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Preface

There are essentially three different ways of studying the
operator *—algebras on hilbert spaces. The first alternative is
to assume that the algebra is weakly closed (called the W$-algebra)-
These algebras are also called Rings of operators and, more
recently, von Neumann algebras.

The earliest attack to the study along such lines is due to
von Neumann in 1929. In a series of five memoirs beginning with
[16], Murray and von Neumann made important strides to the theory
of W*=a1gebras. Call a W*walgebra a factor if its center is just
the complex numbers. To a large extent the study of W*-algebras
may be reduced to the case of a factor by a reduction theory
devised by von Neumann [26]. At the same time a number of authors,
notably Dixmier, have pushed through the ma jor portions of the
theory for general W$wa1gebras.

s The second alternative is to assume that the algebra is
unifbrmly closed (called the C*=algebra or the B*walgebra).

The earliest attack to the study along such lines is due to
Gelfand and Naimark in 1943.

A notable advantage of the C$aalgebra is the existence of
an elegant system of intrinsic postulates defined by Gelfand and
Naimark; so one can and does study the C*malgebra in abstract
fashion that pays no attention to any particular representation.

Because of this reason, the theory of C$walgebras has
naturally been placed into the theory of general Banach algebras,

and in certain respects they are among the best behaved examples
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of infinite dimensional Banach algebras. These situations have
been ethemely different from the case of W$=algebras.

The theory of W*malgebras has been always developed in
.aSSOCiation with underlying hilbert spaces, because we could not
have a thorough non=-spatial characterization of W*malgebras like
one of C%-algebras.

However, nowadays, we can push the non=spatial theory of
W$ealgebras; since we have much information concerning the
removal of this pathology.

Early attempts along these lines are due to von Neumann [22]
and Steen [34]. Rickart [29] made a start on such treatment which
was picked up by Kaplaﬁsky who carried the study more or less to
its completion in his series of papers on AW$=algebras.

This Aw*malgebra.is-the third alternative. Although much
of the non-spatial theory of W*=algebras can be extended to Aw*d
algebras, additionals on an Aw*walgebra are needed for it to be
representable as a W*nalgebra. That this is already the case for
commutative algebras is proved by Dixmier [ 2 ] who gave a
characterization of commutatiwve W*malgebrés among algebras C(ll},
S].-a compact Hausdorff space. Finally, characterizations of
general W*mélgebraé have been obtained by Kadison [ 9] and the
present author [32]. The characterization of Kadison is a non-
commutative extension of Dixmier?s one; which uses the order prop=
“erties and normal positive functionals.

On the other hand, Dixmier ['3 ] showed that a W -algebra
is the dual space of some Banach.space. Then the author has

3
shown that a necessary and sufficient condition for a B =algebra
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to admit a faithful *-representation as a W*walgebra is that it be
a dual space as a Banach space.

Using this characterization, in this note, we shall mainly
develop the non=spatial thsory of W*=algebras and place the theory
of W$=algebras properly into the general theory of Banach algebras.

On those portions of the theory of W*=algebras concerned
with the representation of the algebras on hilbert spaces, there is
a comprehensive book by Dixmier [ 4 J, in which there is an exten-

sive literature.
‘ The purely algebraic treatment of those portions which are
positive even in Aw*walgebras is given by Kaplansky [ 14] din his
Chicago notes on Rings of operators, and a substantial number of
additional papers on AW*-algebras and related matters are found in
the Bibliography. Therefore, we have no intention of giving a
complete coverage of the subject. Also, it is, indeed, impossible,
as there are many topics concerning W*aalgebras. In
this note, a Banach space-like point of view dominates strongly
the selection and organization of material. The reader is referred
for further information on the subject to the book of Dixmier and
the note of Kaplansky.

Moreover we shall suppose some results concerning B$w
algebras, the reader is referred for their information to the books
of Rickart [ 31] and Naimark [ 19]. Also, we shall deal with locally
convex topological linear spaces. For this, we shall refer to the
books of Bourbaki,

The main body of this note is divided into three chapters:

I Banach space-like considerations. II Algebraic considerations,

ITT The theory of representation. In addition to the main text,
there is an Appendix dgveoted primarily to quegtions.
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1.1

Chapter I Banach space-like considerations

%l. Definition of W%-algebras.

We suppose that the reader has some knowledge concerning
B*=algebras. Our subjects for the research are a special class
of B*-algebfas, called W*=algebras.

Definition 1.1. A B'=algebra is called a W -algebra if it
is a dual space as a Banach space.

Let _1Ma | « € J] be a family of W*-algebras we define the

direct sum L (MM as follows: elements of £ (®M  are com-

agd * aed @
i <+
posed of all family (a ) _.; such that a €M and sgp ]Iaalf w
3 o = | = *=
_ an: define °_(aa) + (ba} (aa + ba)" (an(ba} (amba)’ (aa)
(aa) and ”(aa)” = sup || aaf. Then it is also a B*-algebra and a
@ *

dual.space; hence it is also a W -algebra.
| et M be a w*—algebra, then there is a Banach space F
such that M is the dual of F. According to the general theory
, of Banach spaces, it is not necessarily assured that such F is
'unique -= in fact, ,ﬁlx_ﬁl is isometrically isomorphic to .[1,
but cy > Cq is not so to cq.
"However, afterward we shall show that such F 1is unique.
Since M is a dual space; its unit sphere has sufficiently
many extreme points by the theorem of Krein=Milman. Therefore,
firstly we shall study the properties of extreme points in the

P
unit sphere of B -algebras.

. N
§2. Extreme points in the unit spheres of B =algebras.

Let B be a B*malgebra, S 1ts unit sphere and x be an
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extreme point of S. Let A be the commutative B*—subalgebra
generated by x*x and CO[I)) the function=representation of A,
where _El is a locally compact space. Then one can easily take
a sequence {yn} of positive elements of Co(ilj such that
Iy Il<1 for all n, ! (x$x)yn - (X*X)“ ~> 0 (n =—>®) and
| (xX"%)¥2 = (Xx)|[ —>0 (0 => ).

Suppose that at some point p of I)_, x*x takes a non-

zero value less than one. Then we can take a positive element

¢ of A, non-zero at p such that if r, SV, *t ¢ S, TV, C,
¢ s
then | (x x)rﬁ” <1 and || (x x)sﬁ“ < 1. Hence xr_  and Xxs_
%
are in S. On the other hand, || (xy, = x) (xy, - )| =
% D * * *
I x %yl = x xy, = x xy, + X x[] =>0 (n =—>w): hence =xy, —> X,
so that xr. —=> X + Xc and xS, > X = XC, olince X + XcC,
X = x¢ belong te S and x = (x+xc) ; (x=xc) , X = Xtxc =
e
x-xc; hence xc = 0 and so || cx xcf| = |]x*x02[|= 0, this con=

tradicts that x*x(p]cz(p) # 0. Therefore x'x has not any none
zero value less than one on.J:l.

In other words, x'x is a projection, we shall call such
X a partially isometry, X*X the initial projection of x and

e % b *
xx  the final projection of x (since (xx*}(xx ) = x(x =)x

]

% I . . x b . .
xx , xx is also a projection). Put x x + xx =h, if h is

- not invertible, there is a sequence {zn] of positive elements

commuting with h as follows: || zi“ =1, || hzgﬂ‘u%> 0 (n—=>om),
* * 1/ 2 1/2
so that [l xa |l = Il 55| = I 25" xe 172 < | s ha[[/2 —> o
(n —> @) and analogously ||z x|| = |]X%anl_—> 0 (n =—> o).
S0,

% % ko
| Z, = XX 2, = Z.X X+ XX X x|} =>1 (n =—> o).
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Now we shall use a notation v(l=x) = y=yx, (l=x)y =
(0).

Suppose that a is an element such that || al| <1,

y=Xy, then we show that (lmxﬁﬁﬁB(1=x4x)

a g (lnxx*)B[l=x%x), Then,

x s all = 1] (5 & &) (x 2 a) || /2

= |lx*x £ (xTa + ax) + a*aHl/2 .

: * % S % # %
Since a xx a = a (xx = xx)a =0, xa=ax=0 andmoreover

bt

| wls b e b
xxaa = xx(l-xx)a=(xx-xx)a=0; hence | x2af-=

max (|[X*XH1/2, I a“all 1/2) <1, so that by the extremity of x,

a = 0.
, * % S
On the other hand, since 3z = xx 2 - 2, X X *+ XX Z,X X

belong to (1 = xx )B(1 = &%), & = xxz =3

x$x + xx*z x*x = 0O
n n 4

s * oL s .
hence we have a contradiction, so that x x + xx is invertible

in B. Therefore B has a unit I.

‘Next, we shall show that unit I is an extreme point. In

fact, if I = %(a+b) (a,b € 8), put ¢ = %(a*+a), d = %(b*+b),
then I =3(e+d) (c,d € 5).

Since d = 2I - ¢, d and c commute. Representing the
B*walgebra generated by I, ¢, d we can easily conclude that
d = ¢ = I; hence a=j= = 2T-a, so that a 1s normal, and, passing
to the function space, this time shows us that a =a = I;

hence I 1is an extreme point.

Therefore we obtain

%
Theorem 2.1. The unit sphere of a B -algebra has an ex-
treme point if and only if it has the unit.

Next we shall show a characterization of extreme points in
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the unit sphere.

We have already shown that if x is an extreme point,

(I = xaﬁﬁB(I = x*x) = (0). Now conversely we shall show that if
I x| <1l and (I—xx*)B(lmx%x) = (0), then x 1is an extreme
point.

Lemma 2.1. Let P be the sst of all positive elements of

B, then extreme points of PS8 are all projections of B.

Proof. Let e be a projection, and put e = %(a+b)
(a,b € PNS), then a = 2e=b, and so a and Db commute; hence
we obtain easily a = b = e. Conversely suppose h 1is an extreme
point in P/S and C(flj be the function space generated by
h, then we can easily conclude that h 1is a projection.

Now let x be an element such that (l-xx*)B(l-x*x) = (0)
and || x|| €1, then'i?l—xx*jﬁlnx*x) = (0); hence Xx = e

e

and xx = f are projections.

Suppose that x = %(a+b) with a,b in S. Then

e = x*x = %(x*a + x$b) and e = %(x$ae + x$be).

Since e 1is the unit of the B*nalgebra eBe, and x*ae
and x*bc belong to eSe, e = x*ae = x*be; hence x = xx*x =
Xe = xx*ae = fae = fbe. On the other hand, ae = fae + (1-f)ae,
so that

1 > |l ea*aeu = || (fae + (lwf)ae}*(fae + {lwfjae).”

= f[ea*fae + ea*(l-f)ae||= | e + ea’ (1=f)aell ;

hence (1-flae = 0 and so ae = fae, and analogously be = fbe;

hence x = ae = be.
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7

; %k % G
Now x = %(a +b } and, by symmetry, a'f =bf=x or

il

fa = fb = x. Our hypothesis, (l-e)B(l-f) = (0}, tells us that
a = fa(l=e) + ae = fb(l=e) + be = b.

Hence we obtain

i
Theorem 2.2. An element in the unit sphere of a B%-algebra
b %
B is extreme if and only if it satisfies (1axx5)B(l=x x) = (0).
Tt is very interesting to extend Theorem 2.1 to general

Banach algebras., Kakutani has shown the following

Theorem 2.3. Let (] be a Banach algebra with unit 1,

then 1 is an extreme point in its unit sphere.

Proof. Since (/] 1is isometrically representable as a sub-
algebra of the algebra B(E) of all bounded operators on a Banach
space R, it is enough to show that the identity operator on
F is an extreme point in the unit sphere of B(E).

Let EX be the dual of B, then ||1Z a||<1 implies

::: L * wl,
1% % 2*||<1. Forany £ e, put £, = (1" +a)f and I, =
< 1 2

b b
(1" = a )f, then 2f = f; + f, and I £401 < |l £ll, el

[ £

3 s
of B, =1 =1,; hence 2 = 0, so that a* = 0 and so

: therefore if f is an extreme point of the unit sphere

a = 0. Now let 1=E§!2'-£- ([ bl], Il cll<1) and put a=1=h,

then 1 =-a=>b and 1+ a =21l =Db = c; hence by the above

considerations, b =1 and so c¢ =1, This completes the proof.

Remark. The converse question of Theorem 2.3 is negative
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Notices of §2

Von Neumann [22], using the strong operator topology, had
proved the existence of unit in W*—algebras, and Kaplansky [13],
using the lattice property of projections, did it.

Our proof of using extreme points is another one. The
extremity of unit in Theorem 2.1 and Theorem 2.2 are due to
Kadison [8]; he proved Theorem 2.2 in B*—algebras with units

however from our considerations, it is easily seen that the

assumption of unit is unnecessary.
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§3. Topologies on W*-algebras.

Let M be a B*-algebra which is the dual of a Banach space
F, S the unit sphere of M, A the self-adjoint portion of M,
P the positive portion of A. Henceforward we shall always use
the topology ¢ (M,F) on M; we shall call this topology o (M, F)
the weak topology of M; it is well known that S is 0 (M,F)=

compact.
Lemma 3,1.' A and P are cT(M,F)wclosed{

Proof. First, we shall show that A(S is closed. If it
is not closed, there is a directed set {x&} in ANS such that
it converges to an element a + ib (b # 0), where a and b are
self-adjoint.

Suppose that there exists a positive number A > 0 in the

spectrum of b (otherwise consider [=Xa]); Then,

I, + oIl € (n?)/2 <n v n < [Ib+ aTf|< (12 + ib + inI|

for a large number n.
Since {xa + inI} converges to a + ib + inI and belongs

to (1 + n2)1/28 2)1/25 means that

, the compactness of (1 + n
a + ib + inI belongs alsc to (1 + nz}l/zs.' This contradicts the
above inequalityg; hence A()S is closed, so that A is closed
by the theorem of Banach.

Moreover, since PASC(ANS) + L (P, we have PNS =
(aNs)N{(aNs) + I}; hence PNS is closed, so that P 1is

closed.

Lemma 3.2. Let T be the totality of ¢ (IM,F)=continuous
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positive
/linear functionals on M. Then for any self-adjoint element
a € P, there is an element ¢ of T such that ¢(a) < 0; in
particular, Y(b) = 0 for all Ve T implies b = 0.

This follows immediately from Lemma 3.1 and the theorem in

the theory of locally convex vector space.

Definition 3.1. We call a directed set {xa] in A increas-

ing, if x 2 g whenever o > B.

Lemma 3.3. Every uniformly bounded, increasing directed set
converges to its least upper bound. If x = l.u.b [Xa}’ then

B b3
a xa =1l.ub {a xaa}.

Proof. Let E Dbe the set of all finite linear combinations
of elements of T. It is clear that the topology ¢ (M,E) is
weaker than the topology o (M,F). WMoreover, O (M,E) is a Hausdorff
topology by Lemma 3.2; since S is ¢ (M,F)=compact, ¢ (M,E) is
equivalent to O (M,F) on AS (A > 0).

Therefore, to show that a uniformly bounded directed set
[Xa} is a Cauchy directed set in ¢ (M,F)-topology, it is enough
to show that for any € & T and positive number & there is an
index « such that I‘F(Xa - xB)| < € for a,f 2 ag.

Let {xa} be uniformly bounded and increasing. Then
{q’(x&)} is so for every e T; hence [xa} is o (M,F)=
Cauchy, so that by the compactness of S5, 1t converges to some
element x.

Moreover, it is clear by lemma 3.2 that x = l.u. bl{x }. If

a
u is an invertible element, then clearly

* * . 3
1.u.b {u xau} =y {l.u.b x&}u = uxxu .

(84 04
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Finally, if a 1is an arbitrary element of M, then there is a
suitable number A > 0 such that Al + a is invertible.

Then,

CP((hl'*a)*xa(hl*"a)) = szP(xa) + A QP(i:fl':xal + AP (x a)

+'?(a*xaa) —4>CP((hl+a)*x(hl+a)} for any ¢>EIT.

On the other hand,

Pl (e mx 00| = | ep (8 (x o0 ) Y 2 (x =) Y2

3 a 7B a B

< f?(a*{xanxﬁ)a)l/ch(xmnxﬁjl/z for o 2 B,

and analogously,
A
l?((xa"xslaﬂ < CP(xa‘ijl/z‘P(ﬁ)‘{xa"xs)a)l/z for o 2 B;

hence

2P (x ) + M Plax) + A Plxa) —> AP (x) + AP(ax) + AP(xa),

. .
so that 1l.u.b {a xaa} = a xa.
o

*
Lemma 3.4. Let C be any maximal commutative B —=subalgebra

of M and o be its spectrum space, then .flﬁiseaStonean space.

Proof. Let [fa} be a uniformly bounded, increasing
directed set and Xg = l.u.b {fa}' For any unitary element u of
1 « 1

sk - - -
C, vwfu=u"fu-=Tf~ converges to u "x.u = X~; as (C 1is
o a a 0 0

maximal, Xq belongs to C and so (). is Stonean.
Lemma 3.5. Let e be any projection of M. Then the sub-
algebra eMe is ¢ (M,F)~closed, and moreover the mapping

¥ ==> gxe 1is ¢ (M,F)=continuous.
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Proof. e(PMS)e donsists clearly of those elements of
PNS which are <e. If {xa} is a directed set in e(PM3S)e
converging to an element Xq > 0, then e = X, > 0, so that
e = Xj > 0; hence etP(]S)e id closeds Since e(AMNS)e =
e(PNS)e - e(PMNS)e, the compactness of e(PNSJe implies that
e{ANS)e is closed; hence eMe 1is closed.

Next, we shall show the continuity of the mapping. For
’ this, it is enough to show that the kernel (l=e)lM + M{l=e) of
the mapping is closed, because M is an algebraic direct sum of
‘eMe and (l=e)lM + M(l=e).

Now, we shall show that {eaa(l=e)} (aa e AMS) con=

verges to a, then eae = (l=e)a(l-e) = 0. For any integer n

and complex number c{|c| = 1),

ff{eaa(lne) + cne} {(l=e}aae + Ene}lll/2

. n:ze“ 1/2 < (l+n2)1/2.

~ lea, (1~e) + cnel|

il

eraa(l=e)

Now suppose that eae # O and there is a positive number
3k
op €38 * eae

2 .

A >0 1in the spectrum (otherwise consider

-{=aa) ), then

|| eae + ne + eal(l-e) + (l=e)ae + (l-e)al(l=e)|| > || e(a+nl)e||
gae + ea e
> | 2

+ nell >N + n.

Therefore,

| 2 + ne|l > (1+n2)1/2 for a large number n.

This is a contradiction; hence

v b
gag * ea e . g
2 ¥
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and analogously

. X . ¥
iea e -~ iae _ g
2 s

so that eae = 0.

Similarly, suppose that (l=e)a(l-e) # O. Then
Il 2a_(1=e) + cn(l-e)| = || {(l=e)aae + ¢cn(l=e)} [ea (1-e) + cn(l=-e)} H/?

= Il(lme)aaeaa(lae) + n2{1=e)”l/2 < (l+n2)l/2;

hence we shall obtain an analogous contradiction, so that a =

a{l=e) + (l=e)as; hence the closure of (l-e)Se is contained in
eli(l=e) + {l-e)lMe. By symmetry, the closure of e&S(l-e) is con=
tained in eM{l=e) + (l=ec)Me. From the above discussion and the
compactness of S, we easily conclude that eS(l=e) + (l=e)Se 1is
closed, so that elM(l=e) + (l=¢)Me is closed; hence

(l=e )M + M{l=e) = (l=e)e + ell(l=c) + {l=e)M({l=e)

is closed.

1

Lemma 3.5. Let e be any projection of M, then the map-

ping x ==> ex and X ==> xe are 0 (M F)=continuous.

Proof. Suppose that {eaa(1=ej} (a,e8) converges to a and

(1-c)ae # 0. Since by Lemma 3.5,

a = eall=-e) + (l-e)ac
|| a+n(l=e)ae|| = || ea(l=e) + (n+l)(l=c)ac])

= max {| ea(l-e)]|, (n+1)]] (1~e)ae]| };
hence

|| atn(l=e)ac| = (n+l)]|| (1=c)ac|
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for a large number n. On the other hand,

| ea (1=e) + n(l-e)ae|| < max {1,n| (1=e)ael| ! = nlf (l1-e)ael

for a large number n, and this contradicts the above inequality;
hence eM(l-gc) is closed. Therefore, the mappings x —>

ex(l=e) and (l-e)xe, and so ex and xe are ¢ (M,F)-continuocus.

Theorem 3.,1. The mapping x —> x*, and ax, xa and so

e

a xa are ¢ (M,F)=continuous for any a & I,

Proof. By Lemma 3.1, A is ¢ (M ,F)=closed, so that we can
easily conclude that the mapping x —> x* is o (}M,F)=continuous.
Next, let C be a maximal commutative B*=subalgebra containing a
self=adjoint element h, then by Lemma 3.4 the spectrum space (L
of € is stonean and so for any arbitrary positive number & (> 0)
there is a finite family {ei} of orthogonal projections belonging

to C as follows:

n
[|h - .=1hiei | < &,

i
where {hi] is a family of complex numbers.

Let {xa} (|l xaH < 1) be a directed set converging to O,

then for any o (M,F)=continuous linear functional £,
n n
| f(hx )| = |£((h - iff‘iei’xa’ + f“i‘El"iei)xa”
n
SAhelle 0 = ] [£leyx )l

i = 1o

By Lemma 3.6,

Lin |£(nx )] < |1 £lf€ .
o

Since € 1s arbitrary, lim [f(hxg}| = 0; hence a linear
o .
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functional g(x) = f{hx) is continuous on S, so that g 1is
continuous on M by the theorem of Banach and so the mapping
x —> hx and so x —> ax is ¢ (M,F)-continuous; finally the
mapping x -—> (e;[:}:)ﬂ< = xa and a*xa are continuous. This com=
pletes the proof.

From the theory of locally convex spaces, we can identify
the Banach space F with the Banach space of all ¢ (M,F)=-continuous
linear functionals. Now let T(M,F) be the Mackey topology on M,

that is, the topology of uniform convergences on all relatively

¢"(F,M)~compact convex sets in F. Then,

* 5
Theorem 3.2. The mapping x —=—> x , ax, xa and s0 a xa

for any a € M are 7(M,F)-continuous.

Notation. Denote f{x) by <x,f> and define ‘Cx,f¥> = <x5f>,
<x,Laf> = <ax,f> and <x,Raf> =<xa,f> for x,aeM and f ¢ F,

then f%, Laf and Raf belong to F by Theorem 3.1.

Lemma 3.7. The mapping f —> f$, Laf and Raf in F

are 0 (F,M)=continuous.

Proof. Let {f } be a directed set of F converging to O

in the o (F,M)=topology, then

<x,f> =<x ,£>—> 0 forall xeM ;

hence the mapping f —> £ is ¢ (M,F)~continuous.
Next
<x,Laf > =-<ax,f&> —> 0 for all xe M g
hence the mapping f —> Laf and analogously f —> Raf are
0~ (F,M) =continuous.

The proof of Theorem 3.2. Let {x } be a directed set of
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M converging to O in the T(M,F), G any relatively o(F,M)-

e
s

compact set in F, then by Lemma 3.7, G , LaG and RaG are

relatively O (F,M)-compact, and moreover

<x:,G> = <xa,G3':> => 0 (uniformly) ;

hence the mapping x —> x  is T(M,F) =continuous.
Next
LoV
<ax,,® = <x, ,RaG> —> 0 (uniformly) ;

hence x —> ax and analogously xa are T(M,F)-continuous.
This completes the proof of Theorem 3.2.
Finally we shall introduce another topology. Put a,(x) =

it
%
e(x x)1/2 for any @ e T, then oc(10 is a semi=norm on M, The
family of semie~norm [a?l all @ e T} defines a locally convex
Hausdorff topology on M. This topology is called the strong

topology and denoted by S(M,F).
Theorem 3.3. T(M,F) = S(M,F) << ¢ (M,F)

Proof. Let f be a 7T(M,F)-=continuous linear functional
on S, V. the null space of £, then V.M S is T(MF)-
closed. Since Vf/\ S is convex, by the theorem of Mackey,

'?ffw S is also ¢ {M,F)-closed; hence Vo is ¢ (M,F)-closed, so
that f is 0(M,F)=-continuous and so T(M,F) -continuous.

Now let f{x ] (CS) be a directed set converging to zero

o
in T(M,F), then

2 e _ " -
aq,(xa] = plx,x ) = <x x, > <xa,Lx$<f>> ,
a

where {L ,9}C LgP. Moreover, the mapping x =L ¢ of M in

X
o (M, F) “into F in ¢(F,M) is continuous, for if [y}
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converges to zerc in ¢(M,F), then by Theorem 3.1, <x,Ly$> =
Ly Xf> —> Q0 for any x € M. Therefore LSQD is o (F,M)-

compacts hence

2 o
OLCP(xa) =<Xa’Lx*CF> > 0 3

o
hence [x,} converges to O in S(M,F). Therefore any S(M,F)
continuous linear functional on S is also T(M,F)=continuocus
on S hence it is ¢ (M,F)-continuous. So we cbtain that the
dusl of M with the topology S(M,F) is also F; hence by the
theorem of Mackey = (M,F) £ S(M,F)= ¢ (M,F). This completes the

proof.

Corollary 1. Let f be a linear functional on M, then

the following conditions are equivalent.

(i) f is o(M,F)=continuous (iv) f is o(M,F)-continuous

on S
(ii) £ is S(M,F)=continuous (v) f is S(M,F)—continuou§
on

(iii) £ is 7T(M,F)=continuous (vi) f is T(M,F)=continuous
on 5.

Corollary 2. Let R Dbe a convex set in M, then the
following conditions are equivalent
(i) R is a'(M,F)-cl_osed. (iv) RNAS is ¢°(M,F)=closed for A> 0
(ii) R is S(M,F)=closed (v) RNAAS is S(M,F)=closed for A> 0
(iii) R is T(M,F)<closed {vi) RAAS is T=(M,F)<closed for A> 0.

Theorem 3.4. The mapping x =—> ax, xa is S(M,F)=-continu-
ous and moreover the mapping (x,y) => xy of two variables is

S(M,F)=continuous on AS XM, (x> 0).

Proof. Suppose that {x,} converges to zero in S(IM,F),
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then

o (ax,)” = <x a ax, 9> < [l a a]|<xaxa,ﬁp>

la*allag(x,)* —>0 for all e T ;3

hence {axa} converges to zero in S{M,F).

Moreover,
2 _ RO _ e
. a?{xaa] = <a X X,a.9> —-<Xﬁxa,La*Ré?> for all ¢e T.
Since L *Ra Pe T, [xaa} converges strongly to zero.
a

Finally, suppose that {x,} (CS) converges to zero and
(ya} converges to zero, then
J2

(x 3

2 G 2
aya) < ||xaxa|[ cch(ya) < (ya

o
il ¥
hence x,¥, converges strongly to zero.

This completes the proof.

Remark 3.1. In general, the *<operation is not S(M,F)-
continuous. Concerning this, we shall state the details in

chapter II.

Remark 3.2. We can consider other locally convex topologies

wlhe
e

%

family of semi=-norms I“q”“cFl ¢ & T} defines a locally convex

topology S MLF) and T(M,F) == S (M,F) < S(M,F)=% o~(M,F);

on W -algebras. For instance, put a_ (x) =cF(xx¥)1/2, then the

clearly the *=operation is continuous under the S*(M,F). It is
meaningful that the reader shall study more other topologies which
are weaker than the 7T(M,F).

The discontinuity of tﬁe *=operation does not necessarily
mean the weak point of the S(M,F); 4in fact, studying this prop-
erty more deeply, we can obtain a criterion concerning the types

of W -algebras [cf. Chapter II].
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Notices of §3.

In the theory of W*-algebras) the Mackey topology had
hardly been used; but the author believes that it must be a
useful tool in the theory; indeed, using the Mackey topology,
we shall prove the density theorem of Kaplansky in the next
section,

An inportant theorem of Banach spaces which is used in

this section is the following theorem of Banach:

Theorem. Let E be a Banach space, E* the dual of E
and C be a convex set of E*. Then C is G(E*,E)—closed
if and only if CMNB for any r(E*;E)-compact set B is
W(E*,E)“Closed.

This theorem is very often used in the field of functional
analysis. In the theory of W*malgebras, the first one who
used it seems to be Dixmier [15].

There are many topics concerning this Banach's theorem.

It is true in Frechet spaces. Grothendieck showed that it is
true for complete locally convex space E and subspaces C of
E* with deficiency one. Ptak studied a necessary and sufficilent

cohdition in order that it be true. The reader can find related

matters in the references of Ptak [27].
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ga. Density theorem.

We show the following

Theorem 4.1 (Kaplansky). Let B be a *-subalgebra of a
W -algebra M which is ¢ (M,F)=dense in M, then B S is

6 (M,F)=dense in S.

Proof. We can assume that B is uniformly closed. Let
a € M, then there is a directed set [aa} in B such that

X _ ¥ el
T(M,F)-lim a, = a. Since f|(1+aaaa) <1, (R Ri1+a -1 f}

o {xaa)

for any f € F 1is relatively ¢ (F,M)-compact; hence

| < a, R(1+a§aa}“1 > - <aa5R(l+aC: )=l £> | <€ for all a 2 ay.
Therefore,
% -
| < a(l+aja )"t £> - <a (1+a a )7}, £> | <€ for a1l
@ > ag...(1) .
Moreover,
¥y . 5 g
a(l+a a)~1 - %él+a;aa) 1= al(1+a™a) {(l+aaaa - (1+a a)}-

< (1+ aaaa)“l]

_ % L wl, % - * el

= a{l+a a) (aaaa - a J(l+a{I aJ

~ % ] o] % =1 o]
= a(l+a a) aaaa(l+aaaa) -~ a(l+a a) "a a(l+aaaa) .

Since lla 1+a a ) ll#g % and a: —> a*(T{M,F])’,

=1 -1

; s =1
a aa(l+aaaa)

b3 -] 3¢ 3
[<a(l+a a) laaaa(1+a a ) T,f> -<a(l+a a) > | <€

a“a
for all o> op...(2),

On the other hand,

a(1+a¥a)-la% (l+a

= a(1+a a) lan

)" -1 a(l+a¥a)ﬁ1a¥a(l+a‘aa)"1

_ ] “'l .
a ua}(1+aaaa) H

Qn
Q=

A
(
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hence

| <a(1+a*a)wla*{aa-a)(1+a; Oz)”lgf}l < € for all « 2_a2...(3)
Therefore,

| <a(l+a'a)”! - a(l+a: 0t)“l}f> |

s w] e -1 ELS -] S -
< | <a(1+$ a)™" - al(l+a a > |+ <a(l+aa )7" - aa(l+aaaa)]f>|

l =1

(1 a a ) A a(1+a$a}”l i

' ¢ * % % =]
< | <a(l+a a)~ a,a, a'a, (1+a a ) P>
-] %

a a (l+aaan

~1_

| <a(1+a*a)” a(l+a*a)=la*a(1+azaa)*lsf?’|

3 - 1 . b — l
! <a(l+aa )™" = a (1+aa )77, > |

< 3& for all cx3_>_ot3;

hence tT(M,F)-lim.2(aa(1+a:aa]“1) = 2a(1+a’a)”L .
a

Since i[2aa(1+a:aa)bllbg 1, the ¢ {(M,F)-closure of B(1S8
contains all elements of S such that {2a(1+a$a]'l | a  M}.
Let V be an extreme point of S, then

2V(1+V' V)™ = 2V( Zp + (1-p)), where p = V'Vj

hence 2V(1+V V)L

= V, so that the o (M,F)-closure of Bf1S
contains all extreme points of 3 and so it coincides with 8.

- This completes the proof.
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Notices of §ﬁ4.

