CHAPTER V

STATISTICAL MANIFOLD

March 1998

1. Introduction

2. Young's functions

2.1. Convex functions. let us first recall some properties of the convex fuctions.

DEFINITION 5.1. A real function ϕ on \mathbb{R} is convex if the Janssen inequality

$$\phi(\lambda x_1 + (1 - \lambda)x_2) \le \lambda \phi(x_1) + (1 - \lambda)\phi(x_2), \quad \forall \lambda \in [0, 1],$$

$$holds \ \forall x_1, x_2 \in \mathbb{R}.$$
(5.1)

PROPOSITION 5.1. A convex function ϕ on an open interval]a,b[is continuous on this interval.

But a convex function has stronger interesting properties. We recall only the important one's in view of the following

LEMMA 5.1. Let ϕ a convex real function on the open interval [a, b]

i - ϕ has a right derivative f_+ and a left derivative f_- at every point and

$$f_{-}(t) \le f_{+}(t), t \in]a, b[.$$
 (5.2)

 $ii - f_{+}$ and f_{-} are non-decreasing

$$f_+(t_1) \le f_+(t_2)$$
, $f_-(t_1) \le f_-(t_2)$, if $t_1 \le t_2$.

Moreover, f_+ is continuous from the right and f_- is continuous from the left

$$\lim_{t \downarrow t_0} f_+(t) = f_+(t_0). \tag{5.3}$$

$$\lim_{t \uparrow t_0} f_-(t) = f_-(t_0). \tag{5.4}$$

The right and left deivatives are equal except perhaps for at most a countable number of points.

iii - ϕ is absolutely continuous and satisfies the Lipshitz condition in every finite interval,

$$\left| \frac{\phi(x_2) - \phi(x_1)}{x_2 - x_1} \right| < K_{ab} < +\infty, \quad a < x_1 < x_2 < b, \tag{5.5}$$

where K_{ab} is a positive constant depending on the boundary of the interval]a, b[.

Typeset by AMS-TFX

THEOREM 5.1. Let $\phi:]a, b[\to \mathbb{R}$ be a function. Then ϕ is convex iff foe each closed subinterval $[c, d] \in]a, b[$ we have]a, b[can be represented in the form:

$$\phi(x) = \phi(c) + \int_{a}^{x} f(t) dt, \quad x \in [c, d],$$
 (5.6)

where f(t) is a non-increasing left continuous function.

Remark: In the previous theorem the function f can be choosen Right continuous.

2.2. The Young functions.

2.2.1. A class of conjugate convex functions. In his stuties on Fourier series, W. H. Young has analysed certain convex function $\Phi : \mathbb{R} \to \mathbb{R}^+$ which satisfy the conditions:

$$\Phi(-x) = \Phi(x)
\Phi(0) = 0
\lim_{x \to \infty} \Phi(x) = +\infty.$$
(5.7)

With each such function Φ , one can associate another convex function $\Psi : \mathbb{R} \to \mathbb{R}^+$ having similar properties, which is defined by

$$\Psi(x) = \sup\{x|y| - \Psi(x) : x \ge 0\}, \quad y \in \mathbb{R}.$$
 (5.8)

DEFINITION 5.2. A convex function $\Phi : \mathbb{R} \to \mathbb{R}^+$ which satisfies the conditions (5.7) is called a Young function.

The function $\Psi : \mathbb{R} \to \mathbb{R}^+$ defined by the equation (5.8) is called the the conjugate (or complementary) function to the Young function Φ .

It follows from the definition that the convex Ψ

$$\Psi(0) = 0,$$

$$\Psi(-x) = \Psi(x),$$

$$\lim_{y \to \infty} \Psi(y) = +\infty,$$

and Ψ is a Young function.

From (5.8) the pair (Φ, Ψ) satisfies the Young's inequality:

$$xy \le \Phi(x) + \Psi(y)$$
. $x, y \in \mathbb{R}$ (5.9)

Exemples of Young functions:

i) Let $\Phi(x) = |x|^p, p \ge 1$. Then Φ is a continuous Young function such that $\Phi(x) = 0$ iff x = 0, and $\lim_{x \to \infty} \Phi(x) = +\infty$ while $\Phi(x) < \infty$ for all $x \in \mathbb{R}$.

- ii) Let $\Phi(x) = O$, $0 \le |x| \le a$; $\Phi'(x) > 0$, a < |x| < b, and $\Phi(x) = +\infty$ for $x \ge b$, where Φ' is a continuous increasing convex function on a, b. Then Φ is a Young function which is continuous on a b, a b, and a b is a Young function which is continuous on a b, a b.
- iii) Let $\Psi(y) = 0$ for $0 \le |y| < 1$; $\Psi(y) = +\infty$ for |y| > 1. Then Ψ is the conjugate to $\Phi(x) = |x|$, implying that that the conjugate function of a continuous function Φ on \mathbb{R} can be a jump function.

Remark: A young function $\Phi: \mathbb{R} \to \mathbb{R}^+$ est convex and $\Phi(0) = O$, but which may jump to $+\infty$ at finite point. If $\Phi(a) = +\infty$ for some a > 0, then $\Phi(x) = +\infty$ for x > a.

THEOREM 5.2. Let $\Phi: \mathbb{R} \to \mathbb{R}^+$ be a Young function. Then it can be represented as:

 $\Phi(x) = \int_0^{|x|} f(t) dt, \quad x \in \mathbb{R},$ (5.10)

where $f: \mathbb{R}^+ \to \mathbb{R}^+$ is nondecreasing left continuous; $\phi(0) = 0$ and if $f(x) = +\infty$ for $x \ge a$ then $\Phi(x) = +\infty$, $x \ge a \ge 0$.

Under some continuity conditions the conjugate pair of Young functions present interesting nontrivial properties and ordering relation. conditions.

2.2.2. The N-functions. We are now interested by a usefull class of nice continuous Young functions increasing on \mathbb{R}^+ .

DEFINITION 5.3. A continuous convex function $\Phi : \mathbb{R} \to \mathbb{R}^+$ is called N-function if:

$$i) \quad \Phi(x) = \Phi(-x),$$

$$ii) \quad \Phi(x) = 0, \quad \text{iff } x = 0,$$

$$iii) \quad \lim_{x \uparrow + \infty} \frac{\Phi(x)}{x} = +\infty,$$

$$iv) \quad \lim_{x \downarrow 0} \frac{\Phi(x)}{x} = 0.$$

$$(5.11)$$

PROPOSITION 5.2. A N-function Φ is a Young function

Proposition 5.3. Let Φ be a N-function

$$i) \quad \Phi(x) > 0, \forall x \neq 0.$$
 (5.12)

$$ii) \quad \Phi(x_1) < \Phi(x_2) \quad if \quad x_1 < x_2.$$
 (5.13)

iii)
$$\Phi(\alpha x) < \alpha \Phi(x)$$
, $0 < \alpha < 1$. (5.14)
or equivalently $\frac{\Phi(x)}{x}$ is strictly increasing for $x > 0$.

