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Summary. Lozanovskyi’s “intermediate” normed lattices ©(X,Y) are investigated with
respect to properties like, e.g. duality and the Fatou property. This is motivated by
Lozanowskyi’s factorization theorem.

A well-known theorem of G. Ya. Lozanovskyi [4] states the following (the
reader who is not acquainted with the concepts involved here will find the
definitions following this short introduction):

THEOREM. Let X be a Kéthe function space on the o-finite (complete)
measure space (§2, X, ) and X' the subspace of the dual space of X, consist-
ing of integrals. For every 0 < f € Li(p) and € > 0 there ezist 0 < g € X
and 0 < h € X' such that f = gh and

(1) lgllxlinllx < (1 + )l fllL,
If X has the Fatou property the theorem is true for ¢ = 0 as well.

(The statement in [4] uses different terminology).

Various proofs of this theorem or variations of it have been given since
the publication of [4]. We mention in particular Gillespie’s proof [1].

Lozanovskyi’s original proof has a special elegance and is based on an
interpolation construction of Banach lattices. It goes as follows:

Set Z = X'/2(X")1/2. Then (by the main theorem of [4])

70 (XII)1/2(XIII)1/2 - (XII)I/Z(XI)I/Q — 7'

From the equality Z” = Z' it follows that Z' = Ly(p) so also Z = Ly(u),
from which the result follows.
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Following the publication of my lecture note [6], which is a presentation
of Lozanovskyi’s duality theorem for his construction of an intermediate Ba-
nach lattice “between” the Banach lattices X and Y, I have received some
comments concerning the completeness of the above argument. In particular,
concerning the implication: Z' = Lo(p) implies Z = Ly(p). This implication
is a consequence of Lemma 2 in the sequel and is mentioned without proof
in Lozanovskyi’s original paper [4, Lemma 21]. This implication is, however,
clearly wrong in general, if we drop the assumption of norm-completeness of
7. And in fact, Lozanovskyi’s theorem as it is stated above, is wrong in gen-
eral if Z is not norm-complete (cf. Example 10 in the sequel). What is true
in this case was stated and proved, in a different way then Lozanovskyi’s,
by Gillespie [1, Thm 1 (iii)].

This situation leads us to consider what can be said in this, more general
situation, about Lozanovskyi’s construction and its duality properties. An
answer to this is given in Lemma 3 and Theorem 6b), which, in particular,
enables one to prove Gillespie’s extension of Lozanovskyi’s theorem to the
non-Banach case, by extending Lozanovskyi’s original proof (Corollary 8).

Another question which we treat in this paper is the following: It is
known (cf. e.g. [4] or [6]) that if the Kothe function spaces X and Y have
the Fatou property then ¢(X,Y) has the Fatou property as well. One may
raise the question whether both X and Y must be assumed to have the
Fatou property in order to assure that o(X,Y) will have it. One is not
always enough; for example ¢g = c(l)/ 2&){/}2 fails to have the Fatou property
while £, has it. Also, let M be an Orlicz function and (&,n) be defined by !

0 £ =0
(2) 99(&77)— {EM—l(n/é) £>0. ,
Then ¢(co,l1) = hm and ¢(co, )" = ©(Loo,t1) = £nm where lpr is the =
Orlicz sequence space associated with M and hps is the closed span in £y %
of the unit vectors (cf. [2]). Now hpr = L if and only if M satisfies the
A,-condition at zero, so if it does not, then ¢(co, 1) fails to have the Fatou =
property.

We give here a sufficient condition for p(X,Y) to have the Fatou property 1
provided that Y (or X) has it. "

Some other results and examples which are connected to the preceding
topics are included as well. :

We bring now a few definitions and notations, the books [2] and [3] can -
serve as a standard reference.
A Kéthe function space on a o-finite (complete) measure space (2, X, U
(cf. [3, Def. 1.b.17]) is a Banach space L consisting of equivalent classes,
modulo equality a.e., of locally integrable real (or complex) valued functions
on 2, verifying 1
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(3) IfI<lgl, f measurable and g € L implies f € L and ||f|| < ||g]|,
(4) forall o € X with u(o) < co the characteristic function y, is in L.

A space which satisfies all the above axioms except, possibly, norm com-
pleteness will be called a normed function space.

