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1. Introduction

2. Young’s functions

2.1. Convex functions. let us first recall some properties of the convex fuc-
tions.
DEFINITION 5.1. A real function ¢ on R is convez if the Janssen inequality
d(Azy + (1 = A)zo) < Ad(z1) + (1 — AN)p(z2), YA€[0,1], (5.1)
holds Vx1,z0 € R.
PROPOSITION 5.1. A convez function ¢ on an open interval |a, b[ is continuous
on this interval.

But a convex function has stronger interesting properties. We recall only the
important one’s in view of the following

LEMMA 5.1. Let ¢ a convez real function on the open interval |a, b[
t - ¢ has a right derivative fi and a left deriwatwe f_ at every point and
f-(t) < f+(8) ,t €]a, b[. (5.2)
1 - fy and f_ are non-decreasing
fe(tr) < fe(te), f-(t) < f-(t2), of t1<ta.

Moreover, f, is continuous from the right and f_ 1is continuous from the left

lim £..(£) = fu(to). (5.3)
lim £ (t) = f-(to). (5.4)

The right and left deivatives are equal except perhaps for at most a countable number
of points.

w1 - ¢ s absolutely continuous and satisfies the Lipshitz condition in every
finite interval,

B(z3) — ¢(z1)

Ty — 1

< Kep<+o0, a<z<ca<b, (5.5)

where Kgy, is a positive constant depending on the boundary of the interval Ja, bl.
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THEOREM 5.1. Let ¢ :Ja,b[— Rbe a function. Then ¢ is convez iff foe each
closed subinterval [c,d] €]a,b[ we have |a,b[ can be represented in the form:

o() = B(c) + f Cfdt, zeled), (5.6)

where f(t) s a non-increasing left continuous function.
Remark: In the previous theorem the function f can be choosen Right continuous.

2.2. The Young functions.

2.2.1. A class of conjugate convez functions. In his stuties on Fourier series,
W. H. Young has analysed certain convex function ® : R — Rt which satisfy the

conditions:
O(—z) = ®(z)

P(0) =0 (5.7)
zl-l-{%o ®(z) = +00.

With each such function ®, one can associate another convex function ¥ : R —
R™* having similar properties, which is defined by

U(z) =sup{z|y| - ¥(z) : >0}, yeR. (5.8)

DEFINITION 5.2. A convez function ® : R — R which satisfies the condi-
tions (5.7) is called a Young function.

The function ¥ : R — R" defined by the equation (5.8) is called the the conjugate
(or complementary) function to the Young function ®.

It follows from the definition that the convex ¥

¥(0) =0,
¥(-z) = ¥(z),
lim ¥(y) = +o0,

Yoo

and ¥ is a Young function.
From (5.8) the pair (@, ¥) satisfies the Young’s inequality:

zy < @(z) +¥(y). z,yeR (5.9)

Exemples of Young functions:

i) Let ®(z) = |z|P,p > 1. Then ® is a continuous Young function such that
®(z) =0iff z =0, and lim ®(z) = +oo while $(z) < co for all z € R.

IT—CO



2. YOUNG'S FUNCTIONS 3

ii) Let ®(z) = 0,0 < |z| < a; '(z) >0, a < |z| < b, and ®(z) = +co for z > b,
where @' is a continuous increasing convex function on |a,b[. Then ® is a Young
function which is continuous on | — b, b[, and jumps to +co at |z| = b.

iii) Let T(y) = 0 for 0 < |y| < 1; ¥(y) = +oo for |y| > 1. Then ¥ is the
conjugate to ®(z) = |z|, implying that that the conjugate function of a continuous
function ® on R can be a jump function.

Remark: A young function ® : R — R est convex and ®(0) = O, but which may
jump to +oo at finite point. If ®(a) = +oco for some a > 0, then ®(z) = +oo for
T,

THEOREM 5.2. Let ® : R — R* be a Young function. Then it can be represented

as:
£

Bz)= | ft)dt, zeR, (5.10)

where f : RY — R%is nondecreasing left continuous; ¢(0) = 0 and if f(z) = +oo
for z > a then ®(z) = +o00, z > a > 0.

