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1. As is well known, numeérous papers have been devoted to the study of
generalizations of the classical spaces I%(a,b) of which those, called L¥(a,b)
by some authors or Li(a,b) by others, should be quoted in the first place.-In-
order to get some classes of spaces including those known “extensions as a pat-
ticular case let us introduce the following concepts. A continuous function
non-decreasing for « = 0 which vanishes only at 0 and tends to oo as
u - oo is said to be a ¢-function, Let u be a g-additive and totally o-finite
measure on a o-algebra § of subsets of an abstract set E. Let I(E, 1) be the set of
p=-measurable real functions for which the integral '

[ G0

is finite, A function xeI(E,u) will be said ¢-integrable. IHE.W is a-convex
set in the space of y-measurable functions, in general non-linear, so that for
the sake of avoiding this inconvenience we shall introducea wider class L¥(E, 1)
including x in it if and only if AxeI%E,x) with a certain 4 > 0 (in general
depending on x). L**(E, 1) becomes then a linear space. If the ¢-function ¢ is
convex then L**(E, 1) becomes with a propet definition of norm a Banach space

and for ¢(u) =u®% o = 1 we arrive at spaces of functions integrable with ex-
ponent «. ' C

Many people occupied themselves, under the assumption of convexity of ¢,
with studying properties of L**(E, ;) and with extending this order of ideas re-
placing the spaces I%(E,u) by this wider class of spaces. An exhaustive account
on these questions can be found in the monograph of Zaanen [15] from 1953 .
and in the book published in Russian by Krasnosiclsky and Ruticky [4]. The
case of arbitrary ¢-functions must necessarily be settled if we wish to include
in the theory also such spaces as I%(a,b) or more generally E*(E, i) with 0<C o0 <1 -
i.e.-spaces which are not B-normed but only F-normed (linear metric spaces).
It was first L. W. Kantorovitch [2] who has drawn attention to the spaces of -
functions which are ¢-integrable in the sense of -Lebesgue in a finife interval
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but with the additional assumption that the space is linear. He was not inter-
ested, though, in developing the theory itself but treated the spacesin question
as certain examples of semi-ordered metric spaces. More systematic study of
general spaces L*%(E,j)has become a subject of research only about 2 years
ago in papers of S. Mazur and W. Orlicz [8] and S. Rolewicz [13]. In what
follows 1 wish to present some results contained in the above-mentioned papers
and also in the papers yet unpublished of W. Matuszewska [5], [6], [7] and
myself [11], [12]. Since my aim hereis to give only a preliminary study which
would throw some light on the whole subject, it will be ample enough if we
restrict ourselves to that typical case when E isa finite interval and p the Lebesgue
measure on the algebra of sets which are Lebesgue-measurable in (a,5). Under
that hypothesis instead of writing I?(E,u) (resp. L**(E,u)) we shall use the not-
ation If(a,b) (resp. L**(a,b)) and put

35 = [ ¢(x0]de.

These considerations are fit for generalization to L*¥*(E,u) with non-atomic
measure g, Also the case of E being union of enumerably many atoms e, with
measures uniformly bounded from above and from below (by a positive num-
ber) can similarly be dealt with. The latter case of I%(E,u) corresl}?onds to spa-

ces of sequences x = {t,} which are ¢-convergent i.e. such that .3 ¢(|t,]) < eo-
v=1

2, The first observatio_n is the fdl]owing:

In L*%(a,b) a norm can be defined as follows:
1)  xls =inffe > 0: FeF) S 6}

The norm defined by (1)is a complete F-norm andif || x,[|, — 0 then J,(x,)—0.
From the standpoint of the subject under consideration whatever norm |[x||
might be introduced in L*%(a,b), it will be useful only in that case when the
following condition holds:

M) : . [x]| =0 implies J;(x,)~ 0. >

It is evident from the closed-graph theorem that if a complete F-norm in
L**(a,b) satisfies (M) then it is equivalent to | |, Further on when speaking
of a norm in L**(a,b) we always mean a complete norm satisfying (M), though
this assumption does not explicitly occur in the following. The norm defined
by (1) will be called the notm generated by ¢. It can be trivially seen that this



¢)-INTEGRABLE FUNCTIONS 359

norm is not homogeneous for any ¢ and is s-homogeneous only for ¢(u) = ku®
@ > 0. In the latter case with k = 1 i.e. for I{a,b) we have

iy =( o)

therefore | | is @/(1+x)-homogenecus, unlike the classical norm being
homogeneous for « 2 1 and a-homogeneous for 0 < « < 1.

