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H-points and Denting Points in Orlicz Spaces™

Abstract. H-points and denting points of the unit sphere in Orlicz spaces over

nonatomic and purely atomic (counting) measure spaces are characterized. Some corol-

 Jaries concerning the relevance of H-property and G-property in connection with MLUR-
property in any Orlicz space are given.
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1. Preliminaries. For a Banach space X, we denote by S(X) and
B(X) the unit sphere and unit ball of X, respectively. A point zg € S(X)
is called

a) an extreme point if for every z,y € S(X) the equality 2z = ¢ +y
implies z = ¥;

b) a strong extreme point if for any sequences (zn),(yn) C X such that
|lzall = 1, |yn]| = 1 as n — 00 and 229 = Tn + yn (n = 1,2,...), we have
lzn = ynll — 0 as n — 00;

c) an H-point if for any sequence () C X such that ||zn|| — 1 as
n — oo, the weak convergence of (z,) to zo (write Tn—To) implies that
lzn — zo|| — 0 as n — o0;

d) a denting point if for every £ > 0 zo ¢ conv{B(X)\ (zo + e B(X))}.

Characterizations of extreme points and strong extreme points in Or-
licz spaces were obtained in [1], [2], [3], [4] and [9]. In this note we will
characterize I-points and denting points of the unit sphere in Orlicz spaces
over nonatomic finite and purely atomic measure space. The reader who is
interested in a discussion of the relevance of denting points in connection
with the Radon-Nikodym property (RNP) is referred to the monographs (2]
and [7].

Let R = (—o00,00) be the set of all real numbers, N the set of all natural
numbers and m the set of all sequences. Further, let (G, ¥, p) be a measure

* The Project is supported by National Science TFoundation of China.
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space with a non-negative, finite, atomless and complete measure defineq
on a o-algebra Y. We denote by M the set of all p-equivalence classes of
real-valued measurable functions defined on G.

A convex even function M : R — [0,00) is called an N-function iff
ﬂ'f(U):O,M,ﬂéO,@—rooasu—»ooand @aOaS'n—'O.

Tor every N-function M we define a complementary function N : R —,
[0,00) by the formula N(v) = max,3o[u|v| — M(u)] for every v € R. The
function N is also an N-function.

We write M € Ay (M € A,), whenever M satisfies the Ay-condition
for large u (for small u) (cf. [11], p. 23). A real number u is said to be 3
point of strict convexity of M if for any uy,u; € R, uy # uy, the equality
uy + up = 2u implies M(u) < (M (uy) + M(uz)). Let Sps be the set of all
points of strict convexity of M. We denote

St ={u € Spr: Je>oM is a linear function on [|u|, |u| + €]},
Sy ={u € Sy : e50 M is a linear function on [[u| — ¢, |uf]}

and S = Sm \ (53, U Spp).
Ifunctionals
om(z) = Z M(z;) forz em
i=1
and

ou(e) = [M(a(0))du for z € M
G

are modulars on m and M respectively (cf. [14]). The space
Ipvg = {x € m:pp(ka) < oo for some k > 0}
equipped with so called Luxemburg norm
llzll(ary = inf{a > 0: ppr(a™'z) < 1}

or with the equivalent Orlicz norm (in Amemiya sense)
1
= inf —(1 3
lzllar = inf 21+ on(ke)

is said to be an Orlicz sequence space. A subspace of finite elements hps C I5f
is defined as the set of all 2 € m such that ppr(kz) < oo for any k > 0.
This subspace is equipped with the norm induced from [y;. To simplify
denotations we put Iy = (Ing, [|*llar), Ly = Uns |- ll(any)s boas = (Rt ||| ar)
and hary = (har, || - ll(ary)- Orlicz function spaces Lps and Ly equipped
with the norms || - ||as and [| - ||(ar), respectively and the space of finite
elements Fp; and Fypy are defined analogously (cf. [11]).
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2. Results.

THEOREM 1. Let g € S(Lpr). zo is an H-point if M € A, and zq is
an extreme poinl.