- iv) The restriction $\Phi_+ = \Phi \mid_{\mathbb{R}^+}$ of Φ on \mathbb{R}^+ has a concave inverse Φ_+^{-1} , $\Phi_+^{-1}(\Phi_+(x)) = 1$.
- vi) The composition $\Phi = \Phi_1 \circ \Phi_2$ of two Young functions is also a Young function.

Theorem 5.3. A N-function Φ has an integral representation

$$\Phi(x) = \int_0^{|x|} f(t) dt, \qquad (5.15)$$

where f is a nondecreasing left continuous positive function on \mathbb{R}^+ which satisfies

$$f(0) = 0,$$

$$\lim_{t \uparrow +\infty} f(t) = +\infty.$$
(5.16)

Remark: If Φ is a N-function the function f can be choosen nondecreasing right continuous positive function on \mathbb{R}^+ .

2.3 Conjugate Young N-functions. Let Φ a N-function, then there exist a nondecreasing right continuous real function f on \mathbb{R}^+ such that f(0)=0 and $\lim_{t\uparrow+\infty} f(t)=+\infty$. Let us introduce the non-negative function h on \mathbb{R}^+

$$h(s) = \sup_{f(t) \le s} t. \tag{5.17}$$

PROPOSITION 5.4. The function h defined in (5.17) is a non-decreasing right continuous real function on \mathbb{R}^+ such that

$$h(0) = 0, \qquad \lim_{s \uparrow + \infty} h(s) = +\infty. \tag{5.18}$$

Moreover

$$(h \circ f)(t) \ge t, \quad (f \circ h)(s) \ge s. \tag{5.19}$$

and for $\varepsilon > 0$:

$$h(f(t) - \varepsilon) \le t$$
, $f(h(s) - \varepsilon) \le s$. (5.20)

Then h is the right inverse of f.

Remark: h is the inverse of f if f increase monotonically.

THEOREM 5.4. The two N-functions Φ and Ψ defined by

$$\Phi(x) = \int_0^{|x|} f(t) dt, \quad \Psi(y) = \int_0^{|y|} h(s) ds, \text{ with } h(s) = \sup_{f(t) \le s} t,$$

are called conjugate.

The pair of Young function (Φ, Ψ) satisfies the relation (5.8)

$$\Psi(y) = \sup_{x \ge 0} [x|y| - \Phi(x)].$$

Proposition 5.5. Two conjugate N-functions Φ and Ψ verify the Young's inequality

$$xy \le \Phi(x) + \Psi(y) \,, \tag{5.21}$$

the equality being reached by

i)
$$y = \operatorname{sgn}(x) f(|x|)$$
 for x given,

ii)
$$x = \operatorname{sgn}(y) h(|y|)$$
 for y given.

Examples of conjugate N-functions

(1)

$$\begin{split} &\Phi(x) = \frac{|x|^{\alpha}}{\alpha} \,, \ \alpha > 1 \,, & f(x) = x^{\alpha - 1} \,, \ x \ge 0 \,, \\ &\Psi(y) = \frac{|y|^{\beta}}{\beta} \,, \ \frac{1}{\alpha} + \frac{1}{\beta} = 1 \,, & h(y) = y^{\beta - 1} \,, \ y \ge 0 \,. \end{split}$$

(2)

$$\begin{split} \Phi(x) &= e^{|x|} - |x| - 1, & f(x) &= e^x - 1, \ x \ge 0, \\ \Psi(y) &= (1 + |y|) \ln(1 + |y|) - |y|, & h(y) &= \ln(y_1), \ y \ge 0. \end{split}$$

(3)

$$\Phi(x)=e^{x^2}-1\,, \qquad f(x)=2xe^{x^2}\,,\ x\geq 0\,,$$
 $\Psi(y)$ no explicit form , $h(y)$ no explicit form .

THEOREM 5.5. Let the inequality $\Phi_1(x) \geq \Phi_2(x)$ for the Young functions Φ_1 and Φ_2 for $x \leq x_0$. Then the inequality $\Psi_2(y) \geq \Psi_1(y)$ holds for the conjugate functions Ψ_1 and Ψ_2 for $y \leq y_0 = f_2(x)$, where f_2 is the right derivative of Φ_2 .

2.4. Equivalent Young (N-)functions. It is possible to define a partial order on the family of Young N-functions in the following way.

Let Φ_1 and Φ_2 be two N-functions, we shall write

$$\Phi_1 \prec \Phi_2 \,, \tag{5.22}$$

if there exist positive constant x_0 and k such that

$$\Phi_1(x) \le \Phi_2(kx) \,, \tag{5.23}$$

This inequality compare the rapidity of growth of the Young functions for large values of x.

Definition 5.5. Two N-function Φ_1 and Φ_2 are equivalent and write $\Phi_1 \sim \Phi_2$ if $\Phi_1 \prec \Phi_2$ and $\Phi_2 \prec \Phi_1$.

Example: $\Phi_1(x) = \cosh x - 1$, and $\Phi_2(x) = e^{|x|} - |x| - 1$ are equivalent $(\Phi_1 \sim \Phi_2)$.

LEMMA 5.2. let Φ_1 and Φ_2 two N-functions with conjugate Ψ_1 and Ψ_2 respectively

$$i - \Phi_1 \sim \Phi_2 \iff \exists k, k' > 0, x_0 > 0 \text{ such that:}$$

$$\Phi_1(kx) \leq \Phi_2(x) \leq \Phi_1(k'x), \quad x > x_0.$$

$$ii - \Phi_2(x) = \Phi_1(kx), \quad k > 0 \implies \Phi_1 \sim \Phi_2.$$

 $iii - \Phi_1 \prec \Phi_2 \iff \Psi_2 \prec \Psi_1.$

Theorem 5.6. let Φ_1 and Φ_2 two Young functions with conjugate Ψ_1 and Ψ_2 respectively, then

$$\Phi_1 \sim \Phi_2 \quad \Longleftrightarrow \quad \Psi_1 \sim \Psi_2 \,.$$

Let us now give some equivalence criterion

Proposition 5.6. Let Φ_1 and Φ_2 be two N-functions with integral representation

$$\Phi_1(x) = \int_0^{|x|} f_1(t) dt, \quad \Phi_1(x) = \int_0^{|x|} f_1(t) dt.$$

and with conjugate Ψ_1 and Ψ_2 respectively. Then

i - Let b a finite positive real number

$$\lim_{t \uparrow +\infty} \frac{f_1(t)}{f_2(t)} = b > 0 \Longrightarrow \Phi_1 \sim \Phi_2.$$
 (5.24)

ii - If we denote by $h_2(s) = \sup_{f_2(t) \leq s} t$ and by b a finite positive real number,

then

$$\lim_{s\uparrow+\infty} \frac{f_1(h_2(s))}{s} = b > 0, \ a.e. \Longrightarrow \Phi_1 \sim \Phi_2.$$
 (5.25)