If I is a normed function space we denote by L’ the space of the elements
f in the dual L* of L of the form 6(f) = [, fgdu for some measurable g,
and we identify ¢ with g. The space L' with the norm induced from L* is a
Kéothe function space. Denote Ly = {f € L: f > 0}. The norm of f in L is
denoted || f[|;, and in the special case of I = L,(x), the notation is || f|),.

Throughout this paper we adopt the convention 0/0 = 0.

We say that L has the Fatou property if L = L". In particular, for every
normed function space L, L' has the Fatou property.

We say that f € L is norm-absolutely continuous if f, | 0 a.e. and
fn < f for all n, implies ||f,|| — 0. The space L is o-order continuous if
all functions in L are norm-absolutely continuous. L is o-order continuous
if and only if L* = L'.

From now on we assume that all the normed function spaces are defined
over the same measure space. We shall make repeated use of the following
well-known lemma.

LEMMA 1 cf. [7, pp. 451, 471]. Let L be a normed function space and f
a nonnegative measurable function on §2. Then f € L" if and only if there
exists a sequence (fn)o2, of elements of L, such that 0 < f, 1 f a.e. and
sup || fnllz < co. For f € L" we have

il = inf { im 1all s 0< fu 11 ae}

LEMMA 2. (a) Let L be a Kéthe function space and let f € (L"), be
norm-absolutely continuous. Then f € L and ||f||, = ||f|lp». Hence, if L"
is o-order continuous then L has the Fatou property.

(b) Let L be a normed function space and let f € L". If f is norm-absolutely
continuous then for every e, > 0 there exists 2. C {2 such that I xo\e. |l <

e and fxao, € L, |fxe.llc <A+ 6)|fll

Proof. Assume that ||f||z» = 1 and € < 1. By Lemma 1, in both cases
(a) and (b) there exists a sequence f, T f with f, € L, and I fullz T 1.

Assume first that (42) < co. Then, by Yegorov’s theorem, a sequence of
measurable sets {2y C {23 C ... C 2 and a subsequence (Jk)52; of N exist,
such that (2 \ 2;) — 0 and f;, > (14 6)~'f on 2. By norm-absolute
continuity of f, |[fx o\ llz» — 0. We find & such that lfx2\@uller < €. On
2k we have f < (14 6)f;, hence fxg, € L and ||fxq, ||z < 1+ fll <



192 S. Reisner

(14 6). Write Ag = £2x. By extraction, we represent {2 as a disjoint union
R = U?io A; of measurable sets with || fxa,llc < (A +6)e, 7 =0,1,..,
and ”fX.Q\U?_O A,'HL" < En+17 n=0,1,...
Writing Fy, = fXUn 4. we have T f 1 Fall € A+ 6)(1 - €)1 for
j=0 "

all n and (F,) is a Cauchy sequence in L. If L is a Kothe function space,
this completes the proof. Otherwise, it is clear how to complete the proof of
case (b).

If u(£2) = oo, we use norm-absolute continuity of f once again, to rep-
resent §2 as a disjoint union 2 = Jp—; Bn With w(By) < oo for all n and
S fxB, |l < oo (in fact, we can make the last sum arbitrarily close to
1). Choose now an appropriate € for each B,, and complete the proof using
the first part. 0

Let U2 be the set of all real-valued concave functions ¢ on R4 which are
positive homogeneous and satisfy

(5) VéEn>0, ©(£0)=(0,n)=0,
(6) VEn>0,  lim o(¢,0)= lim ¢(f,n) = co.
Let .

sie )= inf ST PT

90(5777) - al,gi() (P(Ol,ﬂ)

If o € U9 then & € U and 3 = .

Let ¢ € U9 and let X,Y be two Kothe function spaces on (2,%,p). We
construct the normed function space ¢(X,Y) as follows:
(7) z € o(X,Y) iff |z| = p(z,y) forsomeze Xy, y€ Yy
) Ielloixy) = inf{max(llzllx, llly) : 2,y as above}
In particular, if ¢(€,7) = £snt—* for some 0 < s < 1, we denote o(X,Y)
by XsY1=s. If X and Y are Kothe function spaces, then so is ¢(X,Y)
and in this case it was proved in [5] (cf. [6]) that ¢(X,Y)" = P(X",Y")
and therefore p(X,Y)" = o(X",Y") (the last identity includes equality of
norms, in order to have it in the equality preceding the last one, one should
modify appropriately the norm in $(X', V") — cf. [6]). The following lemma
shows that norm-completeness is not needed for the last duality identities
to hold.

