ANNALES SOCIETATIS MATHEMATICAE POLONAE

Series I: COMMENTATIONES MATHEMATICAE XXXIII (1993)

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO

Seria I: PRACE MATEMATYCZNE XXXIII (1993)

RYSZARD PŁUCIENNIK, WANG TINGFU AND ZHANG YONGLIN

H-points and Denting Points in Orlicz Spaces*

Abstract. H-points and denting points of the unit sphere in Orlicz spaces over nonatomic and purely atomic (counting) measure spaces are characterized. Some corollaries concerning the relevance of H-property and G-property in connection with MLUR-property in any Orlicz space are given.

1980 Mathematics Subject Classification: 46E30

Key words and phrases: Orlicz space, H-point, denting point, extreme point, H-property, G-property.

- 1. Preliminaries. For a Banach space X, we denote by S(X) and B(X) the unit sphere and unit ball of X, respectively. A point $x_0 \in S(X)$ is called
 - a) an extreme point if for every $x, y \in S(X)$ the equality $2x_0 = x + y$
- implies x = y; b) a strong extreme point if for any sequences $(x_n), (y_n) \subset X$ such that $||x_n|| \to 1$, $||y_n|| \to 1$ as $n \to \infty$ and $2x_0 = x_n + y_n$ (n = 1, 2, ...), we have $||x_n - y_n|| \to 0$ as $n \to \infty$;
- c) an *H*-point if for any sequence $(x_n) \subset X$ such that $||x_n|| \to 1$ as $n \to \infty$, the weak convergence of (x_n) to x_0 (write $x_n \xrightarrow{w} x_0$) implies that $||x_n x_0|| \to 0$ as $n \to \infty$;
 - d) a denting point if for every $\varepsilon > 0$ $x_0 \notin \overline{\text{conv}}\{B(X) \setminus (x_0 + \varepsilon B(X))\}.$

Characterizations of extreme points and strong extreme points in Orlicz spaces were obtained in [1], [2], [3], [4] and [9]. In this note we will characterize H-points and denting points of the unit sphere in Orlicz spaces over nonatomic finite and purely atomic measure space. The reader who is interested in a discussion of the relevance of denting points in connection with the Radon-Nikodym property (RNP) is referred to the monographs [2] and [7].

Let $\mathbb{R} = (-\infty, \infty)$ be the set of all real numbers, N the set of all natural numbers and m the set of all sequences. Further, let (G, Σ, μ) be a measure

^{*} The Project is supported by National Science Foundation of China.

H-points and denting points in Orlicz spaces

space with a non-negative, finite, atomless and complete measure defined on a σ -algebra Σ . We denote by \mathcal{M} the set of all μ -equivalence classes of real-valued measurable functions defined on G.

A convex even function $M: \mathbb{R} \to [0, \infty)$ is called an \mathcal{N} -function iff $M(0) = 0, M \not\equiv 0, \frac{M(u)}{u} \to \infty$ as $u \to \infty$ and $\frac{M(u)}{u} \to 0$ as $u \to 0$.

For every \mathcal{N} -function M we define a complementary function $N: \mathbb{R} \to [0,\infty)$ by the formula $N(v) = \max_{u \geq 0} [u|v| - M(u)]$ for every $v \in \mathbb{R}$. The function N is also an \mathcal{N} -function.

We write $M \in \overline{\Delta}_2$ $(M \in \Delta_2)$, whenever M satisfies the Δ_2 -condition for large u (for small u) (cf. [11], p. 23). A real number u is said to be a point of strict convexity of M if for any $u_1, u_2 \in \mathbb{R}$, $u_1 \neq u_2$, the equality $u_1 + u_2 = 2u$ implies $M(u) < \frac{1}{2}(M(u_1) + M(u_2))$. Let S_M be the set of all points of strict convexity of M. We denote

$$S_M^+ = \{ u \in S_M : \exists_{\varepsilon > 0} M \text{ is a linear function on } [|u|, |u| + \varepsilon] \},$$

 $S_M^- = \{ u \in S_M : \exists_{\varepsilon > 0} M \text{ is a linear function on } [|u| - \varepsilon, |u|] \}$

and $S_M^0 = S_M \setminus (S_M^+ \cup S_M^-)$.

Functionals

$$\varrho_M(x) = \sum_{i=1}^{\infty} M(x_i) \text{ for } x \in m$$

and

$$\overline{\varrho}_M(x) = \int_G M(x(t)) d\mu \quad \text{for } x \in \mathcal{M}$$

are modulars on m and \mathcal{M} respectively (cf. [14]). The space

$$l_M = \{x \in m : \varrho_M(kx) < \infty \text{ for some } k > 0\}$$

equipped with so called Luxemburg norm

$$||x||_{(M)} = \inf\{a > 0 : \varrho_M(a^{-1}x) \le 1\}$$

or with the equivalent Orlicz norm (in Amemiya sense)

$$||x||_M = \inf_{k>0} \frac{1}{k} (1 + \varrho_M(kx))$$

is said to be an Orlicz sequence space. A subspace of finite elements $h_M \subset l_M$ is defined as the set of all $x \in m$ such that $\varrho_M(kx) < \infty$ for any k > 0. This subspace is equipped with the norm induced from l_M . To simplify denotations we put $l_M = (l_M, ||\cdot||_M), l_{(M)} = (l_M, ||\cdot||_{(M)}), h_M = (h_M, ||\cdot||_M)$ and $h_{(M)} = (h_M, ||\cdot||_M)$. Orlicz function spaces L_M and $L_{(M)}$ equipped with the norms $||\cdot||_M$ and $||\cdot||_{(M)}$, respectively and the space of finite elements E_M and $E_{(M)}$ are defined analogously (cf. [11]).

2. Results.

THEOREM 1. Let $x_0 \in S(L_M)$. x_0 is an H-point if $M \in \overline{\Delta}_2$ and x_0 is an extreme point.