2.5 The Δ_2 and ∇_2 -conditions. The emoparisons of N-functions given in the preceding section become more useful in the theory when a corresponding classification based on the rapidity of their growth is added

DEFINITION 5.6. The Young function Φ satisfies the Δ_2 -condition (globaly) if there exists constants k > 0, $x_0 \ge 0$ such that

$$\Phi(2x) \le k\Phi(x), \quad x \ge x_0 > 0 \ (x_0 = 0).$$
 (5.26)

Remark: The Δ_2 -condition imply

$$\Phi(\ell x) \le k_{\ell} \Phi(x), \quad x > x_0, \quad \ell > 1.$$
 (5.27)

DEFINITION 5.7. The Young function Φ satisfies the ∇_2 -condition (globaly) if there exists constants $\ell > 1$, $x_0 \geq 0$ such that

$$\Phi(x) \le \frac{1}{2\ell} \Phi\ell(x), \quad x \ge x_0 > 0 \ (x_0 = 0).$$
(5.28)

PROPOSITION 5.7. Let Φ be a N-function and Ψ its conjugate and f and h the left derivative of Φ and ψ respectively.

- i) If Φ satisfies the Δ_2 -condition (∇_2 -condition) any Young function equivalent to Φ also satisfies the Δ_2 -condition (∇_2 -condition).
- ii) Φ satisfies the Δ_2 -condition iff it exists constants $\alpha>1$, $x_0\geq 0$ such that, for $x\geq x_0$

$$\frac{xf(x)}{\Phi(x)} < \alpha. \tag{5.29}$$

- iii) Φ satisfies the $\Delta_2\text{-condition}$ if its conjugate Ψ has a convex right derivative.
- iv) Φ satisfies the Δ_2 -condition iff its conjugate Ψ satisfies the ∇_2 -condition.
- v) Φ satisfies the $\Delta_2\text{-condition}$ iff it exists constants $\beta>1\,,\ y_0\geq 0$ such that, for $y\geq y_0$

$$\frac{yh(y)}{\Psi(y)} > \beta \,, \tag{5.30}$$

with h the right derivative of the conjugate Ψ of Φ .

Examples

- 1) $\Phi(x) = a |x|^{\alpha}$, $\alpha > 1$ satisfy the Δ_2 condition.
- 2) $\Phi(x) = e^{|x|} |x| 1$, does not satisfies the Δ_2 condition (because it increase more quikely than any power).
- 3) $\Psi(x) = (1+|y|)\ln(1+|y|)-|y|$, (the conjugate of the Φ defined in Example 2) satisfies the Δ_2 condition (the right derivative of Φ is $e^x 1$ for x > 0 and it is convex).

3. Orlicz spaces

3.1 The Orlicz class $\mathcal{L}^{\Phi}(\mathcal{X}, P)$. Let $(\mathcal{X}, \mathcal{F}, P)$ be a probability space where P is a continuous probability¹.

Remark: In the case where P is replaced by a σ -finite continuous measure μ we impose to \mathcal{X} to be a bounded closed subset of a finite-dimensional Euclidean space.

¹By continuous probability we understand the existence of a subset A of every set B such that $P[A] = \frac{1}{2}P[B]$.

DEFINITION 5.8. Let Φ be a Young function, then the class of real-function defined on $\mathcal X$ such that

$$r_P(u,\Phi) = \mathbb{E}_P[\Phi \circ u] = \int_{\mathcal{X}} \Phi((u(t)) dP(t) < +\infty, \qquad (5.31)$$

is called the Orlicz class $\mathcal{L}^{\Phi}(\mathcal{X}, P)$.

Remark: If every function in the class $\mathcal{L}^{\Phi}(\mathcal{X}, P)$ is summable on \mathcal{X} , not all summable function belong to $\mathcal{L}^{\Phi}(\mathcal{X}, P)$, however,

LEMMA 5.3. Let us consider the family of all Orlicz classes on $(\mathcal{X}, \mathcal{F}, P)$

i - All bounded function on \mathcal{X} belong to $\mathcal{L}^{\Phi}(\mathcal{X}, P)$, $\forall \Phi$.

ii - Every summable function on X belongs to some Orlicz class:

$$L^1(\mathcal{X}, P) \in \bigcup_{\Phi} \mathcal{L}^{\Phi}(\mathcal{X}, P)$$
.

THEOREM 5.7. The Orlicz class $\mathcal{L}^{\Phi}(\mathcal{X}, P)$, is a convex set for every Young function Φ . Moreover the class is linear if and only if Φ satisfies the Δ_2 -condition.

LEMMA 5.4. Let $u \in \mathcal{L}^{\Phi}(\mathcal{X}, P)$, then the following Janssen integral inequality holds

$$\Phi\left(\int_{\mathcal{X}} u(x) dP(x)\right) \le \int_{\mathcal{X}} \Phi(u(x)) dP(x), \quad or \quad \Phi\left(\mathbb{E}_{P}[u]\right) \le \mathbb{E}_{P}[\Phi \circ u]. \quad (5.32)$$

Remark: In the case of a σ -finite measure μ on \mathcal{X} the equation (5.32) take the form:

$$\Phi\left(\int_G \frac{u(x)}{\mu[G]} \, d\mu(x)\right) \leq \frac{1}{\mu[G]} \int_G \, \Phi(u(x) \, d\mu(x) \, ,$$

for closed bounded set $G \in \mathcal{X}$.

THEOREM 5.8. Let Φ_1 and Φ_2 two Young functions,

i - The inclusion $\mathcal{L}^{\Phi_1} \subset \mathcal{L}^{\Phi_2}$ holds if, and only if, there exists positive constants k and x_0 such that $\Phi_2(x) \leq k \Phi_1(x)$, $x \geq x_0$.

ii - The two Young function Φ_1 and Φ_2 determine the same Orlicz class if, and only if, there exists positive constants k,k' and x_0 such that :

$$k \Phi_2(x) \le \Phi_1(x) \le k' \Phi_2(x)$$
. (5.33)

3.2 The Orlicz linear space $L^{\Phi}(\mathcal{X}, P)$. We have just seen that the Orlicz class $\mathcal{L}^{\Phi}(\mathcal{X}, P)$ of real functions on the probability space $(\mathcal{X}, \mathcal{F}, P)$, associated to the Young function Φ , is a linear space only if the Δ_2 -condition is satisfied. Let us now introduce a linear space associated to an Orlicz class.