Proofl of necessity. Suppose zg € S§(Las) is an H-point. In
virtue of the fact oar(zo) < ||zollar = 1 there exists a number ' > 0
such that the set Go = {t € G : |zo(t)] < C} is of positive measure.

Assume M ¢ A,. Then a monotonically increasing sequence of numbers u,
(n=12,.. .), which tends to infinity, can be found such that M(uy) > ;-(éo—)

and
1
M ((] - ;) 'r.-:n) 52 M, =120
Take G, C Gy with

K(Ga) = oo

—— (n=1,2,...).
2" M (uy,) ( )
Define
I S R . S

where

1

T = ToXG\G, + T UnXGn By SEGRE,: M= 1)

v0
and ko is a positive number such that ||zo||ar = -,}5(1 + Ba(kozo)) (cf. [20]
Th. 1.27 p. 46). Obviously,

lzn — @pllar = llznllm < Clixg, llm — 0 as n — oo.

By the following inequalities
lzhllar = llzoxerG. llm and 1 = [lzollar < [[zoxe\G, |Iar + [|Toxa, [|ar
forn = 1,2,..., we can conclude that
liminf ||z} ||ap 2 1.
n—0oa
But, in view of Theorem 10.5 from [11]
I 1 . il
lenllv < =1+ 2ar(kozoxanG, ) + M (un)u(Gn) < lzoflar +277 =,
ko ko 0
S0

lim sup |[2] ||ar < 1.
n—oo

Thus
. ]
nlem 125 1= 1
Therefore, taking into account the definition of the sequence (z,), it is easy
to notice that ||z,||p — 1 as n — 0o0. Now we will prove that z,zo. Every
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functional f € (Ls)* is of the following form (see [1] or [15])
f = Wy + &,

where y € Ly and
U.lz)= fm(t)y(t) dp  (for every & € Lyy),
G

and @ denotes a singular functional, i.e. @(s) = 0 for z € Fys. Notice that
T, — Tp = kLo“nXG,. € Epp. Let f € (Lar)™ and let d > 0 be a number such
that a(dy) < co. Using Young’s inequality, we get

/(@0 = 20)| < | J (0 = o) de| +

| fton]<

|2(zn — o)

(M’(un),u(F ) + fN'(dy(!, )d,u) -0

for any f € (La)*. Thus z,—z.
On the other hand, for any m and n > m we have

o (14 2 tuCon = 20)) = 01 (14 ) un ) G)
>M ((1 + -:;)un) w(Gr) > 2”M(um)2n—Ml(~m o

Hence

o = aullar > lon = sollon > - (145) (2> m),

and, in virtue of the fact that m is arbitrary,

anlioréf”xn — zollpr 2 k'l_ul
But this contradicts the fact that zo is a H-point. Thus, M € A,.

Now assume that the I/-point z; is not an extreme point. Then p({i €
G : kozo(t) € R\ Sar}) > 0 (cf. [1], [3] or [9]). Consequently, there exists at
least one interval (a,b) on which M(u) = cu+d and p({t € G : kozo(t) €
(a,0)}) > 0. Choose § > 0 such that the measure of the set £ = {t € G :
kozo(t) € [a 4 6,b — 6]} is positive.

Repeating the same argumentation as in the proof of Lemma 4 from [5],
two sequences of subsets (E!) and (E!) can be found such that . NE! = 0,
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ELU Efl = E, u(E') = p(E!) (n=1,2,...) and for any y € Ly, we have

nleoo(Iy(t]dp— fy(t]dgz) = f

Define

zn(t) = zo(t)Xa\ (1) + (’ro t) + ) xe: () + (mg(t) = }%) xen (1),
40 = 20Dy s() + (0(0) - ki) ey )+ (200 + 1 ) xe (0

(n=1,2,...). For each n € N, we have

1 _
lzallar < (1 + 2a(kozn)

= (1 it fM kga,g(t))du-i-fM kozo(t) + 8) dy
G\E

+ [ M(kowo(t) - 8) du)
Flt
= (1+ [ M(kozo(1)) d;z+f[c(ku:.cg (1) + &) + d) d
G\E

+ [ letkozo(t) - 6) + dldp)

EY

. LU(I % fM kozo(t)) d,u+f (ckozo(t) + d) d,u)
G\E

F(l + 2 (kozo)) = [l2ol[ar = 1.