Proof of necessity. Suppose $x_0 \in S(L_M)$ is an H-point. In virtue of the fact $\varrho_M(x_0) \leqslant \|x_0\|_M = 1$ there exists a number C > 0 such that the set $G_0 = \{t \in G : |x_0(t)| \leqslant C\}$ is of positive measure. Assume $M \notin \overline{\Delta}_2$. Then a monotonically increasing sequence of numbers u_n $(n = 1, 2, \ldots)$, which tends to infinity, can be found such that $M(u_1) > \frac{1}{\mu(G_0)}$ and

$$M\left(\left(1+\frac{1}{n}\right)u_n\right) > 2^n M(u_n) \quad (n=1,2,\ldots).$$

Take $G_n \subset G_0$ with

$$\mu(G_n) = \frac{1}{2^n M(u_n)}$$
 $(n = 1, 2, ...).$

Define

$$x_n = x'_n + x''_n \quad (n = 1, 2, \ldots),$$

where

$$x'_n = x_0 \chi_{G \setminus G_n} + \frac{1}{k_0} u_n \chi_{G_n}, \quad x''_n = x_0 \chi_{G_n} \quad (n = 1, 2, \ldots)$$

and k_0 is a positive number such that $||x_0||_M = \frac{1}{k_0}(1 + \overline{\varrho}_M(k_0x_0))$ (cf. [20] Th. 1.27 p. 46). Obviously,

$$||x_n - x_n'||_M = ||x_n''||_M \leqslant C||\chi_{G_n}||_M \to 0 \text{ as } n \to \infty.$$

By the following inequalities

 $||x'_n||_M \ge ||x_0\chi_{G\backslash G_n}||_M$ and $1 = ||x_0||_M \le ||x_0\chi_{G\backslash G_n}||_M + ||x_0\chi_{G_n}||_M$ for n = 1, 2, ..., we can conclude that

$$\liminf_{n\to\infty} \|x_n'\|_M \geqslant 1.$$

But, in view of Theorem 10.5 from [11]

$$||x_n'||_M \leqslant \frac{1}{k_0} (1 + \overline{\varrho}_M(k_0 x_0 \chi_{G \setminus G_n})) + \frac{1}{k_0} M(u_n) \mu(G_n) \leqslant ||x_0||_M + 2^{-n} \frac{1}{k_0},$$

$$\limsup_{n\to\infty} \|x_n'\|_M \leqslant 1.$$

Thus

$$\lim_{n\to\infty} \|x_n'\|_M = 1.$$

Therefore, taking into account the definition of the sequence (x_n) , it is easy to notice that $||x_n||_M \to 1$ as $n \to \infty$. Now we will prove that $x_n \stackrel{w}{\to} x_0$. Every

functional $f \in (L_M)^*$ is of the following form (see [1] or [15])

$$f = \Psi_y + \Phi$$
,

where $y \in L_N$ and

$$\Psi_y(x) = \int_G x(t)y(t) d\mu$$
 (for every $x \in L_M$),

and Φ denotes a singular functional, i.e. $\Phi(s) = 0$ for $x \in E_M$. Notice that $x_n - x_0 = \frac{1}{k_0} u_n \chi_{G_n} \in E_M$. Let $f \in (L_M)^*$ and let d > 0 be a number such that $\overline{\varrho}_N(dy) < \infty$. Using Young's inequality, we get

$$|f(x_n - x_0)| \leqslant \left| \int_G (x_n(t) - x_0(t))y(t) d\mu \right| + |\Phi(x_n - x_0)|$$

$$= \left| \int_{G_n} \frac{u_n}{k_0} y(t) d\mu \right| \leqslant \frac{1}{k_0} \left(M(u_n)\mu(G_n) + \int_{G_n} N(dy(t)) d\mu \right) \to 0$$
as $n \to \infty$

for any $f \in (L_M)^*$. Thus $x_n \xrightarrow{w} x_0$.

On the other hand, for any m and $n \ge m$ we have

$$\overline{\varrho}_M\left(\left(1+\frac{1}{m}\right)k_0(x_n-x_0)\right) = M\left(\left(1+\frac{1}{m}\right)u_n\right)\mu(G_n)$$

$$\geqslant M\left(\left(1+\frac{1}{n}\right)u_n\right)\mu(G_n) > 2^nM(u_m)\frac{1}{2^nM(u_n)} = 1.$$

Hence

$$||x_n - x_0||_M \ge ||x_n - x_0||_{(M)} \ge \frac{1}{k_0} \left(1 + \frac{1}{m}\right)^{-1} \quad (n \ge m),$$

and, in virtue of the fact that m is arbitrary,

$$\liminf_{n \to \infty} \|x_n - x_0\|_M \geqslant \frac{1}{k_0}.$$

But this contradicts the fact that x_0 is a *H*-point. Thus, $M \in \overline{\Delta}_2$.

Now assume that the H-point x_0 is not an extreme point. Then $\mu(\{t \in G : k_0x_0(t) \in \mathbb{R} \setminus S_M\}) > 0$ (cf. [1], [3] or [9]). Consequently, there exists at least one interval (a,b) on which M(u) = cu + d and $\mu(\{t \in G : k_0x_0(t) \in (a,b)\}) > 0$. Choose $\delta > 0$ such that the measure of the set $\tilde{E} = \{t \in G : k_0x_0(t) \in [a+\delta,b-\delta]\}$ is positive.

Repeating the same argumentation as in the proof of Lemma 4 from [5], two sequences of subsets (E'_n) and (E''_n) can be found such that $E'_n \cap E''_n = \emptyset$,

 $E'_n \cup E''_n = \tilde{E}, \ \mu(E'_n) = \mu(E''_n) \ (n = 1, 2, \ldots)$ and for any $y \in L_N$, we have $\lim_{n \to \infty} \left(\int_{E'_n} y(t) \ d\mu - \int_{E''_n} y(t) \ d\mu \right) = 0.$

Define

$$x_n(t) = x_0(t)\chi_{G\setminus \tilde{E}}(t) + \left(x_0(t) + \frac{\delta}{k_0}\right)\chi_{E'_n}(t) + \left(x_0(t) - \frac{\delta}{k_0}\right)\chi_{E''_n}(t),$$

$$x'_n(t) = x_0(t)\chi_{G\setminus \tilde{E}}(t) + \left(x_0(t) - \frac{\delta}{k_0}\right)\chi_{E'_n}(t) + \left(x_0(t) + \frac{\delta}{k_0}\right)\chi_{E''_n}(t)$$

(n = 1, 2, ...). For each $n \in N$, we have

$$\begin{aligned} \|x_n\|_M &\leqslant \frac{1}{k_0} (1 + \overline{\varrho}_M(k_0 x_n)) \\ &= \frac{1}{k_0} \left(1 + \int_{G \setminus \tilde{E}} M(k_0 x_0(t)) \, d\mu + \int_{E'_n} M(k_0 x_0(t) + \delta) \, d\mu \right) \\ &+ \int_{E''_n} M(k_0 x_0(t) - \delta) \, d\mu \Big) \\ &= \frac{1}{k_0} \left(1 + \int_{G \setminus \tilde{E}} M(k_0 x_0(t)) \, d\mu + \int_{E'_n} [c(k_0 x_0(t) + \delta) + d] \, d\mu \right) \\ &+ \int_{E''_n} [c(k_0 x_0(t) - \delta) + d] d\mu \Big) \\ &= \frac{1}{k_0} \left(1 + \int_{G \setminus \tilde{E}} M(k_0 x_0(t)) \, d\mu + \int_{\tilde{E}} (ck_0 x_0(t) + d) \, d\mu \right) \\ &= \frac{1}{k_0} (1 + \overline{\varrho}_M(k_0 x_0)) = \|x_0\|_M = 1. \end{aligned}$$

