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1. Let X denote a real linear space, o — a functional defined in X, — o0 << 0 (x) <
< co. The functional o will be called a modular, if the conditions

A.1. 0(0)=0; A.2. o(Ax)=0 for all 1 implies x=0; A.3. 0 (—x) =o0(x);
A4 p(ax+By) <o(x)+o() for x,yekX, a,=0,a+p=1
1.1. A functional ¢ will be called s-comvex, 0 <s <1, if
As. 4. o (ax+By) < aso (x)+pe () for x,yeX, a,f >0, a8+ =L

A 1-convex functional will be called briefly convex.

Evidently, A;.4. implies A.4. If ¢ (0) = 0 for an s-convex functional o, then
o(ax) < aso(x) for 0 <a <1 and consequently, o (#x) t—5 is a nondecreasing
function of 7, t > 0.

1.2. The following properties of modulars are of importance in our considera-
tions:

B. 1. ay 0 implies o (an x) = 0;

B. 2. o (xn) — 0 implies ¢ (axn) =0 for every a > 0.

1.21. We shall apply the following notation: Xi(@) ={x:0(x) <oo, xeX o
X*(0) = {x : 0 (Ax) < oo for a certain A(x) > 0, x € X}. Of course, every x satis-
fying B. L. belongs to X*(g). Denote by X(p) the set of x satisfying B. 1. X*(0)
is a linear space, X (p)—— its subspace.

1.3. It is shown in [2] that in X (o) a norm may be defined as follows *):

(%) | x|, = inf {e > 0 : o (x/e) < &},

possessing the following properties: a) || |, is an F-norm, b) ¢ (x) < |x|, for
|x|l, <1, ¢ |Ax|, is nondecreasing for 2 > 0. In the sequel, we call this norm

) In [2] the norm (#) is defined assuming a condition stronger that A. 2. However, the proof
that (x) is a norm possessing the properties in 1.3 can be performed by our assumption A.2 without
any changes. In [3] modulars, defined as in 1, were termed semimodulars.

[157]
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the norm generated by the modular 9. Under some additional assumptions on the
modular ¢, other definitions of the norm may be introduced in X (p) by means
of o. There holds the theorem: :

14. If ¢ is an s-convex modular, then X (0) = X*(p) and an s-homogeneous
norm can be defined in X* () as follows:

) Ios = inf{s >0: g(;},) < 1}.

We prove, e.g., the triangle inequality. Let |[xfos < &1, ||¥]os < €2, 6=1¢; +¢5.
Then
o ((x+y) g8y = 0 (6}/8 e—1/s xa;—l/s + E;Is g—lis y 85—-1/s) <

< (8}/3 8__1/,3)3 Q(Jca]“”s) + (85/8 gwlls)s g(y 62—1/6‘) < 1,

for (ellse—1s)s - (elfs e=115)s = 1. Thus, |x+ y]os < &1+ &2
1.41. The norms | |l¢s and || ||, are equivalent, more exactly, there hold the
inequalities: (a) [x[os < (Ix[,)2, 3 [|x], < L (®) (Ix],)+! < [xfos, if [x]os < 1.
If |x],<1 and |x||, <e&<1, then g (x(e5y~1/%) <& < 1, whence [x]os <
<& If [[xfos <1 and [[xlos < & <1, then o (x e=1+s) L (eWs g (we—l1+s)
< &!1+s, whence [x], < e'/'+s.

1.5. If o is an s-convex modular, then
| ] 0s = inf [sup (=5, o (tx) r—9)].
' t>0

It follows from (+4) that o(x) <1 implies |[x[os <1. If p(x) > 1, then
exe )P <@y e () =1 and |xg ()" o5 = [xfos 0 ()~ < L.
Hence there follow the inequalities

Jxllos < sup (1, 0 (), [ x]los < sup (¢, ¢ (tx) ) for £ >0,
i.e. | x]os < inf [sup (7%, ¢ (#x) t—5]. The definition of the norm (4-) implies that if
>0

0 < 10 < (||x]los)—1%, then o (fpx) < 1, i.e.

inf fsup (=%, ¢ (#x) 5] < sup (755, 0 (b9 %) 57°) < 1573,

>0
where £5 is arbitrarily near to [[%] os-

1.51. If ¢ is an s-convex modular, then the functional
[x)s = inf (z=* + o (¢x) t—5)
t>0 .

is an s-homogeneous norm in X* (¢) and there hold the inequalities

(0) $ Ixlls < lxlos <[]
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Denoting y (x) = 1-+¢(x), we have |x|s=infy (tx) =5 Moreover, 0 <
>0

< ||x|ls < oo; in fact, ¢ (x) >0 for xe X and o (tx) < oo for xe X* (g), if t >0
is sufficiently small. The s-homogeneity being obvious, we prove only the triangle
inequality. Let ¢/, ¢ > 0; y(x) is an s-homogeneous functional, whence

s ¢1s

(_x -+ y)) = (at’lls x__l_.ﬁt”l/s y) <L as y (t’lls x)_|_58 y (t”lls J’),

where
a=tUs (' 4y Vs, B=rUs (' ")y, et B8 =1,

Choosing t, = 18 ¢/Us (' 4-¢"")~1s we obtain
|54 plls <y (o x4+ 1) 578 < v (Vo) =14y (1 y) £

The inequalities (o) follow from 1.5, gy (&x) £~ <sup (% @ @x) 18 <
<y @x) == If |x|s =0, then (0) implies [x[os =0, i.e. x = 0. Hence, I ls is
a norm and not only a quasinorm.

