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Summary. If % is a Hilbert space, X, <X a finite dimensional subspace, let B (X), B (X)) be the

B-algebras of bounded operators on X and XX,, and Q, a projection on B(XX) into B(:\,). An

approximately tame (a.t.) algebra of =B (XX) is a B-algebra with a finer topology than the trace of

B(X) and verifying (1) UB(:T:)cgi, N, 4 X, (ii) Qg (4)—+A (e ) in <. In this note a class of a.t.
o

algebras L? (:X) are constructed using the concepts of Orlicz spaces L?, and it is shown that there
are B-algebras L? (\) < € (€ = a.t. algebra of compact operators in B (X)) that are not a.t.
Also if «f = L? (X) is any a.t. algebra, let G (o) = {I+Ae GL(X):Ae =}, GL(a)= {I+Ac
€ GL(X): AeB ()} and GL (o) = ind. lim G (a), where GL (X) « B (:X) is the group of inver-
tible operators. Then it was noted that the injective map of GL (c°) into G (&{) is a homotopy equi-
valence. A few related results are discussed.

1. Introduction

Let X be a complex Hilbert space and B (X)) be the Banach (or B-) algebra of
bounded operators on 2\ If X, =X is a finite dimensional subspace, let B (X,) =B (.X)
be the subalgebra of operators vanishing on the orthogonal complement of .\,
If P, : X I— X, is the orthogonal projection, with range X, let Q, : B (X) I B (:(,)
be the projection defined by Q, (4)=P, AP,, A €B(X). As usual P, < P, stands
for the ordering: range (P,)<range(P,). The approximation property of the
Hilbert space [cf. 2, chap. 1, p. 167, and 7, p. 108] implies that there exists an ordered
family {P,} of orthogonal projections, with finite dimensional ranges, such that
P,—1, the identity on X, uniformly on every precompact set of -\. With this, follo-
wing [5], the next definition can be introduced:

DerNITION 1. If «f =B (X) is a B-algebra whose topology is at least as strong
as the relativized topology of B (X), it is said to be approximately tame (a.t.) if
(i) | B(X,) =<l and (ii) Q, (4)—A, A € <, in the topology of <.

@

The purpose of this note is to present a large class of a.t. algebras so that those
considered in [5] [cf. also 9, th. 4] are subsumed, which also illuminate their structure
and show the extent of such algebras contained in B (:X). Then their homotopy types
will be considered. Since the property of approximate tameness is shown below
to be not hereditary, and since such studies are useful in general analysis [cf. 1,
p. 763; and 6], the results here may be of some independent interest.
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2. A class of B-algebras

Let @ be a symmetric convex function on the line such that @ (0)=0 and, if
& is continuous. @ (x)>0 for x>0. (It is called a Young’s function.) Let A= U[A]
be the canonical polar decomposition of A4 € B (X). Define the positive operator
@ ([A]), via the spectral theorem, for a continuous @, and let k=1 (2 ([A})) be its
trace, so that 0<k<co, i.e., k=X (@ ([4) e;, ), Where {e;} is an orthonormal
basis in O and [cf. 8, p. 37] k is independent of {e;}. Let L? (X) be the subset of
B (X) such that 4 € L” (X) if and only if [|4]|p<oo where

1
n IIAi!4,=inf{k>0:r(<;b (}g [A]))a{.l}.

Let |||, =sup {|4x] : |x[<1} be the operator norm of B (X). Now L? (X) is clearly
linear and normed by (1). It is termed an Orlicz space of operators. Their structure
is given as follows.

Taeorem 1. If @ is continuous and @ (1)=1, then L® (X\)=B(X) isa self-adjoint
B-algebra under the norm (1) and the involution A 1— A* in L® (X), (4* is the adjoint
of A) is an isometry, i.e. 14l p=l4*||s. Moreover,

2 4], < | 4llg» | ABllo< |4l 1Bllo< 4]l ]| Bllo -

If @, and @, are two continuous (Young’s) functions and if &, <P, means P, (ax)<
<b®, (x), 0<x<x,, for some fixed positive numbers a, b and xo, then L?* (X)<
<L (X) and ||Allp,<C ||Alla,» where C is a constant depending only on 4, b and
Xo (and hence on @, D,).

If & is slightly restricted then the following result holds.

THEOREM 2. Let @ be continuous and @ (1)=1. If there exist positive numbers
a. b and xo such that @ (ax)<b® (x), 0=x<Xo, then the B-algebra L® (X)<B (@)
is approximately tame.