DEFINITION 5.9. Let Φ and Ψ two conjugate Young functions. We shall denote by $L^{\Phi}(\mathcal{X}, P)$ the set of real function u on \mathcal{X} such that

$$L^{\Phi}(\mathcal{X}, P) = \left\{ u \,\middle|\, (u, v) = \mathbb{E}_{P}[uv] < +\infty \,,\, \forall \, v \in \mathcal{L}^{\Psi}(\mathcal{X}, P) \right\} \,. \tag{5.34}$$

As usually we identify fonction which differ by a set of P-measure zero.

PROPOSITION 5.8. Let Φ and Ψ two conjugate Young functions,

i - The sets $L^{\Phi}(\mathcal{X}, P)$ and $L^{\Psi}(\mathcal{X}, P)$ are linear spaces.

ii - For every pair of function $u \in \mathcal{L}^{\Phi}(\mathcal{X}, P)$ and $v \in \mathcal{L}^{\Psi}(\mathcal{X}, P)$,

$$(u,v) = r_P(u,\Phi) + r_P(v,\Psi), \ u \in \mathcal{L}^{\Phi}(\mathcal{X},P) \ v \in \mathcal{L}^{\Psi}(\mathcal{X},P).$$
 (5.35)

iii - Moreover $\mathcal{L}^{\Phi}(\mathcal{X}, P) \subset L^{\Phi}(\mathcal{X}, P)$.

 $iv - Let \ u \in L^{\Phi}(\mathcal{X}, P)$. Then

$$\sup_{r_P(v,\Psi) \le 1} |(u,v)| = \sup_{r_P(v,\Psi) \le 1} |\mathbb{E}_P[uv]| < +\infty.$$
 (5.36)

3.3 The Orlicz norm. Let us define the quantity

$$||u||_{\Phi;P}^{O} = \sup_{r_{P}(v,\Psi) \le 1} |(u,v)| = \sup_{r_{P}(v,\Psi) \le 1} |\mathbb{E}_{P}[uv]|.$$
 (5.37)

The previous lemma and Eq(5.36) allows to define a norm on $L^{\Phi}(\mathcal{X}, P)$. Indeed

- 1) $||u||_{\Phi:P}^{O} = 0$ if, and only if, u = 0 a.e.
- 2) $\|\alpha u\|_{\Phi:P}^{O} = |\alpha| \|u\|_{\Phi:P}^{O}$.
- 3) $||u_1 + u_2||_{\Phi:P}^O \le ||u_1||_{\Phi}^O + ||u_2||_{\Phi:P}^O$.

DEFINITION 5.9. The norm $u \to ||u||_{\Phi;P}^O$ is called the Orlicz norm and the normed linear space $L^{\Phi}(\mathcal{X}, P)$ the Orlicz space.

Example: Let $\Phi(u(x)) = \frac{|u(x)|^{\alpha}}{\alpha}$, $\alpha > 1$. Then norm $||u||_{\alpha}$ in the linear space $L^{\alpha}(\mathcal{X}, P)$ is connected to the Orlicz norm by:

$$||u||_{\Phi;P}^{O} = \beta^{\frac{1}{\beta}} ||u||_{\alpha}, \quad \frac{1}{\alpha} + \frac{1}{\beta} = 1.$$
 (5.38)

THEOREM 5.7. An Orlicz space is complete, so it is a Banach space.

LEMMA 5.11. Let Φ and Ψ two conjugate Young functions i - For every $u \in \mathcal{L}^{\Phi}(\mathcal{X}, P)$, we have,

$$||u||_{\Phi;P}^{O} \le r_P(u,\Phi) + 1.$$
 (5.39)

ii - Let f be the right derivative of Φ . Suppose $u \in L^{\Phi}(\mathcal{X}, P)$ and $||u||_{\Phi;P}^{O} \leq 1$. Then the function $v_0(x) = f(|u(x)|)$ belongs to $\mathcal{L}^{\phi}(\mathcal{X}, P)$ and $r_P(v_0, \Psi) \leq 1$.

iii - Suppose $||u||_{\Phi;P}^O \leq 1$. Then $u \in \mathcal{L}^{\Phi}(\mathcal{X}, P)$ and

$$r_P(\mathcal{X}, \Phi) \le \|u\|_{\Phi:P}^O. \tag{5.40}$$

Moreover

$$\Phi\left(\frac{u(x)}{\|u\|_{\Phi;P}^O}\right) dP(x) \le 1.$$
(5.41)

Theorem 5.8. Let Φ and Ψ two conjugate Young function. Then

$$\left| \int_{\mathcal{X}} u(x)v(x) \, dP(x) \right| \le \|u\|_{\Phi;P}^{O} \ \|v\|_{\Psi;P}^{O} \,, \ \forall u \in L^{\Phi}(\mathcal{X}, P) \,, \ v \in L^{\Psi}(\mathcal{X}, P) \,. \tag{5.42}$$

DEFINITION 5.10. We say that a sequence of function $u_n \in L^{\Phi}(\mathcal{X}, P)$ is mean convergent to the function $u_0 \in L^{\Phi}(\mathcal{X}, P)$ if

$$\lim_{n\uparrow +\infty} \int_{\mathcal{X}} \Phi(u_n(x) - u_0(x)) \, dP(x) = 0.$$
 (5.43)

THEOREM 5.9. Let the Young function Φ satisfy the Δ_2 -condition. The convergence in Orlicz norm is equivalent to the mean convergence.

LEMMA 5.12. In the sense of mean convergence, the set of bounded functions is everywhere dense in the class $\mathcal{L}^{\Phi}(\mathcal{X}, P)$ i.e. for every function $u(x) \in \mathcal{L}^{\Phi}(\mathcal{X}, P)$ we can construct a sequence of bounded functions u_n such that

$$\lim_{n\uparrow+\infty} \int_{\mathcal{X}} \Phi(u_n(x) - u(x)) dP(x) = 0.$$

LEMMA 5.13. Every set $\mathcal{N} \subset \mathcal{L}^{\Phi}(\mathcal{X}, P)$, which are bounded in mean, i.e. such that

$$\int_{\mathcal{X}} \Phi(u(x)) dP(x) \le k, \quad k > 0, u \in \mathcal{N},$$

will also be bounded in Orlicz norm: $||u||_{\Phi;P}^O \leq K(k)$, $\forall u \in \mathcal{N}$, where K depends only on k.

Remark: The converse in not true in general, because $L^{\Phi}(\mathcal{X}, P) \not\subset \mathcal{L}^{\Phi}(\mathcal{X}, P)$. However if Φ satisfies the Δ_2 -condition then every set $\mathcal{N} \subset L^{\Phi}(\mathcal{X}, P)$ which is bounded in Orlicz-norm, will also be bounded in mean.

3.4 The Luxemburg norm. The space $L^{\Phi}(\mathcal{X}, P)$ can also be equipped with a different norm from the orlicz norm.