Similarly, $||x'_n||_M \leq 1$. Moreover,

$$2 = ||2x_0||_M = ||x_n + x_n'||_M \leqslant ||x_n||_M + ||x_n'||_M \leqslant 2.$$

Therefore,

$$||x_n||_M = 1$$
 $(n = 1, 2, ...).$

By the previous part of the proof $M \in \overline{\Delta}_2$, so $(L_M)^* = L_{(N)}$. Then to every $f \in (L_M)^*$ there corresponds in one-to-one fashion a function $y \in L_{(N)}$ and we have

$$f(x_n - x_0) = \int_G (x_n(t) - x_0(t))y(t) d\mu = \frac{2\delta}{k_0} \Big(\int_{E'_n} y(t) d\mu - \int_{E''_n} y(t) d\mu \Big) \to 0,$$

i.e. $x_n \xrightarrow{w} x_0$. But

$$||x_n - x_0||_M = \frac{2\delta}{k_0} ||\chi_{\tilde{E}}||_M > 0,$$

so x_0 cannot be a H-point. This contradiction completes the proof of necessity.

Proof of sufficiency. Suppose that x_0 is an extreme point and $M \in \overline{\Delta}_2$. Let (x_n) be a sequence of functions such that $x_n \in L_M$ $(n=1,2,\ldots), \|x_n\|_M \to 1$ as $n \to \infty$ and $x_n \overset{w}{\to} x_0$. Without loss of generality, we can assume that for every $n \in \mathbb{N}$ $\|x_n\|_M = 1$. Let (k_n) be a sequence of positive numbers such that

$$||x_n||_M = \frac{1}{k_n} (1 + \overline{\varrho}_M(k_n x_n)) \quad (n = 0, 1, \ldots).$$

First we will prove the following statements:

$$(1) \overline{k} = \sup_{n \in \mathbb{N}} k_n < \infty;$$

(2)
$$\lim_{e \to \infty} \sup_{n \in \mathbb{N}} \mu(\lbrace t \in G : |k_n x_n(t)| > e \rbrace) = 0;$$

(3)
$$\lim_{\mu(D)\to\infty} \sup_{n\in\mathbb{N}} \overline{\varrho}_M(k_n x_n \chi_D) = 0.$$

Suppose that $\sup_{n\in\mathbb{N}} k_n = \infty$. Then there exists a subsequence (k_{n_i}) such that $\lim_{i\to\infty} k_{n_i} = \infty$. Taking into account that

$$\lim_{u \to \infty} \frac{M(u)}{u} = \infty \quad \text{and} \quad 1 = \|x_{n_i}\|_M > \frac{1}{k_{n_i}} \overline{\varrho}_M(k_{n_i} x_{n_i}),$$

we can conclude that the subsequence (x_{n_i}) is convergent to 0 in measure $(x_{n_i} \stackrel{\mu}{\to} 0)$. Hence, by Theorem 14.6 from [11], (x_{n_i}) is E_N -weakly convergent to 0 $(x_{n_i} \stackrel{E_N}{\to} 0)$, so $x_{n_i} \stackrel{w}{\to} 0$. This contradicts to the assumption $x_n \stackrel{w}{\to} x_0 \neq 0$. Thus (1) is true.

Further, denoting

$$G_n^e = \{ t \in G : |k_n x_n(t)| > e \},$$

we have

$$1 > \frac{1}{k_n} \overline{\varrho}_M(k_n x_n) \geqslant \frac{1}{k_n} \int_{G_n^e} M(k_n x_n(t)) d\mu \geqslant \overline{k}^{-1} M(e) \mu(G_n^e).$$

Hence

$$\mu(G_n^e) < \frac{\overline{k}}{M(e)} \quad (n = 1, 2, \ldots)$$

and we obtain (2) in an obvious manner.

Now, suppose that (3) is false. Then there exist a $\delta > 0$ and sets $D_n \subset G$ (n = 1, 2, ...) such that $\mu(D_n) < 2^{-n}$ and $\overline{\varrho}_M(k_n x_n \chi_{D_n}) \geqslant \delta$. Fix a positive

integer m so large that for every $E \subset G$ with $\mu(E) > \mu(G) - 2^{-m}$ we have

$$||x_0\chi_E||_M \geqslant ||x_0||_M - \frac{\delta}{2\overline{k}} = 1 - \frac{\delta}{2\overline{k}}.$$

In particular, putting $E = G \setminus \bigcup_{n=m+1}^{\infty} D_n$, we obtain $||x_0\chi_E||_M > 1 - \frac{\delta}{2\overline{k}}$. Therefore, for n > m, we get

$$1 = \|x_n\|_M = \frac{1}{k_n} [1 + \overline{\varrho}_M(k_n x_n \chi_E) + \overline{\varrho}_M(k_n x_n \chi_{\bigcup_{n=m+1}^{\infty} D_n})]$$

$$\geqslant \|x_n \chi_E\|_M + \frac{1}{k} \overline{\varrho}_M(k_n x_n \chi_{D_n}) \geqslant \|x_n \chi_E\|_M + \frac{\delta}{k},$$

and so, by the weak convergence of $(x_n\chi_E)$ to $x_0\chi_E$,

$$1 \geqslant \underline{\lim}_{n \to \infty} \|x_n \chi_E\|_M + \frac{\delta}{k} \geqslant \|x_0 \chi_E\|_M + \frac{\delta}{k} \geqslant 1 + \frac{\delta}{2k}$$

(cf. e.g. [23], Th. 1 ii), p. 120). This contradiction proves (3).

Denote $G^0 = \{t \in G : k_0 x_0(t) \in S_M^0\}$, $G^+ = \{t \in G : k_0 x_0(t) \in S_M^+\}$ and $G^- = \{t \in G : k_0 x_0(t) \in S_M^-\}$. Since x_0 is an extreme point, $k_0 x_0(t) \in S_M$ for almost every $t \in G$ (cf. e.g. [3], th. 6). Hence $\mu(G) = \mu(G^0 \cup G^+ \cup G^-)$.

