove that (5. 7.4
also hﬂldﬂ. Denote C, = f1.,(Z,). Then by virtue of
have 4
? C, € f2.,(2) €972 C,

Furthermore, (5.25,), (5.26,) and the
I In(t,/t, )] = in n imply

o'’ t, @ <0, <pnt, Q.
Consider R™ as being provided by the scalar product
WU, = ul t ﬂ, v, |

and let | | be the corresponding norm. (1) and (2) mean tha
Ty, 18 8 strongly convex function with respect to out
Euclidean structure with the spectrum of the Hessian belonging
to the segment
ir,R] = (q° p~' 1,972 p Mi;

in view of h's definition process b) describes the us
gradient descent method as applied to fn o Thus, by
gtandard arguments, we have for all {
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(fps1Tnot PR Q 15,403, ) & (1= PR B o, - :rI|E;:31
re z‘ is the minimiser of 1. i

By definition of q and in view of (5. 27,) and L.5.4 we
pave T ”hﬂ lﬂr (z,): hence F‘f acinc:ldaa with ,rh” in

a neighbourhood of 2t Ty, ¢ llhicn naana that mh - 2 (ty, )
gy virtue of €.5.1. relation (5.27,) leads to

e, - = (-2, Q) (3 -3 &
%o (z, - T3)° @, REYUEN :c’)-pt (z, - L)% (z, - =) +
§s (1 - I;r(“"h} TP < p (1 e Eo{m (t'32 -

$=1

/2,2 ffE ?fE 2 -1/2
L1207 4 Poa) (1}/2 4 2]1%) }”n’m’ "

whe

+pm{’?“qa’2ﬂ0(ﬂq} - ()
Theretare (3) implies
(72,2 DT 1) Q I3, (2 o) € (1 - 0(g*))* O(m a6, (5)

whence
1< 1* = 0(g7%) (In(m/q) + In(1/w)). (6)

= =1 f .
Let v7y, (%) = t)" @ 7psy(%) be the gradient of *f,
with respect to our Euclidean structure. Then
197y 1 (Tpy )17 € F
(this 1s the termination rule in b)} Hence

Iz,,, - 2 (t,, )1 €p M Q¢ w. Rl A
Noreover, we have. (see {1}. (2)) :

*l'twfI (. J St ) S pn g g,

and (7) implies
E ]

th-.l-f E ”mr”r £ ,mt‘ltmr” (Zyg = T (1)) &
+
<p? 7’ g% P, . (8)

which, by the cholce of w and by our ntandard arguments, leads
0 (5. aﬁ' g1

Netirze that (5.27,,,) implies (5.17'); the relation t'/t
2 2 (at the maln stage), t'/t € 1/2 (at the preliminary siage)
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imnediately follows from the termination rule (see cn;-_
our procedure solves (7). g

procedure. It 18 easy to see that the total cost, ', ul |
computations mludtng the I.MJHM of the matrices Q,
not exceed O(K* 1* mn), X* = k" + 1. Now let us avalunta
total cost, N", of the matrices updating. Pirst of
can be produced at the cost, < 0.(m n'*T) (see L.5.2). Now 1

Caeaidedn, neg e B
Then, by virtue of L.5.2, _
- ¥ <o mn’tT) + E , OylHimry)) <

‘%“"“T*"J+Eﬂurn“h+z e

where ¢ = (R | ou:nz*, r, > nl,
$=(R|OGRCR ry €Nl

Let 98

n0 =0« i (W), = |In@,(t,, 2, ME (4T )]s
1€t em 1 <REA,

It 18 clear from d) that

re 3 op < o(p-1)"") 5|h"| /
2=0 ) !

Purthermore,
Fony <o Koo,
amal 1 pao 12
We have (see (5.19) and C.5.1) '
o !
23 2 “lg
<4 “I‘ifiﬂil{tlﬂ'J:lffj-ﬁlul' T 10 ”uf"nn” (FpeTp)) S

s el §

<om(n-1)7%+1); ' (11)
since R* € 0((n - 1)-1), (11) mplies
r & 0((p-1)"") Om + &2 (-1)"") <om (p-1)"")  (12)
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(the latter - by (5.29)). Hence (9) implies
g 0y(ry, n"*T) < 0((p-1)"") Op(m n™*T),

g 0,n% rl) < 0,012 (wie))T nf) <
oy 4
< 0((p-1)"1) lilr:'ﬂli"".l""r nin?) < OT({'q-iﬂ" aTn?) 0((p-1)"").

pnus, (9). (10), (11), (6) and (5.28) imply
" <ouq* (1) mndnm g’ A7) £ ma"tT 4

s (=117 (p-1)T ml n?),
ulE+D' .

5.9.7. Theorem 5.2.

The proof of this theorem 1s quite simiiar t» the proof
of 1.5.2; now we use the rate of convergence estimates for the
noptimél" smooth convex minimization method (see (Ne. 1982])
instead of the estimates for the gradient descent method. &

5.9.8. L.osma 5.5.
(1) 18 obvious.
(11): by (5.24) we have

¢’(a) F"(u) < P"

-2
" a@)(®) € q7%@) P'(u),

thus for

7(z) =8¢x)+F, .q,(%)
we have

¢P(a) fU(u) < 17(z) < 2 (a) 7(u).
Furthermore, (5.46) implies

p~' 8 (@) < t"(u) < p 8 (@),

Hence i

p~! ¢?(a) 57! < f"(z) < p q%(a) S,
or _
gince

I,‘ = Slfﬂ' !"rx) SUE = S—ff? n;-d‘.(mj Sffd'?'
we have
IS—’J’E ﬂi

i.d,6(%) S'"2) <pqa)-1=p(1+a)-1<0.25
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(the latter - by (5.45)). (11) 18 proved.

(111): let & satisfy the premise in (5.49). Then
(5.45), we have : %

Ca>2p, (mlnf(ast) + WF(A)), 172 S8/t € 2,
whence, by L.5.4, applied with

gt =2'8), t'=8, '(8) =Ky, (2).

The latr.ar inclusion means that 6, (:r'(n)) = 0,
ﬂ l'.: (8)) = z%(8). =

-

Elglgi m 5#3. ; f ]
: 1. Let us prove (5.56,). (6.56,) 18 true by ¢
initialization rules and (5. 1'” Assume thﬂt (5.56,)
some k < k* and prove that (5.56, ,) also holds. Lot us ~.‘_-_. '
Oii(L.de?t o X
S Ay Qo Uy T Yy g0 Uy = 800 08
~Then for J > 1
v, = R(v,_,), R(v) = 5772 n,rdn._._.irs”"’-' v). |
We have

IR = 1572 0] o (57 v) 572)) < 0.25

(L.5.6 a8 applied tou =&, d=d t = t,, 8 = ;i @
conditions of the lemma hold .by (5.56,), (5.51,) and ‘th
relation |In(%,/t,)| € |In(%,/%,)| + |In(t/t))| < |1n(t*
+ lnn<0.06 + 0.056 = 0.1).
Thus, . -If; .
J&(v) - R(v')] € 0.25 v - v'}. '
In particular. thera exists an unique point, v*, such thnt -.
R(v*) = v, .

and for each v one has
Jv - v*) € (4/3) |v - R(v)).
We aiso have for J > 0: Jv, » v'] € 477 |y, - v*], whence

(5/4) vy - vgl > v, - v*}, or

lv, - v*] € (5/4) 477 |y, - vyl 3)
Of course, we 8150 have ke




o Wil

joy - V'] €477 v, - V') (4)
20, Let us prove that
i- Yy« Ky(z,) = MP?i.yNJ < A (5)
and .
[ ') e Ky o(2,) = Yy < Ko(Ty). (6)

135““”3 that the premiae in (5) holds. Then we have

M ogl? |3-w Wo - Y2 = (Yo - y)" § i ”ﬂ'}
-',;ya Yu)T T, @ (Y - Yy € PlYy - YT rr"’ I"(x,) (Y, -
 (we have taken 1nto aceount {5 50,), (5.51 }J Hence

v, - vyl® < p E (7 (2, = L)V fff,r ) < pma?
(the latter - since yH = Eami”' Hence (4) implies
joy - u"l g (5/4) 47N p!/2 g!/2 q, (7)
We have R(v*) = p* o OF
|R(vy) - vyl & 1.25 oy - V'] <2 - WptR pheE o
Since
n,h.;ﬂ_m;fw =y-5 fﬂ;’{)'fﬂ) for y e K (z,), (8)

ouwr inequality implies
'S-—fﬁ?fyn - tﬁﬁ'%ﬂ = S—U:‘H"' < 247N Pr.f.:z n'’2 q,

ar
rrf‘}glrry,,uf 5 rrﬁ{r{y,)r < 47 o g o, (9)

We also have for y « K I.T,J (see (5.20)):
(# )nz,) (1 - rﬂ’ )"(y) & rF‘i’ )*(z,) (1 +8),
e —Lm.a:{ Fiimd u)"-'. |1 - T/t ) T
or, since
p~l:gelig {F‘fhj't‘.rlj <ip8;
P! (1-8) ST & (Fg)"y) Sp (1405,

50
(R )y €p (1 - 807 5,
t

and (%) implles
P ) = () ()T T SRNIURRIE PRVRIR
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£ J“Elfl p r’ EJ‘Hf m aE 3
Hence, by the choice of N, the conclusion in (5) ho
Now let us prove (6). Assume that :

" = ' (t,) « Ky,,(Z,).
By (B) we hava : 2
n"r"* .1‘{: ) =z*, or S’”“-’ 7t = v,

Thus, .
lvp - v*12 = 157" %2, - 2")° = (2, - z';fs-'rzi;: ,
<p(z, -2")° ri‘l’ )"(z,) (z, - 3') =
= p 3 (f,(2).- 1,(")P 173(z,) < p mo?,

t=1

which together with (4) leads to

oy - v'12< 4% pm d?,

or 2

(Yy - 20T 8" (yy - 2*) < 472N pm .
The latter inequality, as above, leads to

(yy ~ 2*)° (l‘f.J'(I,J (Yy - ') € 472F p? m o,
or to

B 1y - 1,0 122,) < N P ma,
Hence

12(2*)/8 (2,0 - 1, (Yy)/t (20| €« 477 pm'/Z q,
or, by virtue of z* « K, ,(z,)
(gt (xy) < 221 (z,) + 4 pm'Paxg
<1+a2+4%pn'/2aqa

and
72 )/F tyy) € (1 -2 - a8 pm'/Z a)’,

(12) and (13) together with (5.45) and the derinitiun of :._
imply the conclusion of (6). g

3%, Motice that, by the choice of n, we have z'(1,) :
Ky, 0(7,) ( see L.5.6.(111)). So (6) means that y, < xar_‘__
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?imﬂ was announced in Comment). By virtue of the Comment we
g
| bave Ty, = Y(3,,8%1,,,) « Ky (),

:“-‘gch- by (5), implles (5.56, ,).

| hus (5.56,) holds for all k, OK R < R" + 1.

| 4°. (5.56,% ) together with (5.55) and the termonation
" pule proves that our procedure solves (¥).

50, It remains to evaluate the arithmetic cost of the
| l,ﬁ;,c:autiu,t‘ﬂar. By L.5.6.(111) the total number of operationg
grcluding the updating of the matrices Q. does not exceed

¥ =0mnNLE'), K*=R" +1<c,(p,a,h) m'’2 (14)

(the latter - in view of (5.55); from now on c{rp.u.h} depends
on Pr G A only).