Similarly, ||z ||ar < 1. Moreover,
2 = ||2@0|m = llen + zhllar < [l@allv + [l llar < 2
Therefore,
loallw=1 =102
By the previous part of the proof M € Ay, so (Lar)* = Lny. Then to every

f € (L))" there corresponds in one-to-one fashion a function y € Ly and
we have

S(an=20)= [ (eal®) ~ @O du= - (fy(t Ydu— [v(t)dp) =0,

L”
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i.e. z,—20. But
26
l#n — zollar = E”X[_"“M >0,
so xg cannot be a I -point. This contradiction completes the proof of neces.

sity.

Proof of sufficiency. Suppose that z is an extreme point
and M € A,. Let (zn) be a sequence of functions such that z, € L,,
(n=1,2,...),||znlls = 1as n — oo and z,—zo. Without loss of generality,
we can assume that for every n € N ||z,||p = 1. Let (k) be a sequence of
positive numbers such that

1
Izallar = 7= (1 + 2ar(knzn)) (n=0,1,...).

Iirst we will prove the following statements:

(1) k = supk, < o0;
neN
(2) lim sup pu({t € G : |knzn(t)| > €}) = 0;
=00 ﬂeN
(3) lim sup@y(knznxp) = 0.
u(D)—oo neN

Suppose that sup,cykn = 00. Then there exists a subsequence (k,,)
such that lim;_, k,, = oo. Taking into account that

1
lim M) =00 and 1= |lapllm > —0p(kn,zr,),

u—oo 1 ky,

we can conclude that the subsequence () is convergent to 0 in measure
(2, 50). Hence, by Theorem 14.6 from [11], (z,,) is En-weakly convergent
to 0 (:rn"r'?—‘f(}), 50 2, —0. This contradicts to the assumption z,—zq # 0.
Thus (1) is true.

FFurther, denoting

G ={t € G: |kpz,(t)| > e},

we have

1 —
1> -;—aM(knzn) > o [ Mkaza() dp > B M(eu(GS).

{3 ﬂG:_l
Hence B
;L(Gﬂ(L (n=1,2,..)
"7 M(e) P
and we obtain (2) in an obvious manner.
Now, suppose that (3) is false. Then there exist a § > 0 and sets D,, C G
(n =1,2,...) such that u(D,) < 2™" and @p(knznxp,) = 6. Fix a positive
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integer m so large that for every £ C G' with p(E) > p(G) — 2=™ we have

) ]
zoxel|lsm 2 ||z -——=1-—=
lzoxEll llzoll ar o oF
In particular, putting I = G'\ ;2,41 Pn, we obtain ||zoxe|la > 1 -
Therefore, for n > m, we get

B
2k”

|
1 = ||lza|lar = r[l + op(knzaxe) + ?M(knxnxu‘” P )]
n n=m

n

1_ )
2 lenxellm + EQM(kﬂmﬂXDn) 2 |zaxel|lm + 5

and so, by the weak convergence of (z,xg) to zoxg,
)

; 6 6
12 h_mn—»oo”mﬂXE”ﬂzf + E 2 ”‘TUXE”M T 2 1+ E};

k
(cf. e.g. [23], Th. 11ii), p. 120). This contradiction proves (3).
Denote G® = {t € G : kozo(t) € SY}, Gt = {t € G : kozo(t) € SF;
and G~ = {t € G : kozo(t) € Sy, }. Since g is an extreme point, kozo(t) €
S for almost every t € G (cf. e.g. [3], th. 6). Hence pu(G) = p(GOUGHUG™).
To prove ||z, — xo|lps — 0 as n — oo, by [22], it is enough to show
(4)  @n—z20 on G=G'U(GT\G )U(G~\GHU(GtnG ).