To prove $||x_n - x_0||_M \to 0$ as $n \to \infty$, by [22], it is enough to show

(4)
$$x_n - x_0 \stackrel{\mu}{\to} 0$$
 on $G = G^0 \cup (G^+ \setminus G^-) \cup (G^- \setminus G^+) \cup (G^+ \cap G^-)$.
The proof of (4) requires four steps.

I. We will show that

$$(5) k_n x_n - k_0 x_0 \stackrel{\mu}{\rightarrow} 0 \text{on } G_0.$$

Suppose (5) does not hold. Then there exist positive real numbers ε and σ such that

$$\mu(\{t \in G^0 : |k_n x_n(t) - k_0 x_0(t)| \ge \varepsilon\}) > \sigma \quad (n = 1, 2, ...)$$

Fix e>0 satisfying $\mu(\{t\in G: |k_nx_n(t)|>e\})>\frac{\sigma}{3}$ $(n=0,1,2,\ldots)$. Denoting for $n=1,2,\ldots$

 $F_n = \{ t \in G^0 : |k_n x_n(t) - k_0 x_0(t)| \ge \varepsilon, \ |k_n x_n(t)| \le e, \ |k_0 x_0(t)| \le e \},$

it is easy to verify that $\mu(F_n) > \frac{\sigma}{3}$ (n = 1, 2, ...). Since $k_0 x_0(t) \in S_M^0$,

$$0 < \frac{1}{1+k} \leqslant \frac{k_0}{k_0 + k_n} \quad \text{and} \quad \frac{k_n}{k_0 + k_n} \leqslant \frac{\overline{k}}{1 + \overline{k}} < 1,$$

there exists a $\delta \in (0,1)$ such that

$$M\left(\frac{k_0 k_n}{k_0 + k_n} (x_0(t) + x_n(t))\right) \le (1 - \delta) \left[\frac{k_n}{k_0 + k_n} M(k_0 x_0(t)) + \frac{k_0}{k_0 + k_n} M(k_n x_n(t))\right]$$

for $t \in F_n$ (n = 1, 2, ...). Hence, by the inequality $\max\{|k_0x_0(t)|, |k_nx_n(t)|\}$ $\geq \frac{\varepsilon}{2}$ for $t \in F_n$, we have

$$\begin{aligned} 2 - \|x_0 - x_n\|_M \geqslant \frac{1}{k_0} (1 + \overline{\varrho}_M(k_0 x_0)) + \frac{1}{k_n} (1 + \overline{\varrho}_M(k_n x_n)) \\ - \frac{k_0 + k_n}{k_0 k_n} \left[1 + \overline{\varrho}_M \left(\frac{k_0 k_n}{k_0 + k_n} (x_0 + x_n) \right) \right] \\ \geqslant \frac{k_0 + k_n}{k_0 k_n} \left[\frac{k_n}{k_0 + k_n} \overline{\varrho}_M(k_0 x_0) \right. \\ + \frac{k_0}{k_0 + k_n} \overline{\varrho}_M(k_n x_n) - \overline{\varrho}_M \left(\frac{k_0 k_n}{k_0 + k_n} (x_0 + x_n) \right) \right] \\ \geqslant \frac{k_0 + k_n}{k_0 k_n} \int_{F_n} \left[\frac{k_n}{k_0 + k_n} M(k_0 x_0(t)) \right. \\ + \frac{k_0}{k_0 + k_n} M(k_n x_n(t)) - M \left(\frac{k_0 k_n}{k_0 + k_n} (x_0(t) + x_n(t)) \right) \right] d\mu \\ \geqslant \frac{k_0 + k_n}{k_0 k_n} \delta \int_{F_n} \left[\frac{k_n}{k_0 + k_n} M(k_0 x_0(t)) + \frac{k_0}{k_0 + k_n} M(k_n x_n(t)) \right] d\mu \\ \geqslant \frac{\delta}{k} \int_{F} M \left(\frac{\varepsilon}{2} \right) d\mu \geqslant \frac{\delta}{k} M \left(\frac{\varepsilon}{2} \right) \frac{\sigma}{3} \end{aligned}$$

and so $||x_0+x_n||_M \not\to 2$. On the other hand $x_n-x_0 \stackrel{w}{\to} 0$ implies $||x_0+x_n||_M \to 2$ as $n\to\infty$. This contradiction finishes the proof of I.

II. We will prove two following facts:

$$\lim_{n \to \infty} k_n = k_0,$$

$$(7) x_n \xrightarrow{\mu} x_0 on G^0.$$

Observe first that $x_n - x_0 \xrightarrow{E_N(G^0)} 0$, where $E_N(G^0) = \{y\chi_{G^0} : y \in E_N\}$.

Moreover, by the step I and Theorem 14.6 from [11] $k_n x_n - k_0 x_0 \xrightarrow{E_N(G^0)} 0$. Hence

$$(k_n - k_0)x_0 = (k_n x_n - k_0 x_0) - k_n (x_n - x_0) \xrightarrow{E_N(G^0)} 0.$$

If $\mu(t \in G^0 : x_0(t) = 0) < \mu(G^0)$, then (6) is satisfied in an obvious manner and (7) is an immediate consequence of (5) and (6).

If $\mu(\{t \in G^0 : x_0(t) = 0\}) = \mu(G^0)$, then $x_n \xrightarrow{\mu} x_0 = 0$ on G^0 by (5), i.e. (7) is satisfied. Now, we have to prove (6) in this case. Obviously, the set $S_M^+ \cup S_M^-$ is at most countable. We may assume that there exists a sequence $(r_i) \subset S_M^+ \cup S_M^-$ such that $G_i = \{t \in G : k_0 x_0(t) = r_i\}, \ \mu(G_i) > 0 \ (i = 1, 2, \ldots)$ and $\mu(G \setminus G^0) = \mu(\bigcup_{i=1}^{\infty} G_i)$. Since $x_n \to 0$ on G^0 , $\overline{\varrho}_M(k_n x_n \chi_{G^0}) \to 0$

0 as $n \to \infty$ by (3). Hence

$$\frac{1}{k_0} \left(1 + \sum_{i=1}^{\infty} M(r_i) \mu(G_i) \right) = ||x_0||_M = 1$$

and

$$\frac{1}{k_n} \Big(1 + \sum_{i=1}^{\infty} \overline{\varrho}_M(k_n x_n \chi_{G_i}) \Big) \to 1 \quad \text{as } n \to \infty.$$