Let us evaluate t*the total number, ¥, of operations
peeded by the updating of the matrices. As in the situatlon of
g.5.1, we have

U" < Co(PsasA) O (m n'tT +m E* + (p-1)"V(K*)""T mY n? +

(the iatter - by (14)), The latter inequality together with
(14) completes the proof. @

Section 6. Acceleration of the barrier method, II,

In this Section we describe one more speed-up atrategy
for the barrier method as applied to the linearly constreined

quadratic programming problem (5.1).
Below we preserve the notations from Sect. § and all the

assumptions on (5.1) from the beginning [ subsect, 5.1,

6.1. Description of the accelerated barrier method i ~3
follows. The accelerated method, as well as the barrier methcd
from Sect. 3, 18 defined by the parameters

L P P .;'“'a*
patisfying the relations
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+
i O-:?.Icl;fleflafl_.

Ay <A< AL, ?.; <Ay <A o
0L & 179, (1 - w(h,)) 2 PiA,) < 179,
(1 - aA3)) 2P (AS) < 1, &

and by a starting point w « int G,

In what follows we regard A; , A, , A, , Ag,
haolute constants satisfying (6.1) and (6.2).

Let :

v _ m{n_mrfn-'remnw} (€ ), 1
0 = 10 ((n*)(1*]) m- (14711727 (2437-7°)

¥ = 1mV/2 ntV(243-T),

K=m'"2¥'t,L=EKM.

Notice that n' < m.
Denote
F(z) = B2, In(1/f,(2)) ¢ G' = R.

Then F « 2(G,m) (T.3.1.(1)).

coneists of two stages - the preliminary and the main. Each ¢
thege stages corresponds to a set of objects ae follows: @&
convex quadratic form ¢ on A" = E; a number # > 0; an 1initial
va]ue. t,» Of the iterations parameter t; an Initial point
- G': numbers A, A' s (0O,A,). T
These objecta for the praliminm-y stage are as follows:

p(z) = DF(w)lw - 213
e o N i

0 iy 4
2 = expl - o AL SO ey
4

For the main stage the above objecis are:
o(x) = [, (2);
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- 4 ig the result produced at' the preliminary stage;
= (Ay = MPu))/9fo(w)), p (Where | |, 5 18 the norm

mducecl by the scalar product DPF(u){ , ] and v 18 the
ent in the corresponding Euclidean structure);
g ?b o ?ﬁl [ ¢
E-Ep{hrj*_h-ff?gﬂ}h LJ"'I;"'

6.1.2. A stage corresponds to a family
| o= (6" F (z) = t ¢(z) + F(z)y R*), 00
wnip family 18 strungly <elf-concordant with the metrics

pp(Feitst?) = m'72 + v) v7 [ln(t/t")] (6.4)
2.3.1)- Moreover, 1t 1s clear that for r « G', ¢ > U cne has
Bz = t ). (6.5)

At a stage of the accelerated method approximations z, to
-;:: pﬂliﬂtﬂ
: ! }‘4’ :
r, = argmin{ (2) | s G')
produced, Wwhere t, t 2%, {50,

.~ 6.1.3. Let us start with some definitions. Let d be a
a-dimensional vector with positive entries d,, 1 « 7,M. For .1
s 7. let

r,(d,1) = fa;ﬂ|p2-’ ol ﬂsc‘p‘?-’”d J,

j<2; the mumbers d; p?/ will be called the centers of the
\gones I (d,1). For a pnsitive vector h « f* the vector AU 4
iiﬂ derlned as vector from A™ with the 1-th coordinate being
‘the center of that zone of the family {I' (d,1) [y s 2 )
Ihlf‘h contains the number h,.

We need some classiricat*un of the 1iterations belonging
to a stage. Let us regard the set (0,7,...) of valuea of the
‘iteration number { as being divided into sequential I-element
‘gegmenta; each of the segments is regarded as belng divided
intc 4 sequentlial s-element groups (see (6.3) 1In | the
weonnection with L, M, N).
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§

 6.1.4. A stage of .the accelerated method 18 as follom

At 1t i-th iteration we are given positive m-dime vl
vectors h‘. a*, a nn -matrix

= (M(9,d1ag(a’})”"

and a puint*: «G'. 8

From now on the subcripts at d's and h's mean g

coordinate numbers of the corresponding vectors. e

These objects are produced by the use of rules as follo

(1n the below description the numbers in angle brackets mea

arithmetic cost of rule's implementation): (.

1. Updating of h', d*, q,.

I.1. a) Compute
a* = drt .2, ,)

< 0(mn), L.5.2.>, II { 18 noi an initial point of a
go to 1.2,

b) If ¢ 1s an initial point of a segment, sel

: h'l- = di d“

and computs the matrix lfi(.f‘ ;) <Oym '), L.5.2>. Then
compute @, in accordance With (6.6,) <0.(n1*2), by detintt;
0L T .

‘At the preliminary stage also compule

ARz, ) = t7' (P} nri_,u’ Q (¥} (2,_,))
(the equality - by (6.7),(6.6,) and (6.5)). I:r MP,Z,_,) Shel

then the preliminary stage is tarminatad.litn the raault u ﬂé{
s Z,_, <0(m n)>. Otherwise go to Il. -

L
.

<0(m)> and, using Q,_,, a**, d**', compute | 4
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Q) = [M(¢p,d1agd’“})" - (6.10)

0.(m+ L R(4))), R(1) = [(Le T | &t e &N,
citue of (6.6, ) and L.5.2>. It ¢ 18 not an initial element

DIEEI'UUP- set
l_h"'—f. d'l - d+‘|-- _QII {6.'1’

(nence (6.6,) holds) and go to II
b) If { 1s an initial element of a mup. get for 1 «7,m:

- in the case of |In(dj;'/n;™")| > 1

d‘ = h‘ d" (6.12)
- n the case of jlntAt'mi")) g1 2
h{- = hi [ d'l d'!{' ; {E 13}'

<0(m)>
Them, using Q}, d**, d*, cnmpute Q, 1in accordance with

{ﬁ 6,) and go to 11. < 0 (L(n,p(L)) + n}. p(t) = (1 | ﬂ* #
a* .l|. by virtue of (6. 13) and L.5.2>.

11. Updating of x,.
I1.1. Perform
N(p) = Iz pIn2A (1-2)"T(A' =a*)"1). 0+ 1 (6.14)
steps of the process -
ry=ry, ta Q H(t,,x,_,)3,;
S il IR Tad :
U, = uJ_, ta, 8. _ ® (5.15)

u,r, a are vectors from R™;

ﬁj'= T

g =
"t
Taf
-

mtwiamagmMMurﬁatammtﬂ
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H(t,z) 18 the Hessian of P'f at a point x;
S, = M(¢,diag(d,}) = q;'.

11.2. 'Gumputa
"y Tkl T Muep)”
The !-4'.]1 iteration ia over.

Conments to II, Process (6.15) 18 the conjugate
method solving the equation e
H{t‘.:‘ 4l Y= b(t,.z, )

and corresponding to the metric induced by the matru -*':3-.
18 easy to show that, under the notations ({ is fixed) e
b= (.2, )i B =Btk JiS=8;q=q5 0
b e S—ffu? bq H = S—ffE' H S“IJ"E. g = S?fn? w
L] J J’
the sequence (z ) 1s the trajcctory of the stiandard
gradientis mal;hoi’l minimizing the quadratic form

0z) = 2T H, 2 - 20 ¢,

under the starting point cholce s, = O. Notice
terminate method's implementatlon after N(p) steps.

6.2. The main result, which was -announced
beginring of Sect. 5, 18 as follows: °
Theorem 6.1. Assume that linearly constrained quadrat:
programming problem (5.1) satisfy the conditions from . thi
beginning of subsection 5.1. Then the above accelerats
barrier method as applied to this problem with starting poll
w« G' 1s such that: b
(1) The amount of segments at the preliminary stage does nof
exceed lhe quantit:,r 3

= o(nEam/(1 - 5, (®))));

(i1) For each € « (0,1) the number N(€) of the segnents at ‘-.-;;._-_,
main stage which 1s required to produce an approximates
golution z° & int G such that :
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$(z%) - ming ¢ < € Vy(¢),
ﬂtiﬂﬂea the inequality
| N(e) € O(In(2m/€) ).

441) rhe arithmetic cost, ®m, of each segment of iterations
Nt the preliminary and at the main stage) satisfies the

ﬂﬁqﬂ&liw 7) r,{)
.
m < 0 (m 1T q2) 2V | a1 ¢ an-""T’J. (6.20)
ghere
r () = (2 + 57+ )4+ 67-27)
,~2(1)=;4+51-T?}xre+31-121
and

r(Y) = (10+ 157 - )2 +37- 7).

In particular, the total arithmetic costl W(E) of
produc ing 7% satisfies the relation

r. (7T) Y)
g W(e) € ﬂ,r{fm A m"ff T san'T)meme’ ")) g
< ﬂTfm"”*‘ln{.? me' o'y,
8= (1-%, 5,0 A | B

6.3. Proof nf Theorem 6.1,

A. Lemma 6.1. For each iteration number { of the slage
under consideration: :

T, int G; (1,)
the matrices S, and 4, are symmetric positive definite and
=1 ; =
t, p S‘GHH‘.I‘_,I €1, p S, (24)
the relations :
ME 2, €0 (3,)
MA Lz,) €A (4 )
¢

hold.
Proof: inducticn on i.
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(1,) 18 obvious for the preliminary stage; this pg
holds for the main stage by virtue of the fact that gue
relation holds for the iterations of the preliminary &
(notice that the statements concerning the prelimm_.:
arg included into the inductive premise when Justifying
statements concerning the main stage). (3,) 18 obvious Qi’ .
preliminary stage by definition of the cnrreupanding &t
relation holds for the main stage by virtue of the terminaty,
rule used at the preliminary stage (see the proof of P.3.4),

To complete the induction we must prove the implication

U)o J &t = (2),
(2,)8(3,) = (4, )&(1
4,) = By,

(1) 18 i by 7.2.1, the detinition of x and (6.4)
the proofs of P.3.3, P.3.4). |
Let us verify (5). We have

- Kk p,d18g(d")), H, = H(t,z,_,) = t, lfqr.diag{d‘

In the case of (6.9) one has d** = d*; in the cases of (6.14

or (6.12), (6.13) we have ’
p! d*t < d* <pd't.

These 1nequalities together with the definition of §,

immediately imply (2,). - s

Now let us prove (6). Let { be fixed; let us also use the

notations (6.18), as well as the abbreviations

F, = F,

t=t,, T=2,, i,
thus P & S*(U*.E} (by P.3.1; m:all that ¢ ' quadratic). ]
1“. Let z, = H,' b,; by the usual pmpertiea of the
congqugate gradients for each S we have (z, -2, )TH ((2,-2 j = ﬂu
thus N |
gy Hy 8, = e, 8, - (2, - 5)% H, (2, - 2,). 8)
But 21 H, 2, = u, H u,, where u, 18 the solution to (6,17),
or, that 1s the same, ;

r 2 2
g, H, 2, = A°(F,,x) € A" <1/9

if’)'
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 (we have taken into account that

AZ(F,,2) = (F(x))T [Py(z))” Bi(z) = 0" H' b = uj H u,
and have uaed. (3,)). Thuﬂ (8) implies, 1in
ﬁ“nrz Hy 2, -u_,Hu_f.

uj Bug 2y Bz, <A%< 109, (9)
go C.1.2 glves us

.:r—uJ-G-'.J;-D._ (10)
and, ;ﬂ pi::iﬂular. z,,, « G's which 18 required in (3, ).