Remark. Taking @ (x)=|x|", 1<p<co, and \ separable, these results include
those of [5]. From the proof of Theorem 2, it follows that the B-algebra L? (:X)
fails to be approximately tame if @ is merely continuous, but does not satisfy the
given inequality near the origin. '

Proof of Theorem 1. It is sufficient to consider positive AeL? (X). Then
A
I§ (45 (f)) < oo for some k>0 so that @ (; is a nuclear operator, [2] (=trace class,

[8]). Hence it is compact and there exist {4.}s 4.+ 0, and {e,} orthonormal vectors
(which are eigenvalues and eigenvectors of A), such that

(3) oc:-t(q.'J (%)) =2 (cb (;)en,en)=§¢,(%.)_

If I? is the space of scalar sequences {a,} such that ) rp(%ﬂ < oo for some k>0,

oo nes1
with I!{a"}||¢=inf{k>0: > @ (ﬂ)él}, then it is a B-algebra (since @ (H=1),
n=1
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and (3) implies that the mapping f: L? (X)1— 1? given by pd={2,} €l? for positive
AeL® (), is well-defined and that, with (1), [|4]s=|{Z4}]l5 S0 that it is an “isometry”
between the positive cones of the indicated spaces. It is now clearly possible to
extend ff so as to be alinear “isometry” between LX) and /”. Using the same symbol
for this extended map one has that f to be an isometric isomorphism on all of
L? (X) onto I°, This implies that L? (X)) is a self-adjoint B-algebra in B (X) since
1?<1,. Note also that if 4 € L (X)), then A4 is compact. This yields the first inequa-
lity of (2). (Here “isometry” has the usual meaning except for the commutativity.)

For the second inequality of (2), assume, for non-triviality, that BEeL® (),
AeB(X). Let 4, and g, be the eigenvalues of [B] and [4B] respectively. Then by
[8, p. 22], #.<||A||,, A- Consequently if k=||AB||; one has k <co and

=0 (B2)= Na()< Na(2). ko=t

This means ko< |/{4,}/ls and the second incquality in (2) is an immediate conse-
quence. Finally, the given ordering of @, and @, implies [P:=[" and the norm
inequality holds by [3, ths. 4, 5, pp. 51—52]. The isometry of (3) then gives the
corresponding result for L% (:X), i=1, 2, and the proof of the theorem is complete.

Proof of Theorem 2. Since every operator whose range is finite dimensional
is in L? (), it follows that |_) B (X,)<L? (X)) and if AeL” (X) then Q, (4)eB (X))
x

for some @, in the notation of Sec. 1. Again it suffices to consider positive 4 € LX),
If #: L% (X)|—17 is the “isometry” defined above, then the condition on @, of the
theorem, is sufficient to conclude that simple functions (i.e. all but finitely many
terms in the sequences) in I? are (norm) dense. This follows from [3, th. 3, p. 58].

oQ oo }_
Thus if A= Zﬁ.n{-,en) e, is the representation of A,(Z cb(_&“)<m fora k>0,

n=1

n=1
/a>0, and {e,} orthonormal)and if A, is a degenerate operator defined as A, =

=Y (-, ) €= 1, €,De,, where (f@g) x=(x,8) [, [¢f. 8, p. 7], then |4 — A/l =0
n=1

n=1
as m—»oo, by the isomorphism. Also there exists a monotone family {P,}, P, X1—X,,
of orthogonal projections such that P,—I uniformly on precompact sets since
XX is a Hilbert space. Hence for a given £>0, there is # (¢) such that

(4) (A—Ap) Pullo < 1Pyl A= Anlle < A—Anllo<&/3

m

for m=n (¢), and where (2) is used. On the other hand, A,,= } 7, (e,®e,) so that
n=1

Ay (I-P)= >}, (€,® (I—P,) ey), by [8, lemma 2 on p. 7]. Hence
ne=1

(5) An U=P)o< D) Anllen®I—P.) sl
n=1

But by using the method of computation in [8, p. 41] to the above, one sees without
difficulty that |le,® (I—P,) exllo=|(I—P,) el So
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m

(6) A T=Pllo< D, #nl(I—Po) el

n=1
which can be made arbitrarily small by choosing a appropriately (since P,—I).
The estimates (4) and (6) imply

) |4 [—P)llo<|lA= Anllo1Am I— Pl +(Am—A) Pol=0.

Using now the isometry of the involution operation one has ||(/ —P,) A|s—0, and
finally
10, (A)— Al =<2 |14 I=Ps)lls—0-

Hence L? (X) is approximately tame, as was 1o be proved.
P Y

The above proofs yield also the following. (The conclusion about © was proved
in [5], but also follows from the above if an appropriate discontinuous @ is chosen.)