In the proof of the density theorem, we use the following

fact: if a € B, then 2aa(l+a;aa)-1 £ B, This is trivial

h the case of B having unit, If B has no unit, B + A1 1is

P ¥ aa
a C ~algebra; hence (l+aaaa) L

}—l

e B+ A, so that
2aa(l+a:a e B.

Although, using the ¢(M,F)-topclogy, we stated the density
tiecorem, it is, of course, clear that BNS is also T(M,F)=dense
in S by a corollary 2 of Theorem 3.3.

The density theorem of Kaplansky is one of the most useful
ﬁeorems in the theory of operator algebras. To emphasize the
depth of this theorem, we shall state a counter-example in
Banach spaces: Consider a 1°({)) on some measure space .f),
then it is a commutative W*balgebra. Let 7%7 be a maximal
ideal of L®({l) and V be a J{Lm,LlJ—closed subspace of
LP(L)) with deficiency one, then there is a linear isomorphism
of 77/ onto V. Let V be the dual of E, V and 777 the
duals of V and /77 respectively; since E is {T(V*,V)-
dense in V', ¢7(E) is ¢ (%7 7)) ~dense in 77/ . If the
unit sphere of ¢*(E) is f(%ﬁﬁ;ﬁ7)-dense in the unit sphere
of 7Zfi we can easily conclude that the unit sphere of /77 is
W(ZZC#ﬁ(Eljucompact, so that 77/ is the dual of é*(E); hence
7)) is a W*-—algebra.

On the other hand, if {)  has no atomic part, 2777 cannot
have the unit; hence in this case, ¢*{E)f}8 is not f(?%?;ﬂﬁ)ﬂ
dense in S, where S 1is the unit sphere of ?2f$.
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§5. Linear functionals on Wkualgebras.

Definition 5.1. A positive linear functional ¢ on M is
said normal if it satisfies ¢ {l.u.b x ) = 1.u.b*?(xa) for any
a o
uniformly bounded increasing directed set (x ).

Then,

Theorem 5.1. Let < be a positive linear functional on N

then the following conditions are equivalent

(1) ¢ is normal

]
(ii) < is ¢ (M,F)-~continuous.

Proof. The implication ii) =—> i) was already proved.
Prove the implication i) ==> ii). Let {pa] be an increasing
directed set of projections such that x =—> ?(xpa) is o0 (M,F)-
continuous. Let p be the l.u.b of {p,}, then p is also a

projection by Theorem 3.4. Therefore,
|9 (x(p=p,)) 12 < @ (xlp-p,)x") Plp=p,) < (1) lp=p,) 3

hence ¢ (xp) is a uniform limit of {<(xp,)} on S, so that
¢(xp) 1is also ¢ (M,F)=continuous on S and so on M.
Therefore there is a maximal projection py such that
X — C?(xpo) is ¢ (M,F)=continuous.
Suppose p0~< I, and we take a 'st T such that
P(I-pg) < Wb(I-pO), then there is a non-zero porjection p; such

¢(p) < Ylp) if p< py -

In fact, assume that this is negative, then for every
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non=zero projection p (< lpr] there is a non=zero projection ¢
such that

g< p and Plq > Yl 3

hence take a maximal projection dj satisfying such condition,

we obtain g, = 1 = pg. this is a contradiction; hence

P(p) < Ylp) ifg<p< Py
Since any maximal commutative subalgebra of a W$7algebra p,Mpy

is stonean,

hence

| xlpgrp)) | € 19lapg) | + [9lxpy) | < 9 lxpg) |+ (1) 2 20 (py " xp) ) V2

2. 0 1/2
<..:.. |CP(XP0]| +CP(I)1/ V/(Plx_ Xpl} / P

and so ¢(M,F)=continuous
so that x —> @(x(p0+p1)) is S(M,F)-continuous, this contra=

dicts the maximality of pgys hence py = I. This completes the
proof.

The above theorem has an important meaning as followss

Let Nﬁ be the dual of M and we shall canonically imbed
the F into M*, then F is a norm=closed subspace of Nﬁ
generated by T. On the other hand, by the above theorem, T 1is
the totality of normal positive linear functionals. Since the
normality is determined by the order properties on M only, the
space F is the unique subspace of ﬁ*; therefore if FT = F; =
M for two Banach spaces F; and ¥, Fqy coincides with Fy,

when they are canonically imbedded into M.

This important property is not true in general Banach
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spaces. For instance, let () = (1,2,3, 000,71, ooo } be a dis=
crete space, then Cg(fl) = jg{fl), Cofll_xflj* =,fl(£2 «()).

Though la(fl) is isometrically isomorph to fl(j]_xfl),
Co(flJ is not so to GO{£1><§2), for if 00(11) is isometrical=
ly isomorph to Co(ﬂ x_QJ, () is homeomorphic to Ox(.

Hence, let P be an isometry of .fa(fZ) onto .jl(il_xfl),
and j9$ the dual of jp, then

10 Lo 400 )

4 <2 L 0xQ)
@ M

ColdL) Co(LLx{))

Put V = fﬁ(COLCLxgl)), then V' =.4a(11), but V is not 00(11).

Hence we conclude the following important theorem.

Theorem 5.2. let M be a W -algebra such that F. = I,
then the o (M,F)-topology is the strongest topology in locally

convex topologies in which the unit sphere of M are compact.

ale ke
25

In particular, if M = F; = 7

55 then F; = F,, where F, Fy and

F2 are Banach spaces.

Since the uniqueness in this sense is assured, we shall
simply call the topology o{M,F) on If the G-topology, and the
unique Banach space F is called the associated space with 71,
denoted by M,. Moreover the topologies S(M,F) and T(M,F),
defined by the unique associated space, are simply denoted by the

S and 7T topologies.
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Notices of §5.

Let [ea | @ € I} be an infinite family of orthogonal pro-
jecticns, then the sum 2 e, 1is defined as follows: 1let J Dbe
o
any finite subset of I, and put pj; = £_ e , then {p;} is a

oed
uniformly bounded increasing directed set under an order defined

by the inclusion of subsets J; hence it converges to l.u.b. p;
J
in the o <topology; morecver

2

o (l.&.b. py;~ps)° = @((l.g.b. pJ*pJ)l/z{l.g.b. pJ=pJ)3/2)

CP
1/2
< @lawb. prp) /2 |l for a1l e T ;
J
hence [pJ} converges to l.u.b p; in the S~topology, sc that
J

l.u.b Py is also a projection; now we define L e, = l.u.b Pye
J ael J

Then, form the proof of Theorem, it is easily seen that the
normality is equivalent to the complete additivity; namely let

(e, | o € I) be any family cf orthogonal projections, then

One, who fdund the final significance of normality, seems to
be Dixmier [15].

In this section, the reader knows a quite new class of Banach
spaces; namely the existence of a dual space E which has the
unique Banach spaée F such that F = E. Of course, the reflexi-
vity implies such property, but we can easily show that a reflexive
W -algebra is finite-dimensional.

It seems to be interesting to seek a characterization of

dual Banach spaces having such property.
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§6. ‘Polar decomposition of functionals

Definition 56.,1. Let ‘Pl,<P2 be positive linear functicnals
on M. We say that ¥, and g, mutually orthogonal and denote
by PyL @, if they satisfy [[9) = gl = [| @l + [yl -

Ilet f Dbe acg=continuous self=adjoint linear functional

whs
o

(f" = f) on M. Suppcse || f|l=1, then by the compactness of
ANS there is an element x of A such that f(x) = 1,
x| = 1.
Put & = {x | flx) =1, || x|]|=1, x e A}, then £ is
g —-compact, convex and an extreme point of 4 is also extreme on

S; hence there is a self-adjoint unitary element u such that

u=e - e?, where e 1is a projection and o = l-e, and more-
over f(e=e?] = 1; hence put fl(x] = f(ex) and fz(x} = ~f(e?x),
then ? ?
(f+£,)(1) = fl(e) + fz(e ) = fle) = fle ) =1
and
[(£+8,) ()| = [£lex) = £le'x)| = [£(teme1x)] < IFe=a"}l ll2h Il 5

hence || fy+f,]| =1, so that f; + f, dis positive.
The norm of fy on elMe 1is fl(e}, for supposing fl(x) >
f{(e) for some x e elke (]

x|] <1), then | x+egl|§ 1 and

f(Xme?) = f(x) = f(eq) > fle) = f(e?j, this is a contradiction;

hence fy(e) = |[fy]l on eMe, so that f,; is positive on elfe;

_ 1 . e
moreover fl §(f+fl+f2) and so fl is self=adjoint; hence
fl(xé) = f(ex*) = f(xe) = fl(x) = f(ex), so that f(xe) =

f(xe) for any x & M. Therefore

fle{xe)) = f({xe)e) = f(xe) = flex) ;
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hence

fl(exe} = flexe) = f(ex) = fl(x) .

so that f, 1is positive on K, analogously f2 is also positive
on M, and fyle) = ||f21|.

Hence

Theorem 5.1. Let f be a og=continuous self-adjoint linear

functional on M, then it is a sum of normal positive functionals

5
f; and f, on ! as follows: I = fi=f, and || £l = ||fl|L+|[f2H.
" HMoreover such decomposition is unique.
| We call such decomposition the orthOgoﬁal decomposition of
f and denote f; = 7 and £, = .

Now it is enough to prove the uniqueness only. For this,
we introduce a definition.

Definition 6.2. Let <¢ be a normal positive linear func-
tional on M. Put F =f{e | ®le) =0, e projection}, then
there is the greatest projection e, such that e, € % and e <

for all e € % . Then the support of ¥ is 1 - ey and denote

0
by S(¥).

The proof of uniqueness. Suppose that f= fl - f2 =
£y = f,. Then

g v T
£(5(£1)) = £105(67)) = 1 5501 = 1| £1ll = £5(8(57)) = £5(8(£1));
¥ ] ?
hence f2(8(f1)) = 0 and so fl(S(fl]) = l|f1|l; therefore
5(f;) < 5(f;). Therefore
bl
flfx) = £(s(fy)x) = fl(S(fl)X) = fz(S(fl)x) = f£,(8(f;)x) .

Moreover



T

¥ bl

£1(S(£))x) = £1(8(87)x) + £((S(£7) = 8(F1))x] = £(S(£)x) =

H
h
',_.J
>
g

hence fl(x) = f{(x) and analogously fz{x) = fz(x).

This completes the proof.

Finally we shall show a structural theorem concerning gen=
eral O —continuous linear functionals, which we shall call the

polar decomposition of linzar functionals.

Theorem 5.2. Let g be a ¢=continuous linear functional on
M, then it can be written under g = Rv?1 where < 1is a normal
positive functional, || gll= [Pl and V is a partial isometry
of M having the support S(¥) of ¢ as the initial projection.

Moreover such decomposition is unique.

We call the above ¢ the absolute value of g and denote

it by |g|. Then the final projection of the above V 1s

(18]

Proof. It is enough to suppose || gl| = 1. Let u be a

partial isometry of It such that g{u) = 1, then Rng is

b3 e

positive. Since w'u = u, glu) =gluuu) = Rug[uu ) = 1;
hence uu > S(R g).

Put w = u¥S(Rug], then ww = S(R,g); hence w is a
partially isometry having S(Rug) as the initial projection.

Moreover

Fae

R gl(x) = Rug(xS(Rug)) = g(xS(Rug]u) = glxw ) = Rw

U g(x)

for all x € M; hence R g =R 2.
Y W

Lemma 6.1. Let p and q Dbe projections such that p =

e

ww and q = w*w, then gl(x) = g{xp) and g{x) = glax) for
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all x & M.

Proof. Suppose that for some x4 (] %5l £ 1),
g {xO(Ihp)) = 3 > 0, then

H {nw* + X(Iﬂp]} {nw + (Imp)x*}{|1/2

| ow + x(I-p) ]

= || n%q + x(I=p]x°"||l/2 < (140212

On the other hand,

3 ke

glnw + xo(T-p)) = nglw ) + glxy(I-p)) = 1+ =~ (n2+1)1/2 2
s
> || nw + x5(T=p) |

for a suitable large number n.

This is a contradiction; hence g(x(I-p)) = 0 for all
x ¢ M; hence g(x) = gl(xp) and analogously g(x) = glgx),
so that g(x) = g{xp) = glqxp). This completes the proof.

Therefore

Cg(x) = glxp) = glxww ) = (R ,g)(xw) .

e

Since Rw*g is positive; g = qua where ¢ = R ,g and

W
moreover || ell = IR &ll = Il

Finally we shall prove the uniqueness. let g = qu’?
R qﬁﬁ. Put ww = D, wow' = P, ww=gq and wow =g,

W
¥ §

g(x) =P {xw) = F (xw ) and

x4 ? e 7 § N

P(x) = Plxq) =Plxww) =F (xww ) = (Q@ww) ;

hence ®(I-q) = 0, so that g = S{§) < G; analogously q =

G-
¥

¥ 3 ¥ N
Since w w = qw wg, put w w=h+tik (h,k e g'lq), U

S(??) <q and so q =

hen
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73k ' Pk sk ¥ 7 ek ¥ Pk ¢
Plw w) =% (qw WW W ) =@ (qgw ww W)
? -
=¥ (q) =1 =%) + i¢(k) ;
73 )
hence ®(h) = 1; since || h]|<1, h=gq; ||w wl/|[ <1 implies

v §

L Topk
k=0, sothat w w=gq and so Ww W= pWw=W=W{g*=WwW,

finally ¢ =1 ,g = ??. This completes the proof.
W

Notices of §6.

The existence of the greatest projection e, in Definition
6.2 is shown as follows: let a be a positive element
(|laljl< 1) such that P{a) = 0, then by Schwartz® inequality
¢(Ma) = 05 1let A5 be a ¢-closure of Ma, then it is a ¢-
closed left ideal; hence ngkpé}* is a W$*algebra, so that it
has a unit e 1in 1371{}$ and e is a projection in Mj since
a Efﬁ}ﬂzé}*, ae = ea = eae = a; hence a = eae< e and Ple)
= 0; therefore if eq,e, E_?f: CPLS;—%—EQ) = 0, so that there
is a projection e such that E;%Eé < e and e € @r‘ and so
e1.ep % € € @fé therefore the normality and Zorn's lemma assure

he existence of the greatest projection eg,. Theorem 6.1 is due

to Grothendieck [40].
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‘é?. The polar decomposition of operators

let a be an element of I and put h{n) = (a Fa —I 1/2
(n positive integer) and a(n) = a(a*a + lI}"l/z, then
a(n) a(n) = (a a + oI *l/za a( a¥a * aI)“l/z = 2.2 : hence

a a+ EI

|| a(n)|| < 1 and moreover a(n)(a’a + %I}l/2 = a.

Since lim || h(n) = (a*a)1/2H = 0, there is an ng for

n=>w
arbitrary € ( > 0) such that || hi{n) = (a%a)l/zjl < € (n > ng);
sle S

hence |Ia n) = a(n)(a a]l/ZH = || a = a(n)(a a)1/2H<C €

(n > ny). By the compactness of S5, there is an accumulate

point b of {a(n)}, and since {a(n)(a*a)l/z} belongs to

1/2 )2 < e

5
a + €83, b(a*a) £ a+€S; hence ||la-=Dblaa

Since €& is arbitrary, || a = bla a]l/2||= 0; hence

= bla a}l/z

1/2

let e and f be the range projection of (a a) and

sk .
(aa )l/2 respectively, then a = fa = fbe (a¥a)l/2; hence

= 2 4

V 3 B b 3K
aa= (a a)1/23b¥fbe{aka)l/2 and so (a a)l/2 (e=eb fbe)(a a)l/2

Ed
= 0. Since || b]}] €1, we can conclude e = eb fbe; hence put

u = fbe, then u 1is a partial isometry having the initial pro=-

* TR .
jection e. loreover aa = uf{a a)u 3 therefore the final pro-=
jection veu = f.
Now suppose that a = ujlal = u,la| satisfies the above
% *
conditions (|a] = (a a) 1/2 ), then wuja = [a] = uiu2 Since
% * * *
eujuse = uju, and [luju,]| <1, we have e = uju,; hence

'Lll = 'U.2-

Hence we obtain the following theorem.

Theorem 7.1, Iet I be a Wﬁmalgebra and a an element
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of M, then it can be written under a = v|a|, where J|a| =

(a*a)l/2 and v is a partial isometry of M having the range

projection of (ag"a)l/2 as the initial projection and the range
.
projection of (aa )l/2 as the final projection., Moreover such

decomposition is unique;
We call this decomposition the polar decomposition of

operators.
Notices of §7.

The range projection of a positive element h of M is
defined as follows: put F =1{e | eh =0, e projection}, then
by the same method used in the notices of §6, we can show that
there is the greatest projection eg in ?TE then we call
1 - ey the range projection of hj therefore hey = 0O dimplies
h = h(l-ey) = h(lwey) = (l-eg)h(l-ey) and moreover kh # 0 for
any 0< h<1=-eq; infact, if kh =0, by considering the
left ideal [Mk], we can easily show that there is a projection

e such that eh = 0 and ﬁETlg_e*g,lweO‘ a contradiction.
k

The polar decomposition of operators is a theorem which has
been very often used in the field of functicnal analysis. The
proof given here is new. Ti Yen [41] showed that the polar de-

composition is true in AW =algebras.
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§8; Spectral decompositions of operators

let h be a positive element of M and put e(h) =
S((M-h)T), where S(-) is the range projection of (+) for
non-negative number A, then it is clear that e(M) <elp) for

A 5 e

Lemma 8.1, A <A (n=1,2,... ) and A ==>}X imply

e(kn) —> e (M) (S).

Proof. ILet p = l.u.b. e(r R Al = h (unif.)

n)'
implies (hnlmh)+ —> (Al=h)" (unif.). Since (hnl—h)+{1—p) = 0,

(A1=h)"(1-p) = 03 hence e(r) <p, so that p =e(r).

]ﬁmméi& h&ﬂﬁke&]}g[ﬁﬂpqu,m+}ﬂ
{Ke[h)ﬂ(kl=h)+] < nfe(p)=e (M)} for u >A,

Proof., (AM=h)" = (Al=h)e())
(p1-0)" = (pl=h)elr) ;
nence pelp) = (sl=h)™ = he(s) and re(r) = (\1=h)* = he(n),
so that [pe(p) = (p1=h)"] = De(r) = (hléh)+l = h(e(pr) = e(M)).

Then

Mel(p)=e(h)) < hle(p)-e(r)) £ rle(p)=e(M)).

This completes the proof.

For any division & and § >0 ¢ 0 =hy <Ay < °*°

0 1
<A, = Il h|[+ & of the interval [O,]||h||+ 8] with 0 <
My = Ay q <€ (i=1,2,...,n), we have
n
m{a) = izlhi_l(e(ki)we(ki_l))

S

ne1s

l{kie(ki}=(hil=h}+} = Ihy_qe(y_p)=0v )7

i

-
=
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= Dhgelng) = (agl-h) 'l + Doelr) = (A 1-n)7]

= (|l e([In]l+ &) = ((IInl]+8§)1 = w7

< lzlmi(e{h ) - elng_q)) = M(&)

and

M) -ma) = gl(h.—xiwl)(e(mi)we{xi_ll)
.z

< €z
(

l(e(li) ‘pe(}\iml})
= € {e(]

|hf[+8)-e(0)} < €T 3

hence by making € —> 0, (| h|l +&)el(|ln|l+5) = {(|Inll + §)1-h}"
il +&
=j Ade ()
0

Since e({lh||+&§) =1 and

[(]ln]l+ 81 - n}’
{linjl + § }1=h, we have

(1lnll+ el nll+8) = [l nll1+§)1-n}"
= ([|nl]+ &)1 - {(||n]|]+ §)1-h} = h; hence we have h =

Hnll+S IFYE
. ade(n) for § > 0, so we have h = . ade(n) .
Now we obtain

Theorem 8.1. For any self-adjoint x of M,

there is a
system of projections {e(n)]}

(=0 < A< ),

called the resolution
of unity such that

(i) A< 7 implies el(n) < e(u)
(ii) kn'T A implies e(r ) = e(r) (s)

(1i1)  e(]ln]l+ 0) =1 and e(=||hl]) =0

[fnfl+0
(iv) ij Ade(n)
=l nll

H

where the integration is of abstract Radon-Stielf jes type under
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the s—topology. Moreover such representation is unique.
The unicity of the representation can be easily proved

from our construction.

Notices of ‘§8.

A method, which is used in this section, is due to the

method of Kakutani in Al-spaces.
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§9. Spectral decomposition of functionals (Radon—Nikodym's

theorem)

The above method of giving the spectral decomposition of
operators is applicable to spectral decomposition of functionals.

However, for this we need some assumptions.

Definition 9.1. Let M be a W$malgebra, P the positive
p.rtin of M. We call trace on P a functional X defined on
P, with values > O, finite or infinite, having the following
properties

(1) If a,b e P, x(a+b) = x(a) + x(b);

(i) If a &P and A is number > 0, X(ra) = A%(a)
(we define O + © = 0).
(i11) If a e P and u is unitary, x(u Tau) = %(a).

We-say x is faithful if X(a) = 0 implies a = 0,
We say that x is finite if X(a).< +0 for all a & P.
We say that x 1is semi-finite if, for every non zero
a ¢ P, there exists a non=zeroc b of P majorate by a such
that x(b) < +ow.
We say that x is normal if, for every uniformly bounded

increasing directed set (a JCP, Xx(l.u.b a,) = l.u.b x(a).

Proposition 9.1. Let M be a W*-algebra, X a trace on
the positive portion P. The set of a & P such that %(a) < +
is the positive portion of a two=sided ideal 477 of M. There
is a unique linear functional X on 27 which coincides with
x on ?7NP, and one has Xx(ax) = X(xa) for a ex7; x ¢ M.

Finally, let a €273 if X is normal, the linear functional
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x —> x(ax) is G¢—continuous.
Proof. Put F = {a | x(a) < +0}, and ?77=
{ b | bb e Fl. Let b e? and u unitary of M, we have

Wb bu e F,
b'b e F,

It

(bu)%(bu)
)

fl

(ub)  (uh)

hence bu, ub € 77; since any element of M is linear combina-
tion of unitary elements, bx, xb e 7/ for x e M, be 77.

Moreover, if b,c & 77, (b+c}$(b+c)*5 2(b$b+c$c) e F i
hence b+c € 7/, so that ?7’ is a two-sided ideal and so
777/ is also a two-sided ideal.

Let a € ?f; then éhﬂa e 77, so a € Y/7/ ‘hence
FC (797N P,

Conversely, let d e 7/+/]¢ d 1is a sum of elements a*b
with a,b € 27. (In general, a two-sided ideal 7 is self-
adjoint; in fact let a € 19’ ahd put a = V]a| the polar
decomposition, then J|a| = V'a and a = IafV* = Vav belong
to A7),

From the identity ua*b = (a+b)*(a+b) - (a—b}*(awb) +

i(a+ib)” (a+ib) = i(a=ib)’ (a-ib) ,

if d> 0, it is majorated by an element of the form

n
T a.a. (ai £ 77); hence de %, so that (27-77)0VP =795,

Let a e J7°77. We have a = a; + ia, with aj,a, ¢ 777,
aq and a, self-adjoint. There are spectral projections p, g
of ay such that ptq = 1, pay =z 0, qal*g 0. Then paq ,
~qaqy € Y/:77NP = F and so aj = (p+q)a1= linear combination of

elements of ?73 hence we obtain ¥7+77 = the totality of linear
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combinations of elements of ?Fi Therefore vake /7 = 7777,
we conclude the first part of proposition 9.1.

Every element of 27/ is combination of elements of
77OV P, and the properties of Xx imply that there exists a
linear functioumal X on 7%/ which coincides with X on 2?/NP,
If a e 777 and if u is unitary, then (v au) = %(a) by the
properties of 3 therefore X{au) = E(u$auu$) = x(au}j since
every element of M is linear combination of unitary elements,
we obtain =x{abj = x{ba, Ffor a e »7 be M Finally, let
a € 77/ and put Pyx; : x(ex) for x e M. We shall show that
® is ¢ -consinuous if x is normal.

It is enough to assume a » 0. Then for x> 0

— /2.
P (x) = wlavt/ P17 < xtxl/zﬂx /2 > 0

- YU
therefore 4 is positive.

Lzt (:,) he a uniformly “cunded increasing set of posi-
1/2 1/2: JL/.,.[lub}C 1/2

- r B —I e : -
since a'/* o 7, Xf/‘al /% ¢ 775 ‘Thence al/zxaal/2 e M73
/ y

o
al s a - " D
put xiira1fr“* 0 K;(iim;t’s Ehen 0_1/2 - Ixi/231/2|2
and xa/da:;f‘ - V;:i’”a*‘QIEV" 2 V(G¢f“x al/z V"¢ hence
o f Lo - -
ﬁ(alfzxcalf?} = Eufia*’zxaal/z}ﬁm} = E{xi,?axiiz‘ = E{axa);
therefore Ty tha rormalit: of X, 1.u.b Efaxa) = x(a(l.u.b Xa))’
a8 o
so that ;° is fesonbinuous. “his completes the proof.

The Ldeaticelly sero fvneticnal on M and the identically
infinite wuactlonal o M with an exception of 0 are trivially
traces, but such triees have nearly ao meaning. One, which is

Ty

interesting, 15 a2 W -algebra having a non-trivial, normal semi-
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Tn commutative algebras, any normal positive functional is a
finite normal trace. In chapter II, we shall show there is a non-
trivial normal semi=finite trace in a fairly wide class of W*=
algebras (semi=finite type).

Henceforward, in this section, we shall consider a W$ﬁ
algebra M which has a non~trivial, normal semi=finite trace.

At first, let M be a W*=algebra with a normal finite trace
X (therefore we can assume X to be a linear functional) and ¢
be a o=continuous positive linear functional such that x(p) =0
implies %®(p) = 0 for projection p & M, so that s(¢) < s(x).

Let el(A) = s((hi;qﬁ+} for non=negative number A, then
| (AF=) T (1=5(X))] = | AF=p) (e (M) (1=s(X)))| < AX(e(M)(1~s(X))) +
Ple{M)(1-5(X))) = 03 hence e(r) < s(x).

Lemma 9.1. e(r) <elr) for A < p.
Proof., pX=F = (p=A)X + (Ax=p) = (,tf.m?&)Re(}\)‘}E + (hf=-cp)+ +

o=

(ﬂ=h)lee(h]¥ - AX=9) .

: - - _ -+
Since Re(h]x’ Rlﬂe(h)x >0 and {(ﬁ-h]ﬁe(h)x + (AX=9)" }L
I(ﬁﬂl)Rl—e(h)E - (MX=¢)"|, by the uniqueness of orthogonal de=
composifion (g§=?)+ > (ﬁ=h}Re(h)§ + (hi;?)+ 2-(h§=qﬂ+; hence
e(h) <el(n).

e(h,) —>e(r)(8).
Proof. (AX=9) = (hni=q3 = (h=kn)i
= (x99 = 07971+ [0 3%N7 - (Wx=9)7} .

Since (AX-9)% > (hn§=?)+ and analogously (A x=%)" 2



1.39
059)7, 1] =ARI 2 | 059 = 0 F9)ll 5 hence (v F-p)*
> (h§=¢f+ ( in norm).
Suppose that e(kn) %> e(n) (8), then there is a subsequence

{}”n .

1 of {hn] such that A MA and e = l.u.b e(?&n ) <e(M).
J J j

n.
3 J

On the other hand, let p < leg, then (Kn.§=?%+(P) =0,

. J
so that (Kx«qﬂ+(p} = Q0; hence p < l=e(MA), a contradiction.

fuza

_ and
Lemma 9.3. e(0)=0/1lim e(A) = e(w) = s(x).
A =>w

Proof. It is clear e{0) = 0., Put lube(lh) = e(w) and let
A >0 '

p < s(x) = elw), then AX=@)(p) = =(Ax=9¢)" (p) <0 for all Aij
hence AX{p) < ¢(p) for all A > 0; hence x(p) = O and so

p = 0.
o
Lemma 9.4. < is representable as follows: q)=\5 hdRe(k)E'
under the norm of My . 0
- + - —
Proof. (Ax=w) = Re(k)(kxﬁqn = AR X = Re(h}qj

all A > 0.
Therefore, for um 2> A

Re(#f? N Re(h)CP - Re(g)me(l)q)z Re(g,h)Le{ﬂ,h)$3_ where

On the other hand,

=

- + _
Le (jt.’.s?\_ ]Re (r””}\ ) ({-"«X‘:CP] = Le (}-557\- )Re (;’.3,7& )Re (af-'!' } (,E-';X“CF)

Le(u,h)Re(ﬁgh)(#xmqj = ﬁRe(ﬁgh)E-g B~e(ﬁ,h)q’2'o
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and,

Fo (g, ) Be (rn ) WF=F) = ~Lg ?L)Re(,u,,x)(m“"f’)'= < 05 hence

)

MR = Bo(n)X) S R ()P = Ry ® S #(Ry ()% = Ry y®)

Hence, for any division Ao 3 0 = M <Ay < eee K hn =

1
A< o of the interval (0,/\.) with 0 < Ai=he 4 <€ (i=1,2,.00,1)

2

we have

b
3

el = B o B = Reo, ¥ S 2B )? ™ Bepn, )9
" Ro(y ¥
n —_— - —
S5 M B )® = Rep ¥ =10
and
n — _ -
M(A)=m(a) = iEl(hlm}ial)(Re{hi)x - Re(hi=1)x)
€ ; X X
= 1§l(Re(K1)x ) Re(hi=l}XJ
= E(RE(A);&QRQ(OJE) < £€Xx P
A
hence by making € —> 0, Re(ﬁjq}= JﬁhdRe(k}i'.
O O
Moreover, AlémmRefﬁ)quRs(i) P =C?=j‘o ?\dRe(Mx .

Therefore we obtain

Theorem 9.1, ILet x be a normal finite trace on M, f a
G =~continuous self-adjoint functional such that X(p) = 0 implies
|£](p) = O for projection p. Then there is a system (e(A))

of projections of M (=o <A < ®w} called the resolution of

unity such that
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(i) A <p implies e(h) < el(n)
(i1) » <M and A —=>1r  imply e(?xn) ~>a(n) (3)
(iii) lim e(A) = 0 and lim e(r) = s(x)
A €>#jrm A => @

(iv)  £= [ MR (34,

=(0
where the integration is of abstract Radon-Stieltjes type and

(v) 1l £l J | dllﬁems‘clhj M aE(e0)

e =00

lMoreover such representation is unique.
The unicity of the representation can be easily proved

from our construction.

Corollary. Iet f be a =continuous self-adjoint linear

functional which satisfies the above assumption, then

oo
f(x) = Jﬂ Adx (e (X )x) for all x & M,
=0

Next we shall consider the case of having a normal semi=
finite trace. Let x be a normal semi-finite trace of a W
algebra M and jﬂ be a 0=continuous positive linear functional
such that Xx(p) = 0 implies “J{p) = 0 for projection p e M.
Then by Propesition 9.1, X% is extendable to a unique linear
functional X on a two-sided ideal #» and MNP =
{a| x(a) < +o}.
be the set .h £ I such that O g‘ﬁ.g l, and r

1 A
be the l.u.b. of {(P=Ax)(h) | h e Pl} for positive number A.

Iet P

Then there is a sequence (h_ ) of P such that r, = lim

o n
P-r%) (h).
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On the other hand, by the 0 =compactness of Pl there exists

an accumulate point hy of (h ) in P;5 hence we can construct

a directed set (hn ) as follows: for any natural number m, we
(a4

can take an «,  such that n > m if a> o  and lém hnoc = hg.