DEFINITION 5.11. Let $u \in L^{\Phi}(\mathcal{X}, P)$ and define the quantity

$$||u||_{\Phi;P}^{L} = \inf_{r_{P}(\frac{u}{k},\Phi) \le 1} k, \quad k > 0.$$
 (5.44)

 $||u||_{\Phi;P}^L$ is called the luxemburg norm.

Indeed $||u||_{\Phi;P}^L$ verifies the usual axioms:

- 1) $||u||_{\Phi:P}^{L} = 0$ if, and only if, u = 0 a.e.
- 2) $\|\alpha u\|_{\Phi:P}^L = |\alpha| \|u\|_{\Phi:P}^L$.
- 3) $||u_1 + u_2||_{\Phi;P}^L \le ||u_1||_{\Phi;P}^L + ||u_2||_{\Phi;P}^L$.

LEMMA 5.14. Let $u \in L^{\Phi}(\mathcal{X}, P)$. Then

$$r_P\left(\frac{u}{\|u\|_{\Phi;P}^L},\Phi\right) = \int_{\mathcal{X}} \Phi\left(\frac{u(x)}{\|u\|_{\Phi;P}^L}\right) dP(x) \le 1.$$
 (5.45)

THEOREM 5.10. The unit sphere of the space $L^{\Phi}(\mathcal{X}, P)$ with respect to the norm $\|u\|_{\Phi;P}^{L}$ coincides with the set of functions $u \in \mathcal{L}^{\Phi}(\mathcal{X}, P)$ for which $r_{P}(u, \Phi) \leq 1$. Moreover we have

$$||u||_{\Phi;P}^{L} \leq 1 \Longrightarrow r_{P}(u,\Phi) \leq ||u||_{\Phi;P}^{L}$$

$$||u||_{\Phi:P}^{L} \geq 1 \Longrightarrow r_{P}(u,\Phi) \geq ||u||_{\Phi:P}^{L}.$$
(5.46)

THEOREM 5.11. The Luxemburg and Orlicz norms are equivalent

$$||u||_{\Phi;P}^{L} \le ||u||_{\Phi;P}^{O} \le 2||u||_{\Phi;P}^{L}$$
 (5.47)

It follows that $L^{\Phi}(\mathcal{X}, P)$ equipped with the Luxemburg norm is a Banach space. Remark: We can give another formula for the definition of the Orlicz norm:

$$||u||_{\Phi;P}^{O} = \sup_{\|v\|_{\Psi;P}^{L} \le 1} |\mathbb{E}_{P}[uv]|,$$
 (5.48)

where Ψ is the conjugate of the Young function Φ .

Lemma 5.15. Let Φ and Ψ two conjugate Young functions. We have Hölder like inequalities:

$$\left| \mathbb{E}_{P}[uv] \right| \leq \|u\|_{\Phi;P}^{O} \|v\|_{\Psi;P}^{L}, \ u \in L^{\Phi}(\mathcal{X}, P), \ v \in L^{\Psi}(\mathcal{X}, P), \tag{5.49}$$

and

$$\left| \mathbb{E}_{P}[uv] \right| \le \|u\|_{\Phi;P}^{L} \|v\|_{\Psi;P}^{O}, \ u \in L^{\Phi}(\mathcal{X}, P), \ v \in L^{\Psi}(\mathcal{X}, P),$$
 (5.50)

3.5 Relations between Orlicz classes.

LEMMA 5.16. Let Φ and Φ' two Young functions. In order that $L^{\Phi}(\mathcal{X}, P) \subset L^{\Phi'}(\mathcal{X}, P)$, it is necessary and sufficient that $\Phi \prec \Phi'$ i.e. that there exists a constants u_0 and k > 0 such that

$$||u||_{\Phi;P}^O \le ||ku||_{\Phi';P}^0$$
, $u \ge u_0$.

Theorem 5.12. Let Φ and Φ' two Young functions. If $\Phi \sim \Phi'$ then the norms associated to Φ and Φ' are equivalent, that is there exists constants k and k' such that

$$k||u||_{\Phi;P}^{O} \le ||u||_{\Phi';P}^{O} \le k'||u||_{\Phi;P}^{O}$$
, or $k||u||_{\Phi;P}^{L} \le ||u||_{\Phi';P}^{L} \le k'||u||_{\Phi;P}^{L}$. (5.51)

THEOREM 5.13. Let Φ and Φ' two Young functions. The the spaces $L^{\Phi}(\mathcal{X}, P)$ and $L^{\Phi'}(\mathcal{X}, P)$ consist of the same functions if, and only if, $\Phi \sim \Phi'$. We denote by

$$L^{\Phi}(\mathcal{X}, P) \simeq L^{\Phi'}(\mathcal{X}, P)$$

this property.

The symbol \simeq recall that the two spaces consist of the same functions and that the norms are equivalent (but not isometric).

Example: $\Phi(x) = \cosh x - 1$ and $\Phi'(x) = e^{|x|} - |x| - 1$ are two equivalent Young functions $(\Phi \sim \Phi')$, then $L^{\Phi}(\mathcal{X}, P) \simeq L^{\Phi'}(\mathcal{X}, P)$.

LEMMA 5.17. Let Φ and Φ' two Young functions. If $L^{\Phi_i}(\mathcal{X}, P) \subset L^{\Phi'}(\mathcal{X}, P)$, there exists a constant k > 0 such that

$$||u||_{\Phi':P}^O \le k||u||_{\Phi:P}^L$$
, $u \in L^{\Phi}(X,P)$.

3.5. Dual Orlicz spaces. Conjugacy of Young functions Φ and Ψ allows, because of the inequality (5.49) and (5.50) to define the bilinear relation

$$L^{\Phi}(\mathcal{X}, P) \times L^{\Psi}(\mathcal{X}, P) \ni (u, v) \mapsto \mathbb{E}_{P}[uv] \in \mathbb{R}.$$
 (5.52)

If in the case $\Phi(x) = \frac{|x|^{\alpha}}{\alpha}$, $\alpha > 1$ ans $\Psi(y) = \frac{|y|^{\beta}}{\beta}$, $\frac{1}{\alpha} + \frac{1}{\beta} = 1$ the Orlicz spaces $L^{\Phi}(\mathcal{X}, P)$ and $L^{\Psi}(\mathcal{X}, P)$ are dual Banach spaces, it is not the case in general.

LEMMA 5.18. Let Φ and Ψ two conjugate Young functions. i - The mapping

$$L^{\Phi}(\mathcal{X}, P) \ni u \mapsto \mathbb{E}_P[uv], \quad \forall v \in L^{\Psi}(\mathcal{X}, P),$$
 (5.53)

is always defined, linear and continuous; it is an element of the dual $L^{\Phi}(\mathcal{X}, P)^*$ of $L^{\Phi}(\mathcal{X}, P)$.

ii - The mapping

$$L^{\Psi}(\mathcal{X}, P) \ni v \mapsto \mathbb{E}_{P}[uv], \quad \forall u \in L^{\Phi}(\mathcal{X}, P),$$
 (5.54)

is always defined, linear and continuous; it is an element of the dual space $L^{\Psi}(\mathcal{X}, P)^*$ of $L^{\Psi}(\mathcal{X}, P)$.