Under some continuity conditions the conjugate pair of Young functions present
interesting nontrivial properties and ordering relation. conditions.

2.2.2. The N-functions. We are now interested by a usefull class of nice contin-
uous Young functions increasing on R*.

DEFINITION 5.3. A continuous convez function ® : R — RY is called N-function
if:
i) ()= d(-a),

i) Plx)=0; Fs=0,

)y d 28 e (5.11)
z]+o0 T

1w ) lim i =0.
z]0 T

PROPOSITION 5.2. A N-function ® is a Young function
PROPOSITION 5.3. Let ® be a N-function

i) ®(x)>0,Vz#0. (5.12)

11 ) @(211) < ‘I’(.’L’g) tf T < Ty (513)

1) Plaz) <a®(z), 0<a<l. (5.14)
or equivalently %J-:—) s strictly increasing for z > 0.

iv) The restriction @4 =P |g+ of ® on RY has a concave
inverse ®7', ®7' (Py(z)) =1.
vi)  The composition ® = ®) 0 ®y of two Young functions is

also a Young function.
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THEOREM 5.3. A N-function ® has an integral representation
Izl

o) = | f(t)dt, (5.15)

where f is a nondecreasing left continuous positive function on R which satisfies
g

f(0) =0,

L%Tgo f(8) = +oo.

(5.16)

Remark: If ® is a N-function the function f can be choosen nondecreasing right
continuous positive function on R*.

2.3 Conjugate Young N-functions. Let ® a N-function, then there exist
a nondecreasing right continuous real function f on R* such that f(0) = 0 and
limgt 400 f(£) = +00. Let us introduce the non-negative function h on R*

h(s) = sup t. (5.17)
ft)<s

PROPOSITION 5.4. The function h defined in (5.17) is a non-decreasing right
continuous real function on RY such that

h(0) =0, 3?}}100 h(s) = +c0. (5.18)
Moreover
(ho)B)>t, (Foh)(s)>s. (5.19)
and for e > 0:
M) —e) <t, fh(s) =€) <s. (5.20)

Then h is the right inverse of f.
Remark: h is the inverse of f if f increase monotonically.
THEOREM 5.4. The two N-functions ® and ¥ defined by
[z lvl
®(z) = f)dt, ¥(y)= h(s)ds, with h(s) = sup t,
0 0 f(t)<s

are called conjugate.

The pair of Young function (®, ¥) satisties the relation (5.8)

¥ (y) = sup(zly| — ®(z)].
x>0
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PROPOSITION 5.5. Two conjugate N-functions ® and ¥ verify the Young's in-
equality

zy < O(z) + P(y), (5.21)
the equality being reached by

i) y =sgn(z) f(|z|) for = given,
i) z = sgn(y) h(ly|) for y given.

Examples of conjugate N-functions

(1)
@(x):%i,a>1, flz) =21, z>0,
B
v =, e lot = u20
(2)
@(z)ze'w{—h;!—-l, flg)y=e* =1, 220,
U(y) =1 +y)In(L +[yl) = lyl, Aly) =In(y1), y > 0.
(3)

B(z) =e* 1, f(z) =2z¢*" , 220,

¥(y) no explicit form, A(y) no explicit form .

THEOREM 5.5. Let the inequality ®,(z) > Po(z) for the Young functions ®,
and ®y for x < zy. Then the inequality Wo(y) > ¥,(y) holds for the conjugate
functions ¥y and Uy for y < yo = fa(z), where f is the rigtht derivative of ®,.

2.4. Equivalent Young (N-)functions. It is possible to define a partial order

on the family of Young N-functions in the following way.
Let ®; and ®5 be two N-functions, we shall write

®; <Py, (5.22)
if there exist positive constant zo and & such that

‘I’l(fﬂ) < ‘I’g(k:ﬁ) 3 (523)

This inequality compare the rapidity of growth of the Young functions for large
values of z.
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DEFINITION 5.5. Two N-function ®, and ®, are equivalent and write
Py~ Dy if By <Py and Py < Py .

