MATHEMATICS

A Note on Modular Spaces. I

by

W. ORLICZ

Presented on January 6, 1961

1. Let X denote a real linear space, ϱ — a functional defined in X, — $\infty < \varrho(x) \le \infty$. The functional ϱ will be called a *modular*, if the conditions

A. 1.
$$\varrho(0) = 0$$
; A. 2. $\varrho(\lambda x) = 0$ for all λ implies $x = 0$; A. 3. $\varrho(-x) = \varrho(x)$; A. 4. $\varrho(\alpha x + \beta y) \le \varrho(x) + \varrho(y)$ for $x, y \in X$, $\alpha, \beta \ge 0$, $\alpha + \beta = 1$.

1.1. A functional ϱ will be called s-convex, $0 < s \le 1$, if

A_s. 4.
$$\varrho(\alpha x + \beta y) \leq \alpha^s \varrho(x) + \beta^s \varrho(y)$$
 for $x, y \in X$, $\alpha, \beta \geq 0$, $\alpha^s + \beta^s = 1$.

A 1-convex functional will be called briefly convex.

Evidently, A₁, 4, implies A. 4. If $\varrho(0) = 0$ for an s-convex functional ϱ , then $\varrho(\alpha x) \leq \alpha^s \varrho(x)$ for $0 \leq \alpha \leq 1$ and consequently, $\varrho(tx) t^{-s}$ is a nondecreasing function of t, t > 0.

1.2. The following properties of modulars are of importance in our considerations:

B. 1.
$$a_n \to 0$$
 implies $\varrho (a_n x) \to 0$;
B. 2. $\varrho (x_n) \to 0$ implies $\varrho (ax_n) \to 0$ for every $a > 0$.

1.21. We shall apply the following notation: $X_b^*(\varrho) = \{x : \varrho(x) < \infty, x \in X\},\ X^*(\varrho) = \{x : \varrho(\lambda x) < \infty \text{ for a certain } \lambda(x) > 0, x \in X\}.$ Of course, every x satisfying B. 1. belongs to $X^*(\varrho)$. Denote by $X(\varrho)$ the set of x satisfying B. 1. $X^*(\varrho)$ is a linear space, $X(\varrho)$ —its subspace.

1.3. It is shown in [2] that in $X(\varrho)$ a norm may be defined as follows *):

(*)
$$||x||_{\varrho} = \inf \{ \varepsilon > 0 : \varrho (x/\varepsilon) \leqslant \varepsilon \},$$

possessing the following properties: a) $\| \|_{\rho}$ is an F-norm, b) $\varrho(x) \leq \|x\|_{\rho}$ for $\|x\|_{\rho} < 1$, c) $\|\lambda x\|_{\rho}$ is nondecreasing for $\lambda \geq 0$. In the sequel, we call this norm

^{*)} In [2] the norm (*) is defined assuming a condition stronger that A. 2. However, the proof that (*) is a norm possessing the properties in 1.3 can be performed by our assumption A.2 without any changes. In [3] modulars, defined as in 1, were termed semimodulars.

the norm generated by the modular ϱ . Under some additional assumptions on the modular ϱ , other definitions of the norm may be introduced in $X(\varrho)$ by means of ϱ . There holds the theorem:

1.4. If ϱ is an s-convex modular, then $X(\varrho) = X^*(\varrho)$ and an s-homogeneous norm can be defined in $X^*(\varrho)$ as follows:

$$\|x\|_{0s}=\inf\left\{\varepsilon>0:\varrho\left(\frac{x}{\varepsilon^{1/s}}\right)\leqslant1\right\}.$$

We prove, e.g., the triangle inequality. Let $\|x\|_{0s} < \varepsilon_1$, $\|y\|_{0s} < \varepsilon_2$, $\varepsilon = \varepsilon_1 + \varepsilon_2$. Then

$$\varrho ((x+y) \varepsilon^{-1/s}) = \varrho (\varepsilon_1^{1/s} \varepsilon^{-1/s} x \varepsilon_1^{-1/s} + \varepsilon_2^{1/s} \varepsilon^{-1/s} y \varepsilon_2^{-1/s}) \le$$

$$\leq (\varepsilon_1^{1/s} \varepsilon^{-1/s})^s \varrho (x \varepsilon_1^{-1/s}) + (\varepsilon_2^{1/s} \varepsilon^{-1/s})^s \varrho (y \varepsilon_2^{-1/s}) \le 1,$$

for $(\varepsilon_1^{1/8} \varepsilon^{-1/8})^8 + (\varepsilon_2^{1/8} \varepsilon^{-1/8})^8 = 1$. Thus, $||x+y||_{0s} \le \varepsilon_1 + \varepsilon_2$.

1.41. The norms $\| \|_{0s}$ and $\| \|_{\varrho}$ are equivalent, more exactly, there hold the inequalities: (a) $\|x\|_{0s} \leq (\|x\|_{\varrho})^s$, if $\|x\|_{\varrho} < 1$, (b) $(\|x\|_{\varrho})^{s+1} \leq \|x\|_{0s}$, if $\|x\|_{0s} < 1$.

If $\|x\|_{\rho} < 1$ and $\|x\|_{\rho} < \varepsilon < 1$, then $\varrho(x(\varepsilon^s)^{-1/s}) \le \varepsilon < 1$, whence $\|x\|_{0s} \le \varepsilon^s$. If $\|x\|_{0s} < 1$ and $\|x\|_{0s} < \varepsilon < 1$, then $\varrho(x\varepsilon^{-1/1+s}) \le (\varepsilon^{1/s} - \varrho(x\varepsilon^{-1/1+s}) \le \varepsilon^{1/1+s}$, whence $\|x\|_{\rho} \le \varepsilon^{1/1+s}$.

1.5. If ϱ is an s-convex modular, then

$$||x||_{0s} = \inf_{t>0} [\sup_{t>0} (t^{-s}, \varrho(tx) t^{-s})].$$

It follows from (+) that $\varrho(x) \leqslant 1$ implies $\|x\|_{0s} \leqslant 1$. If $\varrho(x) > 1$, then $\varrho(x\varrho(x)^{-1/s}) \leqslant (\varrho(x)^{-1/s})^s \varrho(x) = 1$ and $\|x\varrho(x)^{-1/s}\|_{0s} = \|x\|_{0s} \varrho(x)^{-1} \leqslant 1$. Hence there follow the inequalities

$$||x||_{0s} \leq \sup(1, \rho(x)), ||x||_{0s} \leq \sup(t^{-s}, \rho(tx) t^{-s}) \text{ for } t > 0,$$

i.e. $||x||_{0s} \le \inf_{t>0} [\sup_{t>0} (t^{-s}, \varrho(tx) t^{-s}]$. The definition of the norm (+) implies that if $0 < t^0 < (||x||_{0s})^{-1/s}$, then $\varrho(t_0 x) \le 1$, i.e.

$$\inf_{t>0} \left[\sup (t^{-s}, \varrho (tx) t^{-s}) \right] \leqslant \sup (t_0^{-s}, \varrho (t_0 x) t_0^{-s}) \leqslant t_0^{-s},$$

where t_0^{-s} is arbitrarily near to $||x||_{0s}$.

1.51. If ρ is an s-convex modular, then the functional

$$||x||_s = \inf_{t>0} (t^{-s} + \varrho(tx) t^{-s})$$

is an s-homogeneous norm in $X^*(\rho)$ and there hold the inequalities

$$\frac{1}{2} \|x\|_{s} \leqslant \|x\|_{0s} \leqslant \|x\|_{s}.$$

Denoting $\gamma(x) = 1 + \varrho(x)$, we have $||x||_s = \inf_{t>0} \gamma(tx) t^{-s}$. Moreover, $0 \le \|x\|_s < \infty$; in fact, $\varrho(x) \ge 0$ for $x \in X$ and $\varrho(tx) < \infty$ for $x \in X^*(\varrho)$, if t > 0 is sufficiently small. The s-homogeneity being obvious, we prove only the triangle inequality. Let t', t'' > 0; $\gamma(x)$ is an s-homogeneous functional, whence

$$\gamma\left(\frac{t^{\prime 1/s} t^{\prime \prime 1/s}}{(t^{\prime} + t^{\prime \prime})^{1/s}}(x + y)\right) = \gamma\left(\alpha t^{\prime 1/s} x + \beta t^{\prime \prime 1/s} y\right) \leqslant \alpha^{s} \gamma\left(t^{\prime 1/s} x\right) + \beta^{s} \gamma\left(t^{\prime \prime 1/s} y\right),$$

where

$$a = t''^{1/s} (t' + t'')^{-1/s}, \quad \beta = t'^{1/s} (t' + t'')^{-1/s}, \quad \alpha^s + \beta^s = 1.$$

Choosing $t_0 = t'^{1/s} t''^{1/s} (t' + t'')^{-1/s}$ we obtain

$$||x+y||_s \le \gamma (t_0(x+y)) t_0^{-s} \le \gamma (t'^{1/s}x) t'^{-1} + \gamma (t''^{1/s}y) t''^{-1}.$$

The inequalities (o) follow from 1.5, $\frac{1}{2}\gamma(tx)t^{-s} \leq \sup(t^{-s}, \varrho(tx)t^{-s}) \leq \varphi(tx)t^{-s}$. If $||x||_s = 0$, then (o) implies $||x||_{0s} = 0$, i.e. x = 0. Hence, $||\cdot||_s$ is a norm and not only a quasinorm.

1.6. If ϱ is an s-convex modular and if n(x) is a quasinorm in $X^*(\varrho)$ continuous with respect to the norm $\| \cdot \|_{\varrho}$, then

$$\sup_{\varrho(x)\leqslant 1} n(x) = k$$

is finite; moreover, if n(x) is s-homogeneous, then

(b)
$$n(x) \leqslant k(1 + \varrho(x)).$$

We prove (a). Suppose $\|x\|_{\rho} \leqslant \eta$ implies $n(x) \leqslant 1$. If x satisfies the inequality $\varrho(x) \leqslant 1$, we choose a positive integer l such that $l\eta > 1$, $l > \eta^{-(s+1)/s}$. We have $\varrho(l^{-1}\eta^{-1}x) \leqslant l^{-s}\eta^{-s} < \eta$, i.e. $\|l^{-1}x\|_{\rho} \leqslant \eta$, thence $n(l^{-1}x) \leqslant 1$, $n(x) \leqslant l$. Now, we prove (b). If $\varrho(x) > 1$, then $\varrho(x \varrho(x)^{-1/s}) \leqslant 1$, whence $n(x \varrho(x)^{-1/s}) \leqslant k$, $n(x) \varrho(x)^{-1} \leqslant k$; thus $n(x) \leqslant k$ sup $(1, \varrho(x))$ for an arbitrary $x \in X^*(\varrho)$.

The last inequality implies easily that, by the assumptions of 1.6 (b), $n(x) \le k \|x\|_{0s}$.

1.61. If ϱ is an arbitrary modular and if n(x) is an s-homogeneous quasinorm in $X(\varrho)$ satisfying the inequality

$$n(x) \leq k(1 + \varrho(x))$$
 for $x \in X(\varrho)$,

then $||x_n||_a \to 0$ implies $n(x_n) \to 0$.

Evidently, $n(x) \le k(t^{-s} + \varrho(tx)t^{-s})$, t > 0; it suffices to note that $||x_n||_{\rho} \to 0$ implies $\varrho(tx_n) \to 0$ for an arbitrary t > 0.

1.7. If ϱ is a convex (i.e. a 1-convex) modular, then the norm $\| \|_1$ is the Amemiya's norm, well-known in the theory of modular spaces (cf. [4]). It can be also defined as follows. By the definition of the norm $\| \|_1$, a distributive functional ξ over X^* (ϱ) is continuous with respect to the norm $\| \|_1$ and has a norm $\| \xi \| \le 1$ if and only if

$$(++) \xi(x) \leq 1 + \varrho(x) \text{ for } x \in X^*(\varrho).$$

Let $n(x) = \sup \xi(x)$, where the supremum is taken over all distributive functionals over $X^*(\varrho)$ satisfying (++). Since for every ξ satisfying (++) we have $\xi(x) \le \le t^{-1} + \varrho(tx) t^{-1}$ for t > 0, there holds $n(x) \le ||x||_1$. On the other hand, there exists a distributive functional ξ continuous in $X^*(\varrho)$ with respect to $||\cdot||_1$ satisfying the conditions $\xi(x_0) = ||x_0||_1$, $\xi(x) \le ||x||_1 \le 1 + \varrho(x)$; hence, $n(x_0) \ge ||x_0||_1$. Thus, $n(x) = ||x||_1$.

1.8. A modular ϱ satisfies the *conditions* (D), if it has the following property: to every $0 < \alpha < 1$ there exists a decomposition $x = x_1 + x_2$ such that $\varrho(x_1) \le a\varrho(x)$, $\varrho(x_2) \le (1 - \alpha)\varrho(x)$.

Convex modulars are examples of modulars satisfying the condition (D). In 2 we give further examples of such modulars.

1.81. If ϱ is a modular satisfying the condition (D) and if n(x) is a quasinorm in $X(\varrho)$ continuous with respect to $\|\cdot\|_{\varrho}$, then **1.6** (a), (b) hold, where $k < \infty$.

Let $\varrho(x) \leqslant 1$. Given any positive integer k, there exists a decomposition $x = x_1 + x_2 + \ldots + x_{2k}$, $\varrho(x_i) \leqslant 2^{-k} \varrho(x) \leqslant 2^{-k}$. Assume $\|x\|_{\varrho} < l^{-1}$ (l—an integer) implies $n(x) \leqslant 1$; choosing k sufficiently large (k is independent of x) we have $\varrho(lx_i l^{-1}) < l^{-1}$, whence $\|l^{-1} x_i\|_{\varrho} < l^{-1}$, $n(l^{-1} x_i) \leqslant 1$, $n(x) \leqslant ln(xl^{-1}) \leqslant l [n(x_1 l^{-1}) + n(x_2 l^{-1}) + \ldots + n(x_{2k} l^{-1})] \leqslant l 2^k$. Let $\varrho(x) = r + l$, where $r \geqslant 1$, $0 < l \leqslant 1$. There exist $x_1, x_2, x = x_1 + x_2$ such that $\varrho(x_1) \leqslant r \varrho(x)^{-1} \varrho(x) = r$, $\varrho(x_2 \leqslant (1 - r\varrho(x)^{-1}) \varrho(x) = l\varrho(x)^{-1} \varrho(x) = l$. It is shown by induction that a decomposition $x = x_1 + x_2 + \ldots + x_r + x_0$ exists such that $\varrho(x_i) \leqslant 1$, $\varrho(x_0) \leqslant l \leqslant 1$. Hence it follows

$$n(x) \le n(x_1) + n(x_2) + ... + n(x_r) + n(x_0) \le rk + k \le k(\varrho(x) + 1).$$

- 1.9. If ϱ is a modular in $X(\varrho)$ then a quasinorm n(x) (a distributive functional ξ) in $X(\varrho)$ is called ϱ -continuous, if $\varrho(x_n) \to 0$ implies $n(x_n) \to 0$ ($\xi(x_n) \to 0$). A distributive and ϱ -continuous functional is called ϱ -linear. Evidently, a ϱ -continuous n(x) is continuous with respect to the norm generated by ϱ (by 1.3, b)), but not conversely. If the condition B.2 is satisfied, then $\varrho(x_n) \to 0$ implies $||x_n||_{\varrho} \to 0$ and then the ϱ -continuity is equivalent to the continuity with respect to $|||_{\varrho}$. A set $X^0 \subset X(\varrho)$ is called modular-dense in $X(\varrho)$, if to every $x \in X(\varrho)$ there exist $x_n \in X(\varrho)$ and $\lambda > 0$ such that $\varrho(\lambda(x_n x)) \to 0$.
- **1.91.** If ϱ is a modular satisfying the condition (D) and if there exists an s-homogeneous norm in $X(\varrho)$ continuous with respect to $\| \cdot \|_{\varrho}$, then there is a constant c > 0 for which

$$\lim_{t\to\infty}\inf \varrho (tx) t^{-s} \geqslant cn(x) > 0 \quad \text{for} \quad x \in X(\varrho).$$

If n is the norm satisfying the assumptions, then $n(x) \le k(t^{-s} + \varrho(tx)t^{-s})$, by 1.81 and 1.6, (b).

1.92. If ϱ is a modular satisfying the condition (D) and if

$$\lim_{t \to \infty} \inf \varrho (tx) t^{-1} = 0$$

in a set modular-dense in $X(\varrho)$, then there exists only a trivial ϱ -linear functional in $X(\varrho)$ ([3]).

We put $n(x) = |\xi(x)|$; then, by 1.91 with s = 1, we get $\xi(x) = 0$ in a set modular-dense in $X(\varrho)$. Hence the ϱ -continuity implies $\xi(x) = 0$ always in $X(\varrho)$.

- 2. In this section the term φ -function will mean a function continuous and nondecreasing for $u \ge 0$, vanishing only at u = 0 and tending to ∞ as $u \to \infty$. If $\varphi(\alpha u + \beta v) \le \alpha^s \varphi(u) + \beta^s \varphi(v)$, $0 < s \le 1$, $\alpha, \beta \ge 0$, $\alpha^s + \beta^s = 1$, then this φ -function will be called s-convex (it is an s-convex modular in the space of real numbers). E.g. $\varphi(u) = \psi(u^s)$, where ψ is a convex φ -function, is s-convex.
 - 2.1. We shall consider the following examples of modular spaces:
- A. Let μ denote a finite, σ -additive measure, defined on a σ -algebra F of subsets of a set E, X the space of functions μ -measurable in E, $\varrho(x) = \int_E \varphi(|x(t)|) d\mu$, $L^{\varphi}(\mu) = X^*(\varrho) = X(\varrho)$.
 - B. X the space of sequences $x = \{t_v\}$, $\varrho(x) = \sum \varphi(|t_v|)$, $\ell^{\varphi} = X^*(\varrho) = X(\varrho)$.
- C. X— the space the elements of which are classes of bounded functions in $\langle a,b \rangle$; two functions belong to the same class if they differ by a constant. $\varrho(x) = \sup \Sigma \varphi(|x(t_v) x(t_{v-1})|)$, where the supremum is taken over all partitions $\pi: a = t_0 < t_1 < ... < t_n = b$, $V_{\varphi}^* = X^*(\varrho)$ ([1]).
- 2.2 If φ is an s-convex φ -function, then the modulars defined in A-C are s-convex. By this assumption, the modular in V_{φ}^* satisfies B. 1, whence a norm generated by ϱ can be introduced in V_{φ}^* . If the measure μ is nonatomic then the modular defined in A satisfies the condition (D). In general, modulars defined in B by means of arbitrary φ do not satisfy the condition (D), e.g. if $\varphi(t)/t \to 0$ as $t \to \infty$ or if $\varphi(t'+t'') < \varphi(t')+\varphi(t'')$ for t',t''>0.
- 2.3. A function $x \in V_{\varphi}^*$ is called absolutely continuous with respect to φ ([1]), if to any $\varepsilon > 0$ there is a $\delta > 0$ such that $\Sigma \varphi (|x(\beta_i) x(\alpha_i)|) < \varepsilon$ for all systems of non-overlapping intervals $(\alpha_i, \beta_i) \subset \langle a, b \rangle$ satisfying the inequality $\Sigma \varphi (\beta_i \alpha_i) < \delta$. We denote by AC_{φ}^* the set of all x for which λx is absolutely continuous with respect to φ for a $\lambda > 0$ (two functions which differ only by a constant are considered to be the same element of the space). AC_{φ}^* is a linear subspace of V_{φ}^* .
 - **2.4.** Let $\varphi(u)/u \to 0$ as $u \to 0$. By this assumption:
 - (a) the modular ϱ defined in C satisfies the condition B.1 for $x \in AC_{\varphi}^*$,
 - (b) ϱ satisfies the condition (D).

Proof of (a). Denote $V_{\varphi}(x;a,\beta)=\sup \Sigma \varphi(|x(t_{v})-x(t_{v-1})|)$, where the supremum is taken over all partitions of the interval $\langle a,\beta \rangle \subset \langle a,b \rangle$, $V_{\varphi}(x;a,a)=0$. The definition of ϱ is $\varrho(x)=V_{\varphi}(x;a,b)$. The partition being given, denote $\mathcal{J}'(x)==\Sigma''\varphi(|x(t_{v})-x(t_{v-1})|)$, $\mathcal{J}''(x)=\Sigma'''\varphi(|x(t_{v})-x(t_{v-1})|)$, where the summation is extended over all intervals of the length $<\delta$ in the first sum, and over all intervals of the length $>\delta$ —in the second one. Let $\varrho(x)<\infty$, $x\in AC_{\varphi}^*$. Since $\varphi(u)/u<<\varepsilon(b-a)^{-1}$ for $\delta>0$ sufficiently small, we have $\mathcal{J}'(x)\leqslant\varepsilon(b-a)^{-1}\Sigma'(t_{v}-t_{v-1})\leqslant\varepsilon$. Moreover, there holds the inequality $\mathcal{J}''(x)\leqslant(b-a)\delta^{-1}$ $\varphi(2\sup|x(t)|)$, for the number of intervals in this sum is $\leqslant(b-a)\delta^{-1}$. Hence we obtain for $0\leqslant a\leqslant 1$,

$$\Sigma \varphi (a \mid x (t_v) - x (t_{v-1})|) \leqslant \Im'(x) + (b - a) \delta^{-1} \varphi (2 a \sup |x (t)|),$$

$$\varrho (ax) \leqslant \varepsilon + \varepsilon \text{ for } a \text{ sufficiently small.}$$

Proof of (b). Let $0 < \varrho(x) < \infty$, $x \in AC_{\varphi}^*$. It is easily shown that $V_{\varphi}(x; a, \tau)$ and $V_{\varphi}(x; \tau, b)$ are continuous functions of τ for $a \le \tau \le b$. We define the functions

$$x'_{\tau}(t) = \begin{cases} x(t) \text{ for } a \leqslant t < \tau \\ x(\tau) \text{ for } b \geqslant t \geqslant \tau, \end{cases} \qquad x''_{\tau}(t) = \begin{cases} x(\tau) \text{ for } a \leqslant t < \tau \\ x(t) \text{ for } b \geqslant t \geqslant \tau. \end{cases}$$

Since $x(t) + x(\tau) = x'_{\tau}(t) + x''_{\tau}(t)$ for $t \in \langle a, b \rangle$, we have $x = x'_{\tau} + x''_{\tau}$ and moreover, $\varrho(x'_{\tau}) = V_{\varphi}(x; a, \tau), \varrho(x''_{\tau}) = V_{\varphi}(x; \tau, b)$. Let $0 < \alpha < 1$; there is a τ^* , $a < \tau^* < b$, such that $\varrho(x'_{\tau^*}) = a\varrho(x)$. Since $\varrho(x'_{\tau^*}) + \varrho(x''_{\tau^*}) = V_{\varphi}(x; a, \tau^*) + V_{\varphi}(x; \tau^*, b) \le \le V_{\varphi}(x, a, b) = \varrho(x)$, we have $\varrho(x''_{\tau^*}) \le (1 - a)\varrho(x)$.

INSTITUTE OF MATHEMATICS, A. MICKIEWICZ UNIVERSITY, POZNAŃ (INSTYTUT MATEMATYCZNY, UNIWERSYTET im. A. MICKIEWICZA, POZNAŃ)

REFERENCES

- [1] J. Musielak and W. Orlicz, On generalized variations (I), Studia Math., 18 (1959), 11-41.
- [2] On modular spaces, Studia Math., 18 (1959), 49—65.
- [3] — Some remarks on modular spaces, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys. 7 (1959), 669—676.
 - [4] H. Nakano, Topology and linear topological spaces, Tokyo, 1951.