THEOREM 5.14. Let Φ and Ψ two conjugate Young functions. We have the continuous injection

$$L^{\Psi}(\mathcal{X}, P) \hookrightarrow L^{\Phi}(\mathcal{X}, P)^*, \quad and \quad L^{\Phi}(\mathcal{X}, P) \hookrightarrow L^{\Psi}(\mathcal{X}, P)^*,$$
 (5.55)

where \hookrightarrow is used for the continuous injection. Moreover if Φ verifies the Δ_2 -condition $L^{\Phi}(\mathcal{X}, P)^*$ is isometric to $L^{\Phi}(\mathcal{X}, P)$, we denote this property by $L^{\Phi}(\mathcal{X}, P) = L^{\Phi}(\mathcal{X}, P)^*$. (5.56)

3.6. The centered Orlicz space $L_0^{\Phi}(\mathcal{X}, P)$.

Definition 5.12. The centered Orlicz space $L_0^{\Phi}(\mathcal{X}, P)$ at P is the linear subspace of all random variables $u \in L^{\Phi}(\mathcal{X}, P)$ with vanishing expectation,

$$L_0^{\Phi}(\mathcal{X}, P) = \{ u \in L^{\Phi}(\mathcal{X}, P), \ \mathbb{E}_P[u] = 0 \}$$
 (5.57)

THEOREM 5.15. The centered Orlicz space $L_0^{\Phi}(\mathcal{X}, P)$ is a closed subspace of $L^{\Phi}(\mathcal{X}, P)$.

In particular $L_0^{\Phi}(\mathcal{X}, P)$ is an Orlicz space for the Luxemburg norm (or th Orlicz norm) axssociated to Φ .

LEMMA 5.19. Let Φ and Ψ two conjugate Young functions. Then

$$L_0^{\Psi}(\mathcal{X}, P), \hookrightarrow L_0^{\Phi}(\mathcal{X}, P)^*, \quad L_0^{\Phi}(\mathcal{X}, P) \hookrightarrow L_0^{\Psi}(\mathcal{X}, P)^*.$$
 (5.58)

Let $v \in L_0^{\Psi}(\mathcal{X}, P)$ then $v \in L^{\Psi}(\mathcal{X}, P)$ then there exists $u^* \in L^{\Phi}(\mathcal{X}, P)^*$ such that $u^*(v) = \mathbb{E}_P[uv], \ \forall u \in L^{\Phi}(\mathcal{X}, P).$

The restriction $u_{\downarrow_{L_0^{\Phi}(\mathcal{X},P)}}^*$ of u^* to $L_0^{\Phi}(\mathcal{X},P)$ is an element of $L_0^{\Phi}(\mathcal{X},P)^*$ such that

$$u_{|_{L_0^{\Phi}(\mathcal{X},P)}}^*(u) = \mathbb{E}_P[uv], \ \forall u \in L_0^{\Phi}(\mathcal{X},P).$$

The mapping $v \mapsto u^*$ is continuous from $L_0^{\Psi}(\mathcal{X}, P)$ to $L_0^{\Phi}(\mathcal{X}, P)^*$ because the restriction is a contraction.

The same argument applies to show

$$L_0^{\Phi}(\mathcal{X}, P) \hookrightarrow L_0^{\Psi}(\mathcal{X}, P)^*$$
.

Lemma 5.20. Let Φ and Ψ two conjugate Young functions. Then

$$L_0^{\Phi}(\mathcal{X}, P) \simeq L_0^{\Psi}(\mathcal{X}, P)^*, \qquad (5.59)$$

if Ψ verifies the Δ_2 -condition.

Let $v^* \in L_0^{\Psi}(\mathcal{X}, P)^*$. v^* extends to a continuous linear form \widetilde{v}^* on $L^{\Psi}(\mathcal{X}, P)$ as follow

$$\widetilde{v}^*(v) = v^* \left(v - \mathbb{E}_P[v] \right), \quad v \in L^{\Psi}(\mathcal{X}, P). \tag{5.60}$$

If Ψ verifies the $Delta_2$ -condition, $L^{\Phi}(\mathcal{X}, P) = L^{\Psi}(\mathcal{X}, P)^*$, and let $\tilde{u} \in L^{\Phi}(\mathcal{X}, P)$ be the representant of $\tilde{v}^* \in L^{\Psi}(\mathcal{X}, P)^*$; then

$$\widetilde{v}^*(v) = \mathbb{E}_P[\widetilde{u}v], \quad v \in L^{\Psi}(\mathcal{X}, P),$$
 (5.61)

and for $v \in L_0^{\Psi}(\mathcal{X}, P)$

$$\widetilde{v}^*(v) = v^*(v) = \mathbb{E}_P[\widetilde{u}v], \quad v \in L_0^{\Psi}(\mathcal{X}, P),$$

$$(5.62)$$

and $\widetilde{u} \in L_0^{\Phi}(\mathcal{X}, P)$ and $L_0^{\Psi}(\mathcal{X}, P)^* \hookrightarrow L_0^{\Phi}(\mathcal{X}, P)$.

3. 7. The space of bounded functions on \mathcal{X} .

We shall denote by $L_b^{\Phi}(\mathcal{X}, P)$ the closure in $L^{\Phi}(\mathcal{X}, P)$ of the set of bounded functions. By Lemma (5.12) the set of bounded functions is everywhere dense in the Orlicz class $\mathcal{L}^{\Phi}(\mathcal{X}, P)$. If Φ satisfies the Δ_2 -condition, then the set of bounded functions is everywhere dense in the Orlicz space $L^{\Phi}(\mathcal{X}, P) = \mathcal{L}^{\Phi}(\mathcal{X}, P)$,

LEMMA 5.19. Let Φ be a Young function. We have the following inclusion

$$L_b^{\Phi}(\mathcal{X}, P) \subseteq \mathcal{L}^{\Phi}(\mathcal{X}, P)$$
. (5.57)

Moreover the equality occure if, and only if, Φ satisfies the Δ_2 -condition.

LEMMA 5.20. The set of continuous bounded functions on \mathcal{X} is everywhere dense in the space $L_b^{\Phi}(\mathcal{X}, P)$. Moreover the countable set of polynomials on \mathcal{X} with rational coefficients is everywhere dense in $L_b^{\Phi}(\mathcal{X}, P)$.

THEOREM 5.15. The space $L_b^{\Phi}(\mathcal{X}, P)$ is separable.