Example: ®,(z) = coshz — 1, and ®5(z) = el*! — |z| — 1 are equivalent (P ~ @y).
LEMMA 5.2. let ®; and ®y two N-functions with conjugate Uy and W, respec-
trvely
1-Py ~®y = Jk,kK >0, zg >0 such that:

) (kz) < Pa(z) < D1 (K'2), Z>a0.

it - Po(z) =P1(kz), k>0 = &~ Py,
Wi-P) <Py = Wy <.

THEOREM 5.6. let ®, and P, two Young functions with conjugate ¥, and ¥,
respectively, then
Py ~ Py — Py~ 0y,

Let us now give some equivalence criterion
PROPOSITION 5.6. Let ®1 and Py be two N-functions with integral representation

= |z

(D]_(m) — i fl(t)df, <I)1($): 4 fl(t)dt

and with conjugate ¥y and ¥y respectively. Then
1 - Let b a finite positive real number

lim h(t)
tT+oo fa(t)

=b>0= &, ~ Py. (524)

i - If we denote by ha(s) = sup t and by b a finite positive real number,
f2(t)<s
then 5
M=b>0,a.e.=>®1~@2. (5.25)
sT+oo ]
2.5 The A; and Vj-conditions. The cmoparisons of N-functions given in
the preceeding section become more useful in the theory when a corresponding
classification based on the rapidity of their growth is added

DEFINITION 5.6. The Young function ® satisfies the Aq-condition (globaly) if
there exists constants k > 0, zo > 0 such that

P(2z) < k®(z), > 20> 0(z0=0). (5.26)
Remark: The A,-condition imply
P(lx) < ke®(z), >0, £> 1. (5.27)
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DEFINITION 5.7. The Young function ® satisfies the Vy-condition (globaly) if
there exists constants £ > 1, g > 0 such that

B(z) < %‘I’f(:r), 2> 20 > 0 (2o = 0). (5.28)

PROPOSITION 5.7. Let ® be a N-function and ¥ its conjugate and f and h the
left derivative of ® and ) respectively.

i) If ® satisfies the Ay-condition (Vy-condition) any Young function
equivalent to ® also satisfies the Aq-condition (Vo-condition).

1) @ satisfies the Ay-condition iff it exists constants @ > 1, zo > 0 such
that, for x > x¢

of(@) _

2(a) (5.29)

1w ) © satisfies the Aqg-condition if its conjugate ¥ has a convex right
derivative.

w ) P satisfies the Ag-condition iff its conjugate VU satisfies the V;-
condition.

v ) @ satisfies the Ay-condition iff it exists constants § > 1, yo > 0
such that, for y > yo

vh@) | 4. (5.30)

¥ (y)
with h the right derivative of the conjugate ¥V of ®.

Examples

1) ®(z) =alz|*, a> 1 satisfy the Ay condition.

2) ®(z) = el*l—|z| -1, does not satisfies the A, condition ( because it increase
more quikely than any power).

3) ¥(z)=(1+|yl) In(1+]y|)—|y|, (the conjugate of the ® defined in Example 2)
satisfies the A, condition ( the right derivative of ® is e* — 1 for z > 0 and it is
convex).

3. Orlicz spaces

3.1 The Orlicz class L?(X, P). Let (X,F, P) be a probability space where P
is a continuous probability®.

Remark: In the case where P is replaced by a o-finite continuous measure p we
impose to X to be a bounded closed subset of a finite-dimensional Euclidean space.

!By continuous probability we understand the existence of a subset A of every set B such that
P[A] = L P[B].
2
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DEFINITION 5.8. Let ® be a Young function, then the class of real-function de-
fined on X such that

rp(u,®) =Ep[Pou| = ./x P((u(t)) dP(t) < +oo, (5.31)

is called the Orlicz class L®(X, P).