LEMMA 3. Let X,Y be normed function spaces and let ¢ € US. Then
o(X, V)" = o(X",Y") and o(X,Y) = @(X',Y'"). The first equality in-
cludes equality of norms, the second does so, provided that in the definition
of the norm in 3(X,Y) by equations (7) and (8) we put lz||x +lylly instead
of max(||z||x, [1ylly)-

il e e e i
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Proof. Let f € @(X”’Y”)-H [ = (P(g,h), g€ (X”)+ , ho€ (Y”)+' By
Lemma 1, there exist sequences of nonnegative functions ¢, 1 ¢, hy, T h with
lgallx T lgllxn and [laally T [Bllyor. As @(ga, ha) 1 f and [[6(gm ha)llocx.vy
< max(||gllx, [|h]ly"), we conclude by Lemma 1 that f € ¢(X,Y)"” and
I fllocx, vy < [ flloxr, vy For the reverse inclusion, we use Lemma 1 again
in reverse order. For f € (p(X,Y)"); let fn T f be with || fullex,v) 1
1 Fllocx ¥y - Since @(X,Y) C ¢(X",Y") with the obvious norm inequality,
and since (X", Y") has the Fatou property (cf. [6]), Lemma 1 yields f €
o(X",Y") and ||fllo(xr, vy < [[fllpcx,vy - Thus the first identity of the
lemma is established.

Using the duality result for Kothe function spaces and the Fatou property
of L' for any normed function space L, we get

Q/O\(XI,YI) - (;Q\(XIH,YIII) - (P(X”, YII)/
= (p(X,Y)") = (o(X,Y))" = p(X,Y)'
Lemma 2 and the identity o(X,Y)" = (X", Y") imply easily:

THEOREM 4. Let ¢ € U and let X,Y be Kéthe function spaces. If Y
has the Fatou property and o(X",Y') is o-order continuous, then o(X,Y)
has the Fatou property.

We say that ¢ € U satisfies the Right-A,-condition (R-Ay) if there
exists a constant C' > 1 such that for all £, 7

p(2¢,2n) < ¢(§,Cn)
The Left-Aq-condition (L-Ay) is defined analogously.

COROLLARY 5. Let ¢ € U3 satisfy the R-Aq-condition and let XY
be Kothe function spaces on (£2,X,p). If Y has the Fatou property and is
o-order continuous then ¢(X,Y) has the Fatou property (and is o-order
continuous).

In particular, if ¢ satisfies the R-Ay-condition then o(X, L1(u)) has the
Fatou property for every Kothe function space X .

Proof. By [5] (cf. [6, Prop. 4]) the above assumptions guarantee that
©(W,Y) is o-order continuous for every Kéthe function space W. a

If, in the situation of Theorem 4, we do not assume that Y has the Fatou
property we can still use similar methods to obtain information about the
relations between ¢(X,Y) and (X", Y") or p(X",Y).

THEOREM 6. (a) Let o € U and let X,Y be Kéthe function spaces. If f €
P(X",Y) is norm-absolutely continuous then f € ¢(X,Y) and I fllox,y) =

1l vy
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(b) Let ¢ € U and let X,Y be normed function spaces. If f € Z (Z =
o(X",Y) or Z = (X", Y")) is norm-absolutely continuous in Z, then for
all 6, > 0 there exists a measurable set 2. C §2 such that

Ifxavellz <& fxa. € o(X,Y) and [fxa.ll <(1+6)lfll3

We shall not elaborate on the details of the proof of Theorem 6, it applies
the same method of the proof of Lemma 2 together with the following lemma
(formulated here for the case Z = ¢(X",Y)).

LEMMA 7. Assume p(2) < € and let f € Z = o(X",Y) be norm-
absolutely continuous. If f = p(g,h) with g € X, h € Y} and max(||g|| x»,
l|Ally) < C, then for every e > 0 there exist a measurable set 2. C 0

and functions § € Xy, h € Y5, with supports contained in {2, such that
N fxa\. 5 <E and max(||g]|x, || klly) < C.

Proof. By Lemma 1 we have a sequence g, T g with g, € X, and
llgnll T llg]lx». By Yegorov’s theorem and norm absolute continuity of f, we
can find, as in the proof of Lemma 2, a subset (2. of 2 with || fxo\e.ll7 <€
and such that gxp, € X and ||gxo,||x < (1 + 6)|lgllx. We now take § > 0
sufficiently small and define g = gxgp,.