1.6. If o is an s-convex modular and if 7 (x) is a quasinorm in X* (p) continuous
with respect to the norm || [, then
(a) sup n(x) =k

p()<<1
is finite; moreover, if n(x) is s-homogencous, then
(b n(x) <k(-+e ()

We prove (a). Suppose | x|, < # implies n (x) < 1. If x satisfies the inequality
o (x) < 1, we choose a positive integer / such that Iy > 1, I > 5~¢+9Is, We have
o (Fly—1x) <l <y, ie [IFlx],<n, thence n(I—1x) <1, n(x) <l Now,
we prove (b). If o(x) > 1, then o (x¢ (x)~1%) < 1, whence n(xo (x)~1%) <k,
n(x) o (x)—t < k; thus 1 (x) <k sup (1, ¢ (x)) for an arbitrary xe X * (0).

The last inequality implies easily that, by the assumptions of 1.6 (b), n(x) <
<k “xnos- . . v

1.61. If o is an arbitrary modular and if z (x) is an s-homogeneous guasinorm
in X (p) satisfying the inequality

n(@) <k(+e@) for xeX()

then ||xz], — 0 implies # (xx) ~ 0. :

Evidently, n (x) < k (t—5+o (tx) t*), ¢ >0; it suffices to note that |xal, >0
implies o (txn) — 0 for an arbitrary 7 > 0.

1.7. If p is a convex (i.e. a 1-convex) modular, then the norm | |y is the Amemiya’s
norm, well-known in the theory of modular spaces (cf. [4]). It can be also defined

as follows. By the definition of the norm || [, a distributive functional & over X* (g)
is continuous with respect to the norm | |; and has a norm ||&| < 1 if and only if

(++) £(x) < 1+p (x) for x e X* (g).
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Let n (x) == sup & (x), where the supremum is taken over all distributive functio-
“nals over X* (p) satisfying (+-). Since for every & satisfying () we have & (x) <
Lt 14 o (tx) 1 for t > 0, there holds n (x)<||x|;. On the other hand, there
exists a distributive functional & continuous in X* (g) with respect to || ||; satisfying.
the conditions £ (xg) = [|lxglli, & (%) < [x[1 <140 (x); hence, 7(xg) = ||xof1-
Thus, n(x) = |x];.

1.8. A modular o satisfies the conditions (D), if it has the following property:
to every 0 < a< 1 there exists a decomposition x = x; -+ x, such that
0 (x) <ap (), 0(x) < —a)e ().

Convex modulars are examples of modulars satisfying the condition (D). In
2 we give further examples of such modulars.

1.81. If p is a modular satisfying the condition (D) and if n (x) is a quasinorm
in X (¢) continuous with respect to | |,, then 1.6 (a), (b) hold, where k < co.

Let o(x) < 1. Given any positive integer k, there exists a decomposition

X =X1FXg b e+ X0k, 0(%) <27 o(x) <27k, Assume |x|, <[-1 (/—an integer)
implies 7 (x) < 1; choosing k sufficiently large (k is independent of x) we have
o (1= < -1, whence |[Flxg, <1, a(lx) <1, n() <)<
LI G D)+ n(xo FY) 45 (o FY)] <28, Let g (x) = r--1, where r > 1,
0 < I < 1. There exist X1, X, x = X;+x, such that o (x;) <ro (x)1eo(x)=+
e < —ro(xyVo(x)=lo(x)1o(x)=1 It is shown by induction that
a decomposition x == x1+ X + ... -+ Xr - Xy exists such that o (x)) < 1, o (xp) <

<! < 1. Hence it follows

P () <1 Qo) () e 1 G 7 i) < 1 e < (o (%) + 1.

1.9. If g is a modular in X (o) then a quasinorm # (x) (a distributive functional &)
in X (p) is called g-continuous, if o (x4} — 0 implies # (x5) — 0 (& (xy) — 0). A distri-
butive and g-continuous functional is called ¢-finear. Bvidently, a g-continuous
n(x) is continuous with respect to the norm generated by ¢ (by 1.3, b)), but not
conversely. If the condition B.2 is satisfied, then ¢ (x;) — 0 implies ||xa|, =0
and then the g-continuity is equivalent to the continuity with respect to | |,. A set
X0 C X () is called modular-dense in. X (o), if to every x € X (g) there exist x, € X (o)
and 4 > 0 such that ¢ (4 (xp — x)) = 0. ' _

1.91. If g is a modular satisfying the condition (D) and if there exists an s-homo-
geneous norm in X () continwous with respect to || ||,, then there is a constant
¢ > 0 for which - '

Hm inf g ()t = cen(x) >0 for xe X (p).

