Exponential Statistical Manifolds:
Overview and Applications

Giovanni Pistone
Dipartimento di Matematica del Politecnico
Corso Duca degli Abruzzi, 24
10129 Torino, Italy

1. Introduction.—In the recent book by K. Murray and J. Rice (1993) a full account of the
relations between general manifold theory and the special case arising in Statistics is considered.
Such a special case, often called Information Geometry (IG), was previously presented in book form
in (Centsov 1972), (Amari 1985) and (Amari, Barndorfi-Nielsen, Kass, Lauritzen and Rao 1987).
Murray and Rice insist on a geometric and coordinate-free presentation at the conceptual level,
switching to coordinates to deal with applications in actual parametric models. The need of a non-
parametric presentation was already remarked by many authors, starting from P. Dawid (1977),
S. Amari (1982). Also the need of a proper functional framework for the non-parametric case is
frequently mentioned.

The formal construction of an atlas on the set of positive densities of a sample space was given in
(Pistone and Sempi 1995). The development of the existing theory in this new functional framework
has been carried over in (Pistone and Rogantin 1997) and (Gibilisco and Pistone 1997), where all
basic results of IG are extended from parametric and semi-parametric settings to the non-parametric
setting. Such results are summarized in the present paper, with the addition of a few unpublished
results. The development of typically non-parametric applications is much less advanced, with the
possible exception of applications to filtering, see (Brigo and Pistone 1996) and references therein.

During past seminar presentations of these results the question of the fruitfulness of such an
approach has been questioned. In particular the following objection was frequently raised: the
practical application of classical non-linear functional analysis—as used for example in the book by
S. Lang (1995)—to function spaces of integrable functions is difficult, so that other approaches to
infinite dimensional analysis should be preferred. This point is discussed in the last two Sections,
together with the statement of our plans for future research work.

2. Functional Analysis.—The basic functional space on which our construction is based is the
Orlicz space L? with exponential Young function, e.g. ¢(z) = coshz — 1. This class is naturally
suggested by the theory of exponential models. In fact, if p(t) = exp (¢ - w — 9(t)) - p is such a model,
then the moment generating function of u is finite in a neighborhood of zero, so u € L?(p). If we
drop the natural parameters ¢, the ‘parameter’ is u € L?(p) in the ‘model’ p, = exp (u — K,(u)) - p,
where K, (u) = log E, (expu) is the ‘cumulant functional’.

A basic property of the spaces L?(p) when p varies in the set M of positive probability densities
of a given sample space (X, X, 1) is the following: If p and ¢ are two probability densities connected
by an exponential model, i.e. such that they belong to and exponential model for parameters values



in the interior of the natural domain, then L?(p) = L%(q). This property implies that such spaces
can be used, at least locally, in place of the spaces L*(p) which have the property of being all equal
for p € M. We can define the centered spaces B, = {u € L?(p) | E, (u) =0}, and all B, for ¢
connected to p by an exponential model are closed subspaces of a fixed L?(p).

The non-parametric exponential density exp (u — K,(u)) - p defines a unique u € B, defining a
map e, from a subset of M to B, that will be the chart of the manifold. It follows from the general
theory of Orlicz spaces that the space LY (p), ¥(y) = (1 + y) log(1 4+ y) — y, is the pre-dual space of
L?(p), and the corresponding centered space *B,, is the pre-dual of B,.

The cumulant functional K, is defined on an open domain of B, and has a number of important
properties: 1) Its proper domain contains V), the open unit ball of By; 2) It is 0 at 0, otherwise
is strictly positive; 3) It is convex and Fréchet C*° on Vp; 4) Yu € V,, ¢ = e () . p € M;
5) The value of its n-th differential at u in the direction v is the n-th cumulant of v under g; 6)
Vu € V, and q = ev—Kn(w) . o VEKp(u) = 4 -1 € *B, is its gradient and it is monotonic, in
particular one-to-one; 7) The weak derivative of the gradient map VK, at u applied to w € B, is

D(VK,(u)) w= (g) (w — B, (w)) and it is one-to-one at each point.

3. Exponential Statistical Manifold (ESM).—Let us consider the following map: e, : V,, 3 u
q = e* () .p € M. This mapping is one-to-one because u is centered. We denote by U, the image
of V, by the mapping e, and by s, the inverse of e, on U, s, : U 3 q — log% — E, (log g) € Vp.
The s, maps are the centered log-likelihoods and they form an atlas on M, defining the ESM.

As each U is modeled on By, then B, in a model of the tangent space T, M. As at least locally
all this spaces are subspaces of the same Orlicz, there is a natural trivialization of the tangent bundle
TM. An other interesting representation of the tangent space at p is the set of all one-dimensional
exponential models trough p.