A natural question is when one can manageto introduce a norm with better
properties than that generated by ¢, being e.g. defined by a simple formula,
homogeneous or s-homogeneous ete. First, let us introduce some concepts of
fundamental significance for the whole theory. We shall say that a d-function ¢
is not weaker than a ¢-function s for large u, in symbols X ¢, if we have the
inequality

Y(u) = bep(ku) for u = uy 20,

where b,k are positive constants. If ¢ X Y andy & ¢ then ¢ and i are termed
equivalent for large u, in symbols ¢ 4 ¥. This sort of equivalence means that
with suitable positive constants a,b,k,! we have

ad(lu) < Y(u) < bo(ku) for u=u, =0,

The relation X is transitive and the relation & has the usual properties of
relations of equivalence. The above definitions of L, X are more general
than those used e.g. in the quoted book of Krasnosielsky and Ruticky.

It may be noted that our definitions are specially fit to the considered case
- of a finite interval (a,b) of integrability. In the case of infinite (a,b) the relations
¥ X, ~ ¢ (¢ not weaker than W for all u, ¢ equivalent to W for all u) are
to be defined as before with u, = 0.

For investigating the spaces of series the relations X o~ (for small u) are
defined by means of the same inequalities as above but this time supposed to
hold in a neighbourhood of 0.

The proofs of the following statements provide no difficulty:

(@) L**a,b)c L**(a,b) if and only if y %, consequently I'*(a,b) = I*¥(a,b)
if and only if ¢~-Ly.

(b) if ¢ < then the norm generated by ¢ is equivalent to the norm ge-
nerated by .

Owing to (a) and (b) it follows that it is possible to replace ¢ by some
other ¢-function which is equivalent to the former one and more handy for
defining the norm in L*¥q,b).
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Suppose now that
(2) ¢ &y, with x(u) = ¥(u®), s>0 and ¢ convex.

Let 0 < s 1. Then a norm can be defined by the formula
& % = inf o > 0: §,(;i5) < 1}.

A simple piece of calculus work shows that |] ][v is an s-homogeneous norm,
Hence we have defined by (3) in L*%(a,b) an s-homogeneous norm equivalent to
[ 4 In the case of s 2 1, Y(u") = ¥(u) = %(u), ¥ being convex, so that (3) ap-
plies to ¥ = ¥ and s = 1. In this case L**(a,b) can be equipped with a homo-
geneous norm and, in fact, all the procedure of defining that B-norm is well-
known from papers concerned with convex ¢-functions.

It seems to be of interest that the above statement may be conversed:

If an s-homogeneous norm can be defined in L*¥a,b) then (2) holds. In
particular, introducing a homogenecus norm is possible if and onlyif ¢ is
equivalent in the previously established sense to a convex function.

There is another way of defining a norm if it is known that ¢ ~ y, where
x(u) = y(u"), s > 0, where  is concave. If 0 < s = 1 then y is concave, whence
subadditive, and it is evident that the formula

@ | [¥] =3,6)

defines an F-norm in L*%(a,b). This method rests on the use of a definite in-
tegral formula which is applied in the classical case of y{u) =u*, 0 <a £ 1.
Though it is trivial, I will note for the sake of completeness, that (4) defines
an s-homogeneous norm only in that case when y(u) = ku”.