. 00 )
If n is the norm satisfying the assumptions, then z (x) < k (#—5+po (tx) %), by
1.81 and 1.6, (b).
. 192 If ¢ is a modular satisfying the condition (D) and if

lim inf o (1x) +—1 = 0

t->00
in a set modular-dense in X (g), then there exists only a trivial g-linear functional

in X (o) (I3D)
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We put 7 (x) = |£ (x)|; then, by 1.91 with s = 1, we get E(x) =0 in a set
modular-dense in X (¢). Hence the g-continuity implies £ (x) = 0 always in X (o).

2. In this section the term q-function will mean a function continuous and
nondecreasing for u = 0, vanishing only at u = 0 and tending to co as u —» co,
If @ (au-+po) <wpw+po@, 0<s<1, 0,820, af + 8 =1, then this
@-function will be called s-convex (it is an s-convex modular in the space of real
numbers). E.g. ¢ (1) = v (u%), where y is a convex g-function, is s-convex.

2.1. We shall consider the following examples of modular spaces:

- A. Let u denote a finite, o-additive measure, defined on a ¢-algebra F of
subsets of a set E, X — the space of functions u-measurable in E, ¢ (x) =

= b[ @ (1% (O du, Lo(u) = X* (@) = X (@)

B. X — the space of sequences x= {#,}, o(x) =X, IF =X*(0)=X (o).

C. X — the space the elements of which are classes of bounded functions in
¢a, by; two functions belong to the same class if they differ by a constant.
o(X)=sup Lo (x()—x (1,-1)!), where the supremum is taken over all partitions
=ty <t <. <tn=Db Vi=X*(o) (L.

2.2 If  is an s-convex @-function, then the modulars defined in 4—C are s-convex.
By this assumption, the modular_in Ve satisfies B.1, whence a norm generated
by ¢ can be introduced in V. If the measure u is nonatomic then the modular
defined in A satisfies the condition (D). In general, modulars defined in B by means
of arbitrary ¢ do not satisfy the condition (D), e.g. if @ (H)/t -0 as t— oo or if
e+t <e@)+o) for £t >0

2.3. A function x e V3 is called absolutely continuous with respect 1o ¢ 1D,
if to any & > O there is a 6 > 0 such that 210 (1% (B5) — x (a5)) < & for all systems
of non-overlapping intervals (a, fi) C <a, b) satisfying the inequality 2 (Bs —
— ag) < 6. We denote by AC; the set of all x for which Ax is absolutely continuous.
with respect to ¢ for a 2> 0 (two functions which differ only by a constant are
considered to be the same element of the space). AC; is a linear subspace of V.

24. Let @ (w)/u -0 as u— 0. By this assumption.:
(2) the modular ¢ defined in C satisfies the condition B.1 for xe ACy,
(b) o satisfies the condition (D).

Proof of (a). Denote V, (x;a, f) = sup Ze (|x (t,) — x (t,-D|), where the
supremum is taken over all partitions of the interval (a, > C <a, b>, Vp (x; @, @) = 0.
The definition of ¢ is o (x) = V, (x; a, b). The partition being given, denote ' (x) =
= 2" o (Ix () — x (ty)) T (x) = 2" ¢ (Ix (t,) — x (t,-1)]), where the summation
is extended over all intervals of the length < & in the first sum, and over all intervals.
of the length > 0 — in the second one. Let ¢ (x) < o0, x € ACy. Since @ (u)fu <
< &(b—ay~! for 8 >0 sufficiently small, we have &’ (x) < &(b-—a)~! 2 (t, —
—1,1) <&. Moreover, there holds the inequality ' (x) <(b—a)d~!
® (2<swu]la> |x (£)]), for the number of intervals in this sum is < (h— a) 0—1. Hence

s 0

we obtain for 0 <o <1,
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Zo(alx@t)—x ) <F @) +0b—a)d1pQRasup|x@)),
o (ax) < &+ ¢ for a sufficiently small.

Proof of (b). Let 0 << p (x) < o0, x € AC;. It is easily shown that V, (x;a, ©) -
and ¥V, (x;7, b) are continuous functions of v for a <{ v <{ b. We define the functions

, x(®)foras<t<r 7 {x(r)fora <t<
T()z{x(”f)fm b=tz=r, )= xOforb=t>=n

Since x (¢) + x (v) = x; (£) +x;” () for te<a, b, we have x = x; - x. and moreover,
o(x0) =V, (x; a,7), 0 (x:') =V, (x; 7, b). Let 0<<a<1; there is a 7%, a < 7% < b,
such that o(xs)=ap (x). Since @(xz) 40 (xt%) =V, (x; a, v +V, (x; 7%, b) <
<V, (x, a, b) =p (x), we have g(x3%) < (1—a) o (x).
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