MATHEMATICS (FUNCTIONAL ANALYSIS)

Approximately Tame Algebras of Operators

by

M. M. RAO

Presented by W. ORLICZ on November 6, 1969

Summary. If $\mathcal X$ is a Hilbert space, $\mathcal X_\alpha \subset \mathcal X$ a finite dimensional subspace, let $B(\mathcal X)$, $B(\mathcal X_\alpha)$ be the B-algebras of bounded operators on $\mathcal X$ and $\mathcal X_\alpha$, and Q_α a projection on $B(\mathcal X)$ into $B(\mathcal X_\alpha)$. An approximately tame (a.t.) algebra $\mathcal A \subset B(\mathcal X)$ is a B-algebra with a finer topology than the trace of $B(\mathcal X)$ and verifying (1) $\bigcup B(\mathcal X_\alpha) \subset \mathcal A$, $\mathcal X_\alpha \uparrow \mathcal X$, (ii) $Q_\alpha(A) \to A$ ($\varepsilon \mathcal A$) in $\mathcal A$. In this note a class of a.t.

algebras $L^{\Phi}(\mathfrak{X})$ are constructed using the concepts of Orlicz spaces L^{Φ} , and it is shown that there are B-algebras $L^{\Phi}(\mathfrak{X}) \subset \mathcal{C}$ ($\mathcal{C} = a.t.$ algebra of compact operators in $B(\mathfrak{X})$) that are not a.t. Also if $\mathcal{A} = L^{\Phi}(\mathfrak{X})$ is any a.t. algebra, let $G(\mathcal{A}) = \{I + A \in GL(\mathfrak{X}) : A \in \mathcal{A}\}$, $GL(a) = \{I + A \in GL(\mathfrak{X}) : A \in \mathcal{B}(\mathfrak{X}_a)\}$ and $GL(\infty) = ind. \lim_{n \to \infty} G(n)$, where $GL(\mathfrak{X}) \subset B(\mathfrak{X})$ is the group of invertible operators. Then it was noted that the injective map of $GL(\infty)$ into $G(\mathcal{A})$ is a homotopy equivalence. A few related results are discussed.

1. Introduction

Let \mathcal{X} be a complex Hilbert space and $B(\mathcal{X})$ be the Banach (or B-) algebra of bounded operators on \mathcal{X} . If $\mathcal{X}_{\alpha} \subset \mathcal{X}$ is a finite dimensional subspace, let $B(\mathcal{X}_{\alpha}) \subset B(\mathcal{X})$ be the subalgebra of operators vanishing on the orthogonal complement of \mathcal{X}_{α} . If $P_{\alpha}: \mathcal{X} \mapsto \mathcal{X}_{\alpha}$ is the orthogonal projection, with range \mathcal{X}_{α} , let $Q_{\alpha}: B(\mathcal{X}) \mapsto B(\mathcal{X}_{\alpha})$ be the projection defined by $Q_{\alpha}(A) = P_{\alpha} A P_{\alpha}$, $A \in B(\mathcal{X})$. As usual $P_{\alpha_1} \leq P_{\alpha_2}$ stands for the ordering: range $(P_{\alpha_1}) \subset \text{range}(P_{\alpha_2})$. The approximation property of the Hilbert space [cf. 2, chap. I, p. 167, and 7, p. 108] implies that there exists an ordered family $\{P_{\alpha}\}$ of orthogonal projections, with finite dimensional ranges, such that $P_{\alpha} \to I$, the identity on \mathcal{X} , uniformly on every precompact set of \mathcal{X} . With this, following [5], the next definition can be introduced:

DEFINITION 1. If $\mathscr{A} \subset B(\mathfrak{X})$ is a *B*-algebra whose topology is at least as strong as the relativized topology of $B(\mathfrak{X})$, it is said to be *approximately tame* (a.t.) if (i) $\bigcup B(\mathfrak{X}_{\alpha}) \subset \mathscr{A}$ and (ii) $Q_{\alpha}(A) \to A$, $A \in \mathscr{A}$, in the topology of \mathscr{A} .

The purpose of this note is to present a large class of a.t. algebras so that those considered in [5] [cf. also 9, th. 4] are subsumed, which also illuminate their structure and show the extent of such algebras contained in $B(\mathfrak{R})$. Then their homotopy types will be considered. Since the property of approximate tameness is shown below to be *not* hereditary, and since such studies are useful in general analysis [cf. 1, p. 763; and 6], the results here may be of some independent interest.

2. A class of B-algebras

Let Φ be a symmetric convex function on the line such that $\Phi(0)=0$ and, if Φ is continuous. $\Phi(x)>0$ for x>0. (It is called a Young's function.) Let A=U[A] be the canonical polar decomposition of $A \in B(X)$. Define the positive operator $\Phi([A])$, via the spectral theorem, for a continuous Φ , and let $k=t(\Phi([A]))$ be its trace, so that $0 \le k \le \infty$, i.e., $k=\Sigma(\Phi([A]))$, where $\{e_i\}$ is an orthonormal basis in \mathcal{X} and [cf. 8, p. 37] k is independent of $\{e_i\}$. Let $L^{\Phi}(\mathcal{X})$ be the subset of $B(\mathcal{X})$ such that $A \in L^{\Phi}(\mathcal{X})$ if and only if $\|A\|_{\Phi} < \infty$ where

(1)
$$||A||_{\Phi} = \inf \left\{ k > 0 : t \left(\Phi \left(\frac{1}{k} [A] \right) \right) \leq 1 \right\}.$$

Let $||A||_{\infty} = \sup \{||Ax|| : ||x|| \le 1\}$ be the operator norm of $B(\mathfrak{X})$. Now $L^{\Phi}(\mathfrak{X})$ is clearly linear and normed by (1). It is termed an *Orlicz space* of operators. Their structure is given as follows.

THEOREM 1. If Φ is continuous and Φ (1)=1, then $L^{\Phi}(\mathfrak{X}) \subset B(\mathfrak{X})$ is a self-adjoint B-algebra under the norm (1) and the involution $A \mapsto A^*$ in $L^{\Phi}(\mathfrak{X})$, (A^* is the adjoint of A) is an isometry, i.e. $||A||_{\Phi} = ||A^*||_{\Phi}$. Moreover,

If Φ_1 and Φ_2 are two continuous (Young's) functions and if $\Phi_1 \leqslant \Phi_2$ means Φ_1 (ax) $\leqslant b\Phi_2$ (x), $0 \leqslant x \leqslant x_0$, for some fixed positive numbers a, b and x_0 , then $L^{\Phi_2}(\mathfrak{X}) \subset \subset L^{\Phi_1}(\mathfrak{X})$ and $\|A\|_{\Phi_2} \leqslant C \|A\|_{\Phi_1}$, where C is a constant depending only on a, b and x_0 (and hence on Φ_1, Φ_2).

If Φ is slightly restricted then the following result holds.

THEOREM 2. Let Φ be continuous and $\Phi(1)=1$. If there exist positive numbers a, b and x_0 such that $\Phi(ax) \leq b\Phi(x)$, $0 \leq x \leq x_0$, then the B-algebra $L^{\Phi}(\mathfrak{X}) \subset B(\mathfrak{X})$ is approximately tame.

Remark. Taking $\Phi(x) = |x|^p$, $1 \le p \le \infty$, and \mathcal{X} separable, these results include those of [5]. From the proof of Theorem 2, it follows that the *B*-algebra $L^{\Phi}(\mathcal{X})$ fails to be approximately tame if Φ is merely continuous, but does not satisfy the given inequality near the origin.

Proof of Theorem 1. It is sufficient to consider positive $A \in L^{\Phi}(\mathfrak{X})$. Then $t\left(\Phi\left(\frac{A}{k}\right)\right) < \infty$ for some k > 0 so that $\Phi\left(\frac{A}{k}\right)$ is a nuclear operator, [2] (=trace class, [8]). Hence it is compact and there exist $\{\lambda_n\}$, $\lambda_n \downarrow 0$, and $\{e_n\}$ orthonormal vectors (which are eigenvalues and eigenvectors of A), such that

If l^{Φ} is the space of scalar sequences $\{a_n\}$ such that $\sum_{n=1}^{\infty} \Phi\left(\frac{|a_n|}{k}\right) < \infty$ for some k > 0, with $\|\{a_n\}\|_{\Phi} = \inf\left\{k > 0: \sum_{n=1}^{\infty} \Phi\left(\frac{|a_n|}{k}\right) \le 1\right\}$, then it is a *B*-algebra (since Φ (1)=1),

and (3) implies that the mapping $\beta: L^{\Phi}(\mathfrak{X}) \mapsto l^{\Phi}$ given by $\beta A = \{\lambda_n\} \in l^{\Phi}$ for positive $A \in L^{\Phi}(\mathfrak{X})$, is well-defined and that, with (1), $\|A\|_{\Phi} = \|\{\lambda_n\}\|_{\Phi}$ so that it is an "isometry" between the positive cones of the indicated spaces. It is now clearly possible to extend β so as to be a linear "isometry" between $L^{\Phi}(\mathfrak{X})$ and l^{Φ} . Using the same symbol for this extended map one has that β to be an isometric isomorphism on all of $L^{\Phi}(\mathfrak{X})$ onto l^{Φ} , This implies that $L^{\Phi}(\mathfrak{X})$ is a self-adjoint B-algebra in $B(\mathfrak{X})$ since $l^{\Phi} \subset l_{\infty}$. Note also that if $A \in L^{\Phi}(\mathfrak{X})$, then A is compact. This yields the first inequality of (2). (Here "isometry" has the usual meaning except for the commutativity.)

For the second inequality of (2), assume, for non-triviality, that $B \in L^{\Phi}(\mathcal{X})$, $A \in B(\mathcal{X})$. Let λ_n and μ_n be the eigenvalues of [B] and [AB] respectively. Then by [8, p. 22], $\mu_n \leq ||A||_{\infty} \lambda_n$. Consequently if $k = ||AB||_{\Phi}$ one has $k < \infty$ and

$$1 = t \left(\Phi\left(\frac{[AB]}{k}\right) \right) = \sum_{n=1}^{\infty} \Phi\left(\frac{\mu_n}{k}\right) \leqslant \sum_{n=1}^{\infty} \Phi\left(\frac{\lambda_n}{k_0}\right), \quad k_0 = k/||A||_{\infty}.$$

This means $k_0 \le ||\{\lambda_n\}||_{\Phi}$ and the second inequality in (2) is an immediate consequence. Finally, the given ordering of Φ_1 and Φ_2 implies $l^{\Phi_2} \subset l^{\Phi_1}$ and the norm inequality holds by [3, ths. 4, 5, pp. 51—52]. The isometry of (3) then gives the corresponding result for $L^{\Phi_i}(\mathcal{X})$, i=1,2, and the proof of the theorem is complete.

Proof of Theorem 2. Since every operator whose range is finite dimensional is in $L^{\Phi}(\mathcal{X})$, it follows that $\bigcup_{\alpha} B(\mathcal{X}_{\alpha}) \subset L^{\Phi}(\mathcal{X})$ and if $A \in L^{\Phi}(\mathcal{X})$ then $Q_{\alpha}(A) \in B(\mathcal{X}_{\alpha})$ for some a, in the notation of Sec. 1. Again it suffices to consider positive $A \in L^{\Phi}(\mathcal{X})$. If $\beta: L^{\Phi}(\mathcal{X}) \longmapsto l^{\Phi}$ is the "isometry" defined above, then the condition on Φ , of the theorem, is sufficient to conclude that simple functions (i.e. all but finitely many terms in the sequences) in l^{Φ} are (norm) dense. This follows from [3, th. 3, p. 58]. Thus if $A = \sum_{n=1}^{\infty} \lambda_n (\cdot, e_n) e_n$ is the representation of A, $\left(\sum_{n=1}^{\infty} \Phi\left(\frac{\lambda_n}{k}\right) < \infty$ for a k > 0, $\lambda_n > 0$, and $\{e_n\}$ orthonormal and if A_m is a degenerate operator defined as $A_m = \sum_{n=1}^{m} \lambda_n (\cdot, e_n) e_n = \sum_{n=1}^{m} \lambda_n e_n \otimes e_n$, where $(f \otimes g) x = (x, g) f$, [cf. 8, p. 7], then $||A - A_m||_{\Phi} \to 0$ as $m \to \infty$, by the isomorphism. Also there exists a monotone family $\{P_{\alpha}\}$, $P_{\alpha}: \mathcal{X} \mapsto \mathcal{X}_{\alpha}$, of orthogonal projections such that $P_{\alpha} \to I$ uniformly on precompact sets since \mathcal{X} is a Hilbert space. Hence for a given $\varepsilon > 0$, there is $n(\varepsilon)$ such that

(4)
$$||(A - A_m) P_{\alpha}||_{\Phi} \leq ||P_{\alpha}||_{\infty} ||A - A_m||_{\Phi} \leq ||A - A_m||_{\Phi} < \varepsilon/3$$

for $m \ge n$ (ε), and where (2) is used. On the other hand, $A_m = \sum_{n=1}^m \lambda_n (e_n \otimes e_n)$ so that $A_m (I - P_\alpha) = \sum_{n=1}^m \lambda_n (e_n \otimes (I - P_\alpha) e_n)$, by [8, lemma 2 on p. 7]. Hence

But by using the method of computation in [8, p. 41] to the above, one sees without difficulty that $||e_n \otimes (I - P_\alpha) e_n||_{\Phi} = ||(I - P_\alpha) e_n||$. So

$$||A_m(I-P_\alpha)||_{\Phi} \leqslant \sum_{n=1}^m ||\lambda_n|| |(I-P_\alpha)||e_n||$$

which can be made arbitrarily small by choosing α appropriately (since $P_{\alpha} \rightarrow I$). The estimates (4) and (6) imply

(7)
$$||A(I-P_{\alpha})||_{\phi} \leq ||A-A_{m}||_{\phi} + ||A_{m}(I-P_{\alpha})||_{\phi} + ||(A_{m}-A)P_{\alpha}|| \to 0.$$

Using now the isometry of the involution operation one has $||(I-P_{\alpha})A||_{\phi} \to 0$, and finally

 $||Q_{\alpha}(A) - A||_{\phi} \leq 2 ||A(I - P_{\alpha})||_{\phi} \to 0.$

Hence $L^{\Phi}(X)$ is approximately tame, as was to be proved.

The above proofs yield also the following. (The conclusion about \mathcal{C} was proved in [5], but also follows from the above if an appropriate discontinuous Φ is chosen.)

COROLLARY 1. If $C \subset B(X)$ is the set of compact operators, then $L^{\Phi}(X) \subset C$ if Φ is continuous, and moreover, with the operator norm, C is approximately tame.

It now follows that, when a continuous $\Phi(\cdot)$ does not satisfy the inequalities of Theorem 2, the a.t. algebra \mathcal{C} which contains self-adjoint B-algebras $L^{\Phi}(\mathfrak{X})$ which are not a.t. In fact, (as is well-known) there exist continuous Φ , violating these inequalities so that 'simple functions' are not dense in I^{Φ} , and this yields the desired negative result. So the a.t. property is not hereditary.

DEFINITION 2. If $GL(\mathfrak{X}) \subset B(\mathfrak{X})$ is the group of invertible operators, and $GL(a) = \{I + A \in GL(\mathfrak{X}): A \in B(\mathfrak{X}_a)\}$, then let $GL(\infty) = \varinjlim GL(a)$ be the inductive limit [cf. 7, p. 57 for the latter concept]. Let $G(\mathfrak{A}) = \{I + A \in GL(\mathfrak{X}): A \in \mathfrak{A}\}$ where \mathfrak{A} is an a.t. algebra in the sense of Definition 1. $G(\mathfrak{A})$ is topologized by the requirement that the map $I + A \mapsto A$ is bicontinuous into A.

Now Theorem 2 together with Theorem B of [5] implies the following:

COROLLARY 2. If Φ is as in Theorem 2, and X is separable, then the injection map $i: GL(\infty) \mapsto G(A)$ is a homotopy equivalence, where $A = L^{\Phi}(X)$.

3. An extension

A few extensions of the above results will be indicated now. The following concept is given in [2, 9].

DEFINITION 3. If \mathcal{X} is a *B*-space then it is said to have the approximation property (a.p.) if the identity map I on \mathcal{X} can be approximated uniformly on every precompact set in \mathcal{X} , by continuous linear maps π_{α} of finite rank. (Let $\mathcal{X}_{\alpha} = \pi_{\alpha}(\mathcal{X})$.)

THEOREM 3. If X is a B-space with the a.p., if $G \subset X$ is an open set, and if $G_{\infty} = \lim_{n \to \infty} G \cap X_{\alpha}$, then the injection map $i: G_{\infty} \mapsto G$ is a homotopy equivalence.

This result is proved by certain modifications of the proof of [5], in which one uses a generalized Urysohn's lemma [4, p. 30] in defining the required homotopy. With this established the next result follows as in [5].

THEOREM 4. If $\mathcal{A} \subset B(\mathcal{X})$ is an a.t. algebra where \mathcal{X} is a Hilbert space, then the injection map $i: GL(\infty) | \to G(\mathcal{A})$ is a homotopy equivalence.

The following extension of Corollary 2 then holds.

COROLLARY 3. If $\mathcal{A} = L^{\Phi}(X)$, where $L^{\Phi}(X)$ is as in Theorem 2, then the injection map $i: GL(\infty) \mapsto G(A)$ is a homotopy equivalence.

Remark. If $\mathcal{A} = \mathcal{C}$, the set of compact operators, and \mathcal{X} is a B-space with a.p,. then in [9] a more general result corresponding to Theorem 4 is given with the injection being a weak homotopy equivalence. The above and related extensions will be considered separately.

Supported under the NSF Grants GP-5921, and GP-8777.

DEPARTMENT OF MATHEMATICS, CARNEGIE-MELLON UNIVERSITY, PITTSBURGH, PENNSYLVANIA (U.S.A.)

REFERENCES

- [1] J. Eells, Jr., A setting for global analysis, Bull. Amer. Math. Soc., 72 (1966), 751-807.
- [2] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., (1955), No. 16.
 - [3] W. A. J. Luxemburg, Banach function spaces, Thesis, Delft, 1955.
- [4] L. Nachbin, Topology and order, Van Nostrand Mathematical Studies, No. 4, Princeton, 1965.
- [5] R. S. Palais, On the homotopy type of certain groups of operators, Topology, 3 (1965), 271-279.
 - [6] M. M. Rao, Extension of the Hausdorff-Young theorem, Israel J. Math., 6 (1968), 133-149.
 - [7] H. H. Schaefer, Topological vector spaces, MacMillan, New York, 1966.
 - [8] R. Schatten, Norm ideals of completely continuous operators, Springer-Verlag, Berlin, 1960.
- [9] A. S. Švarc, The homotopic topology of Banach spaces, Dokl. Akad. Nauk SSSR, 154 (1964), 61-63 (=Soviet Math. Dokl., 5 (1964), 57-59).

М. М. Рао, Апприксимативно играноченные алгеьры операторов

Содержание. Если $\mathfrak X$ обозначает Гильбертово пространство, причем $\mathfrak X_{\alpha} < \mathfrak X$ -конечно-мерные подпространства положим, что $B(\mathfrak X)$ и $B(\mathfrak X_{\alpha})$ алгебры Буля ограниченных операторов на $\mathfrak X$ и $\mathfrak X_{\alpha}$, а Q_{α} — проекция $B(\mathfrak X)$ на $B(\mathfrak X_{\alpha})$. Аппроксимативно ограниченные (a. о.) алгебра $\mathcal A \subset B(\mathfrak X)$ — это алгебра Буля с топологией более тонкой, чем след $B(\mathfrak X)$ удовлетворяющая следующим формулам:

(i) $\bigcup_{\alpha} B(\mathfrak{X}_{\alpha}) \subset \mathcal{A}, \mathfrak{X}_{\alpha} \uparrow \mathfrak{X},$

(ii) $Q_{\alpha}(\mathcal{A}), A \in \mathcal{A}) \times \mathcal{A}$.

В настоящей заметке построен класс а. о. алгебр $L^{\Phi}(\mathfrak{X})$, прибегая к понятиям пространств Орлича L^{Φ} . Показано, что имеются алгебры Буля $L^{\Phi}(\mathfrak{X}) \subset \mathcal{C}$ (\mathcal{C} обозначает а. о. алгебру компактных операторов в $B(\mathfrak{X})$) такие, которые не являются а. о. алгебрами.

Далее, если $\mathcal{A}=L^{\Phi}(\mathfrak{X})$ является произвольной а. о. алгеброй, пусть $G(\mathcal{A})=\{I+A\in GL(\mathfrak{X}): A\in \mathcal{A}\},\ GL(a)=\{I+A\in GL(\mathfrak{X}): A\in B(\mathfrak{X}_a)\}$ и наконец $GL(\infty)=$ ind. $\lim G(a)$, где $GL(\mathfrak{X})\subset B(\mathfrak{X})$ является группой обратимых операторов. Замечено, что инъективное отображение $GL(\infty)$ в $G(\mathcal{A})$ является гомотопической эквивалентностью.

Обсуждаются некоторые результаты, связанные с проблемой.