CoROLLARY 1. If C<=B(X) is the set of compact operators, then L® (\H)<=C if
& is continuous, and moreover, with the operator norm, C is approximately tame.

It now follows that, when a continuous @ (+) does not satisfy the inequalities
of Theorem 2, the a.t. algebra C which contains self-adjoint B-algebras L” (X))
which are not a.t. In fact, (as is well-known) there exist continuous @, violating
these inequalities so that ‘simple functions’ are not dense in I?, and this yields the
desired negative result. So the a.t. property is not hereditary.

DeriNTioN 2. If GL (X)<B (X) is the group of invertible operators, and
GL (a)={I+AeGL(X): 4€B (X,)}, then let GL (c0)=lim GL (a) be the inductive
limit [cf. 7, p. 57 for the latter concept]. Let G (¢0)={I+A4€GL (X): A e st}
where <{ is an a.t. algebra in the sense of Definition 1. G (<0) is topologized by the
requirement that the map /41— A is bicontinuous into A.

Now Theorem 2 together with Theorem B of [5] implies the following:

COROLLARY 2. If @ is as in Theorem 2, and X is separable, then the injection
map it GL ()1 G (1) is a homotopy equivalence, where A=L* (X).

3. An extension

A few extensions of the above results will be indicated now. The following
concept is given in [2, 9].

DermntioN 3. If X is a B-space then it is said to have the approximation pro-
perty (a.p.) if the identity map I on X can be approximated uniformly on every
precompact set in X, by continuous linear maps 7, of finite rank. (Let X y=7,(X).)

Tueorem 3. If X is a B-space with the a.p., if O<=X is an open set, and if O =
=lim O N X,, then the injection map i: O, — O is a homotopy equivalence.

This result is proved by certain modifications of the proof of [3], in which one
uses a generalized Urysohn’s lemma [4, p. 30] in defining the required homotopy.
With this established the next result follows as in [5].
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TueoreM 4. If cl<B (X) is an a.t. algebra where X is a Hilbert space, then the
injection map i: GL (00) |— G («{) is a homotopy equivalence.
The following extension of Corollary 2 then holds.

COROLLARY 3. If cl=L% (X), where L (:X) is as in Theorem 2, then the injection
map i: GL (o) |— G (<{) is a homotopy equivalence.

Remark. If «f=C, the set of compact operators, and -\’ is a B-space with a.p,.
then in [9] a more general result corresponding to Theorem 4 is given with the
injection being a weak homotopy equivalence. The above and related extensions
will be considered separately.
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M. M. Pao, AnnmpukcHMATHBHO WIPAHOYEHHLIE AJIMEbPLI ONEPATOPOB

Copnepsanne. Fomm X oGosnauaer T'masGepToBo npocTparcTso, mprdenm X, <X\ -KOHEeYHO-MepHbIE
HnoAnpocTpancTea nonoxmM, 4ro B (X)) n B (2\,) anreOpe1 Byas orpaHyCcHHBIX ONEpaTOpoB HA 2
u X, a Q,—npoexmst B(X) ma B(X,). ANNpOKCHMATHBHO OrpamMyenmbic (a.0.) anrebpa
ol =B (X) — aTo anrebpa Byna ¢ Tononorueii Gonee ToHKoi, yem cnex B (X) yAoBieTBOpSIOLAL
craeayrommM GopMyam:

(i) B pest, X 4,

@x

(ii) Q. (s, A (c <) B <.

B HacTosmIei 3aMeTKe MOCTpOeH Kiace a. 0. anre6p L? (X), nprberas K MOHATHAM IPOCTPAHCTB
Opmmya L?, TlokazaHo, uyro mMetotcst anre6pul Byas L? ()< € (€ oBosHawaer a. 0. anreGpy
KOMIAKTHBIX omepatopos B B (°)) Takue, KOTOphIE He ABISIOTCA @, 0. anrebpamu.

Hanee, ecm of = L? (X)) sBasercs mNpoOM3BONBHOM @, 0. anreGpoit, mycts G (¢0) = {1+
+AeGL(X): A€ «i}, GL(a) = {I +A € GL(X): A ¢ B ()} u naxonen GL (c0) = ind.lim G (a),
rae GL (X) < B(X) ssnserca rpymmoif obpaTHMBIX ONEpaTOPOB. 3aMeyeHO, YTO HHBCKTHBHOE
OToGpaxenue GL (o¢) B G (of) ABAseTCS OMOTONHYECKOH SKBHBANCHTHOCTHIO,

OGcyskaroTcs HEKOTOPHIE PE3yJILTATHI, CBA3AHHBIE C NPOGIEMOI.