By (1) the sequence (k_n) is bounded. Without loss of generality we can assume that $\lim_{n\to\infty} k_n = k'_0$. Since $M \in \overline{\Delta}_2$, for any $\varepsilon > 0$ a natural number i_0 can be found that

$$\sum_{i=i_0+1}^{\infty} \frac{1}{k_0} M\left(\frac{k'_0}{k_0} r_i\right) \mu(G_i < \varepsilon.$$

Moreover

$$\lim_{n \to \infty} \int_{G_i} x_n(t) \, d\mu = \int_{G_i} x_0(t) \, d\mu = \frac{r_i}{k_0} \mu(G_i) \quad (i = 1, 2, \ldots).$$

Thus

$$1 = \|x_0\|_M \leqslant \frac{1}{k'_0} (1 + \overline{\varrho}_M(k'_0 x_0)) = \frac{1}{k'_0} \left[1 + \sum_{i=1}^{\infty} M\left(\frac{k'_0}{k_0} r_i\right) \mu(G_i) \right]$$

$$\leqslant \frac{1}{k'_0} \left[1 + \sum_{i=1}^{i_0} M\left(\frac{k'_0}{k_0} r_i\right) \mu(G_i) \right] + \varepsilon$$

$$\leqslant \frac{1}{k_n} \left[1 + \sum_{i=1}^{i_0} M\left(k_n \frac{1}{\mu(G_i)} \int_{G_i} x_n(t) d\mu\right) \mu(G_i) \right] + 2\varepsilon$$

$$\leqslant \frac{1}{k_n} \left[1 + \sum_{i=1}^{i_0} \int_{G_i} M(k_n x_n(t)) d\mu \right] + 2\varepsilon$$

$$\leqslant \frac{1}{k_n} \left[1 + \sum_{i=1}^{i_0} \overline{\varrho}_M(k_n x_n \chi_{G_i}) \right] + 2\varepsilon \leqslant 1 + 3\varepsilon,$$

for sufficiently large n. Hence $\frac{1}{k_0}(1+\overline{\varrho}_M(k_0'x_0))=1$, because ε is arbitrary. Thus $k_0=k_0'$. This completes the proof of (6).

III. We will show here that

(8)
$$x_n \xrightarrow{\mu} x_0 \text{ on } (G^- \setminus G^+) \cup (G^+ \setminus G^-).$$

Suppose $S_M^- \setminus S_M^+ = \{r_1, r_2, \ldots\}$ and denote $G_i = \{t \in G : k_0 x_0(t) = r_i\}$

(i = 1, 2, ...). To prove (8) first we will show

(9)
$$\int_{G_{i}(x_{n} \geqslant x_{0})} (x_{n}(t) - x_{0}(t)) d\mu \to 0 \text{ as } n \to \infty \quad (i = 1, 2, ...),$$

where $G_i(x_n \ge x_0) = \{t \in G_i : x_n(t) \ge x_0(t)\}.$

To verify (9), suppose, to the contrary, that there are $j \in \mathbb{N}$ and $\delta > 0$ such that

$$\int_{G_j(x_n \geqslant x_0)} (x_n(t) - x_0(t)) d\mu \geqslant \delta \quad (n = 1, 2, \ldots).$$

Since, by (2) and (3),

$$\int_{G_{j}(x_{n}\geqslant x_{0},x_{n}>e)} (x_{n}(t)-x_{0}(t)) d\mu \leqslant \int_{G(x_{n}>e)} |x_{n}(t)| d\mu$$

$$\leqslant \int_{G(x_{n}>e)} M(k_{n}x_{n}(t)) d\mu \to 0 \quad \text{as } e \to \infty,$$

a number e > 0 can be chosen such that

$$\int_{G_j(e\geqslant x_n\geqslant x_0)} (x_n(t)-x_0(t)) d\mu \geqslant \frac{\delta}{2} \quad (n=1,2,\ldots),$$

where sets $G_j(x_n \ge x_0, x_n > e)$, $G(x_n > e)$, $G_j(e \ge x_n \ge x_0)$ are defined analogously as $G_i(x_n \ge x_0)$. Consequently, there exist positive real numbers ε' and σ' such that

$$\mu(\lbrace t \in G_j : e \geqslant x_n(t), x_n(t) - x_0(t) \geqslant \varepsilon' \rbrace) \geqslant \sigma' \quad (n = 1, 2, \ldots).$$

Hence, by the convergence of the sequence (k_n) to k_0 , a natural number n_0 can be found such that $\mu(F_n) \geqslant \frac{\sigma'}{2}$ for $n \geqslant n_0$, where $F_n = \{t \in G_j : ek_0 \geqslant k_n x_n(t), k_n x_n(t) - k_0 x_0(t) \geqslant \varepsilon'\}$. Observe that $k_n x_n(t)$ and $k_0 x_0(t)$ belong to the set S_M for $t \in F_n$ and $n \geqslant n_0$. Hence there exists $\eta' \in (0, 1)$ such that

$$M\left(\frac{k_0 k_n}{k_0 + k_n} (x_n(t) + x_0(t))\right) \le (1 - \eta') \left(\frac{k_n}{k_0 + k_n} M(k_0 x_0(t)) + \frac{k_0}{k_0 + k_n} M(k_n x_n(t))\right)$$

for $t \in F_n$ and $n \ge n_0$. Now, repeating the argumentation from the proof of the step I, we conclude that $||x_0 + x_n||_M \ne 2$. This contradiction finishes the proof of (9).

Since

$$\int_{G_i} (x_n(t) - x_0(t)) d\mu \to 0 \quad \text{as } n \to \infty \quad (i = 1, 2, \ldots),$$

it follows, by (9), that

$$\int_{G_i(x_n < x_0)} (x_0(t) - x_n(t)) d\mu \to 0 \text{ as } n \to \infty \quad (i = 1, 2, ...).$$

Hence, we conclude

$$\int_{G_i} |x_n(t) - x_0(t)| d\mu \to 0 \quad \text{as } n \to \infty \quad (i = 1, 2, \ldots).$$

Consequently, $x_n \xrightarrow{\mu} x_0$ on G_i (i = 1, 2, ...). Since $\lim_{i_0 \to \infty} \mu(\bigcup_{i=i_0+1}^{\infty} G_i) = 0$, we may deduce that $x_n \xrightarrow{\mu} x_0$ on whole $(G^- \setminus G^+)$. In a similar manner, we can obtain that $x_n \to x_0$ on $(G^+ \setminus G^-)$. Thus (8) is proved.