Suppose that 1 > qﬁho) - hi(ho) + ¢ for some € > 0, then
there is a projection p belonging to 77 as follows: VA‘>
Ping) - \E(h}Zpnl/2) + 5 = Png) -« aZ(hgp) + §

Since lim { ¢(h, ) - k?(hﬂ p)} =¢(hy) - kE(hOp), we have
o

a a
e — ?
Yy >'?(hna) ~ lx(hn p) + E Z'¢(hnaj - lx(hna) + E for a> a }
hence "f > l:P b (2(h = KE(hn )) + E =7, * E, this is a con=
a>a a a

tradiction, so that 'Yl =‘?(ho) = Ax(hg).

Let e be a projection such that hpe > ue with a w > 0,
then ¢(e) - ax(e) > 0, for if ®(e) - rx(e) < O, (#=rx) (hy=se)
> @=2x)(hg) and hy-ne ¢ Py, a contradiction.

Since the range projection s(ho) of hg is a l.u.b of an
increasing directed set of projections satisfying the above condi=.
tions (§-2%) (s(hy)) = Y,

Let p,,p, be projections such that (?—lx}(pl) = (7~hx)(p2)
pl+P2 } =Y., hence (¥=-2x) (sl +p2)} = T

A
_therefore there is the greatest projection p(2) such that (P=0%)

(p(a)) = 7.
Since —LEL——lZP x(p(h)) p{A) & 7. Let h be a self-

'=2(K, then (P=1%) (

adjoint element of M, then
0 < ($-2x) [p(n) - (1+sih)(lmaih}=lp(?»)(l+aih)*l(l-aih)}

= (f=2x) (Rei(p(n)h=hp(n)) + Ezp(k)gl+ s%m(k)g2'+€2g3p(k} +

+ ez ph)h + Pgp(Ngg) =
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= 261 (9=2%) (p(A) h=hp(n)) + 0(e%) for all small el 3

hence (P-2%) (p(n)h-hp(n)) = O, so that (?—li)(p(l)x) =
(Fr%) (xp(n))} = (P=2%) (p(AM)xp(r)) for all x e M,
Now put e(n) = 1-p(n), then (A x-9)(a) > O for

0< a< e(h). Moreover
(A%=9) (x) = (W%-9) (e(M)xe(n)) + (Ax=9) {p(A)xp(A)) for x e .

Lemma 9.5. e(An) < e(#) for A< n.

Proof, P=AX = Peux + (u-\)x = Ro () (@ wrx) + Rp(u) (9=ux)
+ (““h)Re(u]E + (“‘k)Rp(m]E = Rp(u)(¢“di} + (mml)Rp(a)E +

Re(&)(?magl + (u=A)R on 7. Then,

e(u)E

(F=2%) (p(N)) = (P=ux) (plu)p(A)p(u)) + (u-N)x(p(e)p(N)p(e))
+ (P=ux) (e(w)pnyeln)) + (u=n)x(el(w)p(N)ela)) .

Put h = p(n) + e(u)p(N)e(u)
= (Peux) (plu)) + (a=n)x(p(u)
(u=r)X(e(w)p(A)e(u) > (P=2%)
x((1-p(n) ) p(2) (1-p(n})) = x(
(Ax-9) {e(n)p(u)e(n)) > 05 hence {(A\x=9)(e(A)p(u#)e(r)) =0 and so

, then h e Py and (P=2x) (h)

)+ (P-ux) (e(u)p(n)e(uw)) +

(p(n)}; hence x(pl(x)(1=-p(r))p(u)) =
e(n)plu)e(r)) = 03 on the other hand,

e(Mplule(n) = 0, so that p(u) < 1-e(n) = p(A). This completes

" the proof.

Lemma 9.6. A, < A (n=1,2,...) and » =2 imply

e(ry) —> e(r)(s).

Proof. Suppose that e(h ) 4ﬁ> e(rn) (s), then there is a sub=

sequence [ln 1 of {hn] such that A A2 and p = g.l.b pin, )

J J ny J
> pa).
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Let 0< q< p=p(A), then (W%=9)(q) > 0 and (0  ¥=7)(a)
J
< 0, so that 032 lim (A  %=9)(q) = (Ax-¢)(q) > Oj this is a

o nj J
caontradiction.

Lemma 9.7. 1im e{n) = e{+C) = s{X)=s(¥) and 1lim e(r) *e(+n)=
A +0 A=>> 0

]

= s(x) (s).

"zle(h)s (X)eln)) -

Proof. (A%-¢) (e(r)s (X)eln))
ple(n)s (Relr)) = 2x(e()s (X)) - Pleln)s (X)) = 0, where
s (%) =1 - s(x): hence e(}\)s?(i)e(}\) = 0 and S?(i)e(?x}/;o so that
e{n) < s(x); hence e(+o) < s(x).

Conversely let p< s(x)-e(w), then p< s(%)-e(n) for all
A > 03 hence ax(p) < P(p) and so Xx(p) = 0; this means p = O,
so that e(+o) = s(x).

Next let e be a projection belonging to 777 such that
0< e< e(+0), then e< e(u) for all «> 0; hence ux(e) > Ple)
and soc e< s(Xx) - s(f)3 this means e(+0) < s(x)=-s(¥).

Conversely let p be a projection belonging to ?m such that
p < s(X)-s(¥). Then,

(A x=9) (p) = (A%~ (e(n)pe(n)) + (Ax=®) (p(A)pp(n)) = ax(p) 3

hence ax{e(n)pe(n)) = ax(p) and so Xx{p(l=e(r))p) = 0; therefore
pllee(N))p = 0 and p = e(r)p, so that s(x) = s(¥) < e(r) for
all 2> 03 finally s(x)-s(¢) < e(+0).

0]

Lemma 9.8. @ =j KdRe()\)E under the norm of M, .
+0

Proof. Let A > 0, then 1l=e(n) = p(A) € 2, so that
e(zl=e(n) e 2 (> > 0). Since Ron)¥ = Le(m’sf=
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= Re(?\)Le(L)C? for all A > O,

o (u)-e (1) (59 = Re () e a)Re () (57) 2 O

Retﬂ)-eil}(?&-?) - Re(ﬁn)me[MRp(?\)(?&'?) <03

i

hence }‘(Re(qu)-e('k}){} < Re(“)i:puRe{MCPi “ (Re(m)-e(?\.)z) '

Let &> 0 and for any division A3 & = ;\O*C }”l<”'< )“n
= A < +o of the interval ({§,A) with O0< A\, -A ;< €

(i=1,2,...,n), we have

n _ n
m(s) = izl ki—l(Re(hi)-e(}.iulJXJ < 1§1 (Re(?\.i)q} - Re(ki_’lﬁ)
"R~ Fe(s)? S Z MBRer ) e(n, ¥ T M)
and
n -—
M) -m(a) = 151 (7‘1 = My l)(Re(hiJ-e(hl lJX)

A
hence making e —> 0, R @ ~ R ()% = J MR ()% 3

therefore by Lemma 9.7, 1lim (Re(/uff’ - Re(é]c?] =

= 0

6>+0 ro
Re(+wa? - Re('l'O)c? =¢=0 =9 =] hdRe(Mx . Therefore we obtain
+0
-~ %
Theorem 9.2. Let x be a normal semi-=finite trace on a W =

algebra M, <% a ¢ =continucus positive linear functional such that
x(p) = 0 implies %®(p) = O. Then there is a system (e(r)) of
projections of M (0< A< +®), called the resolution of unity
such that

(i) 2 < ¢ implies e(n) < elw)

(i1) A <A and A => 1 dmply e(r,) —> e(r) (s)
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(1i1) 1im e()) = e(+0) = s(F)-s(¥) and 1lim elw) = s(X)
A > +0 A = ©
(iv) %(1-e{n)) < 40 for 1> 0

(v) o @
qJ=J1 “dR x = lim hj AdR _ X,
0 E(}\} (S\f'ko 5. e(h) 8(5)

where the integration is of abstract Radon-Stieltjes type under

the norm of M,

w

(vi) ¢(x) = 1im | AR e(g)E(x) for all x & M

§>+0) N
(vii) F(a) =\Jnmkd§(e(k)a] for a & 7
+0

(viii) |lPll= SI;TOL MR ) e (6) X =5J;>irfojgm‘£(e(x)-e(§));

Moreover such decomposition is unique.

Remark. It is an interesting, but very difficult problem to
formulate a theorem of Radon-Nikodym's type without the assumption
of semi-finite trace. If there is a normal semi=finite trace x,
we can prove the following: let % and ’y, be two O =continuous
positive linear functionals such that ?-Efyf and s{¥), s(¥) < s(x),
then there exists an element t5 of M with I tolﬁg_l such
that Plx) =Yltyx t’é}.

This form seems to be the simplest one in general W
algebras, which we can call a theorem of Radon-Nikodym3 therefore
it is interesting to study the following question: let ¥ and 10
tonEontinuous positive linear functionals such that P < }. Then,
is there an element ty of M with [[tyl/]< 1 such that P{x) =
}b(toxtg)? We can show a more weak form as follows: Under the

above assumptions we can take an element hy of M with

0< hy< 1 such that P(x) = %]lf(hox + xhg) .
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Proof. Let Ay = {h | || hl'llg_ 1 and h = h}, then Ay is
G —compact convex; hence under the mapping h —> %(Lh]f/ + Rh)b),'
the image % of P, is o (M, , M) ~compact convex.l Suppose that
CPQ"}J, then ‘POQ‘?D, where CFO and ‘;E’O are polars of %
and % 1in the self-adjoint portion of M; hence there is an
element x5 of M with xé = Xy such that 'ff(xo) l < 1 for all
f e C‘F and l‘P(xO)l > 1. On the other hand, let Xy ='x5| - xa,
then 5 Plle=(l-e))xytxgle=(1-e))} = VAxj + x5) 2 Plxg * xg),
where e 1is the range projection of xB; hence ?(xg +x5) €1
and analogously %"H((lwe]we)xo + x5((1=e)=e) } = -'Wxs + xg) <
—?(xg + x5) 3 hence -CF(XS + xg) Zz =1, so that -1 < -‘P(XB + xg) <
?(xp) = ?(xa) - ¢ (x5 < ‘]D(x'éJ + x5) € 13 hence [9(xg)l <1, a

contradiction; therefore ¢(x) %Y/(hl}: + xhl) for some h, £ Aj.
Moreover, since 9> 0, ¥(1) = Y/(hz - hi_) >

5 ¥lhy(p=(1-p)) + (p=(1=p))hy) = Y-(h] + h]), where p is the

range projection of h{:; hence "f/(hi) = 0, so that P(x) =

%V/(hix + th) . This completes the proof.
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Notices of §9

The theorem of Radon=Nikodym tells us one aspect of W
algebras (at least, semi-finite ones); namely, a W*-algebra is a
non—commutative extension of L¥-spaces and the associated space
is also one of lespaces.

From such point of view, Dixmier and Segal developed a non=
commutative theory of LP-spaces.

Dixmier constructed Lp-spaces by the abstract completion
and showed LP (p> 1) is reflexive. On the other hand, Segal
[33] realized LP (p=1,2) by closed operators on hilbert spaces.
From the results of this section and the polar decomposition of
functionals, the reader can easily obtain the results of Segal.
The method used here is analogous with one of Pukansky [28] in

some parts.
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élo. Continuity of Isomorphisms
Let D be a B*-algebra, D" the dual of D.
~Definition 10.1. A subspace V of D* is said invariant
if £ eV implies Laf, Raf e V for any a,b & D.
Then,
Proposition 10.1. Let V be an invariant subspace of B*
which is - G[D*ﬁD)mdense in D*, then VO s* is

3 b S .
c(D ,D)=dense in S, where S is the unit sphere

of D*.

Proof. Ra is a linear operator on the normed space V and
moreover |[R,f|}= S If(xa) | < Il £l all 5 hence [IR IS [lall,
where ||R || is the operator norm of R, on V.

Suppose that R, = 0, then (R_f)(x) = f(xa) = 0 for all
f eV and x e D. Since V is E(D*,D)—dense in D*, ax = 0
for all x & D hence a = 0, Moreover Rab = RaRb and so the

mapping a —> Ra is an algebraic isomorphisms hence by the

minimality of B =norm, [fRa[|= |lal|] for all a e D. Therefore
I all = [f(xa)| = sup |L.f(a)]< |f(a ;
I xl 1 g1 XS peing
fevns feVng™

so that |lall= sup |f(a)| for all a e D; hence the bipolar

feVNnS
of VAS" in D° is ¥

, that is, VNS is W(D*,D}«dense in
S*. This completes the proof.

In general, let E be a Banach space, E* the dual of E
and V be a subspace which is norm-closed and G(E*,EJ-dense in
E*. Then, if any norm=-closed, proper subspace of V 1is not

¢ (E ,E)-dense in B, V is said to be minimal.
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Then the following lemma is known.
Lemma 10.1. If there is a minimal subspace V in E such
that VNS" is WTE*;E)hdense in 8*5 where S is the unit
sphere of E$, then E is the dual of V.

From the above proposition and lemma, we can easily obtain

Proposition 10.2, For a given B%walgebfa D, if there is
an invariant minimal subspace F in its dual D“, it is a

W-algebra and ¢ (D,F) is the 0=topology of D,

Now we shall show the following theorem

Theorem 10.1. Let M be gz W%malgebra, N a Bﬁ-algebra
and P be an algebraic isomorphism (not necessarily adjoint
preserving) of M onto N, then N 1is g W$-algebra and f is

0 ~bicontinuous.

Proof. By Rickartis theorem, P is uniformly continuous.
x %
Let M  and N be the duals of M and N respectively, and
M, the associated space of M. Then,

for any f ¢ M and x € N
PTH@LES = <) s,

T

where <a,bt>, (resp. ~<a?,be>NJ is the value at a (resp. a )
of a linear functional b of M (resp. b of N*), and
(e"H” is the dual o p-l,

Since thl is uniformly bicantinuoué, {f“l)* is a bi-

5

continuous mapping of M with the topology CT(M%,MT onto N

with topology <T(N¥,NJJ and so (Pml)¢(MwJ is a minimal sub-

B

space of N, Moreover, if gf“l)$(?) £ {F"l)*(PL}

-3 3



-1, .
= < (x) ,R >
g L) ptp) 7
]
=< x,{(p") (R L >
P e S )y P
-1\ % _

Since R l(d %ﬂ ? belongs to M, gp 1) (M) is an
invariant subspace of N*: hence by Proposition 10,2, N is g

‘ualgebra. As [T(N;JQ ")F(M#}J 1s the o -topology of N, ¢

i1s ¢™~continuous. This completes the proof,

Corollary 10.1. Under the assumption of Theorem lO.l,ap

is T-bicontinuous,

Corollary 10.2. Under the assumption of Theorem 10.1,Jp

1s s~bicontinuous on bounded spheres,

Proof. Let {Xd} {llxaiﬁg)l) be a directed set of M

converging to 0O under the S=topology, then for any f e I,

4

[f(xx V] o= IR [£] (xx I = ”fl (xx V)
< Il (x x 1/2 [£]( (v x x,V) 1/2
gg][fﬂfLQ {LVwRfof x x 1/2 =—> 0 (uniformly with

respect to x ({f x[|< 1)

For any g = 1,

lelyplx )} = <yplx,), ey
PO Y)x,) ey = <P, 0 (8)>y,

i

Since fﬁ(&) e M, g{yp(xa}l => 0 (uniformly with respect
to 'y such that He™ (7)< k)3 hence if g 1is positive,

g(ﬁ(xa]ﬁﬁ[an)«~%> 0, for {p(xa)} are bounded in M, Thig
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completes the proof.

Corollary 10,3. Under the assumption of Theorem 10.1, and

moreover if p is an *=3 somorphism, P is s=bicontinuous.

Proof. Let < be a positive functional on N; then

P («¢) is also positive on M and moreover
<plx') plx) 9>y = <p(x x) o>y = <x x, p()>y 3 hence p is
s=bicontinuous.

Remark. It is an open question whether the assumption of

"adjoint preserving' can be removed in the above corollary.

Corollary 10.4. Let M be a’W$=algebra and P be an auto=
morphism (not necessarily adjoint preserving) on M, then P is

0~ and T-~bicontinuous, and it is s-bicontinuous on bounded spheres.

Remark. In Theorem 10,1, the assumption of "isomorphism"
is essential == in fact there is an *-homomorphism of a W
algebra onto another W*—algebra which is not &-continuous, we
shall show this in Chapter II.

In order that a homomorphism of a W*—algebra onto another
W*walgebra be (¢ =continuous, it is necessary and sufficient that
its kernel is 6=closed.

Definition 10.2. Let & be a linear mapping of a W -
algebra M into another W*malgebra N. We call normal if it
éatisfies the following conditions

(i) &(a) >0, if a> 0

(i) &(l.u.b a) = l.u.b $(a,) for any uniformly bounded
o o

increasing directed set (a,) of M.
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Then
Proposition 10.3. Let & be a normal linear mapping of
M into N, then £ is¢=-continuous.

El

Proof. Let g e N, and positive, then

i*(g)(l.i.b a,) = g[%(l.g.b a,))

= g(l.u.b g(aa]) = l.u.b gl&la,))
a o

l.u.b gx(gJ(aa] for any uniformly bounded increas=
a

e

ing directed setj hence %ﬁ(g) e M,, so that % is g=continuous.

Corollary 10.5. Let £ be a normal *-homomorphism between

mealgebras, then 4P is ¢6,T and s-continuous.

Remark. In studying the structure of W*aalgebras, it 1is
necessary to introduce some equivalent relation. The most
natural equivalence relation is defined by *-isomorphigmi if
there is an *-~isomorphism between two W*walgebra M and N,
we say M is equivalent to N and denote by M~ N, Then we
have important unsolved problems.

(i) Suppose that M 1is algebraically isomorphic to N.
Then can we conclude M ~ N?

(i1) Suppose that M is anti=*<isomorphic to N. Then can
we conclude M~ N? (We mean by an anti-isomorphism P ¢
and plxy) = ply)p(x)).

In all known examples of W¥=algebras, the problem (ii) is

ahe
)"l“

plaxtuy) = aplx)+up(y), ,P(x#:) = p(x

positive,
From the procf of Theorem 10.1, it is easy to show that an

anti-algebraic isomorphism is ¢ -bicontinuous.
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Notices of §10.

The continuity of *-isomorphism has been studied by a
number of authors. Dixmier [3], using the normality, gave an

e legant proof.

Here. we shall give the proofs of two lemmas used in this

section,
1. The minimality of B —norm
(1) (Kaplansky) TLet C({l) be a commutative B -algebra,

[| |l the B -norm and ||'||l another norm under which C{{))

becomes a normed algebra, then |[|-+]] < ||'||l.

Proof. Let ¢ e.fls then x =—=> x(t) 1is a characterj since
from the property of C({l) |)-[h=continuous characters

are dense in () therefore we have

Ix(t)f'é_flx!H ¢ hence |lxl|l= sup |x(t)]| < ||xfil.
tell
(ii) (Bonsall}) Let D be a B -algebra, |[|-|| the B ~norm
and H-fll another norm under which D becomes a normed algebra.
then 1t -l < -0, Il = Il -11.
Proof. By the above lemma, Hxll2 = || x x||< IIxTxlll-g

Ty el < 1l Il < aC Tl = Hxll® 5 hence

Hxlly = Il

2. Lemma 10.1 (Dixmier).

Proof. Let f be a bounded functional on V and put ¥l =
{x | f{x) = 0, x eV}, then by the minimality of V, e 1is
not U(E*;E)-dense in E*; hence there is an element g of E
such that g(?)p) =0, so that f = Ag. This implies the dual of
V coincides with E as the set.

Moreover (V1) §7)90 = SO; hence (VAN S$)O = the unit

sphere of E, so that E is the dual of V.
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§11. The continuity of Derivations.

A derivation of an algebra is a linear transformation

] ] 9 ¢

x ==> x  of the algebra such that (xy) =xy+xy . If a
belongs to the algebra, the application x ==> xa = ax 1is the

inner derivation defined by a.

Put D(x) = xa-ax, then g%(x) = (exp tD){(x) is an inner
C P (x)=po(x)
automorphism and 1im o = D(x).
t =0

4
Proposition 11.l. Let B be a commutative B =algebra, then

7
every derivation x —> x of B 1is identically zero.

?
Proof. It is enough to prove that x = 0 for all self-
adjoint element x of B, Let C({l) be the function-represen=
[
tation of B and A be any point of L1, then {x - x(A\)I} =
9 ? v
% ex(M I3 since I = (I+I) =1 .I+I-I =213 hence I =0,
¥ ¢
so that x = [x=x(A)T} .
Write x=-x(A)I as the difference of two positive elements,
x=x(N) T = X=X, with {x=x(n)I}(N) = xl(h) = xz(h) = 0, We have
¥
X, = h°  and so x£ =hh + hh = 2hh?; hence xl(k) =
? 9 ?
2n(dMh (A) = 0 and analogously x,(n) = O; therefore x (n) =
9 g by
xl(h)mxsz) =0 for all » €2, so that x = 0. This com=

pletes the proof.

Theorem 11.1. Every derivation of a B -—algebra is auto-

matically continucus.

Proof. Let &/ be a B%walgebra, ' a derivation of .
It is enough to show that the derivation is continuous on the
self-adjoint portion (775 of ﬁ?. Therefore if it is not con-

tinuous, by the closed graph theorem there is a sequence {x ]
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(x, #0) in F° h that x. ~> 0 and x —> a+tib (# 0)
X, in suc " " 5
where a and b are self-adjoint. First, suppose that a # O
and there exists a positive number A(>0) in the spectrum of
a (otherwise consider {wxn]), It is enough to assume that A=1l.

Then there is a positive element h (|| hil= 1) of ¢ such

that hah 2_%h2. Put Vo, = X,73 - I, then yn-€> 0,

¥ v ¥ ¥ i v ¥

v, = %, end (hynh} =h yh + hyh +hyh§ hence (hynh) —
h(a+ib)h.
Therefore

||(hyn0h}? - h{a+ib)h |[< % for some ng - (1)

On the other hand

hy h
hy b < 4l x || h® and "’TI‘"“’TT" hah +-- (2)
hy h
. 1,2
Since ||x ||-I + x_> O, 2 > 5 h
n n allxnll 2

Hence

eren 2 Bz -3- o

Let C be a B*=subalgebra of 527 generated by hynoh

and I, then by the (3) there is a character ¢ of C such

th hYnOh 1
ey 22
I

Let % be an extended positive linear functional of <P

on J, and w7 = [ x |§5(x*x] =0, xe 7}, then CNW is

a maximal ideal of Cj it can be written hy oh = P(hy oh) I =

2 2 7
n =v

T ]
with u,v € CN9) (u,v > 0); hence (hy gh) =uu+uu -

¥ ?
v v = vv , so that by Schwartz's inequality

¥

P((hy gh) ) = 0 «or (&)
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Then by the (1) and (4)
| ¢ (nlatiblh) [< & ... (5)

On the other hand by the (2)
| % (n(a+ib)h) | 2 P(han) = %ﬂa%!) >3.% = 1.

This contradicts the above inequality (5), so that a = O.

Next suppose that b # O and there exists a positive number
#(*>0) in the spectrum of b (otherwise consider T=x 1. It
is enough to assume that « = 1. Then there is a positive element
k ([lkll=1) of 7/ such that kbk > % k2§ moreover
| (ky, 1K) " = k(a+ib)k|[< & for some n, .
Let Cl be a B*msubalgebra of 07' generated by kynlk

and I, then there is a character <Pl of C; such that

ky -k —
P < nl > > 1 . Let ¥, be an extended positive linear
1 4I]xnlll - 2 1

functional of ¥. on , then ¥ ((ky k)i) = 03 hence
1 1 nl

|93 (k(a+ib)k) | < 3.

On the other hand

- — — _ ky -k
: 1,2 1 1 1.
Py (k(a+ib) k) | > ) (kbk) 2> P, (3x%) 2 §@1<"'|'|'_H‘4 Enl > 273
hence [@E(k(a+ib)k)! 2_%.

This contradicts the above inequality; hence b = 0, so
that a+ib = 0. Now we obtain a contradiction and this completes

the proof.

Remark 1. 1In Proposition 11.1 and Theorem 11.1, the
assumption that an algebra has unit I is unnecessary. Indeed, if

the algebra has no unit, we may 2adjoin I and define I? = 03
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then the extended '=operation is also a derivation on the extended
algebra; hence our proof is available for any case.

Remark 2. It is not known, even in commutative semi-=simple
Banach algebras, whether every derivation of semi=simple Banach
algebras is automatically continuous. This open gquestion is very
important., If we can solve this positively, we can assert that a
derivation in commutative semi-simple Banach algebras is identi=-
cally zero, because every continucus derivation in the algebras
is identically zeroc by Theorem of Singer and Wermer.

Finally we show,

Theorem 11.2. ILet M be a W =algebra, ' a derivation on
M, then it is 0 =continuous and T =continuous, and moreover s-=

continuwous on bounded spheres.

1
Proof. Put D(x) = x , then by the above theorem, D is
bounded; therefore we can consider linear transformations exp t Dj

since exp t D are automorphisms on D for t real number, it
|| exp (£D)=IT

is ¢ and Tecontinuous, DMoreover lim 7 - D=0,
t=>0
where II is the identity automorphism on M.
Hence for any £ e M,
|£(D(x)) - £(( SXRLEEIL )0y = jr((p - SXRERLL ) (x)))
< |l gl || D - &XRERELL | )i || —> 0 (uniformly for

t=0
feM (|| £f]l<1) and x e ¥ (]| x[| £1)).

Since g(x) = f{ 2XE ED=II x ) belongs to M,

for each t,

gl(x} = £(Dx) Dbelongs also to M,; hence D is (¢'=continuous.
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Next let G be a relatively o (I,,M)=compact set of T,
then D$(G) is also relatively ¢ (I,,})-compact, for 0 is
continuous under the topoleogy ¢ (!7,,l1); hence D is T-contin=
LOUS .

Finally let {xm} (| xallg 1) be a dirscted set converging

to O wunder the s(M,M,), then { &X& tD-11 X, }  converges to

s t
0 in the s=topology. Then for any Pe T

FP{(DXG)*(DXQ)} - p{( 2R EDT;I X ) xR ED”II x, )} |

exp tD=TIT « )*( exp tD=IT x|

< (px )" (Dx ) - ( EREEL 5 T ;

_ exp tD=1T
< [l ox | 1l Dx, S=1L 5 || +
tD=TT exp tD=IT
o || SRR o | Dx - SRR
<M | D- Xk ED“II [ ==>0 (6t —=>0) ;

hence ?((ng}*(Dxa)) —> 0, so that D is s-=continuous on

bounded spheres.
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Concerning the continuity of a derivation of commutative
semi-simple Banach algebras, a partial answer was given by

Curtis, Jr. [45].

Here, to state some question, we use the notion of type of
W$~algebras. The reader may refer to Chapter II and the Book of
Dixmier. Kaplansky showed that every automorphism of a W*=algebra
of type I which fixes elements of the center is inner and he also did
that every derivation of a W*walgebra of type I is inner. On the
other hand Dixmier [5] and Singer [47] showed that there are outer

automorphisms in a W*«algebra of type IIl‘ Therefore, we have the

following natural question: Is there an outer derivation in a

*
W ~algebra?
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§12. Isometry between W%malgebras

Let ™M be a W$=algebra3 N a B$=algebra and ,P be a
linear isometry of M onto N, then ¥ 1is a dual spacej
hence it is also a W*-algebré. Moreover p(1) is an extreme point
of the unit sphere of N, so that p(1) is a partial isometry.

Lemma 12.1. Jp(l) is unitary in .

A

Proof. Suppose that e =~P(l)10(1j <1, ‘then
L TR
[lp (1) + MI=e) || = [| (P2} + (1-e))(P(1) + A(1-e)") | /2
= “JO[llp(ly* ; hz(lme)Hl/z < (1A Y2 sor A >0 .
On the other hand, let P ~(l=e) = a; + ia, (ay,a, self-
adjoint), then it is enough To assume that there is a positive

number « in the spectrum of a, (otherwise consider fi(l-e)

or = (1l=e)).

Then
1+ pron(iee) )il = 111 + AP (1oe) || > (1#ha) for A > 0.
Hence
(12)/2 > (1a)  for A >0 ;

therefore (1402) = (1#ho)? = (1=a®)A%-2ha > 0 and so

(l=a2)k=2a > 0 for A > 0; this is a contradiction, since

0< o<1, so that _ﬁ(l)ﬁp(l) = 1, Analogously we obtain
‘f[llp(l)* = 1. Therefore £ =JP{l}j0 ig an isometry of I onto

N which takes 1 into 1.

Lemma 12.2 Ef(a) is self-adjoint for self-adjoint a.
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Proof. Put %{a) = by + ib, (b13b2 self-adjoint). Sup=
pose that b, # 0, then it is enough to assume that there is a
positive number 3 in the spectrum of b, (otherwise congider -a).

Then

(]| all 2 4 nz)l/2 > | %(a+inl)H > n+g for all positive n.
This is a contradiction; hence %(a) is self=adjoint.
Lemma 12.73. %(a} is a projection for projection p.

Proof. 2p-1 is self-adjoint and unitary, so that 2§(p)ml
is also self=adjoint, unitary; hence %(p] is a projection,
Thersfore % preserves the orthogonality of projections, and

so we obtain

Theorem 12.1. Let £ be a linear isometry of a W*—algebra
1T onto a B*=algebra N, then N 1is a W*=algebra, P ois 0=
bicontinuous, £ (1) is unitary, and & =_P(lf% is a linear
isometry satisfying Zz(ab) = g(a)%(b), where a and b are

mutually commuting selfeadjoint elements of I

%
Remark. Using the structure theorem of W -algebras, we
shall prove that the above & is a sum of *-isomorphism and

*w=gnti=isomorphism in Chapter II.
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Notices of §12
Thoora= 12.1 is dun to Kodison LO]. Fer a commutative
B*walgebra; Theorem 12.1 is the classical theorem cof Banach and
Stone. In general, it is meaningful to find Banach algebras in
which the isometry induces the iscmorphism.
Nagasawa [50] showed that a Banach algebra Ho((L)  of

analytic functions has such property.
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§13 . Representation theorem.

Let 'ﬁ; be a complex hilbert space, B(é; the set of all
bounded operators on )5* Such set is a B*-=-algebra.

let f,g ¢ g The function x —=> | <xf,g> | 1is a semi-
norm on B %). The set of these seminorms defines a separate

locally convex topology, called the weak operator topology.

Theorem 13.1. Iet 7 be a W=::=algebra. Then it is faith=
fully representable as a weakly closed *-subalgebra of B( 15} on
some hilbert space {;’ and moreover under any such representa=
tion the ¢ -topology is equivalent to the weak operator topology

on bounded spheres.,

Proof. Let T1 be a complete set of O -continuous positive

linear functionals such that (1) = 1. Let {w?,gc?} be the

*=pepresentation of * on a hilbert space g , constructed via
the element ¢ of Ty. ILet Z,; be the direct sum of the gcf;
I«S = I ® ", We shall consider a representation w7 of M on
dq;g:}i?,%ed as follows: 7(x) =q}211 @ (x). Then it is a
el

sz
faithful B —representation of . Let B(g) be the algebra

composed of all bounded operators on é .
A
>

Kaplansky®'s theorem (Theorem 4.1), the unit sphere of (M) is

Let 0]’ be the weak closure of (M) in B(% ), then by

dense in the unit sphere of QZ; therefore for any A € F

(]| o]} € 1) there is a directed set {w(xa)} (x € 8) such that

o
Weak 1im 'i'T(}( ) = A,
N a
Therecfore
{qr(xm)bc?,acf,)cﬁ = (F(a*xab) o> (Abqwacg?)(? for any a,b g I,
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where ( , ). is the inner product of éif’ and d,,b _ are

P ¢ p

images of a,b in % .
g 2 {jCP
Since R L x¥ e M, and T; is complete, (R L * ¢
a,b e M, P e Tl} is total in !,; hence the bounded set {Xa}
converges to some X, in the & =topology. Hence
= * == i * = i b
(w(xo)b?,aﬁqu Pla xyb) lém P a xab} 1;m (ﬁ(xa) CP,acF)

= )

Ab .
P* %! oo

Since linear combinations of the images H‘F of M in
,%C? are dense in 6, A = ﬂr(xo),, so that (M) = a7,

Moreover, since the unit sphere of Cﬁf is weakly compact,
by the uniqueness of the ¢ =topology, the ¢ =topology is equiva=
lent to the weak operator topology on bounded spheres.