Let us assume that the Young function Φ does not satisfies the Δ_2 -condition then $L_b^{\Phi}(\mathcal{X}, P) \subset \mathcal{L}^{\Phi}(\mathcal{X}, P)$. To characterize $L_b^{\Phi}(\mathcal{X}, P)$ let us define the positive quantity

$$\delta\left(u, L_b^{\Phi}(\mathcal{X}, P)\right) = \inf_{w \in L_b^{\Phi}(\mathcal{X}, P)} \|u - w\|_{\Phi; P}^{O}, \quad \forall \ u \in L^{\Phi}(\mathcal{X}, P), \tag{5.58}$$

and the set

$$\Pi\left(L_b^{\Phi}(\mathcal{X}, P), a\right) = \left\{\delta\left(u, L_b^{\Phi}(\mathcal{X}, P)\right) \le a, \ a > 0\right\}. \tag{5.59}$$

Theorem 5.16. Let us assume that the Young function Φ does not satisfy the Δ_2 -condition. Then

$$\Pi\left(L_b^{\Phi}(\mathcal{X}, P), 1\right) \subset \mathcal{L}^{\Phi}(\mathcal{X}, P) \subset \overline{\Pi}\left(L_b^{\Phi}(\mathcal{X}, P), 1\right), \tag{5.60}$$

where $\overline{\Pi}(L_b^{\Phi}(\mathcal{X}, P), a)$ is the closure in $L^{\Phi}(\mathcal{X}, P)$ of $\Pi(L_b^{\Phi}(\mathcal{X}, P), a)$.

Remarks: i - The second part of the assertion of the theorem signify that the class $\mathcal{L}^{\Phi}(\mathcal{X}, P)$ is neither an open set nor a closed set in the space $L^{\Phi}(\mathcal{X}, P)$ if the Young function Φ does not satisfies the Δ_2 -condition.

ii - If the Young function Φ does not satisfy the Δ_2 -condition, the class $\mathcal{L}^{\Phi}(\mathcal{X}, P)$ is not complete in the sense of the mean convergence.

iii - If the Young function Φ does not satisfies the Δ_2 -condition, the set of bounded functions is nowhere dense in $L^{\Phi}(\mathcal{X}, P)$ inasmuch as all bounded functions are in $L^{\Phi}_b(\mathcal{X}, P)$.

LEMMA 5.21. The space $L_b^{\Phi}(\mathcal{X}, P)$ is the maximal linear subspace of the space $L^{\Phi}(\mathcal{X}, P)$ which is contained in $\mathcal{L}^{\Phi}(\mathcal{X}, P)$.

LEMMA 5.22. The equality

$$\lim_{n\uparrow +\infty} \|u - u_n\|_{\Phi;P}^O = \delta(u, L_b^{\Phi}(\mathcal{X}, P) > 0,$$
 (5.61)

holds for an arbitrary function $u \in L^{\Phi}(\mathcal{X}, P)$, where

$$u_n(x) = \begin{cases} u(x) & \text{if } |u(x)| \le n, \\ 0 & \text{if } |u(x)| > n. \end{cases}$$
 (5.62)

3.8. Separability of an Orlicz space. As we have shown above, the space $L_b^{\Phi}(\mathcal{X}, P)$ is always separable. This means that the space $L^{\Phi}(\mathcal{X}, P) = \mathcal{L}^{\Phi}(\mathcal{X}, P) = L_b^{\Phi}(\mathcal{X}, P)$ is also separable if the Young function Φ satisfies the Δ_2 -condition.

THEOREM 5.16. The Orlicz space $L^{\Phi}(\mathcal{X}, P)$ is separable if, and only if, the Young function Φ satisfies the Δ_2 -condition.

Example: Let $\Phi(x) = e^{|x|} - |x| - 1$ then its conjugate Young function is $\Psi(x) = (|x|+1)\ln(|x|+1) - 1$. The Fricz space $L^{\Phi}(\mathcal{X},P)$ is not separable but the Fricz space $L^{\Psi}(\mathcal{X},P)$ is separable.

4. Cramer classes

4.1. The Cramer class at P.

DEFINITION 5.14. Let $(\mathcal{X}, \mathcal{F}, P)$ be a probability space. The Cramer class $C(\mathcal{X}, P)$ at P is the linear space of all random variables u on the mesurable space $(\mathcal{X}, \mathcal{F})$ such that the momentum generating function of u with respect to the probability measure P,

$$\mathcal{M}_{P,u}(t) = \int_{\mathcal{X}} e^{tu} dP = \mathbb{E}_P \left[e^{tu} \right], \ t \in \mathbb{R},$$
 (5.69)

is finite in a neighborhood of the origin 0.

Because the interior $D(\mathcal{M}_{P,u})$ of the domain² $D(\mathcal{M}_{P,u})$ of the momentum generating function of $u \in \mathcal{C}(\mathcal{X}, P)$ contain 0, we have the following

LEMMA 5.24. The momentum generating function of is analytic on a open neighbohood of 0. Then momentums of any order exist.

$$\mathbb{E}_P\left[|u|^k\right] < +\infty. \tag{5.70}$$

Theorem 5.17. The Cramer class C(X, P) endowed with the Luxemburg norm

$$||u||_{\Phi_1;P} = \inf\left\{k > 0 : \mathbb{E}_P\left[\cosh\left(\frac{u}{k}\right) - 1\right] \le 1\right\},\tag{5.71}$$

is just the Orlicz space $L^{\Phi_1}(\mathcal{X}, P)$ associated to the Young function $\Phi_1(x) = \cosh x - 1$.

$$C(\mathcal{X}, P) = L^{\Phi_1}(\mathcal{X}, P), \quad \Phi_1(x) = \cosh x - 1.$$
 (5.72)

The momentum generating function $\mathcal{M}_{P,u}(t)$ is finite in an open neighborhood of 0 is if and only if for k > 0 sufficiently large $\mathbb{E}_P\left[e^{\frac{u}{k}}\right] < +\infty$ and $\mathbb{E}_P\left[e^{-\frac{u}{k}}\right] < +\infty$, that is $\mathbb{E}_P\left[\cosh\left(\frac{u}{k}\right)\right] < +\infty$. Moreover $\mathbb{E}_P\left[\cosh\left(\frac{u}{k}\right)\right] \to 1$ if $k \to +\infty$. Then (5.71) define a norm on $\mathcal{C}(\mathcal{X}, P)$.

Let us assume $u \in L^{Phi_1}(\mathcal{X}, P)$. Then there exists k > 0 such that

$$\mathbb{E}_P\left[e^{\frac{u}{k}} + e^{-\frac{u}{k}}\right] < +\infty.$$

$$\mid e^{\lambda t u + (1-\lambda)t'u} \mid \leq \lambda \mid e^{tu} \mid + (1-\lambda) \mid e^{t'u} \mid .$$

The equality can be satisfied if $t \neq t'$ for e^{tu} and $e^{t'u}$ P-a.s. proportionnal, which is possible only if $P = \delta$ the Dirac probability measure.