Remark: If every function in the class £ (X, P) is summable on X, not all summable
function belong to L (X, P), however,

LEMMA 5.3. Let us consider the family of all Orlicz classes on (X, F, P)
i - All bounded function on X belong to LT(X,P), V.
u - Bvery summable function on X' belongs to some Orlicz class:

L'x,P)e| JL®(x,P).
Lel

THEOREM 5.7. The Orlicz class L2(X, P) , is a convez set for every Young func-
tion ®. Moreover the class is linear if and only if O satisfies the Ay-condition.

LEMMA 5.4. Let u € L¥(X, P), then the following Janssen integral inequality
holds

P (/X u(x)dP(a:)) < [Yq)(u(mj)dP(x), or ®(Epfu]) <Ep[®ou]. (5.32)

Remark: In the case of a o-finite measure p on X the equation (5.32) take the form:

o ([ 25 auo) < o [ #(ula) du),

for closed bounded set G € X.

THEOREM 5.8. Let ®; and Py two Young functions,

i - The inclusion L%+ C L% holds if, and only if, there ezists positive constants
k and zo such that ®(z) < kPy(z), = > zo.

i - The two Young function ®, and Py determine the same Orlicz class if, and
only if, there exists positive constants k, k' and zg such that :

k®y(z) < ®1(z) < K By(x). (5.33)

3.2 The Orlicz linear space L?(X,P). We have just seen that the Orlicz
class LP(X, P) of real functions on the probability space (X, F, P), associated to
the Young function @, is a linear space only if the A,-condition is satisfied. Let us
now introduce a linear space associated to an Orlicz class.
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DEFINITION 5.9. Let ® and ¥ two conjugate Young functions. We shall denote
by L®(X, P) the set of real function v on X such that

L¥x,P) = {u

(u,v) = Ep[uv] < +o0, Yv € LY(X, P)} . (5.34)

As usually we identify fonction which differ by a set of P-measure zero.

ProproSITION 5.8. Let ® and VU two conjugate Young functions,
i - The sets L*(X, P) and LY (X, P) are linear spaces.
# - For every pair of function u € L®(X, P) and v € LY(X, P),

(u,v) = rp(u,®) +rp(v,¥), ue L2(X,P)ve LY(X,P). (5.35)

it - Moreover LT (X, P) C L*(X, P).
i - Let uw € L®(X,P). Then

sup | (u,0)|= sup [Epfuv]| < +oo. (5.36)
‘rp(‘u“l")gl I‘p(’u,‘b)fl
3.8 The Orlicz norm. Let us define the quantity
lulp= sup |(wv)l= sup |Epfuv]|. (5.37)

rp(v,¥)<1 rp(v,¥)<1

The previous lemma and Eq(5.36) allows to define a norm on L®(X, P). Indeed
1) ||u||g;P =0 if, and only if, u = 0 a.e.
2) lleull@p = lolullgp-
3) llur +ual@p < uall§ + lluzll,p.

DEFINITION 5.9. The norm u — ||u|]g;P is called the Orlicz norm and the
normed linear space L®(X, P) the Orlicz space.

Example: Let ®(u(z)) = %)—Ii, a > 1. Then norm |ju in the linear space
L*(X, P) is connected to the Orlicz norm by:

Il

+ (5.38)

R+

1
[ullg.p = B7 [lulla

|~

THEOREM 5.7. An Orlicz space s complete, so it is a Banach space.
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LEMMA 5.11. Let ® and ¥ two conjugate Young functions
i - For every u € LT(X, P), we have,

[ulf.p < rp(u,®)+1. (5.39)

“ - Let f be the right deriwative of ®. Suppose v € L*(X,P) and
|ull$.p < 1. Then the function vo(z) = f(|u(z)|) belongs to L4(X,P) and
rp(vg, ¥) < 1.

wi - Suppose ||ul|g.p < 1. Thenu e L*(X,P) and

rp(X,®) < [ullg.p - (5.40)
Moreover
o “(z) dP(z) < 1. (5.41)
"u”(‘b;P

THEOREM 5.8. Let & and ¥ two conjugate Young function. Then

/ u(z)v(z) dP(z)
X

< lull@p olS:p, Yue L*(X,P), ve L¥(X,P). (5.42)

DEFINITION 5.10. We say that a sequence of function un, € LT(X, P) is mean
convergent to the function ug € L*(X, P) if

lim ®(un(z) — up(z)) dP(z) = 0. (5.43)
X

nl+oo

THEOREM 5.9. Let the Young function ® satisfy the Aq-condition. The conver-
gence in Orlicz norm is equwvalent to the mean convergence.