Remark. One should not come to the mistaken conclusion that the last
argument actually shows that if f = ¢(g,h), 9 € X", h € Y (X and Y-
Kothe function spaces) is norm-absolutely continuous, then actually g € X.
This is wrong in general, as simple examples of Orlicz spaces show. The
point is that in the iteration of the application of Lemma 7 throughout
the proof of Theorem 6 (a), we should in general take new representations
fxe = ¢(gE,hE) in every step (where I is the set of finite measure taking
the role of 2 of Lemma 7). In fact, Example 9 in the sequel shows that
©(X,Y) may have the Fatou property (and be o-order continuous) with
neither X nor Y having the Fatou property.

CororLLARY 8 (Gillespie [1]). Let X be a normed function space and let
[ € Li(p). For every € > 0 there exist g € X, h € X' and a measurable set
2. C 2, such that

Sxa, =gh, lallxlblxr < +e)iflli and [ [fldu<e.
2\ Q2.

Proof. Asit was mentioned in the introduction, for ¢(¢,n) = gL/2p1 /2

we have p(X", X') = Ly(p). Theorem 6 (b) now gives a factorization of

Lo(p) functions whose translation to the above statement is immediate.

:1

i el e
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Ezample 9. There exist Kéthe function spaces X and Y, both o-order
continuous and without the Fatou property, such that ¢(X,Y) is o-order
continuous and has the Fatou property.

Let the Kothe sequence space X be defined by:

f e X if and only if | f(2k —1)] — 0 as k — oo and Zlf(Z/c)l < 0.
k=1

1 llx = max (_ max [7(26= 1)l 1£(2k)])
= k=1

Denote Ay = {2k — 1}32,, Ay = {2k}2,. We clearly have
X = (co(41) ® £1(Ag)),,

(a direct sum in the ( sense). Let Y be defined in the analogous way,

exchanging the roles of A7 and A,, i.e.

Y = (£1(A1) @ co(42)),, -

The spaces X and Y are o-order continuous and fail to have the Fatou
property. For ¢ € U3 let the Orlicz function My be associated with © as in
(2) and let My, be associated with ¢ by exchanging the roles of ¢ and 7 in
(2). It is easy to check that

QO(X7Y) = (h’MR(Al) ® hu, (A2))oo
and
(P(X”’Y”) = (EMR(Al) ® EJML(A2))OO :
Hence ¢(X,Y) has the Fatou property if and only if both Mgz and M,

satisfy the Aj-condition at zero (such is the case e.g. for ¢(£,7) = £1-5p*,
0 < s < 1, in this case we have X1=5Ys = (Kl/s B Zl/(l_s))oo)'

Ezample 10. There exists a normed (not norm complete), Dedekind
complete function space X, for which X/2(X")'/2 £ L, but for every
f € X1/2(XI)1/2 holds ”f”Xl/Q(XI)I/2 = ”f”L2

Let 2 = Ry equipped with Lebesgue measure . For 1 < p < oo and f
measurable, define

7 /p
1fllx, = [[15)P i) " + esstimsup £,
0

Where esslimsup |f| is the essential upper limit of | f(¢)| as ¢t — oo (that is,
esslimsup | f| = a if for all v > a, p{t > t : |f(1)] = 7} = 0 for & big
enough, while for all § < a and to € Ry, p{t > to : [f(t)] > 8} > 0). Let

- the space

O R ——

Xp ={/:Ifllx, < oo}
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be equipped with the norm || -|

1).

If 1 < p < oo, the function

x,- Clearly (Xp) = Lyp(0,00), (1/p+1/p' =

f(t): {nl/2 for ']t—n\ < 2n—2+fllﬂ>——1)’ n= 1,2,...
0 otherwise

can not be represented as f = g2 /? with g € X,, h € Ly, because if g is
essentially bounded for big values of Z, it is easily checked that h can not be
in L, (0,00). To check that )('11/2(1100(0,00))1/2 # L4(0,00) is even simpler,

On the other hand, for 1 < p < oo, if f € Ly(0,00) is such that
f = g'/2h'/? with g € X, and h € Ly(0,00) then it is always possible
to construct a decreasing function ¥ on Ry such that || < 1, %(¢) | 0 as
t — oo and ||h/¥]ly < (1+€)||hlly. Defining § = g and b = h/3 we
conclude that || f|| x1/2(xryr2 = [|fll2-
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