This complates the proof.
Conversely,

Theorem 13.2. A weakly closed *=subalgebra on a hilbert

s
space is a W =algebra.

Proof. Let C%r be a weakly closed *-subalgebra on a hil-
bert space, then its unit sphere is weakly compact; hence by the
well known theorem of Banach spaces, (// is a dual space. This

completes the proof.
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Notices of §13

Hitherto, regarding the following result as a well known one,
we have developed our discussions: Let B be a B$=algebra (that
is, |fx$xl| = |{x||2)* then x x is positive. This important
theorem is not classical.

Here, we shall sketch topics concerning that theorem.

Gelfand and Naimark [6] gave intrinsic three postulates for

¢ walgebras as follows: (1) | x x| = ||x$||||xf4, (2) llef|=
x|l . (3) x x + 1 has an inverse.
(Of course, {1) and (2) can be replaced by flx*xlf= Il x”z.}

The first conjecture of Gelfand and Naimark is that the condition
(3) is unnecessary =~ namely x*x is always positive. This con-
jecture has been solved by M. Fukamiya, Kelley-Vaught and
Kaplansky for B$-algebras with unit, and Rickart for ones without
unit.

The second conjecture is that the condition (2) is also un-
necessary. This conjecture has recently been solved by Ono,
Kadison=Glimm and Rickart.

The reader shall refer to the book of Rickart and Naimark.
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§ll+. Extension of functionals

Definition 14.1. ILet 1 be a W*-=algebra, N a d=closed
*=gubalgebra of M, then we call N a W*usubalgebra of M,

Let N be a W*-=-subalgebra of M, ¥ Dbe aG=continuous
positive linear functional on 1. Then, since N 1is the dual of
M,/V, where V is the polar of N in M., there is a self-
adjoint element f of &, such that f =% on N,

et f = f=f" and Y= f++fm, then YW is positive on
M and P<Y% on N. Let {’!T«HF,E}} be the representation of
M constructed by Y, then

0 ECP(a*a} < ﬂx(a*a) = ('rr,%{a)}b,ffryl(a)%) for a e N

hence define L(w a)W]L, b)) = b a) for a,b e N, then L
is a bounded bll:mear funct10na1 on the pre=hilbert space
qry’(l\])lfa, so that it is extended to a bounded bilinear functional
on the hilbert space [1r (N)Y]. Let £,v be arbitrary elements
67} and let £ = %1 ;2 and )?z?l”&m(%l’}?l e [W(an]s
and %29’?2 £ (qr }Lj ). Then we define L(Z,%) = L(&y,%7) -
T is a bounded bilinear functional on 6, so that there

is a bounded operator A on % as follows:
L(§,%) = (a,y) for &% zf;

s
Moreover since L(g,g) >0, A>0, and

L

(a*b)“z,L) = ('rrl}(a)mr_q’(c)‘l},w#(b)y,) for a,b,c & N

[Afrr.q’(acw,ﬂr,ﬁ(b]%) =r1\:(1r (ac]}L,frr,]L(b)W)L) =CP(b$ac) =90((a*b)*c)

= (AT

1)L( c)¥, &Y

(-]

L)
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hence EAm (a)B = Em, (a)AE, where E is the orthogonal projection

¥ ¥
of é onto ['IT,(N)V]. Since {W@(N)}L] is invariant under

(N), EAEm (a) = m (a)EAE for a e N. Since A >0, EAE > O;

™ v
put A, = (EAE ) , then

¥la) = L(ﬂruf(a)%#) = V¥, )
= EAEW a)f, ) = Al 111 a)k,AY)
(Wi{_[a)ﬁl}b,&ll} for a & W,

H

Define Elg(x) = (Ww(x)ﬁly,ﬂllﬁ) for x e M, then ¥ =% on ¥

and >0 on M. Hence we obtain

Lemma 14.1. Let 9 be a ¢ —continucus positive linear
ok
functional on a W -subalgebra of 1, then it can be extensible to
a T=continuous positive linear functional on M.

Now we shall show

Theorem 14.l., ILet f be a decontinuous linear functional
%
on a W -subalgebra of M, +then it can be extensible to a ¢-

—~ A~
continuous linear functional f on I such that || £]| = || f[ .

Proof. Let f = Ry|f| be the polar decomposition of r,
then by Lemma 14.1, |f| can be extensible to a G=continuous

positive linear functicnal < on I, and put f = Ry¥, then
fla) = P(av) = |[f|{aV) for a e N

~
and || £]| = || RyFll < [I|l = (1) = [£](1) = || £|] 5 hence
|| }JH = || £|| . This completes the proof.



Notices of §lh

Theorem 1L.1 is a theorem of Hahn-Banach type. We may find a
special property of W*malgebras as Banach spaces in the theorem.
In fact, this theorem is negative for vector spaces. Here, we
shall show a counter example.

Suppose that there is a positive element h with continuous
spectrum in a W*ualgebra M, and let C({)) %be the function
representation of the B¥Halgebra generated by h and 1, then
we can take a positive element k such that k(ty) = 1 and
k(t) <1 for t # ty Let V be a two-dimensional subspace of

M such that V = {az1 + uk}, then V is o (M,M,)-closed. Put

PML + wk = % + uk(ty), then ¢ is a linear functional on V
with norm 1.

If we can extend ¥ to ¥ on M such that ¥ & M, and
Hell= llell, % 4is a o -continuous positive functional.

Since ‘%(lwk] = 0, %5(5(1wk)) = (0. On the other hand,

S(l=k) =1, a contradiction.

F
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§15. Examples

3
1. Let B be a Banach algebra with unit 1, B  the dual

33K
of B, and B the second dual of B. For any a,b,x € B,

2

put Lax = ax and Ryx = xb, then La and Ry are mutually

wls
‘P

st
commuting bounded operators. Let La, Ry, be the duals of La

and R,. and L; and R,  be the second duals of them. Then

b

sk Ak sl oK
we have Rb La = La Ry
R
Let ¢F be an algebra of ¢ (B ,B )=continuous operators
sk <3l S
on B commuting with R; (all b e B)., Since BCB ,

we can consider L1 for L e (/. Iet L; and L, be elements

belonging to ¢ such that Lll = L,1, then

2

= R%~L 1 =L,a for all a € B.
e E3
Since L,,L, are o (B ;,B }=continuous, so Ehat by the corres-

;:: i
pondence L —> L1 of C%r into B . is one=to-one.

Moreover
#K
LIl = sup | Lyll= sup || Lall = sup || R "L < [ afl | L1]|
[IES! lall<2 .
yeB“* aeh
<L
hence || L|| = || L1||, so that the mapping is isometric.

Let S be the unit sphere of 637, then elements of &
are J(B**,B*)acontinuous, so that there is a bounded operator
P on B* for any L &€ S such that P* = L.

Pt € = { P | all P'e 5} and G, = {pr| Fel} ror

b i 3
any f & B, then 15} is relatively JTB%SB)=compact in B.
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—_—

. —
Let ng be the GTB*,B)=closure of C?} in B, then 6;

5%
is ¢(B ,B)=compact, so that by Tchiconoff’s thesorem
Il-qro’.“
feB™
. r .
is weakly compact. By the mapping P > {Pf} of 6ﬂ/ into .113

we introduce a topology on 6l- Let {gf} be an element of the

P(6E7), then there is a directed se® {Pa} such that

%k
lim Paf = ¢ for all f e B j
o

hence when we put Pof = Zps then PO is a bounded operator

*
on B ., Moreover

£ >

#

V., P> = llm <y,Pf> for ye B and
f e B,

05"’

Therefore

s W
x, £ > =< P X R f > =< x,PR £ >=1lin < X’Paﬁaf >

<, Py 0% s Folty .
= lim < R Pix,f > = lim <R x,f >
84 o X
= 1lim < xagPaf > = < PER x f > forxe B and f € B"

o

s ok kR '
hernce R PO PORa for all x & B,

Therefore Jp(éf) is compact., Let {Pa} be a directed
3
set convergent to Py in the topology, then ¢ (B ,B) - lim P L=

" o
Pof for all f € B%. Hence

1,f >3

O 3t

lim < P1,£ > = 1im < 1,P £ > = < 1,P,f > =< P
o4 Cf. (0:4 «
sk Sl

. o S .
hence S+1 is G(A ,A )=compact in B , So that the mapping

L =>1'1 of [ into B is an onto-mapping, so that B
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is isometrically isomorphic to a Banach algebra (J], that is,

sk

the second dual of B of a Banach algebra B is also a Banach
sk

algebra, and moreover when 2B 1is canonically imbedded into B

it is a subalgebra of B, for (L,1)+(L,1) = LjL,*1 is defined,

e e
so that (La l)(lb 1) = a*b = La Lb 1 = ab,

Hence we obtain

Theorem 15.1, Let B Dbe a Banach algebra, then the second

=l .
dual B of B 1is also a Banach algebra, and when B is

3

canonically imbedded into B ', B is a subalgebra of B.

. : . w®ER,
Remark, Even if B is commutative, B is not necessar-

ily commutative, and also there is a semi-simple Banach algsbra

of which the second dual is not semi-simple [cf. 44 ],

Remark. The assumption of unit in the above theorem is

not essential. Indeed, if B has no unit, we consider A + (al),

:':’:* ::( 5::- 5
then (A+al) is a Banach algebra and (A +(a)l) * = A$*+(a}l,

ok,
so that A is a Banach algebra.

5 .
In case that B is a B =algebra, the situation is more
exact. Suppose that B is a B =algebra, then it can be repre-
sented as a B =algebra Ba on a hilbert space ga’ We denote

the representation by T, Let 7 be the direct sum representa-
tion of all representations o, W(Bj the weak closure of w(B),
then @(B) 1is a Wﬁmalgebra. et F Dbe the associated space of

—

m(B), then by Kaplansky’s density theorem

|| £ = || £ for any f & F .
7(B)

Therefore
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B = 7(B)

B <l #(B) O F

.
o IR
)

T s ) O v s P r(B)

e e

B

W(B)$*/V, where V =
the polar of F.

Lemma 15.1. Let g be a continuous linear functional on
7(B) . then it is a linear combination of positive functional on
r(B).

Proof. It is enough to suppose that g is self=-adjoint
ad {legll= 1. Let w(B)y be the self-adjoint portion of 7(B),
and & be the totality of positive functionals of norm < 1 on
7{B), then the polar of Gﬁ; the unit sphere of w(B)y3 hence
g £ the S(W(B)$,w(B)}=closure of the convex hull of § and
-0 ;i since 6 is UTW(B)$,W(B))ﬂcompact convex set, we obtain
g = AMYq = MYy, where Ay 20, AqtA, =1, ¥, e § . This
completes the proof.

Since any positive linear functional 9 constructs a rep-
resentation {mp,éc?}, ¢ £ F; hence all linear functionals of
7(B) belongs to F, that is, r(B)" = F; therefore V = 0.

Hence,

This means,
Theorem 15.2. Let B be a Bkmalgebra, then the second dual
i e W
B is a W%malgebra, and when B is canonically imbedded into

., B is a *-subalgebra of B .
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Remark 1. Using this theorem, we can reduce many problems
concerning B$-algebras to ones concerning W*-algebras. In
general  such reduction shall make their studies easier, though
it may miss elegancy. For example, Theorem 12.1 concerning a
linear isometry between W*malgebras is extended to C*-algebras

by the above theorem.

35

Corollary 15.1. Let A be a B*aalgebraj A the dual of

A and V be an invariant closed subspace of A" under R, Ly,

(a,b e A), then V 1is algebraically spanned by positive linear

functionals belonging to itselfl,

llllll

Proof. Let A" be the second dual of A and v the

<k ok
polar of V in . that is, vO = {a | Ka,f>| < 1, a e A

5

ale ol L whr
et bl

and f e V}, then it is a ¢ (A }A*)wclosed ideal of Ahv, for
IKbac,V>| = [Ka,L RCV>| < [Ka,v>| <1 for ac v and b,c & Aj
hence bac ¢ VO.

. . ok e .
Since A is o(A ,A)-dense in A , this means bac € s

e
=Y

for b,c € A, so that v is an ideal. Since V = A$T/VO
and Ax/VO is a C =algebra, it is a qualgebra; hence by
Theorem 6.1, V is algebraically spanned by positive linear

functionals belonging to V. This completes the proof.

2. The dual of Wmmalgebras. Let M be a W -algebra, I,
the associated space, M the dual of M and M the second

dual. Let Mﬂ be the polar of M, in M%¥; since M. 1is
invariant, MS is a o(M ,M )-closed ideal; therefore Mg is
also a W¥malgebra; hence Mg has unit 2z in itself and so

TR 2R AR
Mg = Mgz = ZME = M z = gM 3 therefore for arbitrary a s M
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az = az*z = zaz and za = z-za = zaz, so that az = zaj hence
%z 1s a projection belonging toc the center of M%*, which we
call a central projection.

M (1ez) ©) My
Nﬁ*(lmz)E hence M = R(lwz)M$ C)RZWF

e
pre-re

Therefore M

o
=

M® Mz and M
III,I):: @ RZMZ:\‘. and M‘a"i -

i

Hence we have

Theorem 15.3. Let M be a W*=algebra$ M, the associated
space of M and M"  the dual of M, then there is a linear
mapping R(lmz) of M onto M, satisfying the following

W R
(11) NRy_ i< £l for £ e

- lez

(iii) Ry_f >0, if £ 0

(iv) M, is an invariant closed subspace of M under

R_. Ly (a,b e M ),

Theorem 15.4. Let M be a W¥ma1gebra, i the second

dual of M, then there is a ¢ -continuous *-homomorphism P of

the W¥—algebra M onto the W%=algebra M,

mher

Proof. M = Mﬂz}p(lmz) @M g M® M 'z and M ¥ Mﬂdﬁ(luz) .

The mapping f; (x = x(1-2)) of M onto M (1l-z) is a
o~continuous *=homomorphism and the mapping f, (y —> y(l-2))

% -
of M onto M (l-z) 4is a *-isomorphism; hence f =})2 Fy is

a C=continuous *-homomorphism of M onto M., This completes

the proof.

Remark 2. We call singular a positive linear functional
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belonging to RZM#. Then, it is known that a positive linear
functional ¥ on M is singular if and only if for any non-

zero projection p € M there is a projection g such that

P(q) =0 and 0< q< p [ecf.3617.

3. Let ((),2) be a measure space, L®({),n) the B ~
algebra of all essentially bounded u-measurable functions on..fl,
then L*({) #) 1is the dual space of Ll(fl,u]g hence LP({L,x)
is a W*—algebra and LjifLsu) is the associated space of
ﬁm(fl,u).

Conversely, let M be a commutative W$~algebra and M,
the associated space, then M 1is of type C(K), where we mean
the Banach algebra of all continuous functions on a compact space
K and so the dual space M is an (AL) -space; hence by
Theorem 15.3 M, is also an (AL)-space; hence M is a
L®({),x) on some measure space ({L,u).

Hence we obtain

)

Theorem 15.5. A commutative Bﬁualgebra is a W*-algebra
if and only if it is isomorphic to an mejz,@) on some measure
space ((1,n).

Moreover by Theorem 5.2, we obtain a new Banach space-

like characterization of the space Ll(fl,ﬂ) as follows:

Theorem 15.6. A Banach space is of type Ll(fl,ﬂ), if
and only if its dual is of type C(K).

L. Let GZ be an operator algebra of all completely con-
e AR
tinuous operators on a hilbert space .%a, C" and L be the

M
dual and second dual of C respectively, then (M is a
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W -algebra.
Let 1 be the unit of {e,} a maximal family of

orthogonal projections in C . Put pB = E} €, where .(IB
aE B

is a finite set of {al}, then {pB} is an increasing directed
set of projections, so that there is a projection p such that
p =06= lim Pg-

Since a is a c¢.c. operator, lim IlpBapB—af|= 0 for any

33K

a e (E; hence a e pl p and so  Cp@ p3 since pl p
LA el
is o=closed, pl~ p = "3 hence p = 1.
Let ¥ be a positive functional with norm 1 on Q:, then

lim‘P(pB)_= ¢{(1) = 13 hence there is an index Bn such that

n

Ilasllflfl |9(a) - ‘P(anaPBn) | < sup |‘P((I-=-pBHJ apﬁn} + ‘prﬁna(l-Pgn”
ael
+ ?(I-an)a(I-an))[

2
< 39(1-pg %/-“-—-> 03
n

hence 1im ||<P-Lp Rp |l =0,
n BI'l ‘3n

Since LPBHRPB;? is zero on (Impﬁn)ilpﬁn + pﬁndi(l-pﬁn)

+ (l-npB )Ql(l-pB ), LB Rg ¢ can be considered a positive
n n n °n
functional on Pg @,pB . Since Pg q:pﬁ is finite dimensional,
n n n n

there is a positive element Pg a,Pg  of pg d:pB as follows:
n n n

n
¥ (anaan) = Tr (anaannpﬁHaan)

- Tr(pﬁnanpﬁna) .
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Moreover
11w LR @]l = (L )213)
- = a - Py A P

= a = a »
” an ann me mme”l
Therefore [pﬁ anpB } is a Cauchy sequence with trace-norm;
n n

hence there is a trace~class operator ag such that

lim ‘P(pB apg ) = Tr(aoa); hence ®(a) = Tr(aoa). Since the
n n Fn

28

s ,_ s
trace~class [ C € is trivial, 7 = (.. Since T  is
B(ﬂa)’ (A B(f}).

Therefore we obtain the following theorem

Theorem 15.7. Let (. be the operator algebra of all com-
pletely continuous operators on a hilbert space 1%, then dl* =
T anda 7 = B(T%J, where [ is the Banach space of all
trace-class operators on f% and B[ﬁg) is the operator

algebras of all bounded operators on 6

Remark 3. The problem whether this theorem can be extended
to general Banach spaces is an important one. A Grothendieck has

solved this problem for some special cases [49].

Remark 4. The relation between a W*walgebra M and its
associated space M, can be considered a non-commutative exten-
sion of the relations between L* and Ln. Therefore we have
many extension problems for the classical theorems in I® and
L7u3paces. It seems to be valuable that the reader will try

such plan. Here we shall show some examples of the problems. It

is known that Ll—Spaces are CT(Ll,Lw)msequentially complete.
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This fact is extendable to general W*malgebras. On the other
hand, let () be a discrete space, then co{fl)* = 2HQ)  and
o™ = /203 analogously by Theorem 15.7, {[* =T and
_ﬂ:* = B(f‘,;). Moreover d‘(,é’l,f)usequential convergence in 2t ois
equivalent to norm-convergence; but this fact is not true in the

space JI .

Notices of 15

Theorem 15.2 is the theorem of Sherman, and the proof was

firstly given by Takeda [351.

Theorem 15.7 is the theorem of von Neumann-Schatten and

Dixmier.
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§1. The commutation theorem of =—on Neumann:

In §13; Chapter I, we gave a short-cut proof for the repre-
sentation theorem of W::c—algebrasa For the completeness, at
first, we shall show a fundamental theorem concerning weakly closed
*wsubalgebras on a hilbert space.

For this, we shall provide some tools.

Let 5 be a hilbert space, B(%} the set of all bounded
operators on é and 7% Dbe a subset of B(g ).

We denote by 977? the set of elements of B()%) commuting
with all elements of 7% and call ?’)/)? the commutant of 7).
Put (3’}0?)? = I " (bicommutant of wm) (?}’,}ﬁ} e ?7'?”9,... . It
is clear that 3?’)? is a subalgebra of B 6 containing the
identity operator; 37’) :)977 and 77 C 77 implies 2’}7 :)97

'i! ¥ TeY

and so ??7” C» ﬁ; therefore ?77 D) (?7? = 77)
VAR m
= O/

;5 on the other
(5) = ...
L)

hand 977? - (?7??}” =47 5 Thence 277 =377:
m Cn

9
1 7] is a self-adjoint set, 7%/ is a *-subalgebra of

M j g

be the algebraic tensor pioduct of 1’51 and {2. Then there is

—_—

il

a unique pre-~hilbert structure on ﬁl@} 52 such that
t;\;‘@gz’?l@)‘?z) = (gly)?l) {%2;)?2)

for %’1;’)1 5 Sl and «’;'2)’)2 £ 752 ,
where {( , ) is the inner product of 51» 152 and gl@) 62
respectively.

The hilbert space obtained by the completion of 5]_@ 52
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is called the tensor product of ()fl and 57 . and denoted by
25

Let a| € B(gl} and a, & B(ggJ then the algebraic tensor
product ay O] as defines a continuous linear operator on §l®
52; therefore it can be uniquely extended to a bounded operator

}51@_) gzg we denote by al® a, that operator. Then
al® a, 1is bilinear for a; and a,, (alb1}®(32b2)
(al® bl} (a2® b2) and (a@b)* = a*® b,

Let be a complete ortho-normal system of 5

ch}asi
then the mapping %l > %@?a is an isometry u, of 1 onto
a closed subspace ;ga of ng@ §2§ ga are mutually ortho=

gonal; the vector subspace generated by {ga [ « e L} is dense

§l® gzg hence
T B o
31@5 32 = T 6
ae]l
is a linear mapping of 571 62 onto 51 such that
gl(@ 5266 03 it is also an isometry on ga;

u is the identity operator on gl and uwu. 1is the pro=

sl
=

05 [0 o o

jection ey of 571 672 onto
Let a e B 75:'_@ €2 then u aug e B ?gl put a,g =

u auB, then a is perfectly determined by the matrix (aaBJ -

a

in fact, if afiB = bOﬂB for o,B € I, u,aug = uabuB; therefore

e,aeg = eocbeB and so a = bj moreover (ha} o = Mg (.51+b)mB
14 b

" 2 “ byg: (a:p)aﬁ = (agy) and  (ab) a[?.%l u, (ab)ugd, =

uwal £ u u:k)bu = ¥ a Z.  {in norm of g ) for
R A R T !

%1 & %1'

Moreover,
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(3)®1) 5y = uy(a®@ Lughy = uy(a@1)5,@7,

5aﬁa$l for a; e B(gl)

glg hence (a;® l)aB = cgaBal’ where 5‘16 is the symbol
of Kronecker.
%
Lemma 1.1. If a. e B 67 52 commutes with umu|3 a

is of the form al® 1 with al £ B %l
e g

Proof. = = = 5 =0
roo aaB u B uzrua,uaauﬁ u,raua,u uB ince uauB
L

for « f B and uaua w1, g = 0 for a« % B and a,, =

3*

Q

b3

ucau. for all 7% 3 hence aaB =5aﬁal with a; € B”}jl)' This
completes the proof.,

Lemma 1.2. For a subset D of B(?l containing O, let
My be the set of B % 6’2 such that a,q € D, then

7
(D®1) =377D? and (D@l D@lg moreover if D contains

T

the identity, (EWD) = D@l and (??ZDJI =?77Dn.
Proof. Let a1®l (al e D) and b e (D@l)?, then

Ha;®1)bl,0 = ajbyg

{b(a,® lyg = bugay 3
hence (D®1)? C #p+ and the converse is clear; hence
(D®l]? =?7?D?.
Moreover, (uh,u-;)o:B = 1,1:_‘;;u.a,uﬁu[3 =0 (a+Y or B #+§)
=1 (« =Yand B =4) 3
therefore uvuz £ a?’)Dv?, hence (D®l " (WD C B(%ﬂ@ 1

i 7 il
by Lemma 1 and (D®1) (C (D@l) =) gn, so that (D®1) =
DR 1.

-
Finally, suppose 1 & D, then u Ue e Mys
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977[) B al:{ 151®1 and M D DE1; hence (Mg =D@1
(W? = D(:)l = %WD . This completes the procf.
In particular, {B(gl)@) 1}? = ?77[}\1);‘ on the other hand,

if 208 = kaﬁl for a,8 = II, where Ny ave complex numbers,

then aaﬁ = uzauB = haBl; hence eaaeB = kaﬁuaugg therefore
= & @ by = Y o oae. X = Z ® =
a§l® )?B aeB?fL ()B ael a“es%}_@ 7 B well haB%l e
® ( for all B el (i £ g & fg s there-
; asIZ “5?&) or all B e (in norm o 1 & 254 ere

"

Miqy = 1@B(% 22, and (Ba’.%ﬁ@l)ﬁ = (1@3(132))T = B(fl}“@)l

=B§l}®¢n
Now, let B

. ¥
fore a = 1l®a, with a, € Bafg?J; hence we have (B(%;l)c}l) =

‘gd be the set of all bounded operators on a
(72 )

5

is considered the space T  of all trace-class operators on %3.

(
hilbert space, B is a W*malgebra, and its associated space
We can considsr three topologies 6, s and T on B(éJ];
moreover we shall consider the fll.owing two topologies:

{i) The strong operator topology (the so-topology)

Let % £ 6 The function x ~=3> ||x%” is a semi-norm on
Bﬁg), The set of such éemiwnorms defines a separate locally
convex toﬁology on B{ﬁ:}n We call this the strong operator

d
topology and denote by the so-topolcgy.

Since i) ~{x§E, is e ¢ -continuous positive functional,
where | , ) dis %ha inner product of ;5 , 8 % so.

(ii) The weak operator topology fthe wo-topology). Let
Z n € g Then the functicn ’f}?ﬁ" . is a semienorm on B(g)
The set of such semi-noras defines a senerate locally convex

topology on JBU%ﬁc We call this topology the weak operator
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topology and denote by the wo-topology. Then clearly ¢ € woj
therefore we have
s =X o = wo

v

ol
e
T s 2= g0t wWo

Let 7% be a *-subalgebra of B(ﬁ:). If 77) is wo=closed,
it is clearlyvy closed under the remainéé four topologies.

One of the purposes of this section is to show that conversely
if ¢/ is T -closed, it is also wo-closed.

et a el and a = vjaj ©the polar decomposition of a,

[ve) o
then Ja| = T a.e, and ¥ A, = Tr (lal), where (e;) 1is a
Loy Titd ] i

§ o

[ S

sequence of orthogonal ons-dimernsional projections of B(é;),
(hs) 1is a sequence of positive numbers and Tr 1is the trace on

B(%). Leu (£} e a sequence of elements of %g such that
[

) i
81%1 i E and =| «é || 1_, it
, oo
Tr(~a) = Toizv|al) N o (wialE, EL)
Lo [
i1
L - -
- _I§-!}Li\'!;‘;?ij??i} —.E VRV \y?\i %i, l_/i_i (?i) (x g B‘( j))'
Put yi; "‘i 5¢ and VT; %i - %;, then
Ua ¥ .
Dlam ! mem e s
-l-—- N A . :_1 .}‘C{,‘.‘I' .u"‘:'inl
© I ax @ i
vhere =z i% = ¥ %, <o oax T 2 17< .
T..:_l C= j_:-:::]_ - i:l
Conversely, let [¥.} {,) De two sequences of elements of
7 . @ |, o B w .
b such that 2 {&.]]°< 0, =T ||7ﬁ!! < 4w, and put
J i=1 b i=] %
m ; -
2im o= 2o lxg ;e (xoe 2(% ).
i A )
b TR |
Then £ |lxgm) < D=l = g 0l iyl
i=1 il
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@ / @ . -/
|| x| (= “51”2}1/2 (= Hﬁ?lfl 2)"'23 hence f 1s a linear
i=1 ' i=1

n
functional on B(%;}g v (xgijvi) | n=1,2,... } converges uni-
i.-_-
formly to f(x) on the unit sphere of B(?}g since
(Xgi*vi)} e T, f el . Hence we obtain
Proposition 1.1. The following conditions for a linear func-
tional f on B(%) are equivalens
(1) f 4is & =continuous

(1) £(x) = B (xd,v;). wnere 3 lI&,ll2<
11 LX) = Xe. . mal wilere i . ~ "o,
=7 1 Vl i=1 +

T Il
> .
=1 71

In particular, from the above considerations, we obtain

[|? < +o.

Corollary 1.1. The following conditions for a positive linear
functional % are equivalent.
(i) % 1is normal
. : © \ | e 2
(ii) Pix) = iEl (x?ijgi;, wWilere _? ||$i|l < 4o,
Now let ??7 be a T =closed *=gubalgebra of B(}S), then it
is ¢ =closed by the corollary of Theorem 3.3 in chapter I.
Since 27 is a dual space, it is a W*malgebrag hence it has
a unit p, which is a projection in B{f]}; pB[ Jp = B pg
pB(?SJp is wo-~closed in B(%;); therefore, to show that
also wo~closed, it is enough to assume p = 1.
Then, we shall shew the following fundamental theorem con-
cerning weakly closed *-subalgebras,
Theorem 1.1. {the commutation theorem of von Neumann). Let
7 be a *=subalgebra of BU%) containing 1, then the follow-

ing conditions are equivalent,
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(i) w is T-closed

(ii) 27/ is wo-closed

(111) 7 =2,

Proof. It is clear that (iii) —> (ii) —> (i)3 we shall
show (i) ==> (1ii). Let X be a _)T’O=-dimensiona1 hilbert space,
6@5 K the tensor product of tg and K; we consider a mapping
a =—> a®1l of B(Yg onto B('%; 1.

Suppose that %7)7 since 7/} 1is T-closed, there is a
0" =continuous linear functional f such that f(”?] = 0 and
f{a) ¥+ 0 for some a 82377“

By Proposition 1.1,

£lx) = % (xE ;f) where T H%-Hz'{ ‘o, ¥ H%?”2< +
j=1 AT =] % Tq=p 1 -

Let (?n | n=1,2,... ) be a complete ortho-normal system of

K, €n=6® ¥, and u, be an isometry of 15 onto 5“ such

that &—=> §®7n (£ e 6). Then,

£l = F i) -

8

% % y0
(B (xug w0 g8y

= i=1 (u. :{u %1’ i_%i) = ((x®1)£,&) (x € B(g)} 5
where % = El wt, 3= 3-_0501 w3 ¢ KB hence (WOVE,Z)

=0 and ((a®l)%,%) % O.

Let JC be the closed subspace of g@ K generated by the
set {(M@l)%} and e be the projection of 5’@ K onto 3£ 3
since 3£ is invariant under the *-algebra 7@ 1, the projection
e belongs to (2??@1}9; by Lemma 2.1, 2?7??®l = ('3")7'(33)1)W and
M® 1 contains the identity operator 1&1, e(a® 1)g =
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(a®1llet = (a®1)g; hence (a@l)% £ X3 therefore there is a
sequence (an) of 7% such that I fan® 1) - (a@l)$||——> 0
(n ==> ®) 3} hence ((W@l)%,%?) = 0 impiies C(a@)l)%,-‘;?) = 0,
a contradiction. This compleles the proof.
Corollary 1.2. Let &/ ‘be a *-subalgebra of B(GJ and
ﬁ(-'r (resp. 5_(5, ﬁ_fﬁ: Uﬁ(so and ¢7r"°) be the T{resp. s, 6,

—_ T  — . -
so and wo) —- closure of &7, then =ﬁ75=§76— = 7 °° =

WO

A

Proof. By Theorem 3.2, chapter I, j ¢ is a *~subalgebra of
B(% )3 hence by the above theorem, ;{ = 7",

Corollary 1.3. Let 0[,1‘} be two *=gubalgebras of B(x‘g)
such that ché/ If 7 is wo-dense in aﬁ, &705 is
T-dense in Z~n.S, where .5 is the unit sphere of B§)°

Proof. Let {3-76” be the 6 =closure of 7, thnen Of 5" s
a W*-algebra and its ¢ =topology is equivalent, on 570‘, to the
6 ~topology of B(é )3 hence by Theorem 4.1, Chapter I, 7N S
is 6 «dense in aﬁ'ﬂ;.s s since 677/) S is convex, the T-closure
of Ofﬂ;s in B(%x ) is 6 =closed; therefore we can conclude
that /NS is T-dense in fjﬂ »S .