The manifold structure defined is this way presents a number of technical problems, depending
on the unusual structure of the model space B,,. Namely B, is not a reflexive space, and its structure
is not compatible with the product of measure spaces. This gives rise to a non-trivial theory of
sub-manifolds, which on the other side is essential, because we would like to present statistical
models, both parametric and non parametric as submanifolds of the ESM. The other candidates to

be charts of a manifold structure on M, e.g. g — % — 1 € *B, (the ‘expectation parameters’) and

1/a
g q'/* € L or g > (g) € L%(p) (the ‘Amari embeddings’) cannot be charts of an atlas because
of the positivity constrain. However they are smooth parameterizations on M

4. Connections.—The introduction of typically statistical connections on the ESM has a key role
in the geometrization of Statistics, and has an important role in applications to asymptotic theory,
approximation, stochastic differential equations for filtering. The tangent bundle T'M end its pre-
dual *(T'M) support respectively the exponential and mixture connections of via the flat parallel
transports (T'M), 3 u — u — Ey(u) € (T'M), and *(TM), 3 u — ('3—) u € *(TM),. The ESM M
is naturally embeddable into the sphere of Lebesgue spaces L*(j:) through the Amari embedding A®
in Eq. (1). A% is a smooth map with differential at p € M given by d,A* : (TM), = By > u
p/*v € L*. If we consider the vector bundle 7 with fiber 7 = Lg(p) and the tangent bundle T'S,
of the sphere S, in L®(u), they are connected via the mapping I%, see Eq. (1).
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Because of the embedding of the tangent bundle 7'S, into L%(u), and the existence of a natural
splitting based on the projection along the vectors on the sphere, a natural connection is defined



on the tangent bundle T'S,. The covariant derivative of such a connection V is transferred to the
covariant derivative on the bundle %, V¢, by the equation V* = I"1V (I 0 S): it is then derived
from the pull-back of a connection. This construction is rigorous in our framework and it is equivalent
to the classical definition. It has to be noted that the actual derivation of the explicit global equations
given by Amari has to be performed in a different framework, for example by taking derivative of
products in the sense of convergence in p-measure. Everything we have discussed so far concerning
a-connections could be generalized to bundles based on general Orlicz spaces.

5. Applications.—The main application of the non parametric theory is the treatment of semi-
parametric inference due to Amari. In such an application the rigorous construction of a manifold
and its connections should be of some help. In our opinion another important application of a non-
parametric theory should be in the direction of the study of Fokker-Planck equations, with possibly
an extension to filtering theory. In fact elliptic equations give rise (because of the maximum principle)
to evolutions in an ESM. Geometric arguments based on the Amary embedding have been used to
find finite dimensional approximations of the filtering equations.

6. Discussion.—The idea of taking as a model theory for IG the theory of manifolds modeled on
a Banach space has been questioned. Especially our choice of the Orlicz exponential space puts us
in a difficult framework, because of the peculiarity of such a Banach space. Other frameworks have
been suggested, that we simply mention without giving the relevant references because of the lack of
space: 1) One could consider only a weaker structure which is not globally a manifold, but induces
on each “finite-dimensional sub-manifold” the right statistical structure; 2) Proper differentiability
could be dropped, asking only differentiability in a dense set of preferred directions; 3) The geometry
of spheres via embedding could be used, ignoring the fact that the image of the set of probability
densities has empty interior. All these choices are actually related, but much work has to be done to
fully clarify the matter.

7. New Research.—One of the main limitations of the geometric theory as discussed above is the
restriction to a set of equivalent densities. Of course most basic asymptotic situations (for example
the convergence of a binomial model to a Gaussian limit) do not fit at all into this framework. L. Le
Cam has developed in the sixties an asymptotic theory to deal with this situation, see (Le Cam 1986).
Le Cam theory is based on Hellinger distance and convergence in distribution of likelihood ratios.
As each individual model in the sequence is actually a Riemannian manifold, we could think of
a notion of convergence for sequences of manifold, the difficulty being the fact the manifolds are
not sub-manifold of the same bigger structure. M. Gromov (1981) has developed tools for dealing
with this problem. He gives a definition of distance between generic Riemannian manifolds and a
theorem of relative compactness for sequences of manifolds based on the boundness from below of
the Ricci curvature and other more technical conditions. Exploration of the connection between the
two theories is just at the beginning.

The characterization problem of statistical manifolds in the class of generic manifolds was raised
by some authors (Lauritzen 1987, Kurose 1990). What is needed in connection to the previous
convergence problem is the possibility to characterize the statistical manifolds that arise as manifold
limits of statistical manifolds. As a statistical manifold is a collection of densities, what is needed is
some structure associated to the manifold and characteristic of the distribution. Natural candidates
are: cumulant functionals and relative information, a-connections. We would like to mention also
the characterization of distributions based on variance functions, see (Letac 1992), and a recent
generalization in the direction of computer algebra in (Pistone and Wynn 1997).
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SUMMARY
A fully non parametric theory of statistical manifolds can be developed from the idea of modeling
the infinite dimensional manifold of positive probability densities of a given sample space over the
Orlicz space of the exponential Young function. Functional analysis methods help in developing this
construction: we show how to derive properties of the basic functionals, expectation parameters,
orthogonality, connections by exploiting the duality between Orlicz spaces. Other approaches and
possible direction for future research are briefly discussed.

RESUME
La théorie non parametrique des variétés statistiques peut étre développée dans le cadre des va-
rietés de dimension infinie sur 'espace de Orlicz avec fontion de Young exponentielle. Des méthodes
d’analyse fonctionelle permettent de realiser ce objectif: exposé momtrera la contruction des fonc-
tionelles de base, des parameétres moyen, de I’ orthogonalite et des connections, basée sur la dualité
entre espaces de Orlicz. Différentes démarches et des possibilites des recherches ulteriéures sont
presentés brievment.



