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Summary. In the presented paper a class of lattices — which are here called semi-Boolean algebras —
is introduced and investigated. An abstract algebra (4, W, M, =, = 7], 7} will be called semi-
Boolean algebra provided that (4, U, N, =, ) is a pseudo-Boolean algebra and A,J,0, =, )
is a Brouwerian algebra. The main result of this note is a representation theorem for semi-Boolean
algebras and an example of these algebras. Bi-topological Boolean algebras play an important
role in the general theory of semi-Boolean algebras. For these algebras a representation theorem
is formulated and proved.

In this paper a class of lattices-which are here called semi-Boolean algebras —
is introduced and investigated. Semi-Boolean algebras can be applied to algebraic
treatment of intuitionistic logic with two additional connectives —,[, which are
dual to intuitionistic implication and intuitionistic negation, respectively. These
algebras play the analogous part for the just mentioned logic to that played by
Boolean algebras for classical logic. The logic mentioned above will be considered
in a separate paper. The main purpose of this note is to give certain representation
theorems for semi-Boolean algebras. ‘

We will say that an abstract algebra W=(4, U, N, =, =) is a semi-Boolean
algebra provided that

i) (4,9, Nn,=) is a relatively pseudo-complemented lattice

il) = is a binary operation which satisfies the following condition: a—-b<ix
if and only if a<<buUx for any a, b, xe A.

The operation — will be called the pseudo-difference.

Every semi-Boolean algebra A=(4, U, N, =, --) has the zero element A and
the unit element \/. Every element ¢ € 4 has N—complement and U—complement
[1], namely ~ama=

is N—complement of an element « in A, and

[a=V-—a
is U—complement of an element @ in 4. Hence the above definition of semi-
Boolean algebra is equivalent to the following one: An abstract algebra (4, U, N,

[881]
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=, =, 71,[7) will be called a semi-Boolean algebra provided that (4, U, N, =, 7)
is a pscudo-Boolean algebra [1] and (4, W, N, —,[ ) is a Brouwerian algebra [2].
We will say that an abstract algebra B=(B, U, n, —, —, I, C) is a bi-topological
Boolean algebra if (B, U, N, —, —) is a Boolean algebra, I and C are interior and
closure operations respectively, such that the following condition is satisfied

la=Cla

@ Ca=ICa

for every a € B.

The operations I and C will be called conjugate operations over B when they satisfy
(%). An element a € B is said to be I—open (C—closed) when a=1Ia (a=Cu). For
any bi-topological Boolean algebra B we will denote by Gy (B) the set of all I—open
elements in B. On account of (%) the elements of G;(B) are simultaneously /—open

and C—<closed. It is ¢asy to verify that the following statement is true

TueoreM 1. The algebra (G (B), U, N, =, =) where G (B) is the set of all
I—open elements in a bi-topological Boolean algebra B=(B,U, N, -, —, 1C),
is a semi-Boolean algebra. For all a,be Gy (B) we have:

1) a=b=1(—-aUb)
(2) a=b=C(an —b).

The following theorem explains the connection between semi-Boolean algebras
and bi-topological Boolean algebras.

THEOREM 2. For every semi-Boolean algebra W=(4,\J, N, =, =) there exists
a bi-topological Boolean algebra B=(B, U, N, —, —, I, C) such that A=G(B).

By a topological space we will understand a system (X, I ((X, C)) where the
set X is non-empty and I is an interior operation (C is a closure operation).

If the systems (X, I) and (X, C) are any topological spaces then the system
(X, I, C> will be called a bi-topological space. Let P, (X) denote the class of all
subsets of the space X. If for every Ye DB (X)=Po (X)

1Y=CIy

*k
v CY=ICY

then we will say that the operations I and C are conjugate over 13 (X).

If (X, I, C> is a bi-topological space, ¥ (X) is a field of subset of X and the
operations I and C are conjugate over 3 (X), then the algebra P= (B (X), U, N, —
I, C) as well as every its subalgebra will be called a bi-topological field of sets
(more exactly: a bi-topological field of subsets of X).

THEOREM 3. For every bi-topological Boolean algebra B there exists a bi-
topological field of sets B and an isomorphism of B onto P.

Let B=(B, U, N, -, —, I*, C*) be a bi-topological Boolean algebra. Let us
denote by X the set of all prime filters V of a Boolean algebra B,=(B, U, N, —)
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and for every a € B let ki (a) denote the set of all Ve X such that ¢ e V. It follows
from [3] that the Stone space (X, I} where the interior operation J is determined
by the class {h(a)},.5 assumed as a subbasis, is a compact totally disconnected
Hausdorfl space. Moreover, the class {/(a)},cp is the field of all both open and
closed subsets of the topological space (X, ) and 4 is an isomorphism of B, onto
B (X), where B (X)={h(@)}acn

Now, a new interior operation and a new closure operation in X will be defined
in the following way:

&) IY= ) h(a)
i

“) Cr= {J k(D)
Y<h (b)

for every Y<X. Be=tra

It will be shown that the operations defined above are conjugate over 9 (X)
i.e. the condition (==) is satisfied. Let ¥ e 93 (X) i.e. Y=h (x) for some x € B. Thus

from (3) it follows that .
IY=Ih(x)= |J h(ag.
hgi?f?)