LEMMA 5.12. In the sense of mean convergence, the set of bounded functions is
everywhere dense in the class L*(X, P) i.e. for every function u(z) € L2(X, P) we
can construct a sequence of bounded functions u, such that

aniEm ; ®(un(z) —u(z))dP(z) =0.

LEMMA 5.13. Every set N C L®(X, P), which are bounded in mean, i.e. such
that

/ O(u(z))dP(z) <k, k>0,ue N,

will also be bounded in Orlicz norm: ||u||g:P < K(k), Yu € N, where K depends
only on k.

Remark: The converse in not true in general, because L* (X, P) ¢ L*(X, P). How-
ever if ® satisfies the Ay-condition then every set N' ¢ L®(X, P) which is bounded
in Orlicz-norm, will also be bounded in mean.
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3.4 The Luxemburg norm. The space L*(X, P) can also be equipped with a
different norm from the orlicz norm.

DEFINITION 5.11. Let w € L?(X, P) and define the quantity

lulls.p = inf k, k>0. (5.44)
re($.2)<1

”u”‘%;P is called the luzemburg norm.

Indeed |]u[|$;P verifies the usual axioms:
1) |lullg.p = 0if, and only if, u = 0 a.e.
2) llewullg,p =l llullg;p-
3) Mut +uallg,p < luillfp + lluall§,p-

LEMMA 5.14. Let u € L*(X,P). Then

Y _ u(z) :
’ (Ilunés-.p'@) = (nu]l.’s;P) dP(z)<1. (5.45)

THEOREM 5.10. The unit sphere of the space L* (X, P) with respect to the norm
lullg.p coincides with the set of functions u € L(X, P) for which rp(u,®) < 1.
Moreover we have

HU”é;P <1=rp(u,®) < |lul|§.p

(5.46)
lullgp > 1=>rp(u,®) > ||u]l,p -
THEOREM 5.11. The Luzemburg and Orlicz norms are equivalent
lullg;p < Ilull§p < 2llullg,p - (5.47)

It follows that L®(X, P) equipped with the Luxemburg norm is a Banach space.

Remark: We can give another formula for the definition of the Orlicz norm:

lullgp = sup [Epfur], (5.48)

lvll§,» <1

where ¥ is the conjugate of the Young function &.
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LEMMA 5.15. Let ® and ¥ two conjugate Young functions. We have Héolder like

(5.49)

inequalities:
[Ep (o] < ullfp lollGp o we L*X, P), ve LY(X, P),

(5.50)

and
[Bp(w]| < lulliip 10190, ue L*(¥, P), ve L¥(x, P),

3.5 Relations between Orlicz classes.
LEMMA 5.16. Let ® and ®' two Young functions. In order that L®(X,P) C

LY (X, P), it is necessary and sufficient that ® < ®' i.e. that there ezists a constants

ug and k > 0 such that
U > U .

lullg,p < llkullp

THEOREM 5.12.  Let ® and @' two Young functions. If ® ~ ®' then the norms

associated to ® and ®' are equivalent,that is there exists constants k and k' such
that

klull@.p < llull§p < ¥ (5.51)

THEOREM 5.13. Let ® and &' two Young functions. The the spaces L*(X, P)

and L® (X, P) consist of the same functions if, and only if, ® ~ &' . We denote by

o L L
ullg,py  or kllullge < llullg,p < K llullg;p -

L*(x,P)~ L¥ (x,P)

this property.
The symbol ~ recall that the two spaces consisit of the same functions and that

the norms are equivalent ( but not isometric).
Example: ®(z) = coshz — 1 and ®'(z) = el*l — |z| — 1 are two equivalent Young

functions (® ~ ®'), then L*(X, P) ~ L* (X, P).
LEMMA 5.17. Let ® and @' two Young functions. If L\‘@F(X,P) c L¥(x, B,

there ezxists a constant k > 0 such that
“u”g";P S k”u”é;P ' u € qu (X: P) v

3.5. Dual Orlicz spaces. Conjugacy of Young functions ¢ and ¥ allows,
because of the inequality (5.49) and (5.50) to define the bilinear relation
(5.52)