Corollary 1.4. Let ??7 be a wo-closed *=subalgebra of B(%),
then the so=-topology (resp. the wo-topology) is equivalent to the
s-topology (resp. the ¢ -topclogy) on bounded spheres of ?77

Proof. Since the unit sphere of ?74 is wo~compact, &~ =
wo by Theorem 5.2, Chapter Ii therefore thev are equivalent on
bounded spheres. Since "x - O(S)" is equivalent to
“xzxa —> 0 (5°)", the sS-topology is equivalent to the so=-

topology on bounded spheres.
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Henceforward, a wo=closed *=subalgebra of B(ég) is called
a weakly closed *=subalgebra, as, by Theorem 1.1, the anxiety of
misunderstanding vanishes.

Corollary 1.5. Let 7% and 77 be two weakly closed *-
subalgebras of B(%;] containing the identity operator, then
R(VW77) = (W'n7) ), where R(2),7]) is the weakly closed
*wgsubalgebra of B(%S) generated by 77 and 77 .

Notices of §l.

Dixmier [4] took the property (iii) of Theorem 1.1 as the
definition of von Neumann algebras.

Dieudonné [Portugal. Math. 14{1955) 35-38] showed that

"
there is an example of the algebra 57 such that éﬁf =
¥
g7 %7 in a reflexive Banach space.
Henceforward, we shall use the notation R{(#/,77) in

Corollary 1.5 without notices.
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§2. Tensor products of W¥aalgebras.

Firstly we shall state some facts concerning the tensor
products of Banach spaces.

Let E and F be two Banach spaces, E&TF the algebraic
tensor product of E and F. A norm o on E®F is said to
be a cross norm if for every x e E and v e F, o(x®y) =
<!l llyli- E® F denotes the completion of EQF with respect
to a., The "least cross norm™ A 1s obtained by the natural
algebraic imbedding of E®F into J (E',F), where o (E,F) is
the Banach space of all bounded linear transformations of E$

into F. If under this mapping, TV € 4T(E¥,F) corresponds to a

n s *
tensor u= ¥ x.Xy., then for x € kE
j=1 J J
1 R n B
T = £ < x.,x>y..
3=1 J J
4 n : J
We define x(u) = || TY|l; hence a(u) = sup | E~<xj,x%><y5,y$5|
. .j=1
* 3
y € F
Sk ¥
Ix"Il= Iy ll=1
A 1s the least cross norm of all cross norms having
cross norms as dual norms.
The greatest cross norm ¥ is defined by ¥ (u) =
n
inf T ||xj” |ij||s where the inf is taken over all represen=

J=1
tations of u. ¥ is also a cross norm and ¥ > A. In general,

a norm o 1is of interest as follows: A< a<7¥. If A< a<7,
a{x®y) = [Ix{| |yl o is also a cross norm.

Analogously, we consider the algebraic tensor product

e

E® F . where E  and F' are the duals of E and F

H



3&'12
respectively; elements of E®F can be corsidered linear

functionals on E®F. Let B be a cross norm on E®F and put

B (f) = sup Kx,f>| for f ¢ TR,
B(x)<1

e - 3 A . . e :;:co
If B is finite on E ®F , it defines a norm on E® F § we

call B* the dual norm of 85 1if B 2 A, B is also a cross
norm on E® F'. Moreover Y= A: therefore ?x::: > o« > N if
A< a<Y. Concerning these things, we shall refer ™A theory of
cross—spaces” by Schatten.

Next, let A and B be two B*ualgebras with units, then the

algebraic tensor product AXB can be considered an *-algebra;

b e e b
he algebraic tensor product AX B of duals A and B  can be

considered a set of linear functionals on A& B; then positive
elements § of Aﬁ:@ B are algebraically defined as follows:
O(x x) > 0 for x & A®B,

Lemma 2.1. Let ¢ and _\!/ be positive elements of A" and

e
=14

B respectively, then CPCS_E)‘](/ is a positive linear functional on
A@ B.

n
Proof. Let x= ¥ a,®b; e AGB, then
i=1

# 0 3%,
POV (x' x) = POV (( L a;®b;)
1:

1 1*

gl s
- P S AENG
§=l \aiaj)ff(bibj)

n T n . N
b3 QV{bib.)}'\ N Lo 171/(( > .b.) (% }\ibi)) > 0 for any
ijj:l J J i: i:l

complex numbers Ny,h,,...,h ; hence a matrix (-lf/(ba.l:b )

ni

is positive; therefore we can write (V(bzbj”i j=1,2 n o
¥ sheg ey

J i:j=1329'“p
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(gasdy 51 2.... n
Then,
P opta) Vit = © PlatalFie, =P T aga) (T oaga)]
= a.a b.b.;, = = a.a.lo.o ., = o.a o.a
i,j=1  * Y R & A i=1 Tt q=1 b7
-0,

This completes the proof.

Our interesting cross norm o on A®B is as follows: «
is a B -norm and positive elements of 2@ 8" are bounded under
the «.

Since elements of A" and B are linear combination of
positive elements? 1f positive elements of AﬁEJB$ are bounded

under the «, all elements are also soj hence our interesting

¢ b .
cross norm « on AXB is a B -cross norm such that o  is
finite.

Then we shall show

Theorem 2.1. There is the least B —cross norm o in all

B -norms « on A3 such that « is finite, and moreover

0’-02 N

8 B L.
Proof. Let o be a B —-norm such that u is finite, and

s 5
C{J be the totality of all positive elements of A @ B , then

L
5

ja{xxleéﬁl -~ xx) >0 for xe A®B and 0 ey

w* ; 2 .i_f "'**r‘l' r A \
hence a'x %) = aix)® > &bzl pop {04 0},
-t ) " :éfx*x) 1/2
On the other hand, oput oan({x) = su Y. .
: of g (Q(lxl)
0

516“

then mo(x} is a B%m noim G A& B,



ao(:{)2 > sup | <x):<xp‘§’®'4f> | > | <x,PaY > |2
P Y >0

P(1)=Y(1)=1 3
therefore if aO(}:) =00, i<'_~:f53®1,f/>l = (03 hence <x,f®g> =0
for f e A and g e B)F; Azxz) = 0 and so x = 0j hence a5 is
a B -norm.

, 2 s s 2 2
(% ® 7)1 > sup  PeVix x, ®@v,vy) = lx 17 [l yqll
o'*1 1 P Y>0 171 171 1 1

P =Y(1) =1

On the other hand, since (| x?xli|1= x;{xl)ﬁ@ 1> 0,
@(5|’x§xlijl = xixl)éﬁl) >0 3

hence | x?[le > ao(:cl® 1) and analogously |l ylH > ao(y1® 1),
so that | le I ylHi_.‘}j; aoizil@) Veg(t@yq) > aO{Xl@ v) =

r| Xl” H BrlH : hence @Ay ia a ¢ro08 rorn.

Moireover
an{x) 2 sup 9@V (xab) |
bl <1, ol
@Y >0

Fri=Y{1)=1

= a1 I ! -
suD fRaCP®Rb7,f’ (%) |

= esup Mz, 0] 7 alx)
ieiie
izhsa

for A and B"  are W:Fmalgebrass and 2" and B are their

associated spaces; by the polar decomposition of f and g,

£| and g = Rylgl (Ve d ', UeB )3 by the density
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theorem of Kaplansky, there are two directed sets (a ) and (bB)

such that a, —> ¥(T) and b, —> u{T), and Haa”, I ba”‘_{. 1.

B

Therefore we have a5 2 Ai hence ao* is also a cross
norm. This completes the proof.

Definition 2.1. Let A and B be two B ~algebras with
units, then we shall call A®O‘O B the B ~bensor product of A
ad B.

Now we shall consider A and B the operator algebras
on hilbert spaces )’51 and @’)2 respectively.

Let 51@ »3&2 be the tensor product of gl and §2L

then A @lg and 12 & B are operator algebras on 51@)
2 1

752, where l% , 15 denote the identity operators on 671
1 ) 2

and §2 respectively. Let 0/ be the B¥walgebra on 51@) 572

generated by A& 1“{ and 12 & B, then we obtain
J 2 gl

Theorem 2.2. ﬁ@ao B is ®-isomorphic to 5’7

o
Proof. We consider a mapping p: £ a®b, —>
i=] Y7
n
T(a®1, J{(1p®@by) of L@B into (7 ; then it is easily
i=1 €2 gl
shown that ¢ is an *-isomorphism; put o(x) = ”JD(X)” for

x € AB, then « 1is a B =norm on AQB; moreover a*(CP(rgWPJ =
NP VI, where ¢ix) = (x£;,2,) and Viy) = (v&,.8,) for
- : ' > N

xe A, y =B and %leé’l? 52862,

Let V4 = the convex span of [Pl (<) = (“51,21} ,
El £ 61 ”%1” = 11 and V, = the convex span of {W“}/() =
(3,.8,) 5, ¢ 52, 12,01= 1} and ¥, (resp. V,) the o (A,4)
(resp. ¢~ (B ,B))-closure in A  (resp. B ), then V, = 5

1 1
(resp. ?2 = 6\;) ,  where 62 (resp. 52) is the totality of all
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positive functionals f on A (resp. B) such that £(1) = 1 ==
in fact, if ﬁi(%zﬁﬂi, there is a self-adjoint element a of A
such that Fia;§£>i'§_l=8 (e > 0) and s%§‘|<a,f>| = 1; on

the other hand }ia,Vj>|‘i lee dimplies f(a?l,ﬁl)i'gulme for
%1 {||§l||= 1) ¢ %}} henice |l al|< 1-g, so that

sup [Ka,f>] = || a]l< 1-e, a contradiction.

fe oy f(“;

Therefore for any / 57 e Cg: there are two directed sets
(€,) and (Yg) such that §_-—> £i(c (4" ,4)) and ¥ —>
fz(G'(BTJB)); for aix) < 1, ‘P(691P5(x) —> £1®f,(x); since
I%;,C)“¢g(x)]'§ 1, iflé)fz(xll‘g 1; hence a¢(ff2Jf2)'§
’|fl|||‘f2|f§ this implies that o« is finite; by Theorem 2.1,
a2 p.

Conversely, for any elements 51 £ gl, %2 %2 (i=1,2,...,0)
put  Q(x) = (plx) Z'gleéz, E glﬁjé for x & A®B, then

clearly @ e A ® B and it is positive; therefore ao(x¥x) >

o lpix) 2 iees)?

(x x) _ '
0(1x1) 12 2pme117

; hence we have ao(x%xJ > a(x)?,

so that apn(x) = a(x) for x e AQB; this implies that A(gao B
is *-isomorphic to €], and completes the proof.

Finally we shall define the tensor product of W*-algebras.
Let M and N be two W*malgebrass M. and N, be the associa=-

ted spaces of N and N respectively.

Firstly we consider the B ~tensor product M(:E N. Then

0

M,6) = N, is an invariant subspace of the dual {(M&® N)  of
g X %
M @ao N; the polagﬁof MQCD N. in the second dual of

Mégx N is an ideal and we can consider {M$é§a sk N#)4 =
0 0
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(M ®a0 N)W/,S; the canonical mapping M ®a0 N > M&_)ao NG is
an *wisomorphismg therefore it is an isometryy by this mapping,
we can consider the B*walgebra M ®a0 N as a B*-subalgebra of a
W*walgebra (M ®a0 N)**//S ;  then we obtain a TM*-=-alzg;ebra P such
that P = (M, ®a8‘= N*)* and the B*;algebra M@ao N is ¢~ =dense
in P.

Definition 2.2. Let M and N De two W):zmalgebras, M,
and N, their associated spaces, then the above W*=a1gebra P
is called the W*wtensor product of M and N, and denoted by
ME N,

Now we shall faithfully represent M and N as the weakly
closed *-aigebras on hilbert spaces ijl and ?2 respectively.
Let §1® 52 be the tensor product of ’351 and §2’

ther_xu M@lgz and 1 1@ N are weakly closed *=algebras in
61@3 52. Let 56’ be the weakly closed *~algebra on §1® §2
generated by M.é}léﬂ? and 1 l@ 4, then we obuain

Theorem 2.3. MEN is *e=igomorphic to 05—

Proof. Let 07 be the B}{rmalgebra on 6)1@ ’§2 generated
by M®&1 , and lg_@) i, then by Theorem 2.2 there is an %=
isomorphism p of M-LQDQ:O N onto 7.

Let {x{z} C M®N be a cauchy directed set in the s=topology

of M®N such that onix,) < 1, then for any %l € gl’
- ¥
o E ’92,
(f(xa}§1®$2;.§l®§2) = ‘Pl®@2(}c&) ,
where ¥,{x) = (}cgl,il) (x e M) and P,(y) = (y§2,§2) (y € N).

From the unicity of the ¢ -~topology, the s—topology coincides with
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the so-topology on the unit sphere of M (resp. N}, for the
unit sphere of M (resp. N) is wo-compact in B(Zgl) (resp. B(éjz))i
hence Cf’l e M, and sz € N.3 since linear combinations of
{%1(@ %2 | ?1 £ ZZ?:L’ %‘2 £ 52} are dense in 6)1@ 52 and the
operator norms of ()9(xa)J are bounded, we can conclude that
(_P(Xa” is a cauchy-directed set in the so=topology of B(§1®§2J§.
therefore by the density theorem of Kaplansky, P can be uniquely
extended to a *-homomorphism j?f of M&N into gé’, which 1is
continuous with respect to the topologies s and sos therefore
the kernel /19 of jOU is 6 ~closed, so that f?) is g ¥e
homomorphism of M®N onto aé' Let x( >0) e nf’, then (

I

(Plx)E,©2,,8,8t,) = 0 for any £ € 51 and %2 £ 6]23 hence
()O(x)gﬁz) = 0 for any %3? £ §1®§2, On the other hand, let ¢
be any positive element of M., then by Corollary 1.1, there is

a sequence (%i) Cg, such that ¢ (x) = GEO (Xl‘éji_ﬁéi),
i=1

o .
z ||%1|| 2 < +o, and analogously for any W(‘PO) e M,, there is
i=1

. 0 B .
a sequence {%%) C gz such that -4/(}:2) = 3z (xzég,éé),
i=1
- 2 . ) ) CD. - - [l - i
. _IH%;H < +wj therefore ‘f@’lﬂ/(x) = . ?21()0(}:)??1@;%, gi@)g g) = 03
so that f®g(x) = 0 for f e M, and g e N.; since MGON, is

®
>

norm-dense in Mﬂ"@a % N,3 Thence “17 (x) = 0 for Y £ M*®aa‘= N, 3
O 0
hence we have x = 0, so that A9 = (0) this implies that jﬂu

is an *-isomorphism of M&N onto cé' This completes the proof.

Theorem 2.4. Let C(£2) ©be the commutative Bs'lc—-algebra of
all rcontinuous functions on a compact space _O_, A a B*aalgebra,
then C((L)® A =c(4,Q0), where C{4,()) is the B -algebra of

%o
all A-valued continuous functions on {1,
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Proof. By the theorem of Grothendieck [491, C([(1) @, & =
C(A,Q2); since A is a B$—algebra, C(A,{l) becomes naturally
a B*walgebrag a mapping ﬁC}a-i;> f(t)a (t €L{}) is uniquely ex-
tended to an *-isomorphism of C({))G)A into c(a,L)); hence by
Theorem 2.1, a5 = A and the above f is uniquely extended to
an *-isomorphism of C(fl)(}ao A onto C(A,El]. This completes
the proof.

Theorem 2.5. Let Lw(ﬁl,ﬂ} be the commutative W*-algebra
of all essentially bounded measurable functions on a measure space
({l,n), M a W*-algebra, then Ll(gl,ﬁ)éga# M, = Ll(M#,flﬁﬂ},
where Ll{M#,fl,n) is the Banach space of agl M, -valued Bochner-
integrable functions'on the measure space (fl,u].

Proof. Lm(ﬂ,.ft}f@dOM = Lm(Q,u)@kM . since ¥ = A, we have
Lm(fl,u)(}ao M= Lm(fl,ﬁk:)yy M, where Ll(fl,ﬂ)éﬂw,ﬂkg since
Ll(fl,u) has the metric approximation property, by Corollary 1 of
Proposition 40, [49], the canonical mapping of Ll(fl,uﬁiif M,
into the Banach space J(L¥({),u),M) of all integrable bilinear
forms is an isometry; the dual of Em(fl,u)()h M is J(LX(LL,p),1);
hence we have h* =Y  on Ll {1,n}®M, 2 therefore we obtain
! (€L, ) ® M¥ Ll{Mx {0, n) This completes the proof.

Now suppose that M, 1is separable, then by Dunford-Pettis’
theorem, for any x & L°(L),u)®M, there is a unique M-valued
essentially bounded weakly * measurable function £*(t) on {0

such that x(E®») = jlifx(t),g >)?(t)dﬁ(t) and ess. sup || £%|f =

1. 1
I| x||, where % eM, and n» el (), u).
Under such mapping x —> fx, Lm(fl,ﬂJC)M is isometric to
1®(M,() v}, where L®(M,(),u) is the Banach space of all
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M-valued essentially bounded Weakly " measurable functions on.l?..

In general, let f = Z T, @)?i e L (Il ) C) M., where
1 1

0
EALEN ey lI< 4o, £y e L Q. and F; e M, then R®R =

-1~l

% r. g@R 9. ¢ MO, @M, where g e L°(Q,n), aeM there-
i=1

fore/a e M, gel®M0) and =& I°(Q,0)®M, Plxa®g) =
plx)p(a®gls hence P(xy) = P(x)Jo(y) for x & I2((),0)®M and
y e LX) ,u)@®M,

Therefore,

<xy, £)> = j< (xy) (%) ,£(t)>dult) ==f<[o(x)(t)jo(y)(t),f(t)>d;z(t)

1. O L
J; XJ(t)f(tJ> dult) for f e LY(M,,0,4) 3
hence <y, fo’ (t)> =<Jo v) ,Jor pr*(f)“;'
>',<“-'l
= | <oly)(t),{ F(e) ) >dn(t) .
IRCUCH Y.

Since P(En{fl,ﬂ)C)M) contains L®({1l,u)+1, we have

£< plyl(t) ’LP(X.] () £(t)> glt)dult)

fé;<P(y](t),{P* fo*(f)}(t)> glt)du(t) for g e L(Q,n);3

hence we have <p(y)(t), FP(X)(t)f(t)> =‘<p(y)(t),{P I&f He)>

for t ¢ I\Lc 7 where Nx v is a null set which depends on (x,y).

Since M, 1is separable, we can take a sequence (an) from
M such that (a ) is o -dense in M; put y = 1®a , then

p(Yn](t) = an; therefore

<plyn) (8]0 () () T8> = <2, Loy (4

= <3ns{P*- prk(f)}(t}> for all n and
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w :\,‘:.“"1 3¢
t 4 Lia N ¢  hence %o(x](t)f(t) = {P Lx? (£)}(t) for

X,¥,°
8 0] 0
t & L/ « v 3 since \J N is a null set, we have
n=1 Jyn n:l x&yn

=l
LP(X}(t)f(t) = {'P‘ pr*(f)}{t) in Ll(M;;Q,PS)-
Then for any xq e Lm(M,ﬂ)@M

S
1

<plaoy) , B> = <xxp e (£)> = <xp, Lo (£)>

X
w1
= | <p(xy) (t), o L_p (£)H(t)> dult)
JIP X) SD §
=) <plx,) (t) L ft)> dult)
Jfl Olxy o (x) (t) .
- [<plx) (0p(x) (1), £(2)> au(s)

hence we have P(xxi) =,P(XIP(X1) in Lm(M,fl,u).
Now we obtain the following theorem.
”F 4o
Theorem 2.5. Let M be a W -algebra, L ({),#) a commu-
tative W$=algebra. If the associated space M, of M is
separable, the space LT(M,(l,#) of all M-valued essentially

<

%
bounded, weakly  measurable functions is a W*-algebra and

I°(0),0) @M = L2(M, ), ).

Remark 2.1. This theorem is important. By this, we can
approach to the reduction theory of von Neumann through a quite
different method [cf.§:5]§ therefore it is a very important
problem whether the condition of separability in Theorem 2.5 can
be dropped; recently, Tomita [37”/é§£e§§2£ some parts of the

reduction theory of von Neumanni however the author thinks that

many results obtained by von Neumann remain unsolvedly in the
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non-separable casej also we have many unsolved problems even in
the separable case Lcf. ks 13 therefore the author thinks that the
new approach has much significance even in the separable case.
Now, using the tensor product of W*walgebras, we shall
show the structure theorem of type I.
Proposition 2.1. Let M be a W*walgebras (eB | g e II)

be a family of orthogonal equivalent projections of M such that

S o =1. For a fixed a e [, let (v |gel) bea
{IE]I x GC;B
family of partial isometries of M such that v, = &, and
3
* #
Ve .p Va,p " fa’ Vo .gVa,p e, and put N={ x| x =

Bgﬂjvasgxavag-, Xy € eaMei] and let B be a W#-subaliebra of
M generated by (va,B’va,é | g e[), then N is a W -subalgebra
of M composed of all elements of M commuting with B and
M = N5§B; moreover B is the factor of type In’ where n =
card (IL).

Proof. We shall faithfully represent M as a weakly closed
*~gubalgebra on a hilbert space Zg such that 1 is the identity

Tﬁ

operator on
751 oc and gzﬂLZ(E), where L2(IL) 1is the
hilbert space of square integrable complex valued functions on a
discrete space . Let uB be the isomorphism of f;l onto
fﬁg defined by v, o B the? we can define canonically an iso-
morphism u of 5 onto §1®j23 by this isomorphism, we
shall identify two hilbert spacesi then from the considerations
of é‘l, the weakly closed *~subalgebra generated by {uBu§r|
8, e I} is the algebra 151@3(252), so that B = 151@) B(

since N commutes clearly with B, N C B(gl)f& 15 5 moreover
2
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b e
= u,al = av 5
2y T Uty T Vaptay

. .9
hence MC{eMe) } Ci(e Me Ol l%®B(%2)) } o=
Rle e, ® 1, ® B( gz and N = (e Me J® 13 therefore we
have B = 1 ®B(%2 = (e Me )®1 and M = R({eMe )®1,

é;z ; therefore by the theorem 2.3, M = N@B; more=
over-51nce is *wisomorphic to Bugzﬂ, it is a factor of

type In,. where n = card IL. This Completes the proof.

Corcllary 2.1. Let M be a homogeneous algebra of type

In, then MﬂZ@)B, where % is the center of M and B is

the factor of type In.
Proof. Let (eB | 8 ¢ I ) be a family of orthogonal
maximal abelian projections such that I[ eg then card IL =
Be
For a fixed a & 1, let (va 8 | 8 e L) be a family of partial

.
isometries of M such th = and = g
at va’_a €y Vg 5v0€,I3 o’
: si M Z > .
v = sinc = , = =
OC;BVC!,B eB‘B e ea e{x e(x ea, X BEEVQ,BXGVG-B
sk

v e 72 e v

Rell a,B a"a o af BEE zava)ﬁvaﬁ B BEI[
e, Me 5 hence N = Z, so that we have M = ZéB, where B

7, = 7 f £
aeB o or xa

is the factor of type In' This completes the proof.
Remark 2.2. In proposition 2.1, we show B 1is *=isomorphic
B(fa)) where dim (%g) = n; therefore the above corollary
implies that a factor of type I is *-isomorphic to B(fg)
with dim (fg) = n., |
Corollary 2.2. Let M be a homogeneous algebra of type

(n < No)ﬁ then M =2 @B = L°(B,{),x), where 2 = L%({),u).



3.24
Proof. B 1is considered B(fg) with dim (g) EKK/O;
therefore B, = E—(é)], where If(ﬁ%) is the Banach space of all
traces-class operators on ig; hence B, 1is separable, so that
by Theorem 2.5 we have the conclusion
Corollary 2.3. Let M be a W*malgebra of type I which has

a faithful Wmmrepresentation on a separable hilbert space, then

M = > M o= % ® 1B (0 . un) where 2 is a central
Z n--nrTn’ n
HENO n r'-’S.NO
projection of M, M~ is a homogeneous algebra of type I, and
Il
M = L¥(B 0 L) and Z_ = L°({) ,u ) and B is the factor of
Z n’ n’n Zn n‘ n 1 type In'

Remark 2.3. This corollary gives a reduction theory a new
approach [cf.§:5]§ therefore in non-separable cases, the following
problém is important; it is possible 7@B = L°(B,{), ) with 2 =
1°() 4) and B = Bt% ), where B(fg) is the second dual of

the Banach space of all completely continuous operators on ?5 .

Notices of §2
If the measure space (Il,u) ig not o -finite, the
measurability is interpreted in the meaning of local measurabilitys
therefore "a null set"™ is interpreted in the meaning of "a
locally null set". The tensor product of B*—algebras was intro-

duced by Turumaru. Theorem 2.3 is due to Turumaru [38].
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§3. Standard representations.

In this note, we shall not give the complete explanation
concerning the representation theory of W*walgebras into the
operator algebras on hilbert spaces. In this section, we shall
state standard representations only for later discussions. The
reader is referred for further information on the representation
theory to the book of Dixmier.

At first we shall introduce the notion of hilbert algebras.

Definition 3.1. Let ¢/ be an algebraic *-algebra. We
say that 67' is a hilbert algebra, if it satisfies the following
axioms

(1) 7 1is a pre-hilbert space with an inner product ( , ).

(11) (x,9) = (v %) for x,y e &7

(iii) (xy,z) = (y,x*z) for x,y,z & Cf

(iv) the mapping vy —> xy is continuous for x,v € Cﬁf

(v) the elements xy (x,y € (/) are dense in (7.

Let 67' be a hilbert algebra, %g, the hilbert space ob-
tained by the completion. |

By the axiom (ii), the mapping x —> x* is uniquely ex-

1.

tended to a conjugate linear isometry J such that J2

Since the mapping y =—> xy is continucus, (yx,yx) =

LS AR S b4d e
(xv ,xy ) <Ky ,y) =EK(y,y)] for some K > 0; hence
y ==> yx 1is also continuousj the mappings y =—=> Xy,
y —=> yX are uniquely extended to elements Ux’ Vx of

B(?S); then we have:

i
Lo
o

= RUX + nbe U Ux* =U_,

U(hx+uy)
Y

Xy xy?

W ¥, Vo = VW, V=V,

Ax+uy)
JU J =V 5 JV. J = U X .
X x" b's X
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Therefore [Ux | x € 71, {Vi | x e/} are *-algebras
on %;. Let 2/ (J7) (resp. U (7)) be the weakly closed *-
algebra generated by {UX | x e | (resp. {VX | x e O7}). We
call ¢ (07) (resp. V(7)) the associated left algebra (resp.
the associated right algebra) of 7.

Then it is easy that 1{(67) CZQJIO?)? and JY ()T =
vAar) .

Definition 3.2. An element a ¢ zg is said left=bounded
(resp. right-bounded) if there is an element U, (resp. V_) of
B(%) such that Ux =V a (resp. Vox = Uxa) for x ey .

Since Uax = an (resp. Vax =U.a), ac [Ua(ﬁ’)] (resp.
a € [Va(%g)]g hence a == U, (resp. a == V,) is one-to-one.

Lemma 3.1. An element a € ?3 is left=bounded if and only
if it is right=bounded; moreover, if a is left-bounded, Ja

el B

is also so, and we have UJa Ua = JVaJ, Vig = Va = JUaJ.

Proof. For x €O/ and a = f;, Used = JJUJXJJa =
JVXJaE therefore if a 1is right-bounded, JVaJx = JUJxa = VxJa,
so that Ja 1is left-bounded and UJa = JVaJ. Conversely if Ja

is left-bounded, U = JUJaX, so that Uya = JUJaJy for

Jx°
y € /3 therefore a is right-bounded and V_, = JU; Jd.

Suppose that a is right bounded, then

I

(Ja,x'y) = (y x,a) = (x,Uya) = (x,V,y)
(V;x}y) for x,v & (73

(UxJa,y)

hence UxJa = Vaxg therefore Ja is right-bounded and VJa = Va‘

We obtained: a 1is right-bounded <= Ja is left=~bounded =

Ja is right-bounded <=» JJa = a 1is left-=boundedj moreover
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¥y, = Ve o= JU; 5,0 = JUJ and Uy = IV = JV;2J = U.. This
completes the proof. |

Henceforward, we shall call a right and left-bounded element
a bounded element.

Lemma 3.2. ‘Let a be bounded, T € 1f107}i and S € 2((57)1
then Ta, Sa are bounded, and TU = UTa and SV = Vgag more=
over the {Ua | a bounded} (resp. {V [ a bounded}) is a two=
(resp. 24 ( 67
Proof. U V. y = Ua(yx} = Vyxa = vaya =V Uy for x,y e 3

g

hence U, & V(g'. Tf T e V()

¥

sided ideal of VU ()

TUax = Tan = VXTa for x e U]

hence Ta is bounded and U, = TU_} moreover U.T = (T )" =
T, a a a

(T”‘UJ )* = (U

:'r

77a) = Ugpgst hence {Ua [ a bounded } is a two-
¥

sided ideal of U (J7) . It is analogous concerning the Va.
This completes the proof.

Lemma 3.3. Let 77/ = {Ua | a bounded}, 77 = {Va | a

it i

bounded}, then 4 = lfkdf)? and /] = Z((é?)?.

_ T R

Proof. By Lemma 3.2, 27 C V()" and 27 C ()

)

Let T e V(J7) , then TU, el for x e 73 therefore TUle =

v -
T,TU, for T e 775 taking {Uxa] such that Uxa-—€> 1(wo)

(x, € /), then we have TUxaTl = TlTUxa —> TT; = 14T (wo), soO

that T €J% , so that Zf(67)? =2§¢n. Analogously we have 27“
= 2 (¢7) . This completes the proof.

Lemma 3.4. 7] C 2’/?.

Proof. Let Ua e 77, Vy € /), then
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(Uava)y) = (Vbx;Uay) = (va’UJaY}
(Uxb,VyJa) = (UX‘Jbe,Ja) = (Vbe,UJXJa)
= U dy,V ,0x) = (JV;dx,JUdy) = (U, x,Vyy)

= {vaax*Y) for x.,y & J7 ;

hence Uavb = V,U,. This completes the proof.

Now we shall show

Theorem 3.1. U (07) = V() and Vion' =Y.

Proof. V(0 =" C 0= Wi = UGNy VD
U(Ir) is clear; this completes the proof.

Now, let (/' be a hilbert algebra, (7, a *=-subalgebra of
O{ which is dense in (7, then {xlyl [ X ,¥] E C?i} is dense
in {xy | x,y e 7}, so that it is also dense in %;; therefore
57i is also a hilbert algebra.

Corollary. Let ¢/ be a hilbert algebra, 6271 a *=sub=-
algebra of (// which is dense in 7 then 2((571) = Y (J7) and
?f(67i) = V(7).

Proof. Clearly ¥ (dr) C 2{d7), V(J7y) CVd7). By
Theorem 3.1, 2{(67i} = ?ffé?i}?:] 2f(§7)q = U(J7), so that
U(T7,) =) and V(J7) = V7).

Next we shall consider the tensor product of hilbert alge=
ras. Let 571} 67% be two hilbert algebras and 57i695$; be
be algebraic tensor product of 571 and 572, then éyfﬁ?éyz is
an *=algebraj moreover there is a unique pre-hilbert structure on
CVlQGC?% such that (% ® vy, %, 7,) = (xl,xz)(yl,yz)i then
CVIG@C?é becomes a hilbert algebra with this inner product. We

shall call this the tensor product of hilbert algebras and denote
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by 5?3@)5?5. Let f?l’ i;z and %; be the completions of

0/'1, ﬂfz and Wl@)é/fz, then we have 5 =51@5 52.