Since /1 is an isomorphism of the Boolean algebra B, onto 93 (X), the condition
h(a)=h (x) is equivalent to a<x, for ¢, x€B. Since we have ga=I*g, the last
inequality is equivalent to the following one: a<<I* x i.e. to h (@)<h (I* x). Thus

hix)= U k@@= ) h(@=h({I*x).

B(@)Sh (x) n(a)<h (I* x)
a=I%qa a=1*%a

In the same way it could be shown, that
Ch(x)=h(C* x).
Since the operations I* and C* are conjugate over B it is true that
I¥Y=Jk(X)=h(I* %)=h (C* I*X)=Clh () =CIY
CY=Ch(x)=h(C* x)=h (I* C* x)=ICh (x)=ICY.

This proves that the condition (=) is satisfied. The algebra $=(V (X),u,n, —, L C)
is the required bi-topological field of sets and / is an isomorphism of the bi-
topological Boolean algebra B onto B.

Let (X, I be an arbitrary compact topological space i.e. for every indexed

set {4, };.7 of open subsets, the equation X= (_J 4, implies the existence of a finite
teT

set To<=T'such that X= |_J 4,. Let 93 (X) be a field of all bo’th open and closed subset

TteTy

of the topological space {X, 9. Let ‘X be an arbitrary ring of sets such that the field
93 (X) is generated by % and the following conditions are satisfied:
) GeW
i) Xe®
iii) if Ze B (X), then () A€ B (X) and () Be DB (X).

AcR BeR
4cz Z<B

and
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Let I be an interior operation in X defined as follows

3 - Iy= | 4
AeX
A<Y

for every Y<X.
The system <X, I} is a topological space. Let C be a closure operation in the set X
defined as follows

(6) CY= [ B.
BEC}E
Y=nB
The system (X, C} is a topological space. Thus the system (X,1.C» is a bi~
topological space. We observe that if A€/ then JA=4 and CA=A i.e. the elements
of the ring ‘% are both I-open and C-closed.

THEOREM 4. If A€l (X) then IAe 'R and CAe R,

In fact, if 4 €3 (X) then by iii) and the definition of the interior operation [
it is true that J4 is simultaneously an open and a closed subset of a compact space
(X, J). Hence, I4 is a finite union of the clements of the ring ¥ i.e. 74 € . In the
same way it could be shown that C4 e ). Thus the following statement holds:

THEOREM 5. The field 13 (X) is a bi-topological field of sets.
From Theorems 3 and 2 we obtain

THEOREM 6. The algebra R=("N, U, N, =, =) — where R is the ring defined
above, the operations U, N are set-theoretical union and intersection respectively,
and operations ==, - are defined as follows:

(7N Y=Z=I((X—Y)UZ)
®) Y~Z=C(¥n(X~Z))

Jor every Y, Ze"'W — is a semi-Boolean algebra.
Every semi-Boolean algebra of this kind is said to be (X, W)-topological semi-Boolean
algebra.

TurEOREM 7. For every semi-Boolean algebra W=(A, U, N, =, =) there exists
(X, “R)-topological semi-Boolean algebra R=(R, U, 0\, =, =) and an isomorphism
h of A onto R.

By Theorem 2 we can assume that 4 =Gy, (B) where B is the set of all elements
of a bi-topological Boolean algebra B=(B, U, N, -, —, I*, C*)

Let (X,YJ) be the Stone space of the Boolean algebra B,=(B, U, N, —).
Let I and C be the interior and closure operations respectively, in the set X which
are defined by (3) and (4). It follows from Theorem 3 that these operations are
conjugate over the Stone field B (X)={h () }¢es. Let P be the class of all / (a) such
that a eV for a € Gy. (B). Suppose that ¥ e X, then Y=/ (x) for some x=1I% x=
=C*x € G (B). Thus IY=Y and CY=7 i.e. the elements of ¥ are simultaneously
I-open and C-closed. It is easy to see that if ¥ e 93 (X) then I¥ € R and CYe K.
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From the Theorem 6 it follows that the algebra R=("¥, U, N, =, =), where U, N
are set-theoretical union and intersection respectively, and =, — are defined by
(7) and (8), is a (X, ‘R)-topological semi-Boolean algebra.
We will now prove that the mapping / is the required isomorphism of % onto R.

Obviously the mapping / is one-to-one and

I (@ wb)=h(a)V h (b)

hanb)=h(a)nh(b)
for a,be A. (

Let us prove that
h(a=b)=h (a)=-h(b)

h(a=b)=h(a)=h (b)
for a,be A.
By the definition of the operation =in ‘R we have & (@)= (b)=1 ((X— (a)) W h (B)).
On the other hand, h(a=b)=h(I* (—aUb)), where the signs —, U, I* denote
the complement, the join and the interior operation in the bi-topological Boolean
algebra B. Thus

h(a=b)=h (I* (—a UBY)=ITh (—aV b)=I (X—h (@) U (b)) =h (@)=h (b).