²The domain $D(\mathcal{M}_{P,u})$ of the momentum generating function is convex. Indeed for $\lambda in]0,1[$ and t and t' in $D(\mathcal{M}_{P,u})$

By the convexity of the exponential function, the momentum generating function is finite on the interval $]-\frac{1}{k},\frac{1}{k}[$; therefore $u\in\mathcal{C}(\mathcal{X},P)$. Conversely let $u\in\mathcal{C}(\mathcal{X},P)$. Then there exists t such that t and -t are in the domain of the momentum generating function $\mathcal{M}_{P,u}(t)$, and this means that

$$\mathbb{E}_P\left[e^{tu}+e^{-tu}\right]<+\infty\,,$$

so that $u \in L^{\Phi}(\mathcal{X}, P)$.

Remark: 1 - The Orlicz norm being equivalent to the Luxemburg norm in theorem (5.17) we can remplace the Luxemburg norm by the Orlicz norm.

2 - Because the Young function $\Phi_2(x) = e^{|x|} - |x| - 1$ is equivalent to the Young function $\Phi(x) = \cosh x - 1$ we have $L^{\Phi}(\mathcal{X}, P) \simeq L^{\Phi_2}(\mathcal{X}, P)$ and we can take as conjugate Young function $\Phi_3(x) = (1 + |x|) \ln(1 + |x|) - |x|$.

LEMMA 5.25. The cumulant function

$$K_{P,u}(t) = \ln \mathcal{M}_{P,u}(t) = \ln \mathbb{E}_P \left[e^{tu} \right] , \qquad (5.73)$$

is a convex function on $D(\mathcal{M}_{P,u})$. Moreover it is strictly convex if P is not a Dirac probability measure.

DEFINITION 5.15. The centered Cramer class $C_0(\mathcal{X}, P)$ at P is the linear subspace of all random variables $u \in C(\mathcal{X}, P)$ with vanishing expectation,

$$C_0(\mathcal{X}, P) = \{ u \in C(\mathcal{X}, P), \ \mathbb{E}_P[u] = 0 \} \ . \tag{5.74}$$

LEMMA 5.26. The centered Cramer class $C_0(\mathcal{X}, P)$ is a closed subspace of the Orlicz space $L^{\Phi_1}(\mathcal{X}, P)$ with $\Phi_1(x) = \cosh x - 1$.

Assume $u \in L^{\Phi_1}(\mathcal{X}, P)$ and $\mathbb{E}_P[u] = 0$. Then by the same argument as previously there exists k > 0 such that the momentum generating function is finite on the interval $] - \frac{1}{k}, \frac{1}{k}[$; therefore $u \in \mathcal{C}_0(\mathcal{X}, P)$. Conversely let $u \in \mathcal{C}_0(\mathcal{X}, P)$. Then there exists t such that t and -t are in the domain of the momentum generating function $\mathcal{M}_{P,u}(t)$, and so that $u \in L^{\Phi_1}(\mathcal{X}, P)$. Moreover space $L_0^{\Phi_1}(\mathcal{X}, P) = \{u \in L^{\Phi_1}(\mathcal{X}, P), \mathbb{E}_P[u] = 0\}$, is a closed subspace of $L^{\Phi_1}(\mathcal{X}, P)$.

LEMMA 5.27. Let $\Phi_1(x) = \cosh x - 1$, $\Phi_2(x) = e^{|x|} - |x| - 1$ and $\Phi_3(x) = (|x| + 1) \ln(|x| + 1) - |x|$ three Young functions. Then

$$L^{\Phi_1}(\mathcal{X}, P) \simeq L^{\Phi_2}(\mathcal{X}, P) = L^{\Phi_3}(\mathcal{X}, P)^*$$
 (5.75)

The relation $L^{\Phi_1}(\mathcal{X}, P) \simeq L^{\Phi_2}(\mathcal{X}, P)$ is a consequence of $\Phi_1 \sim \Phi_2$. the equality comes from the fact that Φ_2 and Φ_3 are conjugate and that Φ_3 verifies the Δ_2 -condition.

LEMMA 5.28. We have the continuous injection

$$L_0^{\Phi_3}(\mathcal{X}, P) \hookrightarrow L_0^{\Phi_1}(\mathcal{X}, P)^* = \mathcal{C}_0(\mathcal{X}, P)^*,$$
 (5.76)

$$C_0(\mathcal{X}, P) = L_0^{\Phi_1}(\mathcal{X}, P) \simeq L_0^{\Phi_3}(\mathcal{X}, P)^*$$
 (5.77)

THEOREM 5.18. Let Φ_1 and Φ_3 be the Young functions $\Phi_1(x) = \cosh x - 1$ and $\Phi_3(x) = (|x|+1)\ln(|x|+1) - |x|$. The we have the following sequence of continuous embedings

$$L_0^{\infty}(\mathcal{X}, P) \hookrightarrow L_0^{\Phi_1}(\mathcal{X}, P) \hookrightarrow \bigcap_{\alpha > 1} L_0^{\alpha}(\mathcal{X}, P) \hookrightarrow L_0^{\Phi_3}(\mathcal{X}, P) \hookrightarrow L_0^{\Phi_1}(\mathcal{X}, P)^*$$
. (5.78)

LEMMA 5.29. The multi-linear mappings $(u_1, u_2, \dots, u_n) \mapsto \mathbb{E}_P[u_1 u_2 \dots u_n]$ where $u_i \in L_0^{\Phi_1}(\mathcal{X}, P)$, are continuous.

This follows from the continuous inclusion $L_0^{\Phi_1}(\mathcal{X}, P) \hookrightarrow L_0^n(\mathcal{X}, P)$

Remark: In particular the momentum $u \mapsto \mathbb{E}_P[u]$ are continuous.

References

- Z. W. Birnbaum, W. Orlicz, Über die Verallgemeinerung des Begriffes dezs zueinander konjugierten Potenzen, Studia Math. 3 (1931), 1-67.
- J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta. Math. 30 (1906), 175–193.
- M. A. Krasnosel'skii, Ya. B. Rutickii, Convex functions and Orlicz Spaces (translation), P. Noordoff Ltd Groningen, 1961 Convex functions and Orlicz Spaces (translation), ?, 1?.
- W. Orlicz, Über eine gewisse Klasse von Räumen vom Typus B, Bull. int'l. de l'Acad. Pol. serie A 10 (1932), 93-107.
- W. Orlicz, Some classes of modular spaces, Studia Math. 10 (1932), 93-107.
- M. M. Rao, Marcel Dekker, IncNew York.
- M. M. Rao, Z. D. Ren, Theory of Orlicz spaces, Marcel Dekker, IncNew York, 1991.
- W. H. Young, On classes of summable functions and their Fourrier series, Proc. Roy. Soc. 26 (1966), 165-192.