Let us now state the following question:

When is a representation of the form ¢ < x, x(u) = (u®) with convex or
concave ¥ and possibly large or small exponent s, possible?
In order to answer this question we shall define some auxiliary functions

hy(h) = lim g_é% () =Tim %&% for 4> 0,

Easy calculations show that the following limits exist (finite or not)

s = lim l—g—h‘i’(ﬂ') g = lim g #15(2)

im0t —1gA" avot —Igd”’
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and that ¢ A implies 54 = 8y, 0, = 6. These constants are related to a cer-
tain class of ¢-integrable functions which are equivalent to each other. The
following theorem holds:

(a) if 5, > 0 then the representation

) C pd with 1w =y,0)

¥ being convex, is possible for s < s, and impossible for s > - S When s= %
then (5) holds (again with convex ¥) if and only if H(u) =u p(u) Il bemg
pseudo-increasing for large u i.e. having the following property:

6) pluz) Zmp(auy), mn>0, for uy 2 uy 2 uo.

(b} If 5, < oo then the representatlon {3) w1th a concave i is possible f01
5> d, and 11npos51b1e for s <o, When 5=g, then (8) holds .(again with
concave ) if and only if Plu) = u'p(u), p being pseudo-decreasing for large
uie. Sdtlsfymg (6) with = changed {0 =.

Summarizing the above results we arrive at the following

THEOREM 1. (a) Introducing a homogeneous norm in L**(a,b) is possible
only if s, > 1 or s, =1; in the latter case under the additional assumption
that ¢(u) = up(u), where p is pseudo-increasing for large u.

(b) Introducing an s-homogeneous norm (0 <s<1) is possible only . If
55> 0. If s, £ 1 then one may introduce a norm of order < 55 and of order
s =5, only if ¢(u) = u’p(u) with pseudo-increasing p.

We shall conclude this section concerning introducing of norms in L*“"(a b)
with the following remarks. ¢ is said to satisfy the condition (A,) for large u
if a > 1 and if with a certain ¢, > 1 we have the inequality

(o) = ¢,d(w) Tor u 2 ug(e).

If we replace in this inequality = by < <, we get the condition (A,) for large u.
It may be shown that the followmg _properiics are eqmvalent
(@) s5,>0, |
(B) ¢ satisfies (A,), _
(v) . there exists a bounded neighbourhood of 0 in the space [L**(a,b), || [,]-

On the other hand itisknown thatin an arbitrary F-normed space an s-homio-
geneous norm, equivalent to a given .one, can be introduced if and only if
there exists a bounded neighbourhood of 0, [14]. This theorem for L*(a,b)
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may be established by a direct proof of the equivalence (8)%(y), whence,
owing to the equivalence (#) %= (f) and to the previous considerations, we can
precisely find the degree s of homogeneity of the norm.

As regards the condition (A,) we shall note that it is always possible to re-
place it by the equivalent condition (A,), well-known from the theory of L¥*%(a,b)
with convex ¢. Similarly as in the latter case, this condition is of importance
also for arbitrary ¢’s, e.g. when studying separability. To get back to questions
considered so far, (A,) is equivalent to ¢, < w0, i.e. to representing ¢ as (u")
with a concave i,

3. Now we shall briefly discuss the question of separability of L*¥(a,b).
It will be convenient, similarly as it is done for convex ¢, to introduce first
the concept of a finite element, Let M%a,b) stand for the set of those x for
which J,(1x) < oo for every 1 >0; xe M %(a,b) will be called finite element.
For instance bounded functions, in the considered case of finite (a,b), are
finite elements. The following properties of M%a,b) are easy to verify:

() M%a,b) is the greatest linear subspace of I¥{(a,b),
(B M%a,b) = M¥(a,b)if and only if ¢ &,
(v) M%a,b) is separable with respect to the norm || ][¢.

The question of separability of L*"’(a b) is satisfactorily settled by the follow-
ing theorem:

THEOREM 2. Separability of [L**a,b), | |, is equivalent to the follow-
ing properties:

() ¢ satisfies (A,),
(B) I!a,b) = L*¥a,b),
() M%a,b) =L*a,b).