IV. Finally, we will prove

$$(10) x_n \xrightarrow{\mu} x_0 on G^+ \cap G^-.$$

We have

$$|\overline{\varrho}_{M}(k_{0}x_{n}) - \overline{\varrho}_{M}(k_{0}x_{0})| \leq |\overline{\varrho}_{M}(k_{0}x_{n}) - \overline{\varrho}_{M}(k_{n}x_{n})| + |\overline{\varrho}_{M}(k_{n}x_{n}) - \overline{\varrho}_{M}(k_{0}x_{0})|.$$

The right hand side of this inequality tends to 0 as $n \to \infty$ because $k_n \to k_0$ as $n \to \infty$ and $M \in \overline{\Delta}_2$. Thus

(11)
$$\overline{\varrho}_M(k_0x_n) \to \overline{\varrho}_M(k_0x_0)$$
 as $n \to \infty$.

On the other hand, the previous part of the proof implies that $x_n \to x_0$ on $G \setminus (G^+ \cap G^-)$. Hence

$$\overline{\varrho}_M(k_0x_n\chi_{G\setminus (G^+\cap G^-)})\to \overline{\varrho}_M(k_0x_0\chi_{G\setminus (G^+\cap G^-)})$$
 as $n\to\infty$ and so, by (11)

$$\overline{\varrho}_M(k_0x_n\chi_{G^+\cap G^-}) \to \overline{\varrho}_M(k_0x_0\chi_{G^+\cap G^-})$$
 as $n \to \infty$.

Therefore, denoting $S_M^+ \cap S_M^- = \{s_1, s_2, ...\}$ and $D_i = \{t \in G : k_0 x_0(t) = s_i\}$ (i = 1, 2, ...), we have

$$\sum_{i=1}^{\infty} \int_{D_i} M(k_0 x_n(t)) d\mu \to \sum_{i=1}^{\infty} \int_{D_i} M(k_0 x_0(t)) d\mu = \sum_{i=1}^{\infty} M(s_i) \mu(D_i)$$
as $n \to \infty$,

i.e.

(12)
$$\sum_{i=1}^{\infty} \int_{D_{i}(x_{n} \geqslant x_{0})} \left[M(k_{0}x_{n}(t)) - M(k_{0}x_{0}(t)) \right] d\mu$$
$$- \int_{D_{i}(x_{n} < x_{0})} \left[M(k_{0}x_{0}(t)) - M(k_{0}x_{n}(t)) \right] d\mu \to 0 \quad \text{as } n \to \infty.$$

Suppose $[s'_i, s_i]$ and $[s_i, s''_i]$ are two intervals on which the function M is linear, i.e.

R. Płuciennik, W. Tingfu, Z. Yonglin

$$M(u) = \begin{cases} A'_{i}u + B'_{i} & \text{for } u \in [s'_{i}, s_{i}] \\ A''_{i}u + B''_{i} & \text{for } u \in [s_{i}, s''_{i}] \end{cases}$$

Obviously, $A'_{i} > A''_{i}$ (i = 1, 2, ...).

Hereinafter, we will show that

(13)
$$\sum_{i=1}^{\infty} \int_{D_i(x_n \geqslant x_0)} \left[M(k_0 x_n(t)) - \left(A_i'' k_0 x_n(t) + B_i'' \right) \right] d\mu \to 0 \quad \text{as } n \to \infty.$$

To this end, fix $\varepsilon > 0$. Since $\mu(\bigcup_{i=j+1}^{\infty} D_i) \to 0$ as $j \to \infty$, by (3) there exists $i_0 \in \mathbb{N}$ such that

(14)
$$\left| \sum_{i=i_0+1}^{\infty} \int_{D_i(x_n \geqslant x_0)} \left[M(k_0 x_n(t)) - (A_i'' k_0 x_n(t) + B_i'') \right] d\mu \right| < \varepsilon$$

$$(n = 1, 2, \ldots).$$

Further, for $1 \leq i \leq i_0$ we have

$$(15) \int_{D_{i}(\frac{s_{i}+\delta}{k_{0}} \geqslant x_{n} \geqslant x_{0})} [M(k_{0}x_{n}(t)) - (A_{i}''k_{0}x_{n}(t) + B_{i}'')] d\mu$$

$$= \int_{D_{i}(x_{i}''+\delta \geqslant k_{0}x_{n} \geqslant s_{i}'')} M(k_{0}x_{n}(t)) - (A_{i}''x_{n}(t) + B_{i}'')] d\mu$$

$$\leqslant (M(s_{i}''+\delta) - M(s_{i}''))\mu(G) \leqslant \frac{\varepsilon}{i_{0}}$$

 $(i=1,2,\ldots)$ for sufficiently small $\delta>0$.

Notice that $\lim_{n\to\infty} \mu(\{t\in D_i: k_nx_n(t)s_i''+\delta\})=0$ (otherwise, repeating the argumentation from I, we obtain that $||x_0 - x_n||_M \not\to 2$, i.e. a contradiction). Therefore, by (3), we get

(16)
$$\left| \int\limits_{D_{i}(\frac{s_{i}+\delta}{k_{0}} \geqslant x_{n} \geqslant x_{0})} M(k_{0}x_{n}(t)) d\mu - \int\limits_{D_{i}(x_{n} \geqslant x_{0})} M(k_{0}x_{n}(t)) d\mu \right| < \varepsilon$$

$$(i = 1, 2, \dots, i_{0}; n \geqslant n_{0})$$

and

(17)
$$\left| \int_{D_{i}(\frac{s_{i}+\delta}{k_{0}} \geqslant x_{n} \geqslant x_{0})} (A_{i}'' k_{0} x_{n}(t) + B_{i}'') d\mu \right|$$

$$- \int_{D_{i}(x_{n} \geqslant x_{0})} (A_{i}'' k_{0} x_{n}(t) + B_{i}'') d\mu \right| < \frac{\varepsilon}{i_{0}} \quad (i = 1, 2, ..., i_{0}; \ n \geqslant n_{0})$$

Combining (15), (16) and (17), we have

$$\left| \int_{D_{i}(x_{n} \geqslant x_{0})} \left[M(k_{0}x_{n}(t)) - (A_{i}''k_{0}x_{n}(t) + B_{i}'') \right] d\mu \right| < \frac{3\varepsilon}{i_{0}}$$

$$(i = 1, 2, \dots, i_{0}; \ n \geqslant n_{0}).$$

147

Consequently,

(18)
$$\left| \sum_{i=1}^{i_0} \int_{D_i(x_n \geqslant x_0)} \left[M(k_0 x_n(t)) - \left(A_i'' k_0 x_n(t) + B_i'' \right) \right] d\mu \right| < 3\varepsilon \quad (n \geqslant n_0).$$