L*(x,P) x LY (X, P) 3 (u,v) — Ep[uv] € R.
” + = = 1 the Orlicz spaces
ot

ol

1
' o
is n

— |

212 , @ > 1ans ¥(y) = 2
he case in general.

ot

If in the case ®(z) =
L®(X,P) and LY (X, P) are dual Banach spaces, it
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LEMMA 5.18. Let ® and ¥V two conjugate Young functions.
- The mapping

LP(X,P)>u— Epluv], VYveLY(X, P), (5.53)
is always defined, linear and continuous; it is an element of the dual L*(X, P)* of
L®(Xx,P).

it - The mapping
LY(X,P)> v Epluv], VYue L¥(X,P), (5.54)

is always defined, linear and continuous; it is an element of the dual space LY (X, P)*
of LY (X, P).

THEOREM 5.14. Let ® and ¥ two conjugate Young functions. We have the
continuous 1njection

LY(X,P) = L*(X,P)*, and L®f,P)<LY%(X,P)",  (555)

where <— 1s used for the continuous a'njectz'on

Moreover if ® verifies the Ay- condzrwn L®(X,P)* is isometric to L*(X, P), we
denote this property by g/
J::"(Af P)=L*(x, P)*. (5.56)

3.6. The centered Orlicz space Lj (X, P).

DEFINITION 5.12. The centered Orlicz space LE (X, P) at P is the linear subspace
of all random variables uw € L* (X, P) with vanishing ezpectation,

Lg(X,P) = {ue L*(X,P), Eplu] =0} . (5.57)
THEOREM 5.15. The centered Orlicz space LE(X,P) is a closed subspace of
L%(x,P).
In particular LY (X, P) is an Orlicz space for the Luxemburg norm (or th Orlicz
norm) axssociated to ®.
LEMMA 5.19. Let ® and ¥ two conjugate Young functions. Then
Ly(X,P), < L§(X,P)*, L§(X,P)— Ly(X,P). (5.58)
Let v € LY (X, P) then v € LY (X, P) then there exists u* € L®(X, P)* such that
u*(v) = Ep[uwv], Yu e L®(X, P).
The restriction U g np, OF U O L¥(X, P) is an element of LY (X, P)* such that
S
Ul .y (W) = Eplwd], Vue Lg(X,P).
The mapping v — u* is continuous from LY (X, P) to LE(X,P)* because the re-
striction is a contraction.
The same argument applies to show

L3 (X, P)— L§(x, P)*
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LEMMA 5.20. Let & and U two conjugate Young functions. Then
L3(X,P) ~ Ly (X, P)*, (5.59)
if W verifies the Ay-condition.

Let v* € Ly (X, P)*. v* extends to a continuous linear form ¥* on LY (X, P) as
follow
*(v) =v* (v—Epp)), velL¥(X, P). (5.60)

If ¥ verifies the Deltas-condition, L*(X, P) = LY(X, P)*, and let & € L®(X, P)
be the representant of 7* € LY (X, P)*; then

7*(v) = Epluwv], ve LY(X,P), (5.61)
and for v € Lg (X, P)
7*(v) = v*(v) = Ep[iv], ve€Ly(X,P), (5.62)
and 4 € L (X, P) and L§ (X, P)* — L& (X, P).

3. 7. The space of bounded functions on X.