Proposition 3.1 2/(571695?%) = %E(2¥(5713C)1, 1(72{(575))

VT,®@d,) =R (V) ®1, 1&U(T7,))

The proof is very easy.

Proposition 3.2. Let {7 be a hilbert algebra, then
U7 (resp. 2/(J7)) is a semi-finite W*=algebra.

Proof. Let 27/ = {U, | a (bounded) ¢ Zg }, then 277/ is
an ideal of 'Zﬂd?) and it is s-dense in 2/ (7). Let P be a
non-zero central projection of Z((§7)9 then there is a positive
element Uh of 3@? such that PUh 4+ 0, so that there is a non-
zero projection E of 2/(¢7) such that E< APU,  for some
positive number A;  then E e 7773 therefore 2({G7)ECH; let
{U,E} be a directed set of 2{ (07) such that UE —=> O(s} and
| UE[< 13 pur E=10U, (ac f;, bounded), then UE =

UaEE - UUaEa and

((UaE) x,(UaE] x) = (UJU = X’UJU B x)
a-a o a

= (VXJUaEa,VKJUaEa)

<NVl lugall—> 0 for xe 3

hence {(UQE)*} is s-convergent to zero, so that by Theorem 5.3,
chapter II, E is a finite projection; this implies that 2 (07)
is semi-finite; moreover since (7)) = JU(O)d, 27A01) is
also semi-finite, This completes the proof.

Definition 3.3. Let M be a Wﬁualgebra. If there exists
a faithful *-representation ¢ of M onto the associated left

algebra ¥ (07) of a hilbert algebra 7, P is said a standard
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representation of M,

By PropositionIB,E, if M has a standard representation,
it is semi-finite. Conversely,

Theorem 3.2. Let M be a semi-finite algebra, then it has
a standard representation.

Procf. Since M is semi=finite, there is a family of
semi-finite normal traces (T ) such that their supports {s(T,)}
are mutually orthogonal central projections and T s(T ) = 1.

a
Now put T(h) = £ T (h) for (h>0) ¢ M, then T is also a
a

]
O

semi~-finite normal trace on Mj; moreover suppose that T(h)

then T (h) = 0 and so hs(t,) = 0 for all «j hence h = 03
T is faithful. l
. Let EFf = {a | T(a) € +o}, then by Proposition 9.1, chapter
1, ﬁF/ is the positive portion of an ideal C?ﬂ and there is a
unique linear functional T on Cﬁr coincides with T on f}f;
moreover the linear functional x =—3>> L(ax) is ¢ -continuous.
Put {a,b) =T(b'a) for a,b e/, then (] becomes a pre-
hilbert space; it is easily shown that the pre-hilbert space
is a hilbert algebra and M is *-isomorphic to U (7).
This completes the proof.
Here, we shall state somes concerning general representa-
tions of W*-algebras into the operator algebras con hilbert spaces.
Definition 3.4. Let M be a W*-algebra, then a W*-
representation of M is a continuous *-homomorphism # of M
with the ¢ -topology into the algebra B(E;}, with the wo=-
topology, of all bounded operators on a hilbert space f; such

that (1) is the identity operator on z;.
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We shall denote by {wﬁéjl a W -representation 7 of M
into B(f; W,f;} be a W$=representation of a W$—algebra
M, then the kernel ~%¥ of 7 is a ¢ ~closed idealy there is
a central projection 2z such that /JQ = Mgz; the restriction
on M{l-z) is an *-isomorphism; by the well known theorem of

B ~algebras, it is an isometrys; m(S) is the unit sphere of

m(M), where S is the unit sphere of M; the unit sphere of
m(M) is wo-compact; by Corollary 1.3, (M) is weakly closed.

Hence we obtain

Proposition 3.3. Let [7m,%] be a W*mrepresentation of
M, then the image w(M) is a weakly closed *-subalgebra of
8(65).

Definition 3.45. Let {wl,gl}g {'nrzjgz} be two W =
representations of M. If there is an isometry U of f?l onto

5?2 such that le(x) = Wz(X)U for x e M, it is said that

le"gl} is equivalent to {n‘z,fz} and denote by [Wl’gl} o

try )

It is clear that the above equivalence satisfies a usual
equivalent relations. By this equivalence, classifying repre-
sentations of M, we shall identify representations which belong
to the same class.

Definition 3.6. Let {w,iﬁ{ be a W*&representation of M.
If there is an element %; of i; such that [w(M}E] = %;, T
is said a cyclic W$=representation and ‘é is said a cyclic vector,
where [7{M)£] is the closed subSpace of g generated m(M)E,

Let Iwzg} be a cyclic W _representation of M, Z

(|I%||= 1) a cyclic vector of w. Put P(x) = (r(x)&,8) for
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x € M, where ( , ) is the inner product of f;, then ¥ 1is
a 6 -continuous positive functional such that ¢ (1) = 13 it is
easy that {W,g;} is equivalent to the W*mrepresentation
{m ;5 ] on a hilbert space é{ constructed via ¢.
T JIF ¥’

Conversely, let ¢ be a ¢ -continuous positive functional
of M, {m?,gg;} a_B*—representation of M on a hilbert space
5?3 let 1SCJ be the image of 1 ﬁhin_ 5?, then *[F(M}lﬁfj = g’i
fix) = (W(X)F(a}%?,W(b]l ) = (r(b'xa)1l_,1.) =¥(b xa)y for any

¥ S
;l,§2 £ ES there are two sequences (a ) and (b ) of M such

n
that |l m(a )1 ~5 [l ==> 0 ana [|lw(b )1 -%{l—> 05 hence
(w(x)ﬁ(an)L?jw(bnlk?) —> (m(x)£,,8,) (uniformly on the unit
sphfre of M)3; this implies (W(X)E%ligz) e M3 {QF,ggF} is
a W -representation.

Hence we obtain

Proposition 3.4. Every cyclic W*mrepresentation is equiva=-
lent to a W*-representation {q?,ggg} constructed via ¥, where
% is a 6 -continuous positive functional of M.

We shall introduce some fundamental operations of construc—
ting W*—representations.

Definition 3.7. Let hrgg} be a W*wrepresentation of M,
Let K Dbe a hilbert space, i;i% K the tensor product of f;
and K. Then a mapping x —> W(XJC)lK is a W*wrepresentation
of M. We call this an amplification of {w,f;} and denote by
[W@lK;gé)K}.

Definition 3.8. Let {W,E;} be a W*mrepresentation of
M., Let E be a projection of {W(M}}Fﬁ then a mapping x —>

e
T(x)E is considered a W ~representation of M into B(Ez?).
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We call this an induction of 7 and denote by {TrE,Ezs}.
Definition 3.9. Let {“a’fgm}aaﬂ" be a family of W =
representations of M, Zg be the direct sum of {ga}aeﬂ' We
consider a mapping of M into B(f;) as follows: x —> w(x)

= Eﬂf:}vd(X]g then m is also a W -representation. We call
oE y
this a sum of W —representations {W&=f;a}a81[ and denote by

e ®r, £ @& I
oE @ qell o

Proposition 3.5. Let {w,%?} be a Wéurepresentation of M,

?
and E,. E;, be two projections of {w(M)} , then two inductions

{7E. ,E } and {7E,.E } are equivalent if and only if E, "
1471 2°72 1
¥

E, in the W*ﬂalgebra fr(m) 1}

Proof. Suppose that Elfbegg let v be a partial iso-

b
b

3 )
metry such that v'v = E;, vv =E, and V¢ fr(M)} , then

:::
m(x)E,vs hence 7B~ 7E,.

T(x)Ey = X vy = vrlx)v=v
Conversely suppose that FElfV szg let U Dbe an isometry of
E1€ onto E2€ which gives the equivalence ﬂ'ElN :rrEz; then
by defining U(z-El)IS = 0, U can be extended to a bounded

operator (EIJ on§ : then Urm(x) = w(x)U for x e M implies

~t

v i ~d e
Ue {r(M)} and 'ﬁwﬁ’= B Ufm = E so that Elf“‘Ez.

1- R
This completes the proof.
Now let {ﬂ%} be aW*=representation of M, and %}1 be
a vector of %3 such that |I§lf|= 1; [r(ME;] is an invariant
subspace of i let E, Dbe the projection of onto
¢
[w(M)El], then Eq e {m{M)} . If E, 4+ 1, we take a vector €2
such that ‘%2 £ (lmEl)%g and ||%2||= 15 then the projection &,
)
of ZS onto [m(ME,] belongs to {r(M)] and E,-E, = 03

therefore by continuing such process transfinitely, we obtain a
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, 5. ¥
family of orthogonal projections (E ) . of {w(M)} such that
.Eﬂ:Ea = 1 and #Ea is cyclici therefore any W*-fepresentation
aE :

is equivalent to a sum of cyclic W4=representations {Wa}aslf’

where wEa = Ty

vy

Now let ﬁﬁgg] be a faithful W$-representation of M,
and XK be a jvbwdimensional hilbert space, then from the con=
siderations in the proof of Theorem 1.1, every cyclic W*—represen-
tation of M 1is equivalent to an induction of the W*—representation
{%ﬁQlK) %igl{}; let K? be a n~dimensional hilbert space with
n = card (1), then clearly m is equivalent to an induction of
(T@1,® 1ys, %'/QT) KSK'].

Hence we obtain

Theorem 3.3. Let ['rr,gl be a W*—representation of M and
{ﬂ',%} be a faithful W*e-representation of M, then {11',6] is
equivalent to an induction of an amplification of [?1%?}.

In the theory of W*-representation, the following problem
is important; let hﬁ?ézj’ {W2’§?2} be two W*-representations
of a W*-algebra M having the same kernel. Then, under any
additional conditions, can we conclude that [wi,ﬁil] is equi=
valent to {W2’§;2]?

This problem has been studied by a number of authors.

Nowadays, the problem has almost completely been solved. The

reader is referred for this information to the book of Dixmier.
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Notices of §3

Theorem 3.1 is called the commutation theorem of hilbert
algebras. The *-algebra L(G) of continuous functions with com-
pact supports on a unimodular locally compact group G 1is a .
hilbert algebraj; therefore the left-regular representation and the
right regular representation of G satisfy the commutation theorem;
Dixmier [cf. 4] introduced the notion of quasi-hilbert algebras
and he succeeded in proving that the left-regular representation and
the right-regular representation of all locally compact groups

satisfy the commutation theorem.
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§L|.. Types of tensor products
Let M, N be two W*—algebras, and M®N be the tensor
product of M and N, The purpose of this section is to show
the types of M®N.
Let M (resp. N) be the direct sum of a family of W -

algebras of {M }adl (resp. {NB}BEJ)’ then, using Theorem 2.3,

a

we can easily conclude that M®N = ¥ @& (MGC@ N|3)
oE
BEJ

Now let M and N be two finite algebras with faithful
normal finite traces CP,_IP respectively. Then by the inner
products: (a,b) =30(b$a), (c,d) = W(d:kc} and (a®c,bGd) =
PoV ((b@d) (a@c)) for a,cec M, b,deN and a®b, c®d e
M®N, M, N and M&®N Dbecome hilbert algebras respectively.
By Proposition 3.1, UMRN) = K (U(M®1, 1® Y(N)), so
that by Theorem 2.3, MéN is *=isomorphic to ?/((M@N). Let
75 be the hilbert space obtained by the completion of the pre-
hilbert space ME®&N and V= {Ua | a (bounded) ¢ 15}, then
77 is an ideal of 2 (M®N); since the identity operator U1
belongs to 2%, % = U (M®N) 3 therefore from the proof of
Proposition 3.2, U1®l is a finite projection, so that
2/ (M®N) and so M®N are finite.

Next let M and N be general finite algebras, then
there are families of orthogonal central projections (z. ) 1
and (ZB)BEJ of M and N respectively such that aiﬁ:—)za =1,
r ®z, =1, and Mz and Nz have faithful normal finite
Bedl B a B

traces respectively; moreover M®N = ZI[@) {Mza®NzBJ§
oE

hence M®N is finite. Be J
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Now let M and N be tﬁo W$=algebfas, and. & and I Dbe
projections of M and N respectively, then by Theorem 2.3,
(e®f) (MBN) (e®f) = (eMe)EijE; therefore, if e and f are
finite projections, e&®f is also finite in MQ-:S"N,

Let M and N be two semi-finite W*ualgebras, then
there are two increasing directed sets (e ) and (fB] of
projections in M and N, respectively such that €y —> 1{s)
in M, fB —> 1(s) in N, and e, f[3

ewﬁlfﬁ is finite and [ea()fﬁ} is an increasing directed set

are finite3 since

of projections such that ed:]fﬁ —3> 1(s), we can conclude that
M® N is semi~finite.

Hence we obtain

Theorem 4.1. M®N is finite if and only if M and N
are finite: M®N is semi-finite if M and N is semi-finite.

It is clear that if M®N is finite, M and N are
finite.

Next, let M (resp. N) be a homogeneous algebra of type
I (resp. type I )  then there is a family (e )agﬂz(resp.

m o
{fﬁ)ﬁey) of orthogonal equivalent, maximal abelian projections

in M (resp. N) such that ¥ e, =1, Py fB = 1, card (1)
aell Bed
= m, card (J) = n; therefore {eaéﬂfﬁ} is a family of
oE
Red
orthogonal equivalent projections such that Eﬂ_ea@JfB = 13
oE
Bed

moreover (eaC}fB){MééN)(eaEEf ) = (eaMea}éé(fBNfB}, so that

g
eaC)fB is abelian and clearly maximal; hence we obtain that
M&N is a homogeneous algebra of type mnj therefore, by

Proposition 3.2, chapter II, we obtain
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Theorem 4.2. M®N is of type I, if M and N are of type I.
Next, let M (resp, N) be a finite algebra (resp. a continuous
. o _ finite
finite algebra) having a faithful normal/trace P (resp. "}/) , then
M@N is continuous; 1in fact, suppose that M®N contains a
direct summand of type I3 since N is continuous, there is a

decreasing sequence (e ) of projections such that e = e .4 ~
€41+ z(en) =1 for n=l1,2,... 3 then ?@#jil@)en) = ‘W(en) =
2“n";p(e1} -=> 03 on the other hand, let p be an abelian projec=
tion of M@®N, then p 1®e,; hence @ ® Y {(p) <Pl®e,) —> O,
a contradictiony therefore M@N is continuous.

Next, let M(resp. N) be a semi-finite algebra (resp. a
continuous semi-finite algebra), then M®N is a continuous;
in fact, let e (re-p. f] be a finite projection of M (resp. N)
such that Z(e) = 1 (resp. Z(f) = 1), then (e®f)(M®N) (e®T)
= (eMe) ®(£NF) is continuousj hence M@&N is continuous from
fhe comparability theorem.

Hence we obtain

Theorem 4.3. M&N is of type II, if M and N are semi-
finite and one of them is continuous.

Finally we shall show

Theorem 4.4. Let M and N be two Wriz-algebras, one of
which is of type III, then MAN is of type III.

To prove the theorem, we shall provide some considerations.
Let M and N faithfully represent weakly closed *-algebras
?7?1 and 9772 on hilbert spaces ; and 752 respectively;
then by the considerations of §l, an element a of B(51®§2)

Can be representod by an operator matrlx (aa B)
2

a,Bell
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(aa,ﬁ £ 3(52))5 since gl _,1®W72 = 1@3977;,
/:-? (B{Zf}j 101, 1@?772J = l@z)fg @p; 3 therefore the element
2 : .
b in X (B gl;@l 1®7%,) is expressed by (bd;BJ (b, g & %7)

under the above vepresentation. MNow put P for

' Pe,g) 7 (Dagbyy)
all 7, then P‘f are considered as linear mappings of
ﬁ) {B{?/;l}@lpl@???z) onte l®2772§ we can easily show the

following properities:

(1) P?r(l(@l) = 11, (z2) (P tb < |l vl
A ' Vo~ D en S R ’ . =
(3) Ph"(h" > 0 for hi O, (L) PY\L1b.r) uPX(b)v

for u,v e 1@V, (5) Py(b)*PB,ifb} < P _I1')
@

(6) B are wo and so-continvous ca bounded spheres, and

(7) P},(b;‘o,a = 0 for all Y imply b =0, for b,h e

(3(4,)@ 1,1@97.,)
Since K (EW:L@ 1@@9}72) “s a subalgebra of R (Bigl)@} 1,

l®9772); the restriction ol PY 01l R('Ml@lﬂ_@mz) defines

a ‘linear mapping Py of R (Wl@)l,l@ 3?72} onto 1®9772, SO

thet by Theorem 2.3, P}, can be considered a linear mapping of
I‘JI@N onto 1&IU,

Proof oi Theorem L4... Suppose that N 1is of type III and
taat there 1s & non-zero central projection z of MQN such that
(M@N}Z is scmi-finite; let e Dbe a non-zero finite projection
of (Mélﬂiﬁs by tie above consideration, there is a mapping ?YO
sach that {-It‘;oie) 4 0y since ,}Zfofe} > 0, there is a non-=zero
projection p (e T®N) such thet rp < PYO(e) for some positive
numberr N (»0). Suppose that (x ) (|i:.ca < 1, x, € p(1®N)p)

is s—~convergent to 0, then {xae) is s-convergent to O3
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heznee bty Theorem 5.3, chapter II, (ex:) is s=convergent to 03
e

by the so-continuity of PFb on bounded spheres, PXO {exg)z

P T -
be(e]x: is s~convergent to 0O, so that IpP?b(e)p + (1-p)} 1.

pPWb(e)X; = x; is s=convergent to 03 therefore the *-operation

is s=continuous on bounded spheres of p(l®N)p; by Theorem 5.3,
dapter II, p is a finite projection of 1®N; hence 1&N and
so N is not of type III, a contradiction. This completes the

proof.
Now we obtain the following diagram concerning the type of

t ensor products

(Type Im)ég(Type I) = (Type I )
(Type I)® (Type I) = (Type I)

—

(Type I or Type II)®(Type II) = (Type II)
(any W“malgebra)éé(Type III) = (Type III)

(finite]éb(finite} = (finite)

(semi-finite) ® (sem

~finite) = (semi-finite)

(any W -algebra) ®{properly infinite) = (properly infinite)
(any W*malgebra)éé(purely infinite) = (purely infinite)
(discrete) () (discrete) = (discrete)

e ] = . :
(any W ~algebral® (continuous) = (continuous)

Finally we shall show some facits concerning the commutant
of a weakly closed *-—algebra on a hilbert space.

Proposition 4.1l. Let Eﬁ be a weakly closed *=algebra
containing thne identity operator on a hilbert space i;, and
Eq (resp. E;) be a projection of 27] {resp. ??f), then we have:
(ElZ&El)? = Z@qu and {W?Eg)? = Ezaﬁsz on the hilbert space

Jillgl
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Proof. Clearly (?ﬁ?El)Q:D (E1%7E1)§ suppose that
T e B(Elg?) and T € f%ﬁ?El)?, then T, = TE, belongs to
B(ﬁ) and T, €% =29; hence T =B;T,E, ¢ E9WE;; by
symmetry, we have (%UEZ)? = E22W?E2.
Proposition 4.2. Let Bﬁ be a weakly closed *~-gubalgebra
of B(%) containing the identity operator on a hilbert space

g, then we have: 477

if and only if 7% is of type I (resp. type II, type IIL.}

¢

is of type I (resp. type II, type III)

Proof. Suppose that 207 is a semi-finite W*—algebra, then
7)] has a standard representation {Wl’f?l} such that 7 () =
U(I), where Cﬁ' is a hilbert algebra and éjl is the comple-
tion of 7 .

Since #7] on %; is considered a Wﬁmrepresentation of 977,
by Theorem 3.3, it can be considered a W*mrepresentation j;z
such that Ty = (ﬁiéalﬁ}Eﬁ where K is a hilbert space and E
is a projection of {W (@?)QDl };; since T (ZW)G@I } =
(Y@l =R (U0 ® 1, %g’B ~ U () ® BK) 3
therefore {Wl(av)églK] is of type I {resp. type II) <==>
2{(&7)? is of type I (resp. type II); since ’ZK(GT)? is con=
jugate linear *-isomorphic to 2/(7), Ir (zﬁldélK}? is of type
I {resp. type II) <==> 2/(J7) is of type I |
easily E{wl(xv)cle}'E is of type I (resp. type II) <=
{ﬂjﬁav)é?lK]? is of type I (resp. type II): 'ZW? = {(ﬂjfZW)Q§IK)E}?
= E{ﬂjI%V)QﬁlK}?E; hence we have : 23? is of type I {resp. type
II) <==> 2 ~ Y (07) 1is of type I {resp. type II); therefore,
casily, 2% is of type III <==> 2] is of type III. This

resp. type II)3}

completes the proof.
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Proposition 4.3. Let Z?l, 2%2 be two semi-finite weakly

closed *-algebras containing the identities on hilbert space 551
¥
and respectively, then R(ﬁ/ Gs 1 RN Y/
2 1% =4 00 A E7 2

7 ¥
R @1z ,1p@7.)).

174, ,gl 2

Proof. Let {m,K;}, {m;,K;] be two standard representa-
tions of 1%71 and 7/, respectively.

Put  m (7],) = 2/(&71) and m,(77],) = 2/(6?é), then we

can consider as follows:

?772 = (%(072}®1K4)E2 9

where E, ¢ (2{(@11@1%)" and E, (2{(0/2)@1{4)*.

Put E = E1®E2, then we have

R (3??1@)152,1 5272 - K W) OR e ® Ik, >

g @ 7’((0(2)@11{3@15:4” = R (2((071@)072)@11{3@ 1K4}E ;

On the other hand
My = B (U (7@ i) 'E,

E, (2/ (6772J®1K4] E, = B, K (U (T,) ®1K#,1K2®B(K#))E2 ;

i

B R (U7 ®l g @ B(K,) ) E,

7,

therefore
RIM®1lr 1p @) = ER(UWOIN® 1, @1 @ 1w »
PR SR e
¥
1Kl® 1K2®B(K3J®1K4, 1Kl®?/{(0721 @1[{3@1[{4,

1Kl® 1K2® e @B(K,))E =

3
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ER(UWT | ®T7,) ® 11{3@ g, 5@ 1k, ® B(K,®K,))E

i

L
(R(U TRV, ®1, JE} = R(MA®1L 2 ,1 @M,
S 2 K< 0K, Lz ‘gz 51 2

E'R<2(u?f@c72x31K;glK)?E

i

This completes the proof.

Corollary 4.1. Let M, M, be two W*-algebr"as, Z, and

22 be the centers of 'Ml and sz respectively, then the centers
of M®M, is the ¢ -closure of Z,®Z, in M @M,. In particu-
lar, if M; and M, are factors, M1®M2 is a factor.

Proof. Let {”1°51}s {1?2,52} be a faithful W -representa-
tion of Ml and M2 respectively, then

R (my (24 5 51 T, ) C the center 3 of
?‘{( (M 6152 51@)11'(1\{2

n the other hand,
R(?Tlle@lf C R(r 5,14 @ » (1)) cg

Rwﬂw®% cRﬁ%@%?%@%%ncgq
hence ’R'TT"I'“" @15{ L (M 015
2

= Rim zaoj,jag cg

and analogously R ( lf ®1r2( 2) C; hence K (1r Olj

1/ @wzi C3 therefore Q C Klx ) ® 1 @wz 2
J1 F
since wl{Zl) @ lfj ,lﬁ @wZ(Z2) are semi-finite,
2 1
j C Rl (2)® 15 ,_1,5 ®7,(2,)). This completes the proof.
)2 1

Remark. It is an open question whether the assumption of

9
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semi-finiteness can be dropped in Proposition 4.3.

Notices of\%h.

In the diagram concerning the type of tensor products, we
do not give the procof of that (any W*ualgebra) Eﬁ(properly ine-
finite) = (properly infinite); however the reader can easily do it.
Many problems, which are particularly interesting for factors
with separable associated spaces, are unsolved -~ for instance,
(1) Are there two factors M, and M, of type II;
(resp. type IIw, type III) with separable associated spaces such
that NH&}N%f%JWH and Nh@bmbf#JMé (that is, not *=-isomorphic)?
(1i) Is there an example of a continuous factor M with a
separable associated space such that M& M A~ M2 (not *-isomorphic).

Concerning these problems, the reader should also be refer-

red for the section 6.
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‘§5. On the redﬁction theory.

One of the purposes in this section is to state the reduction
theory of von Neumann, using a new method obtained in _§2. Here we
will not try to reappear all results obtained by von Neumann,
because it needs fairly many pages; also the reader can easily do
that work by himself in referring to the book of Dixmier; it is
the coming problem whether our approach is useful for remained
problems in the reduction theory; at least, it is certain that
our method simplifies the discussions concerning the construction
of the reduction theory. Also we want to state somes ccncerning
the algebraic reduction theory shown in chapter II. Therefore,
at first, we shall ccnsider the situation of commutative W*—algebras.

Let C be a commutative W*-algebra, then it can be con=-
sidered the B -algebra Lw(ﬁlﬁﬂ) on a measure space ({2,u). On
the other hand, by the representation theorem of Gelfand, it can
be also considered the B*-algebra C{K) of all continuous func=
tions on a compact space K.

In many cases, the latter of these two representation theo-
rems is more useful than the former -- in fact, the simplest rep-
resentation of C corresponds to every peint of K, and elements
of C(K) are continuous functions; moreover C(K) can also be
considered the L®-algebra on a measure space as follows: let
%?a}asﬁ' be a family of ¢ -continuous positive functionals on
C(K) such that the supports {s(?&)] are orthogonal and
£ s(f,) =1; since P, is bounded, by the theorem of Riesz,

there is a finite measure «, such that ?h(f] =L(‘f(t)dud(t);
K

since SGFG) is the characteristic function of an open, closed
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subset G, of K, the support of «  1s G, - Pyt G = éE%IGd,

then G is an open set of K, so that it is locally compact and

G is dense in K; for a subset E of K, if E f)Gd is 4.~

measurable feor all o € ]I, we say that E 1is locally measurable

and define @J(E) = Eﬂ:pa(EfiKa), then & is a measure on K
ae
and ?ﬂK—GJ = 03 moreover by the theorem of Radon-Nikodym, we

—~
«)3; the utility of this measure

can easily obtain that C = L¥(G,
space is that every essentally bounded locally measurable function
is locally equivalent to a bounded continuous function on a local-
ly compact space G; therefore a non-dense set E 1is E?E) = 0,
so that the first category set is also a null set; of course, the
representation ﬂw(G,ﬁj has also weak points ~- for instance, let
Cy = ﬂw{fll,ul), where _fll is the interval [0,1] of the real
line and #, 1is the Lebesgue measure, then .fll is a compact
space satisfying the second countability axiomj on the other
hand, using the representation theorem of Gelfand, let Cl rep=
resent as Lm{Gl,ﬁi), then G, satisfies no the axiom of second
countability == in fact, let t be a point of G5 if (%)
# 0, the characteristic function x of t is an element of
Lm{Gl,Ei), so that it can be considered an element of Lmtﬁl,ﬂl)g
since the Lebesgue measure is continuous, we can easily have a
contradiction; therefore, any sequence (t ) of G, is a null
set; hence (tn) is not dense in Gy.

This weak point might be not essential in the commutative
case (however in the non-commutative case, we shall show that this

has essential influence on the reduction theory;.

To avoid this weak point, we have a suitable method for a



347
separable case; we shall state that method; for simplicity, we
assume that C has a faithful normal functional ¥; let Cl

be a Bmmsubalgebra of C which is ¢ =~dense in C and Cl

C(K be the function representation of C,, where is a

l)
locally compact spacej then we haves pr(t du(t) for
e C(Kl]; where # is a bounded Radon measure on Ky such
equality induces a *-isomorphism p of C, into Lm(Kl,u);

suppose that {fa} (CjCl) i5 a s=Cauchy directed set in C such

that l|faH‘:§ i, then
ol f : Z
£ 3 i et |' Y - - - _.__.rf‘ | N,

ﬂj((.-.a fa; ('LL'C .I.B)) \J ‘fu"t; J-f){b}l d-&’\ﬁ = O s
so that ufffa(t}mfs(t}|2gft)dﬁit) -->0 for g € Lm(Kl,m; ; since
L@(Kl,u) is Ll-norm-dense in Li(Kl,g}, and £ _(t)] < 1, we
have Jr[f t)mfaft)igfﬂf;ab(t) ~> 0  for f e Ll(Kl,m);
hence ~ (f ) iaL:;Geuch“ i L@(K]_ﬂ} Al Wmorsover -

!"}’, .
equivalent s-~Cauchy directed sois are tiransiormed into
equivalent s-~Cauchy direcved sets, so that © can be uniquely

. . . - "
extended *o a ¢ =continuous *=homomorphism P of C into

Lm(Kl,u)S moreover [??x*x)(t)dp(g) - @i, so that ﬁ’ .
J

an isomorphism; since C(Ky) is ¢ -dense in Lm(Kl,u) we have

Es O P y . .
ﬁ(C } = L7(X,, 43 therefore if € is separable in the topology

s (C,C.), we can %aks a E ~subalgebra C, such that C; is

» Nt s ks 1 1
uniformly sepairable anc ¢ ~densc in €, then the spectrum space
Kl satisties the second countability axiom -- in fact, let (fi)
be a sequence of C, which is uniformly dense in Cl; put Ui =
= [ !filg)l > 1, g £ Kl}’ chen it is very easy that [Ui} is

a2 base of the topology on Kla in this case, every point of

&) . ) - . . .
LP(K,,n)  gives the simplest representation of Cy, but it can not
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do for C.
Now we shall pass our subject to the non-commutative case.
The purpose of the reduction theory is to construct the represen=
tation theorems of W$_a1gebras similar with LP({L,u) or C(K).

We shall call the reduction theory of von Neumann (resp.

the_algebraic_reduction theory) the reduction theory of construc-

ting the representation theorem of LP-type {resp. C(X)-type) in
gneral W$-a1gebras.

Even in W*malgebras with separable associated spaces, these
two reduction theories have quite different features.

To develop the algebraic: reduction theory for a W*-algebra
M, at first we should construct the following situation: let Z
be the center of I, K the spectrum space of Z, ?7t the
mazimal ideal of Z for t € K, then there is a uniformly closed
ideal 3@% (in general, /7. may not be maximal and not 6 -
closed) such that ¢7, C 7/_ and M/7j = N_ is a factor and

moreover [ . = (0).
tek

We could construct such situation for finite W*—algebras
in chapter II:{ therefore fo.» them, we can consider the algebraic
reduction thecory.

Even if we can cons*ruct such one for other W*=algebras M,
there is an essential weak point in this reduction theoryi in
fact, even if M has the separable associated space, in general,

N, has not the property [cf.54 ]; therefore in this theory, the

!

I

W ~algebra I which has a faith”ul W -representation on a

L

e
i

separable hilbert space, is reduced to the study of W -factors on

non~separable hilbert spaces: this 1s certainly a weak point}
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for example, we shall consider a W$ualgebra Zé§B, where 2 =
LX(0,1) with the Lebesgue measure and B 1is a factor of type
ijbg for such simple form, we can not expect that Nt has a
separable faithful W*mrepresentation.