Taking into account (18) and (14), we conclude (13). Similarly, we may

(19)
$$\sum_{i=1}^{\infty} \int_{D_i(x_n < x_0)} \left[M(k_0 x_n(t)) - (A_i' k_0 x_n(t) + B_i') \right] d\mu \to 0 \quad \text{as } n \to \infty.$$

From (19), (13) and (12), it follows that

(20)
$$\sum_{i=1}^{\infty} \left[A_i'' \int_{D_i(x_n \geqslant x_0)} (x_n(t) - x_0(t)) \, d\mu - A_i' \int_{D_i(x_n < x_0)} (x_0(t) - x_n(t)) \, d\mu \right] \to 0$$

Since $x_n \xrightarrow{w} x_0$, it is easy to notice that

$$\lim_{n \to \infty} \int_{D_{i}(x_{n} \ge x_{0})} (x_{n}(t) - x_{0}(t)) d\mu = \lim_{n \to \infty} \int_{D_{i}(x_{n} < x_{0})} (x_{0}(t) - x_{n}(t)) d\mu = \theta_{i} \ge 0$$

for every $i \in \mathbb{N}$. Obviously, by (20), θ_i ($i = 1, 2, \ldots$) cannot be positive because $A_i'' > A_i'$ (i = 1, 2, ...). Therefore

$$\int_{D_i} |x_n(t) - x_0(t)| d\mu \to 0 \quad \text{as } n \to \infty \quad (i = 1, 2, \ldots),$$

i.e. $x_n \stackrel{\mu}{\to} x_0$ on D_i $(i=1,2,\ldots)$. Hence, noticing that $\mu(\bigcup_{i=i_0+1}^{\infty} D_i) \to 0$ as $i_0 \to \infty$, we have $x_n - x_0 \stackrel{\mu}{\to} 0$ on $\bigcup_{i=1}^{\infty} D_i = G^+ \cap G^-$. This finishes the proof

Combining (7), (8) and (10), we obtain immediately that $x_n - x_0 \stackrel{\mu}{\to} 0$ on whole G. Thus the proof of the theorem is complete.

THEOREM 2. Let $x_0 \in S(L_{(M)})$. x_0 is an H-point iff $M \in \overline{\Delta}_2$ and x_0 is an extreme point.

The proof of Theorem 2 is similar to the proof of Theorem 1, so it is omitted here.

THEOREM 3. Let $x_0 \in S(l_{(M)})$. x_0 is an H-point iff $M \in \overline{\Delta}_2$.

Proof of sufficiency. It is obvious by [21].

Proof of necessity. Suppose that $x^0=(x_1^0,x_2^0,\ldots)\in S(l_{(M)})$ is an H-point. Select a subsequence (t_1,t_2,\ldots) of the sequence x_0 such that $(t_1,t_2,\ldots)\in h_M$. Denote by (s_1,s_2,\ldots) the remaining part of sequence x_0 . Write for convenience the sequence x_0 in the following form

$$x_0 = (t_1, t_2, \ldots; s_1, s_2, \ldots).$$

Assume $M \notin \overline{\Delta}_2$. Then there exists a sequence $u_n \downarrow 0$ such that $M(u_n) < \frac{1}{2^{n+1}}$ and

$$M\left(\left(1+\frac{1}{n}\right)u_n\right) > 2^{n+1}M(u_n) \quad (n=1,2,\ldots).$$

Choose a positive integer m_n satisfying

$$\frac{1}{2^{n+1}} \leqslant m_n M(u_n) < \frac{1}{2^n} \quad (n = 1, 2, \ldots).$$

Define

$$x_n = (t_1, \dots, t_n, t_{n+1} + u_n, \dots, t_{n+m_n} + u_n, t_{n+m_n+1}, \dots; s_1, s_2, \dots)$$

 $(n=1,2,\ldots)$. Obviously, the element x_n $(n=1,2,\ldots)$ can be written in the form $x_n=x_n'+x_n''$, where

$$x'_n = (t_1, \dots, t_n, u_n, t_{n+m_n+1}, \dots; s_1, s_2, \dots),$$

 $x''_n = (0, \dots, 0, t_{n+1}, \dots, t_{n+m_n}, 0, \dots; 0, 0, \dots) \quad (n = 1, 2, \dots).$

Since $(t_1, t_2, ...) \in h_{(M)}$, we conclude that $||x_n''||_{(M)} \to 0$ as $n \to \infty$. Hence $||x_n - x_n'||_{(M)} \to 0$ as $n \to \infty$. Moreover,

$$||x'_n||_{(M)} \ge ||(t_1, \dots, t_n, 0, \dots, 0, t_{n+m_n+1}, \dots; s_1, s_2, \dots)||_{(M)}$$

= $||x_0 - x''_n||_{(M)}$,

so $\liminf_{n\to\infty} ||x'_n||_{(M)} \ge ||x_0||_{(M)} = 1$. On the other hand

$$\varrho_M(x_n') \leqslant \varrho_M(x_0) + m_n M(u_n) \leqslant 1 + 2^{-n},$$

i.e. $||x'_n||_{(M)} \le 1 + 2^{-n}$. Hence $\limsup_{n \to \infty} ||x'_n||_{(M)} \le 1$. Therefore, $\lim_{n \to \infty} ||x'_n||_{(M)} = 1$. Now, it is easy to notice that $\lim_{n \to \infty} ||x_n||_{(M)} = 1$.

Every functional $f \in (l_{(M)})^*$ can be written in the form $f = \Psi_y + \Phi$, where Ψ_y is a regular functional on $h_{(M)}$ generated by $y \in l_N$ and Φ is a singular functional. Let a be a positive real number such that $\varrho_N(ay) < \infty$. Notice that $x_n - x_0 \in h_{(M)}$. Then

$$|f(x_n - x_0)| = \Big| \sum_{i=n+1}^{n+m_n} u_n y_i \Big| \leqslant \frac{1}{a} \Big[m_n M(u_n) + \sum_{i=n+1}^{\infty} N(ay_i) \Big] \to 0$$
as $n \to \infty$,

i.e. $x_n - x_0 \stackrel{w}{\to} 0$. But for any positive integer m and n > m

$$\varrho_M\left(\left(1+\frac{1}{m}\right)(x_n-x_0)\right) = m_n M\left(\left(1+\frac{1}{m}\right)u_n\right)$$

$$\geqslant m_n M\left(\left(1+\frac{1}{n}\right)u_n\right) \geqslant 1.$$

Hence

$$||x_n - x_0||_{(M)} > \left(1 + \frac{1}{m}\right)^{-1}$$
 for each $m \in \mathbb{N}$ and $n > m$.

Consequently,

$$\liminf_{n\to\infty} \|x_n - x_0\|_{(M)} \geqslant 1.$$

Thus x_0 cannot be any H-point. This contradiction completes the proof of Theorem 3.

THEOREM 4. Let $x_0 \in S(l_M)$. x_0 is an H-point iff $M \in \Delta_2$.

The proof of Theorem 4 is analogous to the proof of theorem 3, so we will omit it.

3. Corollaries. Bor-Luh Lin, Pei-Kee Lin and S.L. Troyanski proved (cf. Th. (iii) [13]) that element x in a bounded closed convex set K of a Banach space is a denting point of K iff x is a H-point of K and x is an extreme point of K. Combining this result with our results and with results concerning the characterization of strong extreme points in Orlicz spaces, given in [6], we obtain the following

Corollary 1. Suppose $x_0 \in S(L_M)$ or $x_0 \in S(L_{(M)})$. TFAE:

- (a) x_0 is a denting point.
- (b) x_0 is an H-point.
- (c) x_0 is a strong extreme point.
- (d) x_0 is an extreme point and $M \in \overline{\Delta}_2$.

COROLLARY 2. Suppose $x_0 \in S(l_M)$ or $x_0 \in S(l_{(M)})$. TFAE:

- (a) x_0 is a denting point.
- (b) x_0 is a strong extreme point.
- (c) x_0 is an extreme point and $M \in \Delta_2$.

A Banach space X is said to posses Property (G) (Property (H)), provided every point of S(X) is denting point (H-point).

A Banach space X is said to be midpoint locally uniformly rotund (MLUR), if for any $\varepsilon \in (0,2)$ and $x \in S(X)$, there is $\delta > 0$ such that $y,z \in S(x)$ and $||y-z|| \ge \varepsilon$ implies $||x-\frac{1}{2}(y+z)|| \ge \delta$.

It is well known that a Banach space X is (MLUR) iff every point of S(X) is a strong extreme point (see for example [16]). Hence and from the above corollaries, we can deduce

H-points and denting points in Orlicz spaces

Corollary 3. For the spaces L_M or $L_{(M)}$ we have

 $(G) \Leftrightarrow (H) \Leftrightarrow (MLUR).$

Corollary 4. For te spaces l_M or $l_{(M)}$ we have

 $(G) \Leftrightarrow (MLUR).$

Corollary 3 improves essentially Theorem 2 presented in [17] by Tingfu Wang.

References

- [1] T. Ando, Linear functionals on Orlicz spaces, Nieuw. Arch. Wisk. 8 (1980), 1-16.
- [2] R. D. Bourgin, Geometric aspects of convex sets with the Radon-Nikodym property, Lecture Notes in Math. 993 (1983), 1-474.
- [3] Shutao Chen, Convexity and smoothness of Orlicz spaces. Geometry of Orlicz spaces I, Teubner-Texte zur Math. 103 (1988), 12-19.
- [4] Shutao Chen and Yaquan Shen, Extreme points and strictly rotund of Orlicz spaces, (Chinese), J. Harbin Normal Univ. 2 (1985), 1-6.
- [5] Shutao Chen and Yuwen Wang, H-property of Orlicz spaces, (Chinese), Chinese Ann. Math. 8A.1 (1987), 61-67.
- [6] Yunan Cui and Tingfu Wang, Strong extreme points of Orlicz spaces (Chinese), Chinese J. Math. 4 (1987) 235-240.
- [7] J. Diestel and J. J. Uhl, Vector measures, Mathematical Surveys 15 (1977), 1-322.
- [8] Fan Ky and I. Glicksberg, Some geometric properties of the spheres in normed linear space, Duke Math. J. 25 (1958), 553/568.
- [9] R. Grząślewicz, H. Hudzik and W. Kurc, Extreme and exposed points in Orlicz spaces, Canadian J. Math., to appear.
- [10] S. S. Khurana, Barycenters, pinnacle points, and denting points, Trans. Amer. Math. Soc. 180 (1973), 497-503.
- [11] M. A. Krasnosel'skii and Ya. B. Rutickii, Convex function and Orlicz spaces, Gronigen 1961.
- [12] Bingyuan Lao and Xiping Zhu, Extreme points of Orlicz spaces (Chinese), J. Zhongshan Univ. 2 (1983), 27-36.
- [13] Bor-Luh Lin, Pei-Kee Lin and S. L. Troyanski, Characterizations of denting points, Proc. Amer. Math. Soc. 102 (1988), 526-528.
- [14] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034 (1983), 1-222.
- [15] M. Nowak, Linear functionals in Orlicz sequence spaces without local convexity, (to appear).
- [16] Wejiu Qiang, Strong extreme points and MLUR (Chinese), J. Lanzhou Univ. 3 (1983), 15-25.
- [17] Tingfu Wang, Property (G) and (K) of Orlicz spaces, Comment. Math. Univ. Carolinae 31,2 (1990), 307-313.
- [18] Zuoqiang W a n g, Extreme points of Orlicz sequence spaces (Chinese), J. Daqing Petroleum Inst. 1 (1983), 112-121.
- [19] D. Werner, Denting points in tensor products of Banach spaces, Proc. Amer. Math. Soc. 101 (1987), 122-126.

- [20] Congxin Wu, Tingfu Wang, Shutao Chen and Yuwen Wang, Geometry of Orlicz spaces (Chinese), Harbin Institute of Technology, Harbin 1986, 1-283.
- [21] Congxin Wu, Yuwen Wang and Shutao Chen, H-property of Orlicz sequence spaces, J. Harbin Tech. Univ. Supplementary issue (1985), 6-10.
- [22] Yanping Wu and Tingfu Wang, Convergence on unite sphere of Orlicz spaces, Heilongjiang Univ. J. 4 (1988), 1-4.
- [23] K. Yosida, Functional Analysis, Springer-Verlag 1965, 1-458.

INSTITUTE OF MATHEMATICS TECHNICAL UNIVERSITY, PIOTROWO 3A, 60-965 POZNAŃ, POLAND MATHEMATICAL INSTITUTE, POLISH ACADEMY OF SCIENCES, POZNAŃ BRANCH, MIELŻYŃSKIEGO 27/29, 61-725 POZNAŃ, POLAND

DEPARTMENT OF MATHEMATICS, HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY, 22 XUEFU ROAD HARBIN, CHINA

(Received 11 September, 1991; Revised 30 January, 1992)