The proof of (4) requires four steps.
I. We will show that

(5) kntyn — koxo=0 on Gp.

Suppose (5) does not hold. Then there exist positive real numbers ¢
and o such that

n({t € G° : |kpzn(t) = kozo(t)] 2 €}) > o (n=1,2,..)

Fix e > 0 satisfying p({t € G : [knza(t)] > €}) > £ (n = 0,1,2,...).
Denoting for n = 1,2,...

Fo={t € G : |knzn(t) = kozo(1)] > €, lknzn(t)] < e, |kozo(1)] < €},

it is casy to verify that u(I7,) > § (n = 1,2,...). Since kozo(t) € SY,,
1 k k
0 kﬂ < k

0< < d
T+k Skothn 0 otk STE D
there exists a é € (0,1) such that
ok
M
() + (1)
£1—i8) [ b M{koso®) 4 e Rzl
k[] + kn k[] + kn s
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for te€ F, (n=1,2,...). Hence, by the inequality max{|kozo(t)|, [knzn( O
£ for t € I, we have

2 — ||lzo — zallar 2

n

ko + kn _ kok,
- kukn [1+ (,{ +.|L (I0+3n)):|

ko +kn | kn (o)
k[]kn k0+kngiw 00

1 s 1 .
En_(l + Oar(kozo)) + k_—(l + opm(knn))

W

ko _ _ kok,,
+kn_:knghf(kﬁ$n)_gﬂvf (k +k ($0+$ )):|

Fo+kn [ _kn
| [y Moo

b M (b (0) - M (o (200 + (1) |

ko + kn K ko
k[‘]kn 6\]‘ [k0+k M(kuxn t) + +}\.n W(&nmn(t))} d'ﬂ,

[ (5) au> b (5) 2

and so ||zo+2,||ar # 2. On the other hand z,, —zg—0 implies lzo+zn|lp —
2 as n — oo. This contradiction finishes the proof of I.
II. We will prove two following facts:

W

W

(6) lim &, = ko,
(7) T,>zo on GO,
Observe first that z, — xobi» 0, where En(G%) = {yxqo : y € En}.

Moreover, by the step I and Theorem 14.6 from [11] knxn - k{).ﬁgri\—ES )U

Hence

]
(kn — ko)o = (knin — kozio) — kn(zs — z0) "2 0.
If p({t € G° : wo(t) = 0}) < pu(GP), then (6) is satisfied in an obvious

manner and (7) is an immediate consequence of (5) and (6).
If p({t € G° : xo(t) = 0}) = p(GP), then z, 529 = 0 on G° by (5), i.c.
(7) is satisfied. Now, we have to prove (6) in this case. Obviously, the set
S U Sy, is at most countable. We may assume that there exists a sequence
(r:) C 57, U Sy such that G; = {t € G : koxo(t) = i}, u(Gy) > 0 (i =
1,2,...) and p(G\G®) = (U2, Gi). Since , — 0 on G°, Gpr(kntnxgo) —
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pasn— by (3). Hence
1 o0
g (14 2 ME9(GD) = lllr =1
and
'kl_n(] +Z§M'(kn$nXG.-)) — 1 asn — oo.

y (1) the sequence (k) is bounded. Without loss of generality we can
assumc that lim,_o kn = kgj. Since M € Ay, for any € > 0 a natural
number 7y can be found that

Moreover

rllgn f:cﬂ(t) dp = f:rg(!,)d,u = ;—;;'L(Gg) e 1y B}t

[eF (e
Thus

1= |lzo|lm < i (1 + 0 (kozo))
ll—l—z 'VI(——? ),u )jt +E
i=1

- 1+§:M(kﬂ;(é—i)fwn(i)d#)u(@s) + 2

[1+ZM( edful )]

M\

/AN
|

;il I+ZIM kntn d,u,:l + 2¢

x](_‘,‘

1 to
£ — l+2£’M k Tn)\G)

L i=1

+2e £ 1+ 3e,

for sufficiently large n. Hence E;(l +2um(kpzo)) = 1, because ¢ is arbitrary.
Thus kg = kj. This completes the proof of (6).
I11. We will show here that

(8) zn5zg on (G~\GH)U(GT\G).
Suppose Sy, \ Sty = {r1,72,...} and denote G; = {t € G : kozo(t) = 7;}
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(i=1,2,...). To prove (8) first we will show

(9) f (zn(t) = z0(t))dp -0 asn— o0 (i=1,2,..),

Gi(za2z0)
where Gi(z, 2 29) = {t € G; : z,(t) > z0(1)}.
To verify (9), suppose, to the contrary, that there are j € N and § > 0
such that
(zn(t) —2z0(t))due 26 (n=1,2,...).
Gi(2a 2%0)
Since, by (2) and (3),

(2a(t) =20 () du < [ |za(t) dp
Gi(zn2z0,20>€) G(zn>e)

< f M(knzn(t))dp — 0 as e — oo,
Gz, >e)

a number e > 0 can be chosen such that

]
f (@a®) = zo()du > 5 (n=1,2,...),
Gi(e2zn220)
where sets Gj(z, 2 zg,2, > €), G(z, > ¢), Gj(e > z, > xg) are defined
analogously as Gi(z, > 2¢). Consequently, there exist positive real numbers
¢’ and o' such that

n{te€ Gjre 2 zu(t),za(t) —2o(t) 2 e'}) 20’ (n=1,2,...).
Hence, by the convergence of the sequence (k) to ko, a natural number n,
can be found such that p(F,) > %— for n > ng, where I, = {t € G; : ek >

knzn(t), kntn(t) — kozo(t) > €'}. Observe that kna,(t) and kozo(t) belong
to the set Sys for t € I, and n > ng. Hence there exists n' € (0,1) such that

: koky .
M (ko Tk, (z,(1) + :t,g(t)))
' K d
< 1) (g M Ckoa(0) + 2 b k)

for t € F, and n > ny. Now, repeating the argumentation from the proof
of the step I, we conclude that ||zg 4+ z,||ar # 2. This contradiction finishes
the proof of (9).

Since

f(:z:n(t) —zo(t))dp—0 asn—oo (i=1,2,..),
Gi
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it follows, by (9), that
f (zo(t) — zn(t))dp — 0 asn—oo (i=1,2,...)
Gi(z<®0)
Hence, we conclude
f|:rﬂ(t) —zo(t)|dp — 0 asn—o00 (1=1,2,...).
G,

Consequently, z,z¢ on G; (i = 1,2,...). Since 1 E - p(U?z,-o_,_l @)=
0, we may deduce that z,5zo on whole (G~ \ G*). In a similar manner,
we can obtain that z, — z¢ on (G*\ G~). Thus (8) is proved.

1V. Finally, we will prove

(10) za>z9 on GTNG-.
We have
[oar(kozn) —0ps(komo)| < [Bas(kown) = Bpr(knn)| +10pr(kn2n) — Bar(kozo)).

The right hand side of this inequality tends to 0 as » — oo because k, — ko
asn — oo and M € Asy. Thus

(11) om(koxn) — Bpr(koxo) as m — oco.

On the other hand, the previous part of the proof implies that z, — ¢ on
G\ (Gt NnG™). Hence

EM(kﬂanG\{G+ nG—)) = ?M(knxn)(c\(mna—)) as n — o0
and so, by (11)
opm(koznXG+nG-) = Pm(kozoxgng-) asn — oo,
Therefore, denoting S3, NSy, = {s1,52,...} and D; = {t € G : kozo(t) = s;}

(i=1,2,...), we have

3 fM(kna:n(t)) dp— S fM(kgxo(t))dp: =3 M(si)u(Ds)
i=1

=1, i=1p),;
as n — 00,

i.e.

(12) E f [M(kozna(t)) — M(kozo(t))] dp

_ f (M (kozo(1)) — M (kozn(t))] dpt — 0 as n — co.
Di(xn<xo0)
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Suppose [s!,s;] and [s;, s'] are two intervals on which the function pf
is linear, i.e.
[ Alu+ Bl forue [s},s]
Min) = { Ay + B!' for u € [si, s]]
Obviously, AL > AY (i=1,2,...).

Hereinafter, we will show that

(13) 3 f [M (kozn(t)) — (Akozn(t) + BI)dp — 0 as n — oo,
=1 Di(zn 220)

To this end, fix ¢ > 0. Since ,u(U?in D;) — 0 as j — o0, by (3) there
exists i9 € N such that

1) | S [ M) - (Afksea(0)+ B)ldu <

i=to+1D;(zn 220)

b= 1,200
Further, for 1 € 7 < ip we have
(15) [ [M(kowa(t) - (Afkoza(t) + BY)]dp
Di(H2E 220 >70)
= ] M (koza(1)) = (Al'za(t) + BY')] dp

Di(z!" 462 kown 25!")
< (M(s{ +8) = M(s)m(G) < —
0
(i=1,2,...) for sufficiently small § > 0.
Notice that lim, e p({t € D; : kpzn(t)s! + 6}) = 0 (otherwise, re-

peating the argumentation from I, we obtain that ||z — @,||p /4 2, ie. a
contradiction). Therefore, by (3), we get

(16) | [ M(kozn() dp— [ M(koza(t)) dn| <
Di(45 22w 2w0) Di(zn 220)
(1 = 1121-'-1?:0; n 2 nﬂ)
and
an | [ (Afkowa(t) + BY) d

Di(4E >z, > 20)

- f (Akozn (1) + BY) dy <1.3 (i=1,2,...,00; n > ng)
0

Di(zn 2%0)
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Combining (15), (16) and (17), we have

(M (koa(1)) — (Al oza(t) + B dit| < 5=
Di(x, 2z0) ‘0

Consequently,

10
(18) iz f (M (kozn(t)) = (A"kozn(t) + BY)] du‘ <3 (n3no)
i=1D;(zn 220)
Taking into account (18) and (14), we conclude (13). Similarly, we may
obtain

(19 3 f [M(kozn(t)) — (Abkozn(t) + BD)]di — 0 as n — oo.
i=1D; (2, <o)
From (19), (13) and (12), it follows that

20) Y147 [ (@a®-wo@®)du-4; [ (@o(t)=2a(t)) du] — 0
i=1 Di(z, 2z0) Di(z,<zo)
as n — 00,

. 1 . . .
Since x,— g, it is easy to notice that

lim f (1) = 20(1)) dp = lim f (z0(1) — zn(t)) dp = 8; > 0
Di(n >a0) Di(xn <o)

for every ¢« € N. Obviously, by (20), ; (i = 1,2,...) cannot be positive
because AY > Al (i = 1,2,...). Therefore

fixn(t) —xo(t)|dp — 0 asn—o0 (i=1,2,...),
D,

ie. 2,529 on D; (i =1,2,...). Hence, noticing that ’”'(U?iiaﬂ D;)— 0 as
io — 00, we have z, — 290 on Uiz, Di = GTNG~. This finishes the proof
of (10).

Combining (7), (8) and (10), we obtain immediately that z, — z¢->0
on whole (. Thus the proof of the theorem is complete.

THEOREM 2. Let xg € S(L(any). o s an H-point iff M € Ay and
is an ertreme poinl.

The proof of Theorem 2 is similar to the proof of Theorem 1, so it is
omitted here.

THEOREM 3. Let zg € S(I(ary)- @0 is an H-point iff M € A,.
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Proof of sufficiency. It is obvious by [21].

Proof of necessity. Suppose that 2° = (29,29,...) € S(liany)
is an H-point. Select a subsequence (¢y,1y,...) of the sequence z¢ such that
(t1,13,...) € har. Denote by (sy,$2,...) the remaining part of sequence Zo.
Write for convenience the sequence zp in the following form

g = (10044443 Sy 8pgees)-
Assume M ¢ A,. Then there exists a sequence u, | 0 such that M(uy) <
2—.,1_,_7 and

M ((1 + %)un) > M M(u,) (n=1,2,...).

Choose a positive integer m,, satisfying

1
gt S maM(un) < 52 (n=1,2,...).

Define
Tn = (t1y- o alnslntl + Unye ooy bndmy + Unsbngmy b1y 003 81,82,...)

(n = 1,2,...). Obviously, the element z, (n = 1,2,...) can be written in
the form z, = z!, + 2!/, where

x:l = (111"‘:tﬂvutlatﬂ+mn+la---; 31132s---)5

2 = (050005 0y tnprsoe sy bugimg 5 055453 0,0,..) (m = 1,9,...)
Since (1,12,...) € har), we conclude that ||z]||(pry — 0 as » — oco. Hence
|zn = 2, ||(ary — 0 as n — co. Moreover,

II&:L”(M) = ||(t1,...,.§n,0,. A1 18 AT SR S],Sg,...)”(M)

= [lzo — 23llcay.

so liminf,_oo [[27[l(ary 2> [|Zoll(ary = 1. On the other hand

om(zy) < om(zo) + maM(uy) < 14277,

ie. |lznllmy < 14 27" Hence limsup,_, . llz}.[l(ary < 1. Therefore,
im0 |23, ]l(ar) = 1. Now, it is easy to notice that lim, o Iznllany = 1.

Every functional f € ({(ar))* can be written in the form f = v, + o,
where ¥, is a regular functional on h(ry generated by y € Iy and & is a
singular functional. Let a be a positive real number such that on(ay) < .
Notice that z,, — zp € h(M). Then

[f(@n = 20)] = |n§" wnth] < [mab(un) + 3 N(ays)] -0
i=n+1 i=n+1

as n — 00,
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i.e. Tn — o—0. But for any positive integer m and n > m

onm ((1 t é)(zn - mo)) = ma M ((1 + i)un)

> m,M ((1 + -:;)un) > 1.

Hence
1\ !
lzn — zo||(ary > (1 + —) for each m € N and n > m.
m

Consequently,
liminf ||z, — 2ol|(ary > 1.

Thus z¢ cannot be any H-point. This contradiction completes the proof of
Theorem 3.

THurEoOREM 4. Let 2y € S(Ipr). xg is an H-point iff M € A,,

The proof of Theorem 4 is analogous to the proof of theorem 3, so we
will omit it.

3. Corollaries. Bor-Luh Lin, Pei-Kee Lin and S.L. Troyanski proved
(cf. Th. (iii) [13]) that element z in a bounded closed convex set K of a
Banach space is a denting point of K iff z is a H-point of K and z is an
extreme point of K. Combining this result with our results and with results
concerning the characterization of strong extreme points in Orlicz spaces,
given in [6], we obtain the following

COROLLARY 1. Suppose xg € S(Lar) or 2 € S(L¢ay). TFAE:
(a) zo is a denting point.

(b) zo is an H-poindt.

(¢) g is a sirong extreme point.

(d) o is an extreme point and M € A,.

COROLLARY 2. Suppose zg € S(Ipr) or zg € S(liay). TFAE:

(a) 2o is a denting point.

(b) g is a strong extreme point.

(c) g is an extreme point and M € A,.

A Banach space X is said to posses Property (G) (Property (H)), pro-
vided every point of S(X) is denting point (H-point).

A Banach space X is said to be midpoint locally uniformly rotund
(MLUR), if for any ¢ € (0,2) and ¢ € S(X), there is 6 > 0 such that
Y,z € S(z) and ||ly - 2|| > € implies ||z — L(y + 2)|| > 6.

It is well known that a Banach space X is (MLUR) iff every point of
S(X) is a strong extreme point (see for example [16]). Hence and from the
above corollaries, we can deduce
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CoRrOLLARY 3. For the spaces Ly or Lippy we have
(G) & ()& (MLUR).

COROLLARY 4. For te spaces lpy or l(yry we have
(G) & (MLUR).

Corollary 3 improves essentially Theorem 2 presented in [17] by Tingfuy
Wang.
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