‘However, this reduction theory has alsc much utility, if
possible —-= in fact, a simplest representaticn corresponds to
every point of K; moreover the strongest point of it can eli-
minate the pathology of Yalmost everywhere”™ for which the reduc-
tion theory of von Neumann can not essentially separate from the
separabilitys; therefore the author thinks that the problem of
constructing the algebraic reduction theory is very important,
though it is very difficults We have some tools as follows:
Let M be a W*—algebra and we shall faithfully represent M as
a weakly closed *-~algebra on a hilbert space, then ?{(M;M?}? =
M?F\Ms so that 1%(M,M?) = qu where Z 1is the center of M;
thereforé ?%(M,M?} is of type I; let e be a maximal abelian
projection of T{(M,Mv}, then e??(M,M?)e = eZe; Since the map=-
ping =ze -9%> z of eZe onto Z 1is an *-isomorphism; we
have a linear mapping x =—=> P(X) of M onto Z by defining
P(x) = B(exe) for x e M, then © has the following properties:
(1) p(x*) = p(x)*} p(h) > 0, (i) P(zx} = zp(x),  (iii)
pll) =1,  (iv) P(xﬁ)p(x)‘g p(x*x) and o is ¢ and s-
continuous, where x & M, h{>0) ¢ M and z e Z; therefore for
any t € K, where K is the spectrum space of Z, put ?E(x)

= P(X)(t}’ then <, is a positive linear functional on M; let

hrq,‘,gqg} be the merepresentation of M on a hilbert space
t t

5%? constructed via ?t, then the problems are as follows:
t
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(i) Is the representation 7= £ faithful? (ii) Is
tek Tt

7 (M) a W*—algebra? (iii) Is (M) a factor? (iv) At

Tt Py
least, if M is of type III and has a faithful W*—representation
on a separable hilbert space, is the kernel of qu maximal and
7 faithful, so that M semi~simple? (v} At any rate, should
these representations {7 ]} be studied? (vi} For finite alge-
bras, does {E?t} coincidg with the results in chapter II?

Now we shall consider the reduction theory of von Neumann.
At first we shall state that theory in the separable case and later
formulate the problem concerning non-separable cases.

Let M be a W*~algebra with the separable associated space,
then it can be faithfully represented as a weakly closed *-
subalgebra on a separable hilbert space :  then R (M,MT) =

I N
MAM = 2, where Z is the center of Mj; therefore F{(M;M ) =

= {:)Na where Nd is a homogeaeous algebra of type In with
acll o

na-g_jfgz therefore it is enough to assume that ?{(M,M?) = N,
where N 1is a homogeneous algebra of type In with n< 03
from the result of §2; we can consider N = Z®B = L°(B,(2,4),
where Z®1 1is the center of N and B is the factoer of type
Ing since Z@I1 has the separable associated space, we can as-
sume that ) is a compact space satisfying the second countability
axiom and «({L) = 1.

Let a = Z&®B, +then a is considered an essentially bounded

B~valued

weakly *-measurable/function on l].; we eXxpress by a =
jﬁa(t)du(t) such situation, then ||all= ess. sup |lalt)]|]; for
e Z®B. a, = Jﬂ(al(t) + a2(t))du(t), a,a, =

+

aq.48, aq
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‘jal(t)az(t)dm(t) Aaq =Jﬂhal(t1dn(tj and a =ufa(t}¥dm(t).
Proposition 5.1. Let a, =U[ai(t)dw(t) (i=1,2,...) and

a =Jﬁa(t)da(t).

(1) If (a;) 4is s-coavergent to a, there is a subsequence

(a; ) such that {a; (t)]} is s-convergent to a(t) for almost

j j
all ¢ e (),

(ii) If (a;(t)) is s-comvergent to a(t) for almost all

t e {1 and if sup [l a, {l< +0, then (a;) is s-convergent to a.
i

Proof. Since (ai) is s~convergent to a, sup []ailﬁg k3
i

therefore [la;(t)[l< k a.e. for all ij; let (%;) be a dense

subset in the positive pertion of B, and put f = l@)%n

(1 e 10,0 CT (), w), then

<(ai=a)*(ai-a},fn:> =J:i[ai(tJ~a(t)}*[ai(t)-a(t}],%n> dn(t)

~=> 0 (i —> ) for all nj there is a subsequence (a..) of

1]
W e
wa ) oo - °
(ai) such that jziiﬁaij a) (3 5 a},fﬁ? < +wj then
© o N
jEii{aij(t)-a(t)} [aij(t)ua(t)}55ﬁ> < +0 for t ¢ N , where
. * -

#(N ) = 03 therefore 1;m*i[aij(t]=a[t]} {aij(t)-a(t)}s§ﬁ> 0

J
for t ¢ Nng by the application of diagonal process, we can

assume that such (ij) is independent on nj then

Lim<la; j(t)-alt) " {a

J lj(t)=a(tJ},§.> = 0

Il

w
for t ¢ é:{ N, and all nj since ilaij(t3|1§.k (a.e), we can

conclude that aij(t) ~——> al(t) (s} a.e.
Conversely, suppose that a.(t) —> a(t) (s) a.e. and

sup fiai|I< tw, then |l a;(¢lil< k a.e., so that |l a(t)||< k
; 3
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a.e.3 for any n, ‘<[ai(t)-a(t]}*{ai(ti—a(t)},gﬁ> —> 0 a.e.

(i ==> ©); moreover

<fay (t)-a(t) 1 {a (t)-a(t)] 5> < wfll £, ]l 5

therefore we have

in < (a;-a) " (a5-a) ,e®F > = lin J<{ai(t)ua(t)}*[ai(t]-a{t)} ,

0
= 1 . .
%n > g(t)du(t) =0 for all n and g ¢ L°({2,u): since

sup [l a; |[|< +o, this implies that a; =—> a(s). This completes
t he procf.

Proposition 5.2. Let (aa)asﬂ' be a family of elements of

L°(B,(,u) containing the unit, 7 (t) the W$-subalgebra of B

generated by {aa(t)}meW* Il the W*wsubalgebra of Lm{B,(l,u)

generated by {aa} and Z®1, and let b ¢ Lm(B,I),a). Then,

(1) If bve d, blt) e J(t) a.e.
(11) If blt) e I (t) a.e. and if [[ is enumerable, then

b € 67.

Proof. Let A be an *-algebra generated by (aa)asﬁl and

Z®1 then if b e A, it is clear that b(t) e JJ(t) a.e.y if

b e /, there is a sequence (bn) of A such that b, —> b (s)s

hence by Proposition 5.1 b(t) & 7/ (t) a.e.
Conversely suppose that b(t) & J7(t) a.e. and [ 1is
enumerable; since (57?{ (Z@l)'r = Z®B, for any a' € 5’[?, we

? i v O

M 1
have a = dra(t)da(t); since aa, =aa and aa, =a,a,

a o o
st 1

L

T

(t) = a {t)alt) for t ¢ N,

T
where m(Na) = 0; hence a?{t) e O/ (t) a.e. so that alt)b(t) =

7 e

b(thalt) and aft) b{t) = blt)alt)™ a.e.; hence bedf = 7.
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This completes the proof.

Definition 5.1. A family {Z7(t) | ¢ e (1] of W*-subalgebras
of B is said measurable if there is a sequence (an] of
1°(B,L),u) containing the unit such that (7 (t) is generated by
{an(t)} for almost all t & 2.

Proposition 5.3. Let a family [d7(t) | t el be
measurable. ‘

(i) the totality 7 of elements a of L2(B, ), )
such that a(t) e J({t) a.e. is a W' -subalgebra of L¥(B,{),u)
containing Z®1.

(i1) If a family idr{t) | ¢ £ {1} is measurable and it
defines a same W$malgebra Cl  of Lm(B,fl,a)j then JOr(t) =

Proof (i) is clear from Proposition 5.2.

(i) Let (a ) be a sequence such that {an(t}] generates

Ji (t) a.e. since a; € a. ai(t) £ J;(t) a.e.; hence J7(t) C
It} a.e.; analogously we have J7(t) D It) a.e. This com=-
oletes the proof.

By Propositions 5.2 and 5.3, there is a one-to-one corres-
pondence beltwWeen a W*nsubalgebra J7 containing Z&®1 of
I°(B, ),z and a measurable family {J7(t) | ¢t e{)} or
H$msubalgebras of B: we express by ] =“[z7(t)dn(t) such
situation.

Proposition 5.4. If a family {J/(t) | t e ()] is measur-
able, a family {0((13}‘i | 5 e{)}] is also measurable.

The proof of this Proposition will be omitted, because it

needs a long discussion} the reader should be referred to the
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book of Dixmier (p. 184, Lemma 1 and Appendix V).

Now we shall state a fundamental theorem.

T
Theorem 5.1. Let M = |M{t)dux(t) and ' =UyMi(t]dﬂ(tJ,
. i ¥

then [M(t)] = M (t) a.e. and moreover M(t), M (t) are
factors for almost all t ¢ il.

7
Proof. Let {a_ ) (resp. (b)) be a sequence of M (resp.M)

n m

containing the unit such that (an) (resp. (bm)] with Z®1

generates M (resp. M), then la (t)} (resp. {b_(t)}) generates

m
M(t) (resp. M (t)) for almost all ¢t e {23 since ajby = bjai

<

and aib§ = b}ai, we have M?(t) C{M(t}}q a.e. On the other
hand f{a_,b ]} with Z®1 generates L?(B,fhu), so that

generates B for almost all t e.flg hence we
M?(t)) = B a.e.j therefore M(t)f\IM(t)}?(:

=B = (A1) (A complex number); hence M(t) is
a factori; moreover since {M(t}? | + ¢ ()} is measurable, there
is a W*msubalgebra N such that N = Jﬁ{M(t)]vda(t}; then

9 ¥ q ¥
NCM, sothat N=M; hence we have M (t) = {M(t)] a.e.

This completes the proof.

Finally we shall state the problems concerning the reduc-
tion theory of von Neumann; since we can find unseclved problems
for separable cases in the book of Dixmier, they will be omitted.

Problem 1. Is it possible that ZéﬁB = Lm(B,fZﬂ) for a
general factor B of type I?

Problem 2. Is it possible that Z®M = L®(M,{),u) for a
general finite factor?

roblem 3. Is it possible to formulate the reduction theory

in the form of Theorem 5.17 At least, is it possible to formulate
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the reduction theory for general W*malgebras such that there is
a one~to-one correspondence between a W$-subalgebra of Z®B
containing Z®1 and a measurable family {M(t) | t «£)} (in
a suitable sense)?

Remark. The reader should be referred to the book of
Naimark concerning the reduction theory of Tomita which extended
some parts of the reduction theory of wvon Neumann to general
cases; in that theory, it is as yet unsolved that the problem
M(£) " = 1 (4) a.e.?

Problem 4. In separable case, is there an example as
follows? M =ﬁfﬂﬂt)dn(t) and M(t) is *-isomorphic to a W
factor N for almost all t a.fl, but Z®N 1is not *~isomorphic

te M,

Notices of §5

Concerning the representation L%(G,u) in page 3.46, the
reader should be referred to the paper of Dixmier [2]; in that
measure space, non-dense cets, the first category sets and null

sets coincide.
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\5 6. Examples.

Tn this section, we shall state various topics and problems
concerning examples of w%—algebras. We have classified w*—algebras
into ones of types I, II and III in Chapter II. Then, the problem
is that do these all types really exist? This problem is parti-
cularly interesting for féctors - in fact, if we have a factor, we
can easily construct a general w%—algebra with the same type, using
the tensor product. Concerning the factor of type I, (n,cardinal),
we can easily construct as follows: let %gf be a hilbert space
with dimension n, B(%}) the w%walgebra of all bounded operators
on 7§y- , then B(%%J ~is the factor of type In; moreover all
factors of type I are *-isomorphic to B(%%} [cf. Theorem 2.1,
chapter III].

Next, let M be a factor of type jfk}(namely, type II and

infinite) €@ be a non-zero finite projection of M and

@3%)a\ejr be a maximal famlly of orthogonal equivalent pro-
jections of M such that £ & ~ € for & & JL , then };
=1 - - t h € th
1 a\czz &\ GK e ; suppose that P 2 5 en we
o0 4]
choose a sequence (& _) of _J[ ; since + 3 ~ e ,
n ’ P T PP POV

by this equivalence, the projection fi + Z ec% is decomposed
21

[#9] [ee]
as follows: + .3 @ = 3 & and € ~ ¢; then
p fo5  4=1 P Py -
oo (o]
1 = z £ + = & + = e and £ &
AEL-(R;) in]  Spisl i-1 P >
for A €7 -(a4), €4 ~ e for all 1 and €35 ~ &
23+1 Pi
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for all 1i; hence there is a family of orthogonal equivalent pro-

jections such that /béf ~n € and _ X Paf = 1.

Now let f be a non-zero finite projection of M and
(fé\)a\e 1 be a family of orthogonal equivalent projections

such that £, ~ £ for & € f and c%th £, =1; let

T be a normal finite trace on fy M f 4 such that ’Ca(fa\) = 1;

o
since f M f,  is a factor (cf. § 4), by the uniqueness of the

[q ~operation, such 'Cc?\ is unique and faithful; Ta\(fo\) =

is an enumerable subset )y, of ) such that T (f5 Pb_fc;‘)
o for oeE Y- ]}’a\; hence P?{f&\ =o for YeY- I):a\;

let B’Ej‘—a\\_gﬁ J, . then Pb,fa.:o for all &€ JH ;
hence }35,= &EEJH ﬁjb. £y =05 80 that Card(])J) < card(f)=

card( B+ ), and by the analogous method, we have Card())) = card(fH)

Therefore, by Proposition 2.1, M = N @ B, wh'er*e B 1is the
factor of type In (n = Card())) (unique)); since M 1is a factor,
N is a factor; moreover N & 1~ € M €, so that N 1s a
factor of type fl:
[ef. 18].

1 it is an open question whether N is unique

Conversely, let N Dbe a ]Il-factor’, B the In—factor

(n > 3€ 0), then N @ B is a ﬂ;@ ~-factor; therefore, at any

way, the studies of JZ-I_b-factors can be reduced the ones of _'Zfl—

factors. Therefore, our problem can be reduced to the constructions
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of type Jﬁi and  III-factors. Then, the essential point of
that problem is to construct factors of type _jii (resp. III)
with separable associated spaces - in fact, if we have an example
of jfi-factor (resp. III) and if we do not put the restriction
of the separability, we can easily construct infinite many examples
of jgi—factors (resp. III), using the motion of incomplete in-
finite direct product (cf. [23]) (resp. the tensor product). There-
fore, in this section, we shall always congider the constructions
under the restriction of separability.

Murray and von Neumann [16], at first, gave an example of

Jgi—factor, and next, in [214], von Neumann did an example of type

ITT and finally in [18], they showed that are two examples of zﬁi_

factors which are mutually not *-isomorphic. In 1955, Pukansky
[43] also showed that there are two examples of ITII-factors which
are mutually not *-isomorphic; therefore we had two examples of
;ﬂg—(resp,III) factors respectively; it is worthy to note that
these facts do not unconditionally imply the existence of two

jﬁf“;factors - in fact, the following question is open: let M,

and M2 be two ,ﬁzl-factors which are mutually not *-isomorphic,
and B be the I,-factor, then can we conclude that Mligf B

is not *-isomorphic to MgtijB?; however by the considerations of
Murray and von Neumann, we can assert that there are also two
examples of type jzg—factors which are mutually not *-isomorphic.
Many specialists believe the existence of infinitely many factors
of type ,211 (resp. ]f}b and III), which are mutually not *-

isomorphic, but we could not have even one more example; however,
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according to the communication of Professor Kadison, very recently,
J. Schwartz has shown the existence of the third zgi-factor by
proving the problem (i) for :Zf;—factors in §"4; this result is
very significant; the author expects that the appearance of the
third .izi—factor will inspire the appearance of more other ex-
amples,

Now we shall state the construction of examples.

(4) The considerations of general situations.

Let %;_ be a hilbert space, ([ a weakly closed *-sub-
algebra of B(?%J containing the identity operator, 97’ a dis-
crete group and s —~>—US a unitary representation of {?RJ in 75;,
We suppose that U;ICFI U, = O for every s 6—62}; then

T — U;l TU, = ™ is an automorphism of Cf?'. For every

s € 03>’ let j%;s a hilbert space which ig isomorphic to

4

_}f
/

I
4

and JS an isometric linear mapping of ‘};f.onto ?B,S. Let
jﬁi = I & 7fsg then the considerations of & 1, chap. III, we
7 osecgp 7

can respresent each element R of B(ﬁi) by the matrix
3

(R where R_ . = JZ R J, ¢ B(jg)?

S t)s,téc- ’ 8,
s :} N
For T C (7, let & (T) be the element of B(%?) such

_ . — -~ - z % _
that R, . =0 if s $ t; Re g = T for s & CE}, £ is an

L
isomorphism of (7 onto a weaklv closed *-subalgebra CTT of
B(%g) For y ¢ (7., let Uy be the element of B(%%) defined

: - -1 . _
by the matrix (stt) such that R, ¢ =0 if st + v Roe,t =

%)

U . MOTreover
ny

It

e e
for t ¢ .2 then we have U U
U:\‘r 0 & UEP 5 w Yy
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La ") (¥

Fmou) o = @ou 3 (3,3 (1) 3,0 U3, =

A ¥
U T U, = ™; hence U -1 £ (T) UEF = ¢ (1Y)  The operators of
¥

(")

—

the forms & (Tl) U o+ (Tg} U o+ .+ (In) U make a *-sub

Yy Vo Yp
algebra ;510 of B(?}) ~ in fact, (£ (T) Uy) = Uy 4 (1) =
-1

£ )Y . ana I (1)U () U, -F () EF ()L ) U

;1 1 Cyq 2 Ty, 1 2 ) Yo
-1

yl ~

= ¢ (1,7, ) U

Y1¥p

Let Zr Dbe a weakly closed #-subalgebra of B(%.) gzenerated
by Z_E;'O . It is easily seen that the matrix (RS t) oi

. ) B “ -1 3 ,
;E(T)Uy satisfies ngt =0, if st~ %y and Rytpt = T Uy,

therefore there is a family (T_) of U7 suth that R_ .=
vV'y € O&L S,t

T 45U 4 Such properties are preserved for the elements ol
st st
and. their weak operator
,7./0—0 1imits; hence everv element S & ;6' is represented by

the matrix of the jorm (T |, U _j), with T, € OT for

st st
v 6 Ozfn

Proposition 6.1  Let @ be a faithful semi-finite normal
trace on (7 which is invariant under OZ; (namely 'fF(Ty) =

?(T) for y & Q}) For every 8 = (T _; U _1)(8 > 0) & %:

st st
S put HK(8) =?{T_€) where € is the unit of O? . Then ¥ 1is

a semi-finite faithful normal tracc on gf’-; moreover /}1/ is
finite ii and only if 59 is finite; finally for T(» 0) & c}(,

A& (1) = (T)
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Proof. Since Te = R = Jz S Je_, the linear mapping

o L
S ->Te of ;i? onto (J7 is & -continuous; moreover clear
T >0 for S» o, so that ")D is normal Let 8 = (T 4V _1),
= - ' st st
kY 3* & *
then 8 = (U 4T _1); therefore. put S8 = (R Y _1) and
ts ts st st
*
S S = (R Y —l)’ then we have
st st
R s 7 .U U .7 > 7,7
€ teoy T teaf et
R = 3 Ut Fruy
€ t € zr&.. tt Tt

where the sums are taken, using the strong operator topology;
therefore we have }L(S*S) = ’}L(SS%), so that jﬁ* is a trace;
moreover }J(S*S) = o implies Sb(TtTt) =0 for all t & CET

and so T, =0 for all ¢t € qaa this implies S = o.

Since the matrix (Rg ) of $(1) is; R, o =T, A (F (T))=

EF(T); since 99 is semi-finite, there is an increasing directed

set (T ) of (7 such that ,Qg‘bT%=1_%‘ and 8‘0('1‘6;\)(.}%;

therefore ye g\.b% (T,) = 16 and A~ (b (T,)) < + v
this implies the semi-finiteness of ¢ .; it is clear that §%~

igs finite if and only if gﬁ is finite  This completes the proof.

Proposition 6.2 (i) Suppose that (¢ 1is & maximal commuta-

tive *-subalgebra of %~ . In order that 7 is semi-finite,
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it is necessary and sufficient that there is a faithful normal
semi-finite trace of C}?' which is invariant under Q?an

(ii) If ¢ is purely infinite, 55: is also purely in-
finite

Proof  The proof of (i)  The condition; is sufficient by
Proposition 6.1. Conversely suppose that ;Zi» is semi-finite.
Let ~y be a faithful normal semi-finite trace of 2~ and
put EI) (T) = W (] (1)) for T(;o) ¢ (_',T ,  then clearly ")C’
is & faithful normal trace of (7 ; the problem is to show that
qb is semi-finite.

Let T, = (T) be a unitary element of é%; and put STl_l

= (T _1U _1) 3 then

st st
3 (r. 87,71 *r.g g er. L R
s'T1°"1 )JS = JT1Ig945T Jg = €= e
o -1 o -1 ¥ )
= JSSTI JST = JSSTl TlJS = JSSJS K

therefore, put Kq = the convex span of {TlsTl_llTl e ot and
3 * .
unitary)}, then JSKSJS is one point, so that J K.J  1is also

one point, where KS is the o -closure of Kg

On the other hand, K is ¢ ~compact and inrvariant under

-1
SN
since C¢ is commutative, by the fixed point theorem of Markoff

S
the mappings R — T%‘R T

,  where T&\(unitary)fi 6% :
and Kakutani (cf. Appendix, Bourbaki, Espace vectriels topologi-

- s S - )
ques), there is a fixed point S  in Ky, then 8 € O( N L= s
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w
hence we have: J 8J, =J S J = To, where L (Te) = Sy

Now let S( *i ) € - and ¥(8) < + «» , ‘then ~(R) =

Y(S) < T @ for all R € Kg; let Ry € E%) then there is a
directed set (S Ok) in Kg such that g*—lim S, = By - Put
F=(v]1yvyo V) <+w , and VE A}, then

lﬁ? 34(vs&\) =’y&(VRl) for V € I ; since q@»'vs < }A
(8), ¥ (VRy) £ -4 (8); since ,ﬂ#%y/(val) = % (Ry), we
have 7% (Ry) £ 74 (8); therefore for S, € ES M Oﬁ:(q(:d% ,

(SO) = 39 (Tf) < + o, where (TE’) = SO; moreover since the

identity operator 14  is the stropz 1imit of operators [Sa\]

of °5( , [J SG\ S] converges strongly to 1]§; this impliecs ?

is semi-finite.

The proof of (ii). We consider a linear mappping P of ;ﬁ»

onto (_'% as follows: P(8) = (To ), where 8 = (T Y l),
st st

then P satisfies the conditions (i) P(l;_;-) = 1= , (ii)
7 4
[e(s)I < tIsll, (131) P(H) » o for H » o, (iv) P(USV) =
where U,V e gt N
UP(S)V,Y(v) 2(S) P(8) < P(5 8), (vi) P(S 8) = o implies S = o;

therefore by the same method with the proof of Theorem 4.4 4in
chapter III, we have that .Zﬁ« is purely infinite This completes
the proof.

Lemma 6.1 Let &7 be a maximal commutative *-subalgebra
of B(f;). Suppose that ar Mot U, = o© for v £ € . Then,

e 2
Or  is a maximal commutative *-gubalgebra of A
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Proof'. Let S = (‘I‘StU _1) be an element of X~ which

Ny st , _
commutes with ¢ . For T € ¢7 , we have S 7% (T) = 4 (T)8,
this implies TT .U _, =T U T Since CC is maximal
st st st st

commutative, ’I‘SUS € TN Of(s; hence we have T_U_=0 for sfe,
so that S ¢ {_}C\t . This completes the proof .

Proposition 6.3. Suppose that O/\E is a maximal commuta-

~
Rt

tive *-subalgebra of - and elements of <& which are in-
variant under Oab' are scalar opcrators, then ﬁ— is a factor.

Proof. Let S be an clement oi the center of o , then
S & C}E; therefore 8 =& (T) for some T € O ; moreover

U_1§(T)US=§4(TS)=£J(T);hence T™ =T, so that T =/ 1%’

and so EJE‘(T) = A 17 . This completes the proof.

({3) The considerations of concrete situations.

Let /L be a locally compact space satisfying the second
countability axiom, -~ a positive Radon measure on L and
Og/ be a countable discrete group of homeomorphisms on e
For ;C ¢ /L and a ¢ 03/} we denote the effect of the
mapping corresponding to a on E by ; a. The measure &
is said to be quasi-invariant under c?g if A (E) = o for
a measurable set E implies A(Ba) = o for every a ¢ C‘J

In this case, the translated mecasure /‘(a defined for
measurable sets F Dby /f-t‘a(F} = __,/Q(Fa) is absolutely con-

tinuous with respect to <4 , thus we can form the Radon-

Nikodym's derivative V;(? ); since \/"ab(}G )d A ( L} ) = @/Qab(é ) =

60T ap) = V(T asdy ) = Vi (§ Ve (3 )au(5); hence
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Vip(5) = Vi (5alva(}) ae.
The group 07, is said to be frec (i) if for a ¢ c?,

a + ¢ the set of points satisfying the condition \§ = ? a
( S € /1) is of a A -measure 0, (ii) ergodic, if

J4((Ew Ea) - (ENEa)) = o for a measurable set E and every

a € Ci}— implies either A(E) = o or M (/L-E) = o, (iii)
measurable, if there exists an invariant mecasure 3/ (namely

v (Ea) = Y (E)) which is equivalent to - , (iv) non-measur-
able, if it is not mecasurable.

Suppose we are given a measure /%f on a locally compact
space -/ L. and a countable discrete group CEF under which
s is quasi-invariant.

We formulate the hilbert space Le(fl,/a) of complex valued
square-integrable functions on L For f & Lw(Jl,/u) and
g € 1201 ), put (Tes 3 _f(‘jt (%), then L°(E, %) is
considered a weakly closed *-gubalgebra of B(ég), where é?= L2(ﬂ,ﬂ)o
Let C be the algebra of all continuous functions on L
with compact supports, then C(:I?(;lvfi) and € is a hilbert
algebra; morcover ) =) = Lm(fi,/q); since W/( C)l

v{ic), Lm(jl,/a) is a maximal commutative *-subalgebra of B(dg)

=

For e € JO‘L put Uag j \/\,v : g(%’a) for gGLQ(_/L)/u)
then Uao is unitary and morcover Uan = Uab’ so that
a —> Ua is a unitary representation of ﬁ?’ in L2(!l5;4)_

W7n0,e) (V) = Jwa(5) £ (e Jralsae(y) -

(¥ a )g(}' );
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-1, -1
hence U "T.U, = Tfa, where fa(\g) = f(éa ).

Now put Lg(jl,/,éa) = "‘é; and L7, &) = (., then we
obtain the situations in the (& ): we shall construct a weakly
closed *-subalgebra f’ of B(;;,;) according to the processes
of the (). Thon

Proposition 6 4. If the group J} is free and ergodic,

et
then (~ 1s a factor.

Proof. At first, we shall show that cr ane Uy = o for

o0

y(Fe) e  Let T.=T.U €& ¢ N OC U, where fy,f, € L
¢ £,7 iy y 1072

(/i,4) and E = {“g | fl(*g) ko). Since UO'L is free and vy
. | — O - €

is a homeomorphisnm, Ky { ; | E ¥ 5’ , ? } for
y(fe) € 0} is a closed null set; therefore it is sufficient

to assume that K, = (¢); for any ?} € E, there is a compact

neighborhood vg of § such that vz},ﬂvgy= (b); put U3 =

ENV,, then Ug /Y Uy = (¢) and Ug C E; if u (E) % o,
2 ? ;
there is a sct U such that A (U_ ) 4 o; let 7% be the

&5 ?o

characteristic function of Us K then %= Tfl/}L= Tery W o=

P (U W)y (U ) (5) = JW(E)H(F5) =0 ae for §E Vg

y
thercfore fl(‘g}}z(g) :fl(‘%) -0 a.e. geugo, this is a

contradiction; hence we have 0T /10T Uy - o (v + e); thercfore
P - i

by Lemma 6.1, 0¢ is a meximal commutative #-subalgebra of p{frz .
Next, let T, be an positive element of 7 which is in-

. -1
variant under OEL , then Us Tst =T, = T

o
[

o hence fs(}') =
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_Fs' _1)

0

g - £(g) a.e. for scops let By o= (¥ o< P < T(E)LD
<

D

O

;5 &€ L), then M[(Ep AV qy} ~@E_  NE_ y)} =o for

p:d p,Q

A E

) = o or &« (uL-E_ ) = o , this im-

y JSFLe]

"
céf
]
—
s
('D.
3
[}
o
-
i
i~
o
i

plies thet (%) 1s a constant function, so that hy Proposition

-~ e 7 - g
6.3, £~ ig a factor,

Proposition G.5. Supposa that the group T is free, er-
L

godic, mzazuradle. Then if tne invariant measure Vv has the

following propertlszs: lff{ﬁ']} = ¢ for Y ¢ /L and

-

1

o ¢ w lAL) < 4+ » (vesp. V(L) = + @), A5 is a Tactor of type
0. (resp. type 7).

Procf. TFor T, {» c) &€ or, put .fp (Tf) = :é;ffé'%i¥’(§)s
then @ i a falthful semi-finite tormal trace on OF ; more-

. o ; I 1. -
over @ (U WU ) = @ Ty ) = | £(% s )de(g ) =
) £

7 TsTlTs 5 n.
\/' ! A M - " . A
3 ILE REVERE = O V. #lewmecoie by Proposition 6.2. A~ is
) J
a semi-tinlte Tactor; moreover 1f o < w (/L) < + «, A~ is a

. 2 . . .
finite factor, and if w (/L) = + =, L~ is a semi-finite, pro-

pexly infinitsz faccool. aines o~ ig a factor; moreover sgince

- . . 3 . i - !

v ({8 }) = o, ihare is a Guoreasing sequance LEn} of measgur-
able sets aguen that J(E Y SRR and  1im W(E_.) = o;
able szts sucnr the Y ( o W E g & Wi . ;
M (u'; J’r—n LY . " , _ . e
/L‘L‘ ‘*ﬁF Ve o, for the trece }L; of A~ . where

—ln . Ji.E:
ri
:’ n
KF ig tho charncterisitic funciion of ©n, so that ﬁz;- is
“n

continuous This cowrnletes the prool

Propositicn 6 5. Supposc that CE} 1s free, ergodic and

son-measurable, cnen L~ is a fect.r ol type LIL.
2 ! =



3. 68
From Proposition 6.2, (i), this is clear.

T'or later use, we shall mention a lemma .

Lemma 6.2 lLet %}O = {v | y(3’) =1 ae. y¢& 6}'}5

then ci}o is a subgroup of CEL 1f lﬁfo ig ergodic and

cﬁ?, C&; is not measurable

Proof Suppose that QEZ is measurable, then there is a
positive Radon measure )J which is equivalent to 4~ and

invariant under c%} ; then @}{(? ) = (d\}_J )(§ yd W Z );
ap, (%) = auly) = (G55 a)dva(g:) - (G5 (5 a)aw () for
a € Q?O; since %70 is ergodic, ( )(% ) = A = const.; there-

fore we have ﬁ?o = ca% , a contradiction

Now we shall show concrete examples.

() Let /L be the one-dimensional torus group, A~ the
Haar measure of /L, CZ} a countable infinite subgroup oi s
which is dense in _L : for a € q?f and ? € J/L, we defline a
homeomorphism ¥ -—> % a by 11 a==§4‘a; clearly 0} is
free; now let E be a measurable set of 'YL such that

M((E e UE) - (ENEa)) =0 for all a E'C%% ; let Xp be

the characteristic function of E, then X;C LQ(J’LE/f),
(?11(§ ) = € 2rin 3 (n =o0,+ 1,+ 2,... ) are a complete ortho-
normal system of LE(JQ,/Q); therefore we have XE(§ )

EWinE e

o
A€ ,  Where SIS n|2 < + «; then XE(kg a) =

IN= -0 1= —0o
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fee]
\ orin(§ +a) o i in
5 AN e B 2rina  2win § T :
N=-—-o0 _—nz%oo a r < ¢ - XE( . } n
o) , 2rina
L (“HE—S‘ u):‘ hence ’\-]n S = f"} for' all a 6 {)‘&[ Fl 50
n

P ) _ - . . . - —
that - o for |n| »|, this implies XE(E ) 3(}

const.; hence «(E) = o or L (L~ E) = o; C?; is ergodic;

since 4 is invariant under c?; , A5 )) =0 and K (0L)=
1, J~ is a Ffactor of &Lype jﬁrl

For instance we can take

(Aék): O} = {no (md. 1) | n=o0, + 1.+ 2,. .; & an irra-
tional)

(Aﬁ ) C?:= {y (mog. 1) | y all rational numbers]

(A3 ) c?; = { m/ﬁn (mod. 1) | m = o,+ 1,+ 2,...; n =0,1,2,

.3 p = any fixed number 2,3, 4, . }.