4, The last section of my talk will be concerned with linear functions and
operations over I**(a,b). From the point of view of the subject under con-
sideration it will be worthwhile to define in L**a,b), in addition to norm
convergence, some other kind of convergence which will be referred to as
¢-convergence or modular convergence, A sequence x, of elements from L*(a,b)
will be called ¢-convergent (or modular convergent) to x,, in symbols x,% x,,
if with a certain 1 > 0, F,(A(x, — x,)) = 0 as n— 0. Since, as it has been
already remarked, | x,{,— 0 implies J,(x,) = 0, norm-convergence implies
¢-convergence,
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The opposite implication holds, however, only when (A,) holds. Hence
distinguishing norm-convergence from ¢-convergence is necessary only for
rapidly increasing ¢: that case when (A,) fails to hold. In view of the above
we distinguish in L*¥(a,b) two kinds of distributive, continuous operations;
linear operations in [L**a,b), || ||,] and ¢-linear ones, i.e. those contintous
in the sense of ¢-convergence. Of course ¢-linearity implies linearity with
respect to | [, Some fundamental theorems concerning linear operations
over normed spaces may be transferred without change to ¢-linear operations.
I should mention here ¢.g. the following theorem on sequences of operations:
Let U, be ¢-linear operations over L**(a,b) with values in an F-normed
space. If

7 U(x) = U(x) for x & L*a,b),

then U is ¢-linear and U, are equi-¢-continuous, in other words, U,(x,) >0
as X, %0 ' .

Nevertheless it should be noted that under the weaker assumption of bound-
edness of U,(x) in the whole space L*¥(a,b) in place of (7), the equi-g-conti-
nuity of U, does not hold in general.

We now turn to the question of existence of non-trivial ¢-lincar functionals
and their representation. According to the well-known theorem of M. Day [1],
there exist over L(a,b), when 0 < u <1, only trivial linear functionals. In
this particular case ¢-continuity must not be distinguished from norm-con-
vergence, as ¢(u) = u” satisfies (A;). The general theorem states the follow-
ing: In order that there exist non-trivial ¢-linear functionals over L*(a,b) it
is necessary and sufficient that
® . lim ‘ii”_) > 0.

o

Now, let us replace (8) by the somewhat stronger

© im 209 o,
w—or

This condition is not a so much imposing one, since it is, in particular,
fulfilled by every convex ¢, provided that the latter is not l-equivalent to the
trivial ¢-function ¢(u) = . In order to obtain, under (9), a theorem on integral
representability of ¢-linear functionals, we replace ¢ by an equivalent func-
tion for which ¢(u)/4 —0 when u -0 and we define the so-called comple-
mentary functionf to ¢

(10) Y(v) = sup (uv — () for v =0,
: wz0 :
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It may be easily verified that y is a convex ¢-function such that W(v)fv — co
as t — 0, For u,v = 0 the generalized Young inequality holds

(in | uv < ¢lu) + wiv)

(we get the Young inequality on supposing that ¢ is convex).

For every v = 0 there exist u, such that

uw = (u,) + (v),

though, unlike the case of convex ¢, the sign of equality in (11) must not
occur for every u with a certain »,. Nevertheless, arguments being usually
applied, basing on Young inequality, for the sake of representing functionals,
in the case of convex ¢, may be extended also to the case of ¢ subject to (9)
and the generalized Young inequality.

The following theorem may be deduced:

THEOREM 3. The general form of a qb linear functional over the space
L*(a,b) is as follows:

50 = [5O3,

where y(1) is a function from the space'L*"’(a,b), W bemng complementary to ¢.

To conclude I will call your attention to the possibility of including the
theory of the spaces L*# (4,b) into the more general theory of modular spaces.
The starting point of this theory are semi-ordered linear spaces in which a
functional is defined, called modular, H. Nakano [9] and his school developed
the theory of modular spaces, embracing spaces L**(a,b) with a convex ¢ as
special cases. The axiomatic of modular space in the sense of Nakano may
be generalized to include also spaces L¥?(a,b) for arbitrary ¢-functions.
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