We shall denote by L{f (X, P) the closure in L*(X, P) of the set of bounded
functions. By Lemma (5.12) the set of bounded functions is everyvhere dense in
the Orlicz class L®(X, P). If ® satifies the Ay-condition, then the set of bounded
functions is everywhere dense in the Orlicz space L*(X, P) = L*(X, P),

LEMMA 5.19. Let ® be a Young function. We have the following inclusion
Ly(X,P) C L*(X,P). (5.57)
Moreover the equality occure if, and only if, ® satifies the Ay-condition.

LEMMA 5.20. The set of continuous bounded functions on X s everywhere dense
in the space LY (X, P). Moreover the countable set of polynomials on X with rational
coefficients is everywhere dense in LY (X, P).

THEOREM 5.15. The space Lf (X, P) is separable.

Let us assume that the Young function ® does not satisfies the Aj-condition then
Ly(X,P) C L*(X,P). To characterize L (X, P) let us define the positive quantity

6(wLy(X,P) = _inf  lu-wlgp, Vuel®X,P),  (558)
b '

and the set
I(Ly(X,P),a) = {6 (u,LY(X,P)) <a, a>0}. (5.59)
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THEOREM 5.16. Let us assume that the Young function ® does not satisfy the
Aq-condition. Then

I (L§(X,P),1) c £L*(X,P)cTI (L (x,P),1), (5.60)
where I1 (L (X, P),a) is the closure in L*(X, P) of Il (L¥ (X, P),a).

Remarks: i - The second part of the assertion of the theorem signify that the class
L®(X, P) is neither an open set nor a closed set in the space L® (X, P) if the Young
function ¢ does not satifies the As-condition.

ii - If the Young function ® does not satify the Ag-condition, the class
L®(X, P) is not complete in the sense of the mean convergence.

iii - If the Young function ® does not satifies the Ay-condition, the set of
bounded functions is nowhere dense in L®(X, P) inasmuch as all bounded functions
are in LT (X, P).

LEMMA 5.21. The space LY (X, P) is the mazimal linear subspace of the space
L®(X, P) which is contained in LE(X, P).
LeMMA 5.22. The equality

lim [lu—un|9p = 8(u, LE (X, P) > 0, (5.61)

nl+oo

holds for an arbitrary function v € L®(X, P), where

_ Jul@) if|u(z)| < n,
un(z) = {0 if |u(Z)| oy (5.62)

3.8. Separability of an Orlicz space. As we have shown above, the space
LY(X, P) is always separable. This means that the space L®(X, P) = L®(X, P) =
LE (X, P) is also separable if the Young function ® satisfies the A,-condition.

THEOREM 5.16. The Orlicz space L*(X, P) is separable if, and only if, the
Young function ® satisfies the Aqg-condition.

Example: Let ®(z) = el®l — |z| — 1 then its conjugate Young function is ¥(z) =
(|z| + 1) In(|z| + 1) — 1. The frlicz space L(X, P) is not separable but the Brlicz
space L (X, P) is separable.
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4, Cramer classes
4.1. The Cramer class at P.

DEFINITION 5.14. Let (X,F,P) be a probability space. The Cramer class
C(X,P) at P is the linear space of all random variables u on the mesurable space
(X, F) such that the momentum generating function of u with respect to the proba-
bility measure P,

Mp(t) = / e“dP =Ep [em] , teR, (5.69)
X
1s finite in a neighborhood of the origin 0.

+]
Because the interior D(Mp,,) of the domain? D(Mp,,) of the momentum gen-
erating function of u € C(X, P) contain 0, we have the following

LEMMA 5.24. The momentum generating function of is analytic on a open neigh-
bohood of 0. Then momentums of any order ezist.

Ep [[ul*] < 4oo. (5.70)

THEOREM 5.17. The Cramer class C(X, P) endowed with the Luzemburg norm
r u
lulle,.p = mf{k >0: Ep [cosh (E) - 1} < 1} ; (5.71)

is just the Orlicz space L*'(X,P) associated to the Young function
®;(z) = coshz — 1.

C(X,P)=L*(X,P), ®(z)=coshz—1. (5.72)

The momemtum generating function M p,,(t) is finite in an open neighborhood
of 0 is if and only if for & > 0 sufficiently large Ep [ef] < +oc and Ep [e“%] < 400,
that is Ep [cosh (—}é’)] < +o00. Moreover Ep [cosh (—}é)] — 1if k — 4o00. Then (5.71)
define a norm on C(X, P).

Let us assume u € L¥M1(X, P). Then there exists k > 0 such that

=2

]Ep[e% +e” ] < +00.

2The domain D(Mp,,) of the momentum generating function is convex.
Indeed for Ain|0,1[ and ¢ and t' in D(Mp,,)

|EAIN+(1—A)EII& |S A | elu | +(]. _ ’\) | et’u I .

The equality can be satisfied if ¢ # t' for et and e''* P-as. proportionnal, which is possible only
if P =4 the Dirac probability measure.
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By the convexity of the exponential function, the momentum generating function is
finite on the interval | — ¢, £[; therefore u € C(X, P). Conversely let u € C(X, P).
Then there exists ¢ such that ¢ and —¢ are in the domain of the momemtum gener-
ating function Mp,(t), and this means that

Ep [e™ +e™"] < +o0,

so that u € L?(X, P).

Remark: 1 - The Orlicz norm being equivalent to the Luxemburg norm in theo-
rem (5.17) we can remplace the Luxemburg norm by the Orlicz norm.

2 - Because the Young function ®5(z) = el®! — |z| — 1 is equivalent to the
Young function ®(z) = coshz — 1 we have L (X, P) ~ L®2(X, P) and we can take
as conjugate Young function ®3(z) = (1 + |z|) In(1 + |z|) — |z|.

LEMMA 5.25. The cumulant function
Kpu(t) =InMpy(t) = InEp [e™] , (5.73)

is a convez function on D(Mp,,). Moreover it is strictly convez if P is not a Dirac
probability measure.

DEFINITION 5.15. The centered Cramer class Co(X, P) at P is the linear sub-
space of all random variables u € C(X, P) with vanishing ezpectation,

Co(X, P) = {u € C(X, P), Ep[u] = 0} . (5.74)

LEMMA 5.26. The centered Cramer class Co(X, P) is a closed subspace of the
Orlicz space L®' (X, P) with ®,(z) = coshz — 1.

Assume u € L*(X,P) and Ep[u] = 0. Then by the same argument as previ-
ously there exists k > 0 such that the momentum generating function is finite on
the interval | — -L—, %[, therefore u € Co(X, P). Conversely let u € Co(X, P). Then
there exists ¢ such that ¢t and —¢ are in the domain of the momemtum generat-
ing function Mpy(t), and so that u € L* (X, P). Moreover space Lg'(X,P) =
{ue L*(X,P),Eplu] =0} , is a closed subspace of L*(x, P).

LEMMA 5.27. Let ®1(z) = coshz — 1, ®y(z) = el*l — |z| — 1 and
®3(z) = (|z| + 1) In(|z| + 1) — |2| three Young functions. Then

L (X, P) ~ L*(X,P) = L®(X, P)*. (5.75)

The relation L*' (X, P) ~ L?2(X, P) is a consequence of &, ~ ®,. the equal-
ity comes from the fact that ®, and ®5 are conjugate and that ®; verifies the
As-condition.
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LEMMA 5.28. We have the continuous injection

L3 (X, P) — LE (X, P)* = Co(X, P)*, (5.76)
Co(X, P) = Lg*(X, P) = Lg*(X, P)* . (5.77)

THEOREM 5.18. Let ®; and ®3 be the Young functions ®1(z) = coshz — | and
®3(z) = (|z|+ 1) In(|z| + 1) — |z|. The we have the following sequence of continuous
embedings

LP(X,P) < Lg"(X,P) = (] L§(X,P) — Lg*(X,P) — Lg'(X,P)*. (5.78)

a>1

LEMMA 5.29. The multi-linear mappings (uy,us,- -+ ,un) — Eplujuy - up]
where u; € L (X, P), are continuous.

This follows from the continuous inclusion Lg* (X, P) < L (X, P)

Remark: In particular the momentum u — Ep[u] are continuous.
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