8, = (s, -8)* U, (s, - 5,))'%

(= ((u, - u)" B ru.';zu,u""?; and let

| 8,(%) = H" "°FPLr - T u)
for 0<t <1, Then

: 172 ,, - (4172 (pof(p) - Po(7 - -1/2y,y1/2
gj(v) + 0172 uy = (12 (Py(z) - Pz -t u DHENH P,
whence, by T.1.1. and (9), in view of P, « S1(G',E), we have

18j(%) + 72w, «M(1 - sA)F 1), 0 <<,

which leads to

W72 Py - w) - B2 Rix) + 'R ug), €AF(1 - A,
or, in view of Fi(z) = Hu, to
1'% Fy(z-u ), € AP/(1-A)+ I 2 (u-u ) = AB/(1-M)ve,. (11)
By T.1.1 and (9) we have:

(1-A2 H <SPz -uy) (1 -A)2H,
which together with (11) implies

WEYUT - uw)) "2 Rz - udl, € A%/(1-0)% + 8 /(1-M),
or, that 1s the same,

MP,,T - ) & AT/(1 - AP + 6 S = A). (12)

3°. Let P, be tha space of real polmomialn of re'l
variable of degrean < J. Then
J - PJ{H‘} H. E'l
where
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« Argmin{ (p(H,) H, 2 J'.E (p(d,) B, E.J <
-24]8,pH)H, 2, | pey, Vel A

or, that 18 the same, '1';,

« Argmin { |82 (1d - H,p(H,)) 2,13 | p «
uhence > v :':--
1

i = (2, - 8,)0,(8, - 8,) ¢ |H (14 - H,p(d,)) l'['
Thue, mr each p « 1) we have .

6 < max® |1-tp(v)| W, 2,13,

where 3 18 the spectrum of the matrix H,; by (9) we have
e, <A Eﬁlf—tp(t}ﬂp-‘}_’. )

let q, « P, be such that

] -5 qut} = o

= P00 < 21Tt s 1p)/tp-1/p)) (T,( (p+1/p) / (p-1/p) )
where T, (8) = chu arcch(s)) 1s the Bhahysha? polynomia:
the degree J. (13) for p = q, gives us ‘
g, & A T;'rrpnxp}xrp-—rfpn 7

(we have taken into account (2,)) , which immediately implj
the inequality \
e, «2rexpl -2J)/p ), J 315

the latter together with (12) and the definition of N(p)
to the relation .

which 18 required in (4,). @

B. It 18 not difficult to derive from (6.3) that 1if

W= (ml”72 n*JT”{‘?*S'T'Tz}. K* = n”zfl')". =K' =m
then " "
¥=0(*), K=0(K"), L=0L"). (14)
(14) immediately implies that 1f the numbers {, (' belong tﬂ
common segment of iterations of the stage then o
|In(t /t, )| € 0(1), (15)

and 1f these numbers belong to a common group of 1temt1ﬂ
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3 _
E |In(t,/t,,)| € O(A), A = 1/K* « [O(m™"/?), O(1)].  (16)

The results of L.6.1 and relations (15) 1in - the same
genner 88 in the proofs of P.3.3 and P.3.4 prove statements
g.6.1-(1) and T.6.1.(11).

¢. Tt remains to prove T.6.1.(111). Notice that (6.21) 1s
gn immediate corollary of the preceding statemenis of the
theorem, 80 we must prove (6.20).
10, Let T = {t, | t » 0); let us write for t =t :
z(t) instead of x,_,,
F, instead of ¥},
Let also
O (t) = t"E g (2(t)), t « T,

b, (1) = t!72 1 (z,(1)),
z,(t) = argnin{ Ft(.r} |z« G'), t >0,
By €.5.1 we have (Y t,t'« T) :

m

2 @08) - 9112 (By(t) (t))7" &

& Ottt 8 <yt S0 00TV S - (17)

29, Let us fix'a segment of 1terations and let I be the

corresponding set of values of the iteration number, {, and

denote bY J,4.e.s Jg the sets of iteration number values for

the groups of the segment I. The remarks on the arithmetic

cost rules involved into the method (see method's description)
imply that

. K
mec<omntT +mnip)L) +3 3 0,(L(n, k(1)) +
T J=1 teJ
K J
+ 3 2 0(1n,p(1))). (18)
J=1 'IGJJ

1In view of the rules I.1 and [.2 we have
A [{J. { isthe initialelement ofasegment

At ql-1 (19)
[Uct)|,U(t) = (1 «T,® | d;"#d;” ") otherwise

and
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0, t 1snot the initial element of & groun .

p(t) = 1s ainitial element of the group .4

IV(t)|,V(t) = (1 « T.R| d‘ # dF‘J. n_fﬁ;%T

let {(q) be the initial element of the group J e
is clear from the description of thc method that Bt
RE(@) o pH(@HT o L pbl@)eN-1,

W
4

let I .fi-IiHQJGliifﬂJiLl.l By (6.7)
definition ar ¢,(t) we have

d* = dt .z, ) = (0208 )e b (8 )T |
thua in view of (17), (14) for 1< q<Kand { « I_ one ha

{fd‘i}h"ﬂ d"‘rfﬂ']}.f!ﬂj?{ﬂ'i d"‘fﬂ]}'h"a < UT{' ﬁEJ;
I:H

Let q be fized. Let us call a pair (t,1) « I, x T,m |
event 1f the number dj does not belong to the go
Ty(h*(9’,1). Let us verify that if I\ (t(q)) =13, and §
« U(t), then either (,1), or (i-1,1) 18 ar event. ndeed, §
for some { « I" and 1 neither ({,1) mnor (¢{-/,1) are events
then d;*~' « T, 2(n*(9),1), which, by (23), "implien d, (1)
h”q}.{lj. 81008 a;t« T, rn”" ,1), then by (22) d}* = h‘ al
Thus d} = d;*”’, and by (19) 1 =« U(t), Q.E.D. g

Tha nbova arguments mean that for { « Ig the quantity
R({) does not exceed the total number of events of the form
(t,1), (t-1,1). If (¢,1) 18 an event, then e

|In@}*/mi @) > inep), 1
while (6.12), (6.13) imply g |

Thus
|n(d;*/d}* 9| > In(pse) 3 1

(we have taken into account that, by (6.3) p 3 10, since w,(7)
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.- gnd hence n, € m). The latter inequality means that the
& i (24)) nnrreapnnﬂing to 1 under consideration is not
A jer tnan 0(p'/2); thus, the number of events of -the form
=) does not_exceed 0, (m a2 p~1/2), The number of events of
iaifﬂrm (1-1,1) admits similar upper bcund, thus, by the
ve argumenta.

C R(l) € {JTfm A% pTHA) 1 - I"" 1€q¢<K.

since u 1” =1\ (t*) (¢* 18 the initial element of the
: =1
.impmn* I) and krt ) = 0 (see (19)), we obtain

§ % o.1n, k(L)) <0 ((n*)2 mY 42T 772 1%)  (25)
J=1 {eJ T T
otice that'm A2 p~'/2 < n* by virtue of (6.3), 80 1(n.R(1))

¢ ()7 ET(L)).

4°, Now let us evaluate the latter sum 1n the right hand
\gide of (18). This sum is of the form
K

S= 3 ZO0,(ln,p(t))).
J=1 ieJ T

Hnt1cp that, by (20),
S : gummuquxom?ﬂ:’U+nrM”PL

=zmqu ' (26)
q=2

fFor 1 € q € K let 89 be the m-dimensional vectors with
goordinates In(ht(@’), r9 be the , vectors with coordinates
In(d}*’?’), and for 2 q < K let r*9 be the vectors with
cnnrdlnates ]nld*”‘”} 1 €1 €m. From the description of the
method 1t 18 clear that the evolution of these vectors 18 as
follows:

a =r; (27)
sl 1L R

> 1 » 87 = 28

T ¢ { r9., otherwise ol

3
Let us verity that for q 2 2 also

pit(qr) € \Vql.
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V@)= «TH& | |85 -rf) > 1), R
Indeed, 1f 1 « V*(g) then, In view of h*(®)- - pi(a-1)
does not vary at the iterations of one group) and by -

we have
Iln{hifﬂJ 'fd"‘{q:')i <1,

thus by (6. 14) a”‘” d}*€9] therefore 1 « V(q); thus,
v (q), which, by virtua ur (20), proves (29).
It 18 clear that
|In(a/a')|2 < O((8'/2 - (8')'"2)%(a 8'}"'72), 8,8" 5 0,
As 1n 3" we have :
s4(q-1),1/2 _ (@) y1/232 4%40q-1) 3%4(q)-1/8
% ((a! ) (@ €9°)1EF a9 Y

2
€ OTrm A®),

=1

which implies

I - r7E < 0,(m A%),

or |r? - r""'|ll € O(m ). Since (27) - (29) imply

hmum;qnwﬂ-ﬁﬂh.
q_..

P g GT{H A K) < ﬂT(lJ.

Relations (30), (25), (26), (18) together with (14)
(6.3) prove (6.20). ® ' -

we get

Section T. Extremal ellipsoide

7.1, Inscribed ellipsoid. Geometric formulation
of the problem.

In this section we study a concrete geometric problem
follows. A& polytope

K=(zeR'|a,z<b, 1<t &nm)
is given (by the list uf the above inequalities); from now nﬁﬁ
We assume the polytope to be a compact with & nonempty
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intertor (K « Cg(H")). We also assume that a, # 0, 1 £t < m,
rhe problem (it 1s denoted by »(X)) 18 to find among the
el1ipsoids contained in K the one with maximum possible
yolume. We refer to the problem as to »(K).

This problem arises 1n connection with the IEN -
ingeribed ellipsoid method [TKE. 19881 for  convex
nondifferentiable optimization. The method minimizes a convex
function f, for exampls, over n-dimensional cube up to
relative accuracy v in O(n In(n/v)) steps (i.e. evaluations of
fand /'). Notice that this number of steps can not be reduced
(for each v < 1/2) by more than an absolute multiplicative
constant (for precise formulation of the latter remark see
(NYu. 1978]). Each step of the IEM reyulres Ifinding an
g-solution of the above geomeirical problem (i1t 18 necessary
to find an inscribed ellipsoid such that the ratio of 1ts
volume to the optimal one be » exp{-e)}, where € 18 an
appropriate absolute constant). In ([TKE. 1988] the latter
problem 18 solved by use of the ellipsoid method, which
requires about O(m®) arithmetic operations per step. Tt turns
out that the above barrier method decreases this ‘amount to
om**® 1n m). In this section we describe the corresponding
implementation of the barrier method.

We study »(K) under the assumptici as follows:

(I) K contains an unit Buclidean ball V centered at O and
is contained in a concentric ball ¥ with the radius v,

Herein v 18 a given parameter; notice that in the case of
IFM without loes of generality one can teker =2 n (and m <«
O(nlnn)). -

7.2, Algebraic formulation of the problem.

We can reformulate »(X) as follows. Let I e the space
of real n x n - matrices and L' be the region in L formed by
matrices with positive determinant. Each elljpsoid in R™ c¢™n
be identified by 1ts center u < R" and by a matrix B e L) 1in
the following manuer: |

H(B,u) = (z =By +u| Jyl, € 1).
Notice that, under appropriate cholce of the volume aull, Lhe
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volume | | of an ellipsoid H(B,u) 18

|H(B,u)| = Det B,
and the inclusion H(B,u) < K is described by the
system

1B a1, ¢b, -a] u, 1 €L <m;

this system will be referred to as e(a™,b™), where a"'
the collection of vectors a,, 71 € { <m, and p™
collection of numbers b , 1 i { €m. g
Let ¥(B) = 1n Det H :1. + R, #(K) can be I‘Efﬂl‘l‘ﬂﬂg
follows: i
*(k): to find z = (B,u) « L’ x R" satisfying qra“-.b'_“?t-
marimizing under this restriction the objective ¥(z) =
Det B. o
Notice that after the above reformilation the m
accuracy (1 - exp{(-€}) In the volume value correspor
absolute accuracy € in the value of the objective .'
into #(k). An ellipsoid H(B,u) will be called E—opttmlf,
8 contanied in K, and 1ts volume 18 > (1 - exp(-e)) ‘F*.._x
v* 18 the maximum volume of ellipsoids contained in K. H

7.3. #(K) as a Convex Programming Problem.
A representation of a given ellipsold as H(B,u)
unique; if U 1s an orthogonal n x n -matrix, then
H(B,u) = H( BU, u ). o
Hence we can restrict the B-component of the variable z
(B,u) involved into #(K) to be symmetric positive def "i" .
This restriction leads to a convex programming pmblan. 3
fact there 18 a lot of convex programmins problems __ 1
equivalent to »(K); now we describe these problems.
Let S be the space of symmeiric real n x n —matrican
S be the subset of S,, Tormed by positive definite matr;l
;ghiﬂ 18 an open con?ex cone in § ; 1ts closure we derote
Let for T « L' Ta(a™,b™) denotes the inequalities aru
with respect to variable (B, u) e L x RY: e
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IB" a, |, <b, -aju, 1<t gn.

. ider the problem
4(7,K): to find z = (B,u) « S} x R* satisfying Te(a™,0") aud
pinimizing under this r'eatrmtlm the objective ¥(z).

problem »(K) and »(T,K), T e L', obviously ATe
wnaiﬂtent Let the optimal values of thelr objectives be v*,
"1" respectively, and let Mﬂ) = v(g) - v* for a »(Kk)-feasible
point Z, Ap(2) = ¥(2) - u for a »(7,K)-1easible point z.

pemma 7.1, Let T« L'. If 2z = (B,u) 18 a feasible point to
#(7,Kk), then Tz = (TB,u) 18 a feasible point to »(K), and
AfTz) = LT(EJ. (T.1)

The lemma shows that the solution of »(A) is equivalent
to the solution of each »#(T,K). Each of the latter problems 1s

a convex programming problem.

7.4, Problems »(T,K) and the basic barrier method.

Let us discuss the basic barrier method application to a
problem #(T,E). Let E = S_x R" and let this space be nrovided
by the standard Euclidean structure with the scalar product

((B,u),(C,v)) = Tr(B*C} + u'v.
Denute by G(T) the closure of the Tfeasible reglon of the
problem »(7,K):

G(T) = (z = (B,u) « E | BeS9, |B® Ta,], <], - a] u,

1 €L g nt.l
It 18 clear that G(T) e L'B(BJ and that the function
F(z) = 2 7(2) - ‘Erln{rb aju)® - 18 (e )1%) =
=2 %(z) + B(2)
is a ¥-self-concordant barrier for G(T), where
=2n+2m <4m

(T.3.2; since K is a compact, we have n « m). Notice that ¥( )
is 71-compatible with this barrier (P.3.2). By the condition
(I) the point 2 = (5 I_, 0) 1s a good starting point for o =
problem, thus #(7,K) can be solved by the basic barrier
method. It turns out that to find an e-solution to this
problem by the latter method 1t needs no more than
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o(m'’? In(rm/e))
iterations of the preliminary and the main stages. Each
these 1terations requires to form and to solve certain gyas
of dim E € O(m®) 1inear equations with dim E variableg, -
easy to show that the standard 1mplamantatinn of tha
procedures costs no more than o(m®) arithmetic operation
(even 0(m®) operations, if the conjugate gradient method ¢
applied, because the matrix of the system turns out to e
sparge). Thus, the straightforward application of the barries
method to #(K) produces an e-solution at the cost of ’“
In(rm/€)). The intrinsic symmetry of the problem allows us ,
improve the cost by the factor O(m).
The idea of the speed-up can be easily described Inr--*fkg
main stage, where we need to compute Newton's direction
functions of the form 1
Fl(z) = (2+t) 7(2) + ¥ (z).
This camputatiun (at a point z of a general form) costs gf
operations (for simplicity sake we replace the powers of n*:%?
the same powers of m). But 1f 2z has a special form - namaly
= (I_,u) this computation costs only 0(m*) operations. So s“g
us try to perform the computations in such a manner that f_";
only points in which Newion's direction is computed would be
the above special points. It turns out to be possible because
of the freedom in problem's formulation choice. Namely, asg f*
we have performed { 1terations of the main stage and
approximative solution rB »4,), Which 1s feasible to #(K), 18
produced, as well as the penalty parameter value t . | };
Consider the problem #(B ,K). Since (B ,u,) 18 feasible
to #(K), the point (I_,u, ) 18 Ieaalhle to #(B,,K). let Hi
compute Newton's 1terata. (B;,u of (I .u, } (the Newtc

t+tJ'
1:

method 18 applied to the function F, ‘} Now let us increase

...i.

the penalty parameter value in the same manner as in the be :’n
barrier method. Thus, we produce a new approximative saluti-

(B,,, = B, Bj,u, ,) to »(K) and a new penalty parameter value
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B, . Now we can perform the next iteration, and so on. Notice
gat the described procedure needs to be justified - now we
pave not any convex programming problem the barrier method 1s
appjied to. The main 1dea of the convergence and the rate of
convergence proof 18 as follows. As in the case of the basic
parrier method, our aim 1s to prove that the above method
paintalins thasrelatinn, say,
AP, (T u,)) € 0.1,

t
josume that this relation holds for some {. The application of

our usual arguments to #(K,B, ) leads to the relation
B .
ME, LBl ) € (0.1)7/(1-0.1)% € 0.08,
{

1"+
and the latter inequality in the case ol A
2 nra-1/2
ey =01 #:0(0 1) t,

with an appropriate cholce of the constant factor Iin 0( )
implies

B
. i
(*}' ?“{Ft{'*"(ﬁilu{f'ij'} ( ﬂ.w.
We wish to derive from the latter relation that
B
. t+1 .

the difficulty lies in the fact that (x) and (#*) involve
different selt-concordant functions. Let us use the following
arguments. It 18 not difficult to show that there 18 &
nonlinear one-to-one correspondence between the feasible
reglons G(T) and G(T') of the problems #(T,K) and »(T',K) such
that the values of ¥ (as well as the val.es of o7 and oT') at
two corresponding to each other points colncide (up to an
additive constant which depends on T, 7' only).Hence F; and
FT' at the polnts 1n correspondence differ by a constant
(which depends on t, T, T' only). It turns out that the under
the above correspondence between G(B,) and G(B,_,) the point
(B u,,,) of the tirst set corresponds to the point (I 2t,,q)
of the second set. The relation (), by T.1.3.(1ii,1v), means
that FT:+’ at the point (B],u,,,) differs from its minimum

: B
value over G(B,) by no more than (0.06)%/2. Hence F,**' at
t+1
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(I U,/ differs from 1ts minimum over Gfﬁi*,) by <8
than the same amount. The latter relation, by 1.1_3 £3?$~
implies (). B
The same trick at the preliminary stage needs goma
special effort. Indeed, at this stage we deal wWith the
families of functions of the type v i
t (linear form) + F(z). o

We need this functions to be “almost 1invariant® under the
above correspondence between G(T) and G(T'). This cﬂndltff?
holds 1if the (linear form) depends on u-component of 2 only.
and we need some effort to provide the latter property of the
1inear perturbation which 1s dropped at the preliminary stage
of the barrier method. This effort results in g
pre-preliminary stage we insert in the method. This stage '13;
as follows. All we need (see the description of the baﬂtuu
barrier method) is to find such a point 2z* at- which the
partial derivative of the barrier in B-component is close ‘o
gerc; having produced such a point, we can take |
restriotion of the first nrdﬂr differential of the barrier as
the above (linear form}, and z* - a8 the start point quf
the preliminary stage. To obtaln an appropriate z”, we set u :g
0 and minimize the barrier in B-compcnent only. This
subproblem 1s relatively simple and 18 solved at the
pre-preliminary atagﬂ by the use of the basic barrier mﬂthﬂda
(at the cost of Oo(m>-® ln(m r)) operations). g
In accordance with the above discussions we deacrihﬂ
three-stage version of modified barrier method solving »(K). ;f
Let us start with the description of the above mentioned

correspondence between G(T) and G(T').

Lema 7.2. let 7, ' « L}, Consider the mapping Z, ;.. Which
transforms a pair 2z = {Bujesﬂxﬂ" into the pair 2' =
(B'.u) « S° x R* such that 7 B o - (p') (B')°2 (T)T (it 18
clear th&t‘ the latter reiation do define a positively
semidefinite symmetric B' as the function of positively
semidefinite symmetric B). Then zr.r- is & one-to-one mapping

|'h‘l'.".|' .i"
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{rom G(T) onto G(T'): 2 « G(T) = 2' « G(T'), such that o(z) -
w(z') does not depend on z, and ®°(z) = @7 (z'). Moreover,
ET'+T'1B the inverse 10 Z, .. -

The proof 18 quite straightforward and will be omitted.

7.5. Method's description.

To eimplify our considerations, below we choose the
parameters of the method as concrete numeric constants (our
cholce probably 18 not the best one).

7.5.1. Pre-preliminary stage. At this 8tag: we deal with
the problem
) m
# (K): to minimize R(C) = - 2 In Det C - 2 2 (b5 - <C,4,>)
=1 -
_under restricttons C « S0, <C,A> € b5, 1 <1 &m,

where i; = @, a; and <Q,X> = Tr(QTX}) 1s the natural scalar
product In S_.

Let G be the feasible region of » (X); 1t 18 clear that
G « Cg(S ) and Risa#'=2 (n+2m) € 6 m - self-concordant
barrier for G. Let C, = 0.5 I . By (I), C, 1s an Interior
point of G. At the pre-preliminary stage we apply" the
preliminary stage of the basic barrier method to the barrier
k., taking Co as the starting point and L; d 1,. lzl lé, 13.
such that (see (3.15) - (3.16))

+ ' \ P
0 < h, < 1, <Ay €Ay < 0.01;
' + '
Ay <A< 0.01, AZ €A <A, <
0.01; L(A]) € 0.01,, (1 - w(A3)) 2P (AS) < 0.1,
WP(h,) (1 - w(A,))2 € 0.01,

as the parameters of the basic barrier method.
let C* be the result of this application; this point
belongs to int G and satirfies the inequality
A(R,C*) € A = 0,01, (7.2)
Notice, that the number of iterations in the above procedure
does not exceed

N, = om'’2 In@n/(1-%,(C,))) (1.8
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(.3.3); herein «x, 1s the Minkovsky funcilon of @
pole at the minimizer of R over int G.
Proposition 7.1. The following relations hold:

N, < 0(m'/2 1n(em));

R(C*) - min, R € 0.6 A%, o
Moreover, the arithmetic cost of Lhe PTQ"PI'EIMM. -_
does nct exceed S

¥, < 0(m®® In(rm)
operations.

7.5.2. Initialigation of the preliminary stage.
produced the positive-definite symmetric matrix c*, we a 1,
its factorization C* = B,BI, where B, « I’ (at the ,
o(n®) operations). Consider the pmblem

#,(B,.K): to minimize P(B) = -2 1n Det B - ‘E’ln{ba 1B8Tq |t
by the cholce of B « S under the restriction (B,0) < G{R

It 18 not difficult to verify (cf. L.2.1) that the)
exists a one-to-one correspondence between the feasible
of the problems # (E) and » (8,,K) with the following

property: 1 C 18 a rmible poin‘r to the first problem and _.._':'-"
18 the corresponding feasible point to the second probk
then R(C) = 2 P(B); notice that under .our correspondence (
transforms into I . _

By the above argunentn (7.5) implies the relation 3 ;; ;

Pt’IJ-minaP(O.Sl‘?
(A = 0.01), where G, 18 tha Iaaaihla region of the proh}.

?,(B,,K). Let F'(z) = F Pe(2) ve the barrter for the Iaaaihl _
aat G{'B ), of the problem »(B,,K), and let z* = (I.,0). A8 "__
have seen, .J
z’ « Int G(B,); #*(z*) - min(Z*(B,0) |(B, 0) « G(B,)} € 03:\_ 6

(7. }
Let < , >, denote the scalar product in E, defined by tha
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form DPF*(z*)( , 1, and let | |, be the corresponding norm. By
@.1.3.(1v), relation (7.7) implies the relation

vi « S_: |DF*(z*)((H,0)]| € 0.07 |(H,0)1,: (7.8)

poreover, 1f z** = (¥**,0) 1s the minimizer of F* over the set
¢* = ((X,u) « G(B,) | u = 0}, then

PF (2**)12*-2"",2"-2**) € 0.01 (7.9)

(.1.3.(111)). g |

By (7.8), there exists a linear form ¢(w) = <«*,w>, =
(¢**,w) on E (( , ) 1s the standard scalar product on E = S x
") such that |¢*], < 0.07 and the restriction of the form
onto S, coincides with the restriction of DP*(z*)fw] onto this
subspace.

Let us produce this form and consider the lilnear form

o(w) = - DP*(2*)wl + Y(w) = «*,w> = (¢*",v).

Fnrﬂ’:L;andt > 0 let

Fl(z) = t9(2) + 2 7(2) + o%(z) = td(z) + ¥T(2): int G(T) ~ R,

so P! 18 a strongly self-concordant (with the parameter value
1) function defined on int G(T).

Proposition 7.2. The following statements are true:
tne linear form ¢(w) depends only on u-component of v e E;

o (7.10)
ME,",2") & 0,07; _ (T.11)
19"1, s om'’2); | (T.12)

let z* be the minimizer of F*( ) over int G(B,), and let
%,(2) be the Minkoveky function of G(B,) with the pole at 2.
Then - .
%,(2))) € 1 - 0((»m)*); (7.13)
the vector ¢** « F can be produced at the cost of O(m® n®
+ m*) operations. .

7.5.3. Preliminary stage. At this stage we prod =
watrices B, e I}, vectors u, « int K and numbers t, > 0, { >
0, a8 follows:

BO'B‘I HG:IU. taﬂ’j;
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2y, ™ (B, ot,,) = (B, B u

where 2**") = (B**7),u ) 18 the Newton 1tamw .
(1 ,u,) (the Newton method 1s applied to the Iunut;mhﬁ;
t,,, = t, exp(-p), il

Usiels

. 0,08 %
B = ?*ﬂffﬁ—'*-'&~3fﬂ+ﬂﬂ'

The preliminary stage 18 temimted at  the
{teration (i1ts number 1s denoted by i*) when the m],g

.t“

A(D ‘.rr W) € 0.1
holds. The result of the stage 18 the point
5# = (B#}uﬁj = (B 'tullj'
t o P '|
Propogeition 7.3. The following statements are true: “'iu -
the pre) 1m1narr stage 1s well-defined: e

for ail ; 0<{gt* the relatmna

i
h(?tlprnlulJ}) ‘ D"l

B
a.rrt‘.s“'*”) < 0.0

i
hold;

the number 1* of the preliminary stage
satisfies the inequality

t* <om'’2 Inme));

each of the preliminary stage 1teratior. can be parie me
(Including the verification nf the termination cnnditiun,1,.
the arithmetic cost of O(m® n® + m’) operations. e
7.5.4. Main atn.p At this stage we produce matricau ﬁif

L}, vectors v, « 1int K and numbers t, > O, { > 0, as follows:
# . # s e

(C., ﬂj - {B ' }r tﬂ . I -

= (C {C Ufl+11

L
= -

oY t+r'"¢+r Vysrl
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ghere v ¢+,J is the Newton 1terate of the
potnt 1(* = (I ,v,) (the Newton method 1s applied to

(441) o (o(4+1) g

G'l : G;
E*;(w =t Y(w) + Y(w) + ® “(w),
ghere, 88 abcwa.
) = - z In((b, - dyu)® - |Bffr"u‘;|f} int G(T) - R. ),

b1 = t exp(p), where

0 05
= 2 = B n + 2 m.
b 1+2 ﬂ”é
The properties of the stage are described by the

following
proposition 7.4. The following atatementa are true:

the main stage is well-defined: for all { » O we have
¢, « I, (I ,u,) e int G(C,);

for all { 3 O the relations

Cy
MB, 4 (1,0,)) € 01, (1.19,)

c
, Azt el!) 0.0 (7.20,)
{
hold;
each of the main stage iterations can be performed at the
arithmetic cost of O(m® n° + m°) operations;

for each { tha ellipsold H(C,,v ) 1s contained in K and
In |H(C,v,)| 3 In |B(C*0Y)| - Om/t). 0 (T.21)

7.6. Main resuli.

The above propositions can be summariged in the following
Theorem 7.1, Assume that the condition .I) (see sect. 7.I)
holds. Then the above described method produces an e-optimal
(V &€ « (0,1)) ellipsoid at the total (over -all the stage )
number of iterations om'’ ln{m—-f.}}. the total arithmetilc
cost of these 1terations does not exceed O(m m?*°(nim)

In(me/€)) apamtinns.
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Notice that In the case of the 1EM one can take
r¢€2 n, m € 0(n 1lnn).

7.7. A minimum volume ellipsoid which
contains a given set. ' o

A close to #(K) problem 18 to find a minimum
ellipsoid containing a given finite set. The latter probie
can be solved by the same techniques as above. Here
describe the corresponding results. Let I' be a given m-elemen
set in R™, and K be the convex hull of T'; we are required te
produce an ellipsoid which contains I' and has minimum possibie
volume. This problem will be referred to as » rP). &
We use a traditional trick as follows. I.et us rem ’Ii:"::i_'j.
ag an affine hyperplane 4 in R™'', defined by the equation
z_ , = 1; thus, I' < 4 < R**'!, Consider the problem T

ntf e
#0 (T'): to find 2 (n+1)-dimenstonal ellipsoid centereg at 0
cd containing T' with mintmun possaible untume;_:=*.

If ¥ > T 1s feasible to »% (), then W produces @
n-dimensional ellipsoid W N A4, which is Ieaaible to 7 (T).
is not difficult to show that the solution of r {PJ Drod
the solution of » (T'). Moreover, 1f W 18 E*nptimal solutig

’rPJ [1 e. 1s Ieaaibla to this problem and its volume 18 <
exp{a} y**, v** 1s the optimal objective's value for 22 (T')),
then W' = W 0 4 18 n-l - optimal solution to 2 (T). %o
transform our standard description of W 1nto the st dard
description of W' 1t costs no more than 0{n ) operations. So
we can restrict ourselves to the prﬁblem ? (7). 3

The algﬁbraic reformulation of r rrJ 13 as follows:

#*: glven G subset I' = (x, | 1 < { € m} < KV, i
to mintmize ¥(B) = ~ In Det B by the chotce of B M
under restrictions |Bz, <1, 1 <1 <n. | %

Let Q denote the feasible region of the latter problem.
Each B € Q defines an ellipﬂaid.H(B" DJ which is feasible tn
7. (T)3 1o prnﬁuce an e-solution to 0 (T') one has to Ilnﬁ
an e-solution to #*, 1.e. such B e Q, that
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The optimal objective's value in #* obviously is the same

in the problem 7 ** which is obtained rrom 2»* ‘when the

rﬁﬂtriﬁtiﬂﬂ B < L'  1s replaced by the restriction B e SO,
Thﬂ substitution Bé C transforms r’f into the problem

#**: v(C)=.~1nDet C-min | C = sﬂ, C.Xp> €1, 1 <1 gm,
where X, = ${.If. '

It C 18 an e-golution to »*** and ¢ = BT B (B « L, ;
being given C, we can produce B in o(n’) operations), then B
{g an (&/?)-solution to »

Assume that the Ialluhlrﬂ rondition hﬂldﬂ'

(I1) The convex hull, K, of the sei I' rontains the unip
ball centered at O and is contained in a concentric ball with
radius # (both of the balls - in R™).

1t 18 not difficult to show that under this condition one
can insert into #*** (without loss of the optimal obJjective's
value) n+1 extra conatraints of the form C 4 < (cr?m?), 1 £
J < n+1, where ¢ > 1/8 18 an appropriate absolute constant. We

phtain the problem
s¥:  ¥(@C)-mn | CeSC ,, <CXp>€a, 1 €L &M+,

(we have increased the 11st of matrices X, to insert our extra
constraints). All we need is to find an e-solution to #¥,
The feasible set G* of the latter problem admits an
Q(m)-self- concordant barrier
m+n+ !
F(C) = v(C) - ¥ In(a, - <C,X,>),-
=1
and the obJective is 7-compatible with this barrier. The point
0, = 0.25+2 1 belongs to int G*, and 1t 18 easy to show
that

In(1/(1 - =, rc )) £ O(ln(em))

(see (11)), where ®_ 18 the Minkovsky function for G* with the
pole at the P-center of G¥. Thus, problem »* can be solved by
the bagic barrier method with C, being chosen as the starting
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point; the total number of iterations to produce an
tn this (and hence - to the original) problem does mt

N(g) = Ufm’f’f In(r m/e)).

The arithmetic cost of an 1iteration, as well ag _
situation of P.7.1, does not exceed om?). Thm Gy
produce an &- solutlon to # at the total cost of

o(m®-% in(r m/e))
operations,

T.8. Proots qu the results.

7.8.1.Lomma 7.1.

Tz 18 obviously feasible for »(K). To verify (7.1).
notice that : ' E 8

v(Tz) - ¥(2) = - In Det T

does not depend on z, Thus, each feaslble plan Ior ?(

corresponds to a feasible plan for »(K) with the same (within

a constant term - ln Det T) objective's value. In partic

v* - vy € - 1n Det 7.

To prove (T.1) it suffices to show that the latter maqr.ul:l._ 2
1s an equality. Let (B*,u®) is the solution to »(K). With -
help of the polar factorigation of the matrix (7°'B*), we m‘ﬁ"g
represent B* as B* = TBU with orthogonal U and symmetric
positive definite B. Since (B*.u*,r satisfies the constraints
a(a™,b™), the point z' = (B,u*) satisfies the constraints

fa(a™,b™), 80 &' 18 feasible for #(7,K). Since U 18
artlmgonal we have: =1

= ¥(B*,u*) = ¥(TB,u*) = wa,u,r—lnnatr
nﬂs“')—lnuat!‘;u - 1n Det P,

thus v* - vy 3 - 1n Det 7, This inequality together with (1)
proves the lm n
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7.8.2. Proposition 7.1.
10 verify (7.4) we must prove, in view of (7.3), that

a =1 - K (C,) 2 O((xm)™°)

tor certain absolute constant 8.

Recall that K contains the unit ball centered at O and is
contained on a ball with the radius = centered at O; moreover,
¢ 1s feasible for # (K) C 1f and only if the ellipsoid
4(c!72,0) 1s contained in K. The above arguments show that the
pall (1n S ) with radius 1/4 centered at C, 1s contained in G
and that the diameter of G does not exceed 4 n ? (the latter
_ aince the semi-axes of the ellipsoid H(C'72,0) for C « G,
i.e. the eigenvalues of the matrix ¢'/2, does not exceed ).
Hence ' _ 3

a > (174)/(4 n +2) 3 0((vm)"?), Q.E.D.

The relation (7.5) immediately follows from (7.2) and
T.1.3.(111).

To prove (7.6) 1t puffices, in view of (7.5), to verify
that a Newton minimization step for a function of the form

(a linear function of C) + R(C)

can be implemented at a cost O(m®). It 1s easy to see that the
gradient, 2 H, of such a function at a given point C e int G
can be computed at the above cost. A straightforward
computation shows that the Hesslan, 2 ¥, of the function at C
transforms X « S_ into the matrix

2w X=20"XC"+ T2d, 4.l A,
; t=1

where the set of numbers’
2d, = (b3 - <A, 0>)%, 1< L & m,

can be computad at a cost O(m n®) (recall that 4, = a, a).
The Newton displacement X 1s the solution to the system v X =
li; hence, it can be represented as
Z .
X=C(MH+ 3z, A4)C : ' (1)
; £=1

where r,, 1 € { < m are some scalars. Let us derive the system
of 1inear equations for these scalars (the solution of the
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latter system, after substitution into (1) glves the des
X). To derive the system, let us substitute (1)
equation ¥ X = H; aIter some simple tranarnrm&tiona we
matrix equation |

E'a: A, + 2. ct qt.aﬂcm + {E'd JE:I-’ <CA ﬂ"t"fl

This equation 1is &qvl?almt to the system (x) of m g
linear equations with m variables z, 6 produced when *
termwise scalar product of (2) and each of the matrices 4, -
< J & m. The tJ-th cnarnciant of the matrix of ayat.m )

{.l A 4 E d’ {A A }{AL.GA C>,
k=1

and the {-th component of the right hand side vector 1is :
- B a, <hy, A<, 0l &,
b=t "

To produce the matrix of our system and the rtgm: hatul
vector, it suffices to compute:
- all of the products <4 ,4 47 (o(m? n) operationa;n,
- m matrices CA,C (0(n® m) operations) and all of
scalar products of these matrices and matrices 4, (0(m® n)
operations more); i
- the matrix C H C mrn‘-"') operations) and 1ts
products onto matrices A, (0(n® m) operatiens more)
(when evaluating the nunm of operations one muat take
account that rank 4, = 1). *
After the ahova quantities are produced, each of t;hna“
coelficients of system (s) can be computed at the cost ﬂnl,}*ﬁ
Thus, system (*) can be formed at the coat O(m’); 1t can be
then solved at the same cost. After the sysiem is solved, “‘%
Newton displacement X can be computed at the cost O(m n?), see

(1). = “---*'
7.8.3. Proposition 7.2. it
(7.12) 18 ocbvious by definition of ¢(z) (since tha

restriction of ¢ onto § coincides with the restriction of the

form DP*(z*)( 1, thus the restriction of ¢ onto S, = 0).

Furthermore,
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DF “(2*)twl = DF*(z*)lw) + (w) = ¢(v),
(T:119 Inllawa from the relation |¢* I, € 0.07 (see the
ofinition of ¢). Moreover,

19°1, < 1F*)'(2*)1, + W'1, € 0.07 + O(m'/?),

e F* 18 & self-concordant barrier with the parameter value
m): (7.12) 1s proved.
To verify (7.13), notice that the pair

= (B,u) e SE x K"

4s & feaslble plan for »(B,,K) 1f and only if the ellipsoid
§(B,B,u) is contained in K. Let us Introduce a norm

p(B,u) = |B,B} + |ul,
(] | 18 the usual operator norm) on E, and let B, = %

C—TI’E‘

'since B,BT = ¢, B,c"'/¢ 1s an orthogonal matrix, so the
‘ellipsoid H(B,B,,0) 1s an Buclidean ball with radius 1/2

‘eentered at O, By (I) the 1/4-neighbourhood of the point B, =
(B,,C) (in the metric corresponding to the norm p) 18
contained in G(B,); at the same time (I) means that the
diameter of G(B,) in the abcve meiric does not exceed O(m +
v ). Hence

%, (2,) €1 -0((m+¢)"). (1)

Furthermore, the restriction of F* onto G* = I{B 0) e G(B ))
is an O(m)-s.c. barrier for G ana the center of G* with
respect to thie barrier is 2z** = (x**,0). Hence (P.3.2.(v)) ¢"
contains the ellipsold
(In S_) U = ((¥,0) | PPP*(z**)(y-x**,y X*i < 1)
and 1s contained in the ellipsoid
= {((Y,0) | DPP*(2** )iy-x** ,Y-x**] < o(m®)).

This together with (7.9) implies that z® can be represented as

g =az,+(1=alz

tor certaln z « G* and 0 « (0,1), a » O(1/m). By virtue of the
convexity of «, and (1) we have
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x,(2°) Sa®(2,) + (1 -a)m(2) <1 -a0mi)e
<1 -0om?2 r?}_':_
which 18 required in (7.13). ﬂ;f

1t remains to evaluate the cost at which ¢“ o
computed. Let @ be the Hesslan of F* at the point z*,
gradient of F* at this point and I1 be the orthoprojector o
onto §_ let £ = (X,0) be the solution of the cystem .=f-

Ilfq-Q::):ﬂ':ccS“

(S, 18 1dentified with th& subapace S_ x (0) of E). It 18 |

diffirult to show that ¢** = Q = - q. Indaed forw « §

have B
aw, = (Q z,w) = (IQz,w) = (q,7);

ifwekFE 18 <, >, - orthogonal to Sﬂ. then T, = u:”i
of z«S . Hence z 18 < , >, - orthogonsl projection ¢
gradient of F' at the point z* (the gradient {3 taken
respect to the Buclldean structure < , >,) onto S_, or,
18 the same, z = ¢*. So ¢** -Q:andqr*:-az g
Let us write the expressions for the first and secone

order differentials of F' at the point (I ,u):

DPT(1_,u)l(H,v)] = - 2 <I_,H> - 3 d,(c,alv - <H,174,15),
{=1 =

DPFT(I_,u)l(H,v), rH v)] =

-2 <HH> + B, (c,af - <H,T74 I+ 3 8 <ATAT H,H>,  (4)

§af iy t=1 K
where 4, = a, aj, and the set of scalars d;, c¢,, r,, s, (Which
depend nn u and T only) can be computed rur g'ven u, T at H;H
cost of O(m n?) operations (when speaking about the costs of
computations, we take into account that the matrices 4, are of
rank 7). Notice that s, > O. g

In particular, we Ya6e that the computation of g, as lﬂlli
as the multiplication of Q by a given vector, can be
implemented at the cost O(m n?). e

By the above argnmanta to prﬂva that ¢- can bhe cumputa&
at the cost O(m® n® + m’) 1t suffices to verify that one can
priduce at this cost a symmetric solution, X, to the matrix
equation

t



= AT3 =

m
K+JX+XJ+ 3 (a, + P, <IT4,1,X) TTAT = K. (5)
t=1

‘in this equation J = é ¢§1 8, TTA{T is a symmetric positive
gemidefinite matrix which can be computed at the cost O(m n°);
at the same cost one can compute the symmetric matrix H and
the set of scalars a,, B,.

19, To solve (5) we act as foliows, Let us reduce the
matrix J by an orthogonal transformation U to a three-dilagonal
torm, 1.e. let us find (at the cost 0O(n’)) an orthogonal
matrix U and a three-diagonal matrix matrix P such that U J U%

- P, The substitution Y = U X UT transforms (5) 1into the

equation
m
Y+PY+YP+ 3 (a, +p, <STAS,Y>) STAS = 1, (6)
t=1
where § = P UT, L = U H UT are matrices which can be computed
at the cost O(n®). We desire to find a symmetric solution to
(6); this solution at the cost O(n®) can be transformed into
the desired solution to (5). Thus, we must verify tha' (6) can
be solved at the cost Om® n? + m>).

29, Let us find the solutions to (m + 1) matrix equations
Y, +PY +Y P=STAS, 15t <m,
Y + P YF*’ +Y P = L.

m+ 1 _ m+ 1.
Since P 18 a three-dlagonal matrix, each of these equations
can be solved at the cost of 0(n”). Indeed, the equation (with
respect to a n » n - matrix 7)

D)=L+ PL+LP=N (7)

has an unique solution, since the operator P (regarded as a
linear operator in L ) 18 symmetric and positive definite
(since P 1s symmetrlc positive semidefin.te). The subspace of
symmetric matrices is invariant for P, so 1f ¥ 1s symmetric,
then the solution, £, to (T) 1s symmetric too. In particulsa ,
Y, are symmetric, 1 < 1€m+ 1.

39, Let us verify that (7) can be solved at the cogt

o(n?).
(T) regarded a system with n° variables (the cntlef s of



- 180 - -
Z) cad be described as follows. The matrix
positive semidefinite and three-dlagonal: |
W

”'rhl
{

Peg=T,0, 4k € 5+ ool

where e, 1 € { < n, are the standard orts in R®, .
O by =R ,, =07, 20. Let 1, be the nnlmp
=Ze, 0¢i<n+ 1. Then {T} can be rew
gyatem (%) of equations

() Py &y ilg )k 108y + E e l‘p..@ Jle
2ef€n+ 1, :

with unknown vectors z , which are subjected tg—

2t =g = 0. To solve the system, let us act as |

o ntl
indexes of non-gero elements of the Bequan&&

(J,000- i, ) can be divided into mutually r!lj.m;;jm:m:,1 e
groups I = 3T , ! €r £ R, such that e y

uur-r p't:'#:r B
(notice th.t p, =, = 0) Let .
1% 1 U (8 =)0 I =2, U o :';

Now let l,...., {, be the elements of T7T,n, which

belong to U I s fr+1 (t,) and I , = (t, + 1} for ﬁggf.

/. So we have defined the grnupa Ihe 13s Ié.fﬁknr

(u(r)) denotes the subsystem of system («), which cﬂns
all the equations (% ) of (w) with indexes i belunging'
it 18 easy to verify that subsystem (u(r)) involves z;,

e I_ only (so these subsystems have no common unlmawnﬁﬁ‘,,
aystem (@) 18 a "direct product®™ of subsystims (u(r)), 5
150005 B + f. It suffices to prove that subsystem (-urr})
be solved at the cost 0(nf a(r)), where a(r) is the mber



~ 181 -

glements 1in I;. _
To avold cumbersome notations, assume that (u(r))
conslsts of the equations ‘“1)' i = 2,...,p: thus, .

I_J,p — D, ycelvlli'up_’ # D-

We desire to solve our subsystem at the cost of 0(np)
operations. Let us act as follows. let Z, be the gero and 2,
be the 1dentity n x n matrices and let for 2 € { < p the
matrix Z, be difined by the relation

1
Sy = =g Yoy V)T P&y o+ Py g 8y o)s

It 18 clear that the general solution to he homogeneous
system of equations
Wy 2y # (T g 102, , + P 3 v W, 8y 5=0,

€l <p,
(where z, = 0) 1s of the form 2z, =2, A, 1 €1 < p, Where A <

R™. A patricular solution (2}, 1 € ¢ < p} to the system
by Zg # (Toy # 1) 20, + P2, Py, 23 o=V

2l <y
can be rind out recursively by formula

) -1 * ¥ e
Zy =By by - (Y gt 1) 2 P2 -y, 2 o)

2€il <p,
¥ x’
where Zg =2, = 0.

Since the matrix P is three-diagonal, the computation of
all matrices Z, and vectors z:. 1 €% <p, can be performed at
the total cost O(n” p). Notice that the matrices Z, are O(p) -
diagonal. It 18 clear that the solutlon to the subsystem under
conslderation 1is

x x
z, =Z A +2,1€1t<p, (8)

where A” 1s such that the equation (v ) 1s satisfied by z,
given by (8). In other wards, A* 18 the solution to the 1inear
system’ '
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+ z* o
A 2 ale= .

(Yy_y * 1)+ P) (2, _, A+ z;_r; Y
This sistem at the cost O(n®) can be reduced to the gtz
form, and the matrix of this system is O(p)-dlagonal; %&
cost at which the system can be E.Dl‘i’ﬂd by thg coniu
gradient method does not exceed ﬂ{n p). After AY 1s com
it needs no more that O(n p°) operations to regenerate z

accordance with (8). Thus, the subsystem under considers

can be solved ln 0(rn® p) operations, as was announced at
begimning of g%, ; £

4°, Let us return to equation (6). By 3% the total
at which Y ,, 71 € { <m + 1, can be computed does not exceeq
omnd). It 1s clear that the solution to () can be

represented as

mi 1
s e e AR 4
i=1

with appropriate scalars t,. The substitution of
representation into (6) gives, by definition of Y ,
equation for ¢, of the romm

z.t STAS+1‘ L+E{u + EE -\STAS.}’HSTAS:'-'-'T'
oy (=1 ¢ Py j=1 9 B { {1
Matrix equality (10) is equivalent to the system (%) of m +3_~:
scalar linear equations with unknowns t ; ‘these equations camn
be obtained by taking termwise scalar product of (10) and
matrices ST4,5, 1< ¢ < m, and L. Let us compute all
quantities of the form : + <24

w’gsn. <s’ass-"’as:-, ST4,8,1>, <L,I> .

Since rank 4, = 1, the total cost of this computation 18 a;
O(m?n?). Atter these quantities are computed 1t needs no more
than O(m) operations to compute each of the coefficlents of
(*). So (*) can be reduced to the standard form at the total
cost omZ n?). Solving (x) (0(m®) operations) and then
regenerating ¥ in accordance with (9) (O(m n) operations




LR

more) we find out the desired sclution to (6). The proof 1s
over. A

T.8.4. Proposition 7.3.
19, Assume that for some { the relations

r(t): for each J, 0 € f £ {, one has EJ < L;.
fIﬂ.uJ} < int G{BJ} and {T.16J} hold;

(7.17,) hold for 0 < J <
hold.
Notice that »(0) 1is obviously true (see (7.11)). Let us
verify that if »(i) holds, then =»(t+1) holds. Indeed, the

i .
function F, = F,' 1s strongly self-concordant on 1int G(B,),
{ i

so by (7.16,) and by T.1.3.(11) we have 2**'’ « G(B,) and

MP, ,24*10) < (0.1)2/(1-0.1)% < 0.013 (1)
i

(thus, (7.17,) holds).
P.3.1 as applied to the strongly self-concordant family

Bl
# = (int G(Hi}l thﬂ.}'vf t ¢(z) + ¥ “(2), S“ X Rﬂ'}t?g!'
together with the fact that ¢ 18 O-compatible with the

B
corresponding barrier & ‘ (the parameter value for this
barrier 1s 9 = 2 (n + m)), I1mplies:

By opl it ety in) & (1 3012 DO N0 5 4

< (0.07)"" (1 +8'2) u = 0.05 (0.00)7",
whence, by T.2.1 and by (1), one has

ME, z(41)) < 0.05.
L+1

By T.1.3.(111) the latter relation leads to

(¢+1), _ : 2
P, (207 -mingpegep ) By (2) € 0.6 (0.06°. (@)

By L.7.2 the left hand side in (2) 18 equal to
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: B
i ! i 1

lr t+1 \‘.!'
which together with {2) and T.1.3.(1v) proves (7.16, .). Thus,
the implication #({) = #(i+1) 18 proved.

29, Now let us prove (7.18). Let

: B y
¥(z) =® *(2): Int G(B,) ~ R, P (z) =1 §(2) + ¥(2).

Let us put into correspondence to the polnts (I ,u;) the
points w, « G(B,), using the transformation G(B,) -~ G(B )
described in L.7.2. In view of (2) and L.7.2 we have:

F, (v,) - 00 ynegep ) By € 06 (0.05)%, -
whence by P.3.1.(1v)
hth W, ) € 0.07, (4)

Let w* be the ¥-center of G{B,) and let
W,,,=weaE=zS, :R“|D’-’mrw)fw-w.w w}gw,t,
then '1!2 < 1nt G(B,) (C.1.2). Moreover,

Fo(w)fh,h] » 0.25 DP¥(w® )(h,hI
forwelW, . (T.1.1), which implies

b(w) - O(w*) > 1/32 for w < oW, .. (5)

Let us regard £ as being provided by the scdlar product
PPo(w*)f , 1, and let v and | | denote the corresponding
gradient and norm. In view of (7.12), (7.13) and P.3.2.(1v.2)

we have
9] < 0((me)?-5),

which together with (5) implies
F,(w) - F,(0*) 3 1/32 - 0(t (mx)?"®).

Hence, under an appropriate choice of absolute conatants 88
tactors in O( ) which follow we have, by virtue of (3),

-2.5
t, < 0((m)25) = w o<W . (6)
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It the premise in (6) holds for given {, then
AMOw,) AR, ) + 21 99
(since the norm induced by the form DP@(w )[ , 1 coinside,

within a factor 2, with that one defined by the form
DPo(w*)( , 1). In view of (4) we have

t, €0((mr)2:%) = A(B,w,) € 0.07 + O(t, (me)?"®). (T)
In particular, the 1mb11catlun
t, €0((m)™%:%) = MA@ ) <0.08
holds, whence, by T.1.3.(1)),
-2.8 : 2
t, S O((m)™2°) = B(w,) - minypegp ) ¥ € 0.6 (0.08)%,

and, by L.7.2
t, € O((mr)2:5) %1% in 0t < 0.6 (0.08)2
{ *‘ { ﬂl‘} » -[ “Iuij - M mwlfﬂ*) ‘. ] r - j ]
go (T.1.3.(1v))
-2.5 By
t, €0((me)™="") = AW ", (I ,u,)) € 0.1. (8)

This implication together with the termination rule Tfor the
preliminary stage (see (T.15)) and the rules for t,'s updating
leads to (7.18).

39, It remains to verify that an 1teration of the
preliminary stage can be performed in no more than 0(m® n°)
operations. It is clear that the iteration's cost 18

om?) + &,

where £ 1s the computation cost of A(®%,(I ,u)) for some
glven u and 7 (this computation 18 required in the
termination rule) and #2 1s the computation cost of the Newton
displacement for a function Fi at the point fﬂ' It 18 clear by
(7.18), (7.19) that the gradients of nga at the point
(I_,u)can be computed at the cost O(m nEJ. Atter this
gradients are produced, both of the above computations can ‘e
reduced to the solution of the equation (with unknowns (X,v) =

E))

T
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PO (I_,u)((X,v),(H,h)] = (8,(H,h)) Y (H,h) «E (9)
for glven 9 « E. Thus, the cost of an iteration is
o( mné + 2),

where ¢ 1s the cost at which (9) can be solved. It
suffices to prove that x < O(m® n°). H

In view of (7.19) relation (9) can be rewritten as g
syotem of one matrix and one vector equations

X+ E r. {ciafu &= {I.TTA£T>J TTAlT *
t=1 =
+ Zo, (TTAT X+ X TTAT) =4, (10)
t=1
™
' T
3 d, {e,av - <X,774,1>) a, = h, (11)

{=1
where 4, = @, @] and the set of scalars 8, > 0, ¢,, r,, d,,
the vector h « R™ and the symmetric matrix H (these objects
depend on eds u and T only) for given u, T can be computed at
the cost O(m n?}.
Let us act as in the proof of P.7.2.: first compute the
gymmetric matrix
m
N = {?13‘ TWJ{T
(0(m n?) operations), then reduce N by an orthogonal
transformation to the three-diagonal form (0(n®) operations)
and rewrite (10), (11) as

3 T P, o T
Y+RY+YR+ 3 ™ {c‘uiv - «<Y,S Al5>J 5 A¢S 2 (3, (12)
t=1

-+ by T

{Ef d, (c,aiv - <¥,574,5>) a, = h, (13)
where R, S and G are some known matrices (they can be computed
at the cost 0(n°); R 18 symetric positive semidefinite and
3-diagonal). Notice that the solution (Y,v) to system (12),°
(13) at the cost O(n’) can be transformed to the solution
(X,v) to (10), (11).

To solve (12), (13), we as in the proof of P.7.2, at the
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total cost 0(m? n® + m’)) produce the solutions Y, 1 < L < m
+ 1, to the matrix equations

_ ol
Yi+Rf‘+Y{R—SA‘S.f£iGII.
Y +RY + Y R =G,

m+ 1 m+ 1 mi1
and represent the Y-component of the desired solution as

o2 e ¥
= T
{=1 ¢ ¢

where scalars T, &re Our new unimowns. Substituting this
representation into (12) and taking termwlse scalar product of
the resulting equation and each of the matrices STAS, 1 € ¢ €
m, G, we obtain a gystem of scalar linear equations (which 1s
equivalent to (12), (13)) of the form

AT+Bv=p (%)

Ct+Dv=yg, (%k)

where T = (T,,...,% )7 and v are the unknowns, and the
matrices 4, B, C, Dareof slges (m+1) x (m+ 1), (r. + 1) x
n,nx(m+ 1), nxn ((x)corresponds to (12), (»x) - %o
(13)). By the same arguments as in the proof of P.7.2 all the
objects 4 - D, p, q can be computed at the cost Om® n®).
Thus, to produce (x) - (x*), tc solve this system and to
transform its solution into the solution to (12) - (13) 1t
costs no more than o(m> n® + m°) operations. =

T7.8.5. Propogition 7.4.
The families

c
(int G(C), 8,.B), ,, C e L,

are strongly self-concordant families generated by (n + 2
m)-self-concordant barriers ¥(w) + ®°(w) tor the sets G(C) and
by 71-compatible with these barriers functions v(w). By the
termination rule for the preliminary stage (see (7.15)) .
have
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]
A@® (1 ,u")) € 0.01. |

Obviously,

. Efﬂ, ;
thus, in view of t, = 1, (7.19,) holds. By the same argumentg
ag In the proof of P.7.3 this fact 1implies the
well-definitness of the main stage iterations and validity of
relations(7.19,), (7.20,) for each . The cost of an iteratlon
can be evaluated in tha same manner as in the proof of P.7.3.
Tt remains to verify (7.21). This 1inequality, by L.7.2, 15.
equivalent to the inequality

ﬂ'flﬂ.ﬂlj_"‘ min int G{U‘J Y £ ﬂf'&ftij;

the latter fact follows from (T.igi} by virtue of arguments
gimilar to these used in the proof of P.3.4. =



= 189 =]
REFERENCES
[CW. 1986]:
Coppersmith D., Winograd S. Matrix wmultiplication via

arithmetic progression. Dept. of Math. Sci., IBM Thomas J.
Watson Res. Centr., Preprint, Nov. 1986

[FMcC. 19681:
Fiacco A.V., McCormick G.P. Nonlinear ' Programming, Wiley,
N.Y., 1968

[Fr, 1988 1,2]:

{. Freund H.M. Prujcctive transformations for interior point
methods, Part I: Basic theory ana Linear Programming. - M.I.T.
Operations Research Center working paper OR 175-82, 1988 ;
2. Freund R.M. Projective transformaticns for Interior point
methods, Part II: an algorithm for finding the weighted center
of a polyhedral system. - M.I.T. Operations Research C(enter
working paper OR 180-88, 1988

[GL. 1988]:

Goldfarb D., S. Liu An O(n’L) primal interior point algorithm
for convex quadratic programming. Technical Report, Dept. of
IEOR, Columbia University, New York, NY 10027

[Go. 198T]:

Gonzaga C.C. An algorithm for solving linear programming
problems in 0O(n°L) operations. Tech. Report, Dept. of
Electrical Engineering and Computer Sclences, Berkeley,
California, 94720

[Ja. 19871):

Jarre F. On the convergence of the method of analytic centers
when applied to convex quadratic programs. - Report No. 35,
Dec. 1987, Schwerpunk t programn der Deutchen
Forschungsgemeinschaft - Anwendungsbezogene Optimierung und
Steuerung, revised Feb.1988. '



-1.90_

[Ka. 1984]):
Karmarkar N. A new . polynomial-time algorithm for Ilinear
programning. Combinatorica 1984, v. 4, 373 - 395

(KMY. 19871

Kojima M.S., S. Miguno, A. Yoshise A primal-dual interior
point algorithm for linear programming. Report No. B-193,
Dept. of Information Sciences, Tokyo Institute of Technology,

Tokyo, J apan

L

(MA. 1987 1,2]:

1. Nonteiro R.C., I. Adler 'An 0(n®) primal-dual interior
point algorithm for linear programming. Report ORC 87-4,
Operations Research Center, Dept. of Operatlons Research,

Univarsity of California, Berkeley, CA

2. Monteiro R.C., I. Adler An O(n°) primal-dual interior
point algorithm for convex quadratic programming. Report ORC
87-15, Operations Research Center, Dept. of Operations
Research, University of California, Berkeley, CA

[MS. 1987, 19881]: '

Mehrotra S., Sun J.(1987) An algorithm for convex quadratic
programming that requires O(n”+® L) arithmetic operations.
Technical report 87-24, Dept. of IE/NS, “Northwestern
University, Evanston, ILL. 60208 -

Mehrotra S., Sun J.(1988) A method of analytic centers Ior
quadratically constrained convex quadratic programs. Technical
report 88-01, Dept. of IE/MS, Northwestern University,

Evanston, ILL. 60208

[Ne. 1983]):
Nesterov Ju.E. An O(1/k?)-rate of convergence . method for a

convex programming problem. ¢in Russian) - DoRlady Akademit
Nouk SSSR, 1983, v.269, No. 3, 543-547

[Ne, 19881:
Nesterov Ju.E. A general appreach to design of optimal methods
for smooth convex functions minimization. (in Russian) -

Ekonomiza { matem. metody, 1988, v.24, No. 3,



- 191 -

[Ne. 1988 1,2,3,4,5]:

1.Nesterov Ju. E. The method for linear programming which
requires O(n’ L) operationg. (in Russian) - Ekonomika { matem.
metody, v. 24 (1988), No. 1, 174-176; translated as Natekon
2.Nesterov Ju. E. Polynomial-time methods in 1linear and
quadratic programming.- (in Russian) - Izvestifa AN SSSR,
Technitcheskaya kibernetika, 1988, No.3

3. Nesterov Ju. E. Polynomial-time 1terative methods 1in
linear and quadratic programming. (in Russian) - Voprosy
ribernetiki, Moscow, 1988 3

4. Nesterov Ju. E. buai polymomial-time algorithms for linear
programming. (in Russian) - Kibernetika, 1989, No. 1

5. Nesterov Ju. E. New polynomial-time algorithme for 1inear
and quadratic programming. - Report at the 13-th International
Symposium on Mathematical Programming, 29 Aug. - 2 Sept. 1988,
Tokyo, Japan

[NN. 1988 1,2]:

1. Nesterov Ju. E., Nemirovsky A.S. Polynomial-time barriers
methods in convex programming. (in Russian) - Ekonomika
matem. metody, V. 24 (1988), No. 6; translated as Matekon
2. Nesterov Ju. E., Nemirovsky A.S. A general approach to
polynomial-time algorithms design for convex programming. -
Report at the 13-th International Symposium on Mathematical

Programming, 29 Aug. - 2 Sept. 1988,  Tokyo, Japan

[NYu. 1983]: - -
Nemirovsky A.S., Yudin D.B. Problem complexity and method
efficlency in optimization. - J.Wiley&Sons, 1983

[Re. 1988):

Renegar J. A polynomial-time algorithm, based on Newton's
method, for linear programming. - Math. Progr. v. 40 (1988),
89 - 93 :



_19-2...

[Sh. 1987]):
Shor N.Z. Quadratic aptlmiﬁation problems. (in Russian) -

Izvestija AN SSSR, Technitcheskaya kibernetika, 1987, No.{
128-139 :

(So. 1985]: s
Sonnevend (. An analytic centre for polyhedrons and new
classes of global algorithms for linear (smooth, convex)
programming. - Proc. 12-th IFIP Conf. on System Modelling and
Optimigation, Lecture Notes in Control and Information
Sciences, vol. 84

(TKE. 1988)

Parasov S.V., Khachiyan L.G., Erlich A.I. The 1inscribed
ellinsoid method. (in Russian) - Doklady Akademii Nauk SSSR
1988, v. 298 No. &, 1081-1085

[(TY. 19871:
Todd M.J., Y. Ye A centered projective algorithm for linear

progranming. Techn. Report No. 763, School of Operations
Research and Industrial Engineering, College of Engineering,
Cornell University, Ithaca, NY 14853

[Va. 19871: . - :
Valdya P. Ln algorithm Ior linear programming which requires
O(((m + n) n® + (m + n)!*® n) L) arithmetic operations. - AT&T
Bell Laboratorieas, Murray Hill, NJ (1987)

[Ye 19871):
Ye Y. Interior algorithms for linear, quadratic end linearly

constrained convex programming. Ph. D. dissertation, Dept. of
Engineering - Economic Systems, Stanford University, Stanford,

CA



=490 =
CONTENTS

Bﬂﬂtiﬂn D- mtmtim---u.-.--------------;----------1--.- '3

Section 1. Self-concordant functions and Newton's method.... 6
(1.1. Self-concordance - 6, 1.2. Newton's method and self-
concordont functions - 7, 1.3. Self-concordant Junctiona
and duality - 11, 1.4. Proofa - 11)

Section 2. Self-concordant fam1l1@8......cesescssssscssnanssld
(2.1. Self-concordant fomiltes - 24, 2.2, "Cotegorial"
properties of self-concordant families - 24 , 2.3. Neirtic
corresponding to self-concordant familtes - 25, 2.4. Nain
result on self-concordont fomilies - 26, 2.5. Proofa - 27)

Section 3. Barrier-generated families and barrier method....32
(3.1. Sely-concordant barriers and barrier - gensrated
methods - 32, 3.2. Borriers' properties - 33, 3.3. Barrier
method - 34, 3.4. Exmples of barriers - 38, 3.5.Coverings
and barriers calculus - 42, 3.6. Barrier method jfor
problems with regular components - 45 , 3.7. dpplication
ezamples - 49, 3.8 Univeraal barrier - 54, 3.9 Proofe -38)

Section 4. Another self-concordant families and
polynomial-time methodB....eeseesesesassssssasssiO0
(4.1. Method of ocentera and Renegar'e type famtily - 101,
4.2. Dual parallel trafectories method and homogenious
self-concordant families - 104, 4.3. Primal parralel
trajectories method - 109, 4.4. Proofa - 111) :

Section 5. Acceleraton of the barrier method. I ...ccc.s...120
(5.1. Introduction - 120, 5.2. The main i.squality - 124,
5.3. "Multistep” barrier methods: preliminary remarks-124,
5.4. Sets K (z) - 125, 5.5. "Bulttstep” barrier method I -



- 194 -
126, 5.6. "Multistep” Dbarrier method II - 129,
5.7. "Nultistep” barrier method III - 131, 5.8. M'llﬂina

wm = 15. 5-9- m‘ e 135,'

Section 6. Acceleraton of the barrier method. II ....ccee. 147
(6.1. Description of the accelerated darrier method - 147,
6.2. Te main result - 152, 6.3. Proofes - 153)

Section 7. Extremal @111pS01dB.....cccevesessnsssscsssnscssiBO
(T.1. Insctbed ellipsotd. Geomtric Jormulation of the
problem - 160, T.2. Algsbralc formulation of the problem -
161, 7.3. #(Kk) as a Conver Programing Problem - 162,
7.4. Problem #(7,Kk) and a basic barrier method - 163,
7.5. Nethod's deacription - 167, 7.6. Main result - 171,
7.7. 4 mintmum volume ellipsoid which containes a glven
sot - 172, T7.8. Proofe - 174)

Mmﬂil-'-'lI-..--IlII...".#.'I.‘IIIII.IIllll-ll-‘-‘-litm
"

Saxaa N 30 A-09220 27/1-89r. Tupex I6UaKs.
OG6wem IO,Uyu.usz.x. llexa Ipyd.

IBMI AH CCCP.