(B) Let /L be the locally compact group of all real num-

bers, A the Haar measure of /L and CEL a countably sub-

group which is dense in /) . Then, analogously, we can show

that OEL is free, ergodic and measurable; since /AthL) = + o,

561 is a factor _j&r

oo

For instance,

(By): 05[
(ng): 0?

(B& ) : 0?. = [m/;n | m=o0,+1,+2, .. ; n=o90,1,2,.. ; p=

(m+ne | mn=o,+1,+2,...; 6 an irrational)

H

(v ]| v all rational numbers)

any fixed number 2,3 4, . .}

(CO2 ): Let _/)_. Dbe the locally compact group of all real

numbers, /¢ the Haar measure of /L ; consider the following
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one-to-one mapping on _/l : c%l(f_cr'): Y[——%f\(*# o= (" > o,
¥, 9~ rational); put Ci} = [Q:Lﬂfi1rﬂ}; then Oy is a
countable group; clearly <« is quasi-invariant and c%; 18
free; A (Ed) = § _#«(E) for measurable sets K, where dJd =
o) 1 (F.07)5 oy = () x, = 4 =10 (1,07)} since %o
is ergodic, by Lemma 6=2} Cif- is non-measurable, so that L. is
a factor of type IIT.

(Cﬁ3)3 Let _/). Dbe the one-dimensional torus group and now

we consider _/)l. as the set of all complex numbers =z with |z|s=

1 and /%c be the Haar measure of L Consider the follow-
. . Z-41
ing one-to-one ma _ : u) > Q— ol = 1,

o ne mappings on /) C%Q(@; )iz —2 372 (le]

ful < 1) Let OEL be a countable group generated by [C%Q(Q,u)

o = 512W1f;j9 rational, u=o0o and © = 1,u = %}: then, ana-
logously, we can show that &« 1is quasi-invariant under CEP

and OE} is free, ergodic and non-measurable; therefore fﬁﬁi is
a factor of type III

(cb,.): Let J""Ln(n=1;2; . ) Dbe the additive groups of in-
tegers, reduced mod 2; therefore -qun is a compact group com-
posed of two elements (o,1l) as follows: oto = o, o+l = 1,1+1=0

Let /L be the weakly infinite cdirect product an an of

1 n
(/L _), then _/}_  is a compact group; let be a Radon
= 1.a° M 1+
- n n
measure on “an such that &« ({o}) = —— A ({1}) = —— .
where o < § < ckn < | - S for some 5 > o, and /’4 be

the Radon measure on /L. defined by the infinite direct product

anl‘%ﬁn of (M 1; L is the set of all sequences 3 =
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(§ 0=1,2, ), where % L= 0,1 Let 0&4 be the set of

those a = (an;nzl,Qj Y e L for which an% o occurs

1
for {inite number ol n only, Tthen CEP is a countable group

) . we definc a homeomorphilsm
4 l—&n

For a ¢ Ozf and T e

14+t
oo then
2 A

Lemma 6.3. The measure J/Mt is quasi-invariant under C;L

Proof For a fixed k, the function

Py
—_ if \E = 1
k
fk(§ ) = qk ’
a
X if ?. = 0
Dy K

and let Xk = (r

and E = [% |‘§ My = 0O, k?ﬁ"n,:l; i=1,2, . .u; j=1,2 .,V

suppose that k o.curs among the numbers m, then
5f ( L 1k Yy,
YETk \ﬁ-)d/’ ?) = "";r" /‘(E) Z/Q(E K)’

analogously we can show that /ﬁdE‘Xk) = Efk(§ )Q}L(? ) for

all k, so that //X(Eak): jéfk(é )Q/A(E‘) for 6&-6 éi}; since

the set of the form E is a fundamental family of neighborhoods
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of _/7_ 5 /M is quasi-invariant under L? .
T B i _ . _
Ve can easily show \;a(\?) = fkl(ﬁ )fkg( %) .ef‘kn(‘g ) =
1)
T (pl’l‘ (28n-bey, , .
n=1‘q_’ for a = b’,_, + )k .+ d " € G_J/ --
" ~1 2 1

Temna 6.4, The system of functions

[he]
-
\néla‘ngn = (8;1)(5 n Q)an

‘Na(g j = (—1) 1Tn:“1 qn (3. {’OZ‘)

forrs a complete orthonormal system in 12 (L, 410)

Proof For a.,b € O’g/g
jwa(g}wb(‘g Jap(¥) = fvia+b(§)wa2Ab(§)d/x(‘§)

'a+b(.§)d-/a(t-§)Swaab(\g)dﬂ(g), where aAb =

(3. ﬁnzl if a =D = 1; otherwise )81'1 = 0};
saunoos toat @ ‘J}l' - a’l_, .t Xk , wWe have
~1 2 n
. I,'L.--\] _ 11 j‘f
U AFIGpEY =y Sy (§)am(y)
i
- ;':111,;2,’“ by i j L2 ¢ \

- { pl{‘ qL{
1 w1 @ e T ir T <) . / 3 == . —in s 2
LJ fO.- 2V eE i Ko g 5 J‘Igfl{( 3 )ld/} \\g / Q.k qk + pk pk l::"'-’
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f 2 Pr G _
and (E d/-c(%’ = q 7 a, + Py o B, " 1
To prove the completeness it suffices to show that the char-

acteristic functions of the form E = (% | “% m; = 0, § ny = 1;

i=1,2, ..u;j = 1,2,. .,v); such set is the intersection of a

finite number of the sets Ej=[§; }’jﬁol and Fk=[§|§k*

1) (j,k = 1,2, );  let ej and f, be the characteristic
functions of Ej and F, respectively, we have Ej(g) =

. . - R . -+
P, Wa,j(g) pU (%) and £,(5%) DAy WXK(S)

qwo(§)., For a,béc?a/, if aAb = o, wa+b(§) =wa(§)wb'(§),

therefore we have the completeness of (W, | a OE](/ ).

Lemma 6.5. The group O—O{, is free, ergodic and non-
measurable
Proof Clearly, 0? ig free. Now we shall show the ergo-

dicity of U‘a— Let f( 5) be a bounded measurable function

on (L such that f(% ) = )ae (k = 1,2, ..).
2 )y (2
Since (3 nﬁl'a”) Erl k,n _ q {§k -
k
d,.-p |
il ¥, (§) +1, if a =o for a= (a;n= 1.2, .c, =

Jets i (5)amy) ! ,,
S5 i, (5)am(5) = J2090,(5 %) vy ($ram(y)

Gy —P
B (D, vy (§)apm() + Jees (3 rap(s)
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s

qh{_pk . , — | .

= £ )W (%) jf w yd 4 €)
P9y f s At oy 5 /q G g 7

= T C + C, , where f(”}') =3 C_W (E) 5

m a,+3’k at-“;og a a

therefore C_, Y, = 0, so that C, = o for a( + ¢) & Gaz .

Finally we shall show the non-measurability of 0}* . Suppose
1) on _/L

that there is a positive R don measure Y (Vv (<)
which is equivalent to /C(. and invariant under OB/

Let C be the algebra of continuous functions on /L,
then a function g(s) = ff’(§+ s)d/c(‘g) on L (f &C) is
continuoug and constant on 02,; since OH/ is dense in 1 ,
g(s) = const, so that » 1is Haar measure on /L ; by the uni-

ral o
city of Haar measure, W = n—lvn’ where \Jn is Haar measure

on /L. guch that )Jn([o}) =Vn({1}) = ,—21-; therefore

ol
d/:z ({o}) = 2p, and /An ({1}) = 2q,., so that
440 I ot Ja, 12 foa, 1/2
LB [ s Bl o
2 e L2 1/
( %+F— an 1/ (""g\/l"?%;) /;(%—1'%- 1- 52) /=?\'<l;there—

d/L( aw
fore T _1 j o f RN 2(§ ! un(‘g) = 03 by the theorem

of Kakutani [cf Ann. of Math., 49(1948)p.p.214 - 226], .« 1is
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orthogonal to ) , so that A 1is not equivalent to Yoo,
a contradi_tion. This éompletes the proof

Mow we can conclude that a factor gﬁi obtained by the
processes of the (o) is a factor of type III.

Rewark If <o _ = o for all n in the (C

LA is
n

b/ ) A _‘_1
Haar measure on L : therefore we can easily show that Ggf
ig freec, crgedic and measurable, so that 4 1s a factor of

type :ﬁ;le

Tn apite of such many examples, we can not assert that there
are substantially many examples, because somes of them may be
mutually *-iscmorphic (namely the same algebraical type)-in fact,
Murray and von Newnann [¢f. Lemma 5 2.3 in [18]) noticed that 1f
the group OEL iz commutative, free, ergodic, measurable and
v () =1 for an invariant measure Y which 1s equivalent
e At the nbtained QZEl~faftﬂr éﬁi has the same alge-
rraieal Lyvpe (hyper finite {cf. Theorem 6.)); therelore all §7i~

factors. obtained in the (4) are mut ally #*-isomorphic.

To «how
other corsgiderations are n=eded Mow wa ghall state ~omes con-

cerning oo,

;

{7 Other construction of ng—factors. Let G be a

countahly fnfirite discrete group with unit e Qz he the set

i

of all complex valued continuous functions on G with compact

cupprorts

per £z € 0, we define the multiplication as follows:
frgia) = 24 f(b}g(b"la)~ For f € (, define f#(a) = f{a_l)
DG

-
El
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for f,g € C, put (f,g) = 2 f{a)g(a), then ¢ is a
acG
hilbert algebra; denote by E;a the following function éa(b) =

o for b4 a and Eia(a) = 1, then Eie is the unit of the

associated
hilbert algebra . thercfore the left¥alpebra WY is

finite and every clement of W (&) can be written by Up, where
fELEML
Now suppose that G satisfies the following condition

(#) Every conjugate class of G with an exception of (e}, is

infinite.
-1
Then, let U, be a central clement of W(L), Uﬁanqga =
U #fxg = U, hence g-ligx € (b) = £(aba™?) = £(b) for all
£ 1 a a a
a

ab €G; since = | £(0)[Z <+, £(b) =0 if b & the class
b€ G

{e}, so that f(b) =o for b + ¢, this implies Up = AL

li(di) is a finite factor; morcover, since ¢’ is infinite-
dimensional, (¢ ) is a ﬂzzi—factor.

Next, we shall consider general 'ﬁia—factors.

Lemma 6.6 Let M be a finite Wx-algebra, [Mc%] an
increasing directed set of factors containing the unit of M
such that My C M. and M; Dbe the g -closure of (M 1} in
M, then M 1is a finite factor

Proof It is clear that My is finite Suppose that Ml

is not a factor, then there are two normal finite traces on Ml
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such that P,(1) = ®_(1) =1 and ﬁDl + P
On the other hand. by the unicity of the k7~operation,
P1 =%, on M_ for all o, , this implics ¢, = ¢ , on
Ml' a contradictilon.

Definition 6.1 A finitce factor M 1is said to be hyper
finite if it satisfies one of the following conditions:

(i) M is of type Ip (p < + =)

(ii) M is generated by an increasing sequencoe of factors

I ... ., containing the unit of M.

of type Il’I n

2’

Then,

Theorem 6.1. Every continuous finite factor contains a
continuous hyper finite factor.

Proof. Let M be a continuous finite factor, then the unit

1 can be written in the form 1 = 61 + 632 and El ~ Eg

1 is orthogonal to 62; therefore we can write M =

Bl(E)Ml, where B1 is a factor of typc Ig; since Ml is also

where C

continuous, M, = BE(EJMQ (32 is of type 12); therefore M =
By @BE® M, where B, ) B, ® 1 is of type Iy ; by analogous

methods, we cain construct an increasing sequence [Mn] of typc

I 5 let N be the ¢ -closure of [Mn], then by Lemma 6.6
2

N is a factor; clearly N is a continuous hyper finite factor.
This completes the proof.
Theorem 6.2 Two continucus hyper finite factors are

mutually *-isomorphic.
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Proof. Lct Ml’ME

(M, ) {(resp. (M, _)) an increasing scquence of factors of type
l,n 2,n

be two continuous hyper finite factors,

I , containing the unit of M, (resp. ME) which generates M,
2

(resp. M;)  Since My 1 = Ml,n(:)Bls Mo a1 = MQJnQ@jBE’

where B, (i = 1,2) is a factor of type I an *-isomorphism

i 2’

of Ml onto M can be extended to an *-isomorphism of

,n 2.,n

M onto M therefore there is an *-isomorphism &

1,n+1 2 ntl ?

of gf} M, , onto ij M, 5 from the unicity of the h—operations,
n=1 g h=1 ’

we have ?’2( £ (x)) = ?l(x) for x € C) M, ., where ?1
n=1 ’

(resp. P 2) is the unique finite trace of My (resp. ME) such

that (?1(13 = 1 (resp 1?2(1) = 1) and morcover < is iso-

metric with respect to ‘the uniform norm; therefore by the density
thecorem of Kaplansky, <p is uniquely extended to an *-isomorphism

of M onto M

1 This completes Che proof.

2
Definition 6 ¢ Let M be a factor We say that M has
the property L if there is a scguence [Un] of unitary cle-

‘ ey _ RY % _
ments of M such that G I%m Un o and s 1%m U n a Un

a for all a < M.
The property L is invariant under *-isomorphisms; there-

fore if we can construct two factors Ml and M2 of the same

type such that M. has the propert, L and M2 has no the

1
property L, we can assert that there are two factors of the

same type which arce not mutually *-isomorphic
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Proposition 6.6. A continuous hyper finite factor has
the property L.
Proof. Ict {Mn] be an increasing scquence of factors of
type I (n = 1,2, ..) containing the unit of M, which gener-

o1l
ates M, then M_. ., = Mn@)Br1 ,  where Bn is a factor of type

—

— e
Iy; let U, bc a unitary element of B~ such that (Un)7 = 0,

and put U =1 (ﬁ)Un , where 1y

is the unit of Mn, then
n n

M
1im ?(a Un) = 1im go(a)gﬁ(Un) =o for a &€ M, where ©
ig the unique trace on M such that %3(1) = 1 ; since

[+ .
(J M_ is o=dense, [Ra‘?l a € Q:i Mm] is total in M, ,

m=1 m

so that g - 1%m Un = 0.

x  L/2
On the other hand, put |3 ||, = gn(x X ) for x € M,
thoen
. * F 00
1im |]Un a U, - a||2 = |la - a||2 =0 for a Q_E;i Mo

. 0 . N
moreover, sincc W, Mm is s-dense in M, for any b &€ M
m=1
a

and £ > o0, there is an clementYof \i} M.~ such that
m=1

lla - |l, < € , then

s 3 3 L
[lu, » U, -ngé [lu, » U, —UnaUn||2+ HUnaUn aI12
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s e - bll, = 1o - ally + 110} av, -ally+ o - bl

hence 1im I%U; b U, - b||2 éde £, so that we have
3 36 * * 1/2
Lim |0, b U, - b |, =0 since [P x) < PO Xy ) -
-:{- 1/2 3
g)(x X ) and [Uh b U - b} is uniformly bounded, we have

#
that s—l%m U, b U = b for all b & M. This completes the

proof

1585 then

it is clear that G is a countable iniinite discrete group

et G be the frec group oif two gencrators a

satisfying (%), so that WU(C€.) is a continuous finite factor.
Let F be the set of a € & which when written as a power of
aljag of minimum lcngth end with a a? ,n=+ 1, + 2,.

1

Then it is clear that FU a; F a;” U {e} =G Moreover, T,

a, F aéljaél F a are mutually disjoint.

2
Proposition 6. 7.Let G be a countably infinite discrete
group satisfying the condition (*) and morcover Suppose that
there is a set F of G such that

(i) there is an clement a; of G such that F U a; F
_l ] .
al- U [e = G:

a of G such that

(ii) there are two clements a 3

2)

F, a, F aél , ag F aél are mutually disjoint. Then W((C) is

a continuous finite factor having no the property L.
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Proof  Suppose that () has the property L  Let

Uy (¥ﬁZLE(G)) be a scquence of unitary elements such that
n

o-1jm U, =o and s-lgm U AU = & for A e ).
In

rn
On the other hand,
U uou. v || v - u. u. U, ||
Eai In Eai Yn ° In Eai In Eai =

||3”n - 83114 yn*Eaillg —= o, and 1|Yn}|2 =

Mo, 1y =1 (2= 1,23)
I

Therefore, for arbitrary E > o,

[\
I
I—J
S
l—--"ﬁ
W
p
no
+
<
b}
—
0

1¢ 2y (a)l%+
- B

ac aca.F a

|_|
=t

A
8o
™M
<
D
S
+
8
™
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On the other hand,

PR ACILENE NI AN S ISTAEE.
a

aGEFR act o ach
2 2 2
| ¢ e v . xE . (@)]°>3 =2 |y (@)l7-2&° (nxn );
aél Il a3 = aE_F n = o]
hence = - 6'2 < 3 | v (a)|2 < L,2 £ 2, a contradiction
2 == 8] = 3 3
ackm
This complcetes the proof.
Hence we have
Theorem 6.3. There are two lzz;—factors f“ and &3

1
which are not mutually *-isomorphic as follows:

(1) A is hyper finite (thercfore has the property L)

(i1) B =U(C) for the free group G of two generators
(therefore has no the property L)

Murray and von Neumann (Theorem X11 and XV in [18]) men-
tionced the following two propertiecs, cach of which is equiva-
lent to the hyper finitcness: 1. a finite factor M 1is gener-
ated by an increasing scquence of finite dimensional *-subalgebras;
2. a finitc factcr M is gencrated by cvnumerablce elements and
for arbitrary finite elements A8y, e 58 and £ > o, there
iz a finite dimensional *-gubalgebra N of M such that

[lay - byl g € (3 =1,2,...m) for some Dy,b,,....b & N

conscquently they showed that if /\ ig a continuous hyper

finite factor, the factor € A\ € for every non-zero projection
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e of A is also so,so that by Theorem 6.2., A ana € A€
arc mutually *-isomorphic; this is opcen for other jfl—factorsm
namely we have the following question

Question 1. Let M be a .Zii—factorj € be a non-zero
projcction of M, then can we conclude that M~ €M & 7
(that is, *-isomorphic)

The simplest form of this question is as follows: let B
be a factor of Typc IEJ then can we conclude M~Mg B ?

Explicit constructions of continuous hyper finite factors
are obtained as follows: in the construction (), G = %ﬁiGn,

and Gim D Gy (m>n)
where Gn is a finitc subgrougé all cxamples in the construction

(A)5<ﬂ1 = &\2 = . "=c%n = ..o 1in the construction (C RJ’

Murray and von Neumann (cf. § 6.3 [18]) gave many construc-
tions of cxamples of typc 'jzz which have no the property Lj;
however it is an opcn gueéestion whether there are different al-
gebraical types having no the property L in the same type.

Question 2. Are therc two examples of the same Type having
no the property L which arc not mutually *-isomorphic?

Con.erning the tensor product of factors, we have casilv:
(hyper finite) 55 (hyper finite) = (hyper finite). Morecover,

Theorem 6.4 Let M be a factor, N a finite factor
havin:, the property L, tThen M(EEN has the property L.

Proof. Let [Un] be a seguence of unitary clements of

~1i = ~1i vy = ; c
N such that o l%m Un o and s 1%m Un Un b for b &€ N

v . oo
Now put Un = 130U in M@ N, then Un is unitary; for

n
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e O]

> 0 ; since

reM, and g € N, (f&e)(U,) = £(1)g (U)
{Un] is uniformly bounded, we have o-1im U in M3 N

Let 57 be the unigque trace on N such that @ (1) =

and % be arbitrary positive normal functional on M, then
(A" LY
9= @ %7 (Un* ble Un) = f"/ & RﬁnLﬁn* Lj" (x) = % & 99 for
x € M@ N.; morcover we can ¢asily show that S_lijim Un
m v m
') —_ 3 ™ . ' .
( :’f-'l ay @ b, ) U, 151 aj,_@bi, where a; € M and bl € N

1/2 3
Now put ||.II|2=/}L®3D(;(%I') for x € M& N;

since M@N is s-dense in M® N, for XG;M@N and €& > o,

there is an clement y of M& N such that ||X - v| 12 <

Then

f‘\J M

P 2 (A" v "U_):T A%
10, % 0 - xll, < 1108 x0, = 0%y 0|, + U vy U - yll,

f'\.l* (¥
Flly ==l = 2ellx -yl + 1V v U, - sli,

F

hence 1im [|U; x U - x|l, < 2 &, so that Lim [|U_ x U, -

x|, = 0.5 since [(R@ L, ?)(X*X)] = [%2@PL@Db X*x)|
< @ ‘57’(1(?;)’:3 X * X 1®b'>’f)1/2, 7&@53()(*)()1/2, we have

[/}&®Lb N ][(U:L x U, - x)*(U; x U, - %¥)} ~—> 0 (n —» «); since
DL, ¢ | v~ (> 0) € M,. b & N} is total and [U:1 x Un--x}
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x U = x for

is uniformly bounded, we have snl%m UIl n

X € lejlﬁ. This completes the proof.

Remark 6.1 Mlgonou [Tohoku Math. J & (1956)},pp. 63-69]
proved the above theorem under the assumption that M is also
finite. Now let A\ and [B  be two factors in Theorem 6.3

then /4\Cj H} has the property L, so that.;4163fg*4“ EE 3
according to the communication of Kadison, J. Schwartz has
shown that also A\ @B"}-’ /’4” s therefore A] @) B is
the third lIi—factorg the reader should be referred to the
coming paper of Schwartz.

Remark 6.2. In the above thecrem, it is an open question
whether the finiteness of N can be also dropped.

Corollary 6.1. There is a :Iﬁmmfactor (resp III-factor)
having the property L.

Proof. Let ;Ql be a continuous hyper finite factor, B
(resp. M) a I (resp 1III)-factor, then B X ,A](reSp.

M (%) A ) is a 1ﬂm(resp. IIT)-factor; moreover by the above
theorem, they have the property L. This completes the proof.

The following questions are interesting.

Question 3., (i) Is there a continuous factor which is not
hyper finite and is contained in a continuous hyper finite
factor?

(ii} Can we construct a hyper finite factor jq] for any
finite factor M such that M Al 2

Proposition 6.8. There are two iim—factors which are
not mutually *-isomorphic.

Proof. Let ,4‘ be a continuous hyper finite factor, M
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a Jii-factor having no the property L and B be a Ij¢ -
o}

factor; consider two .Zz;mfactors /“(iiB and M(ﬁiB, then
/“ 6515 is not *-isomorphic to M{EﬁB - dn ifiact, supposc that

A ®B is *-isomorphic to M (X B, then we can constru.t a

jfrufactor N as follows: N = A1{3381 = M(E,Be, where Bl’BE

o0
are Imnfactor55 let el be an abelian projection of Bl' then
M(E}el ~ M, so that lyi@j Ql is a fiuite projection of N,
vhere 1, 1s the unit of M; analogously, let 62 be an
abelian projcection of B23 then lA&@@ E;_ is a finite pro-
Jection of N, where l@\ is the unit ol /4\ ; by the com-
parability theorcm, there is a finite femily (pi) o. ortho-

gonal projections of M such that p, ~ 1A\ ® €, and

n
1y & € 1 & iil p; ; since (l.ﬁ\\ &) 82) il (]A\ & E’g) =
) n n

where BO is a Innfactor, s0 that it is hypcer finite : hence
(1@ @,l) N (1 @61) = ME& €, 1is also hyper finite, a con-

tradiction. This completes the proof.

Now we shall show the existence of two III-factors which
are not mutually *-isomorphic, according to the method of Pukansky
[43]; for this it is enough to show that there ig a III-factor
which has no the property L

The method is a modification of the construction (05/)

Let G be the free group oi two generators, '{La (a € G)
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be the additive group of two elements (o, 1) Now define a
measure A, on ..(La such that /ua({o]) = p,/ua([ll) = q,
where q > p > o and pP+ q = 1: let /1L bve the compact Zroup

XE;EG‘Q;_{, and &« the Radon measure on /1. defined by

X, e g M every “g € /L may be identifiecd with a function
(‘gg) (g € @) defined on G taking the values o and 1
only. Let O&VI be the set of those d = (& g) ¢ /L for
which a'g L o occurs for finite number of g only. We
denote the set of pair (&, g) (XAECH8 € G) by 0}«- To
an element (& ,a) = 0 of O} we associated the mapping
g_;}‘o-( of _/). onto itself defined by ‘g 0T = (& 45 +5)

(g € G). These mappings are one to one Introducing the nota-

gion 2% =(x . )(g € G). we get {‘g(eﬁja)}:'.(ﬁ,b)=

ag
. _ b )

(‘g abg * S pg + B )i hence (&,2) (3 .b) = (&7 + B, ab);

more~ver if g (3 ,a) = \g' (3 ',a') for § € /), we have

Q=3 and a = a' ; therefore 03/ is a semi-group; observing

(& ,a){o,e) = (2 € + o0,ace) = (3 ,2a), where o (resp e¢) is the

unit of Oal/l (resp. Gl)l

(0,e) (,a) = (6% + &, e a) = (& ,a)

and

——
S
W
£
i
|_!
S
&
il
o
)
+
9
[
i
]—I
AL
g
!
o
(]
g
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therefore (o,e) is the unit and the inversc (c%;a)_l =
(&]a" ,aml), so that OEV is a group. It is easily shown
that the corrcspondence cg__e(C%Je) and a—> (o,a )} de-

fine isomorphisms of the [roups Q?i and G with subgroups

of OEF . We denote these subgroups in the sequel again by
Ugi and Gl
Then by the analogous method with the (C RJ’ we can
casily show that /A{ is quasi-invariant and C?P is free,
ergodic and non-measurable
N Z _ 00 _ :
Now put L (fl,/u) = 75;, L (le%{) = éhf and U(a\;a)f(g)
, 2
_v(&’.a)(g)f(é(&sa)) for féL(_f"?_;/q) and (0\,&1)(:0'0“;
and we shall construct a weakly closed *-subalgebra {RﬁL of
At
B(%?) accordins to the method of the (&), then Z~ is a
III-factor. We shall denote this special w%—algebra éCi' by
i . Then

Theorem 6.5, The III-factor Vi) has no the property

To prove this theorem, we shall provide some lemmas.
Lemma 6.7. Let CEFO be 2 group and E  a subset of Cyao

Suppose there exists a subsct (. E and two clements

. -1 _
21,8, € oafo such that (i) “F U g Tog T = B, (ii)
‘G}, gz"l 7T g, and g, ?F‘gt"l C E are mutually disjoint.

Let f(:) be a complex valued function on C?/o such that

R e L £ (08, ) -1(2) 1) YE < €

R 2,1/2° _
(i=1,2). Then ( = |f(g)|%) < Ky ¢, where K, does

€&
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not depend on £ .

Proof. Put v (F) = = Ef‘(gg;)l2 for a subset F C C?O,
ge
then
-1 l 2 ‘*l /2
5 ) . f / _:i | \P-) la}a /

Putting w (E):L/2 = g, then

| wie, F el - (P = 1wl q_gil)l/z‘ v v (YR

| V(%lg gil)l/e - U(g)l/gl <28 £, and so

v, Fei) < v (F)+2s € nee 8% ¢ Vg F gh) +

Y(F) <2(w(F) +s8€), so that Y (F)> - s8¢
h S r@1AY2 - (s £ (e85

E’SE%O

Since ( 2 B (bggbp

&€ %o

-1, )|2)l/2 analogously we have i}J(g2{¥gél) -

’

K

; |\J(bal"}bd) -V(F) | <2s&. so that

Vi, Tesl) > v (F) ~2se> S5-3s€& and V(g3 Te,)

s = v (E) > w(F) + v(er' F s) +v (e Fe]



3.90

> %SH—?S ¢  that is s < 14 €
Lemna 6.8. Let G be the free group of two generators
81: G, Suppose that a function f(g) on G such that

2 lf()IB <+ ana (3 |f(esy) - f(a) 1DYE<E
z € G g & G

. 2y 1/2
(i = 1.2) Then (Zgé(}|f(g)l )/ <K, £ . where K, does

not depend on &

Proof Let F be the set oi 5 & G when written as a

>

. . n
power of gy:8p of minimum length «nd with a By, 0 = + 1,

2, . . Then it ig clear that F U T By = G; moreover
FNFg,=(0), FAF gy = (§) and Fgy NF gt = (D)

put v (P) = % |£(s)]|® for a subset P of G, then
gepb

> (2 lrleey) - () 1DY2 5 | viE a2 vmYE
g

Putting W (@) = 87, then
L u(Fe) v )] = | vme) 2w @Y v eV -
\J(F)l/2|<255, and SO V(Fgl)<‘ﬂ(F)+256 ;

hence s§° < v('f-'gl) + v(F) < 2(v(F) +s &), so that

Vv I(F) > 5_ _ g £ . Analogously, we have
2

| y(Fg,) - W(F)| <28 €, [w@Esg)- V(E) [ <28 €

therefore (Fgg) SY(E) - 28 £ > 2 . 3s¢& and O(Fgél) >

—g—-— - 3s &, Hence finally we have
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2= V(G y W(F) + V(Fgy) + V (Fegt)

2

>—291s -7s €, that is s< 1% &

Lemma 6.9. For a function f'EI?(Jl%%f): suppose that

- 23 4 )1/ i =1,2), then
DREL TR VI RER )

Cf 1m0 1B B ] e aull <Ky €

where K, does not depend on E
Proof. Let T = 2 C W be the expansion of
(1) =42, C¥a(]) b
1
f(g) in terms of the system [wd (§ Y1 o(ef (C?}’)) Since

the mapping §_”9 ?’g (g€ G) 1leave invariant the measure A .
and Wo\(g g) =w&g*1(§) for A€ 06?1 and g € G C OH/;

we have

| -1
J s mg (agcs J sy (pahas -

jf(g)wfi(g)dﬂ = Ca\gi ;5 hence f(§gi) =
| s 1/2
o T als) e SRESTURES I
~ . 2\1/2 o _
=( 2 |C C&l ) i = 1,2)

S S

For J,pBc %y, we write S ~ 3 if there exists a g € G



3.92
such that o & = @ . Then the relation ~ Iis a usual cqui-
valent relation Let /5 be the totality of the equivalence
classes not containing the null element o of 03-1- If ot A
is an element of the class A € /\ , then every element of

A can be written uniquely in the form ékﬁg (g € G).
Put f(M() C%a _(z 1fm( |2)1/2, by =

o geG

sup (2 180 gy - £(AV (@2 then = b5 =
i=1,2 g€ G + nea O
N L N L N T LR
A€ % * € %
and by Lemma 6.8 5 2 5 <Ky b oy s hence |J§|f(f—)[2
feiprope 1B 2 1C1Pe 2 0 fe 2 v
< 2 K22 (52; there?oie &e have ]('f lf(?‘)ieqff)l/g -
]If(?)d/ul <Ky € -

The proof of Theorem 6.5. Now let £, be the function

on _(]_ such that f0(§ ) = 1. Wo denote by g,.8, the gener-
ators of G. To