The proof of the equation % (a=b)=h (@)= /h (b) is similar. This completes the proof
of Theorem 7. _

To illustrate the notation of (X, “N)-topological semi-Boolean algebra, let
us consider the case in which X is the Cantor discontinuum [4] i.e. X is the Cartesian
product UF, where U is the set consisting of the integers 0 and 1 only, and E is
a non-empty set. By definition, X is the set of all mapping u={u,},.r such that
1,=0 or u,=1, a € E. Let A% (a € E) be the set of all u e X such that #,=1. Denote
by (D the class of all sets A% and their complements. Let I3 (X) be the field of subsets
of X generated by °D. It is known that “)3 (X) is the field of all both open and closed
subsets of the topological space (X, I), where I is the interior operation in X
determined by the class ) assumed as a subbasis. Now, let “¥ be the ring of the sets
which belong to the class {A%},.r such that

i) GeR

ii’) XeW.
1t is easy to see that the field 93 (X) is generated by the ring ‘)2 i.e. if ¥ € B (X) then

[’
(9) Y= ﬂ(A““U...UA“""UB{?“U...UB'B!’"),

i=1
where for every 7, j: A*e R, B* is the complement of some A" € % ((X—B") € “)3)
and a;;# fi;.
Let I be the interior operation defined by (5), and C be a closure operation defined
by (6). It will be shown that if ¥ &3 (X) i.e. if ¥ is of the form (9), then

k
(10) IV = () (4% U... U A7)

i=1

an CY= ) (X—B") ... 0 (X~ B
i=1
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We prove the condition (10). The proof of (11) is similar. Obviously, if ¥=@ or
Y= Xthe condition (10) is satisfied. Let Y# @ and ¥+ X. On account of the definition
of the interior operation I it is sufficient to show that if ¥ is of the form (9) then the

following equation is fulfilled;
k

(12) I = M) (A% u 0 4%m),
4R =1 )
A=Y

It is easy to sece that
k ) .
M) (4™, WA ¥
i=1
and
k -
(T} (A% ) A3y e 7,
i=1
Thus, it is sufficient to shown that

k
(13) if ZeW and Z<Y then Zc (M) (4™ U...U 4%),
; i=1
1
Let us suppose that Ze ‘% and Z< Y. Hence Z= L (4" n...n A%). Obviously,
for every { and p we have the inclusion E=i

(14) A" N AT geny U A% BRuy | U Bfim,

We observe, that for every i and p there exists an integer j(1< J<s) such that y,;e
€ {ay ... 0y} ie. there exist j (1<j<s) and ¢ (1<7<n) such that A%»— A%
Suppose the contrary ie. for all j y,,¢{a;; ... a;}. Let t={u,},.x be the mapping
such that for fixed i/ and p

u}'m: " =u1’ps:Hﬁn: e =Hﬂim= 1

and
Uy ==, =0,
Thus u belongs to A" N...NA™ but u¢ A% U...U A% U By ..U B% This
is impossible on account of (14).
Hence for every i and p

AP0y M AC AT = AT AR, 0\ AT,
Consequently
2 k
Z= ) (A" N, 04 (M) (4% .. 0 4o,
=1

p=1 i
Thus the condition (13) is fulfilled.

It follows immediately from i), ii"), (10) and (11) that R is a ring satisfying the
conditions i)—iii). By Theorem 6 we infer that (%2, U, N, =, =) -— where 92 is the
ring defined above, the operations U, N are set-theoretical union and intersection
respectively, and operations =, - are defined by (7) and (8) —is an (X, })-topolo-
gical semi-Boolean algebra.
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1. Paumosp, Teopema o npecTaBieHuy i noay-byaesnix amredp. I wacts

Copepmanne. B wacrosimeif paGoTe paccMaTpuBaeTcst HEKOTODHIE Tull abGCTPaKTHBIX anredp,
Ha3pBaeMbIX noNy-bBynessmvu anreGpamu, AGcrpakraas anrebpa (4, U, N, =, =, 71,[,) gBm-
eTcst nony-bynesoit anrebpoit, ecru (4, W, M, =, T|) ncesno-Bynesa anrepa, Torya kax aaredpa
(4, U, N, =, [7) ato anrebpa Bpayspa. I'mapmoil nemsio paboTsl SBIACTCS MOCTPOSHHE HETPU-
BHABLHOTO NIPUMEPA TAKuX anrelp, a TaxKe JOKA3ATENLCTBA TEOPEMBI O OpeAcTaBNeHny. Baxuyso
polte B TEOPHH TOINy-Bysierbix anrebp MrpaloT Tak Ha3bEaeMble GW-TOIOJOTHYCCKHE airefpot
Bynsi, a B ocobeHHOCTH TeopeMa O NMPECTABNCHHH AT 3THX anre6p, GopMyIHpOBKA H HOkasa-
TENBCTBO XKOTOPOH maeTcs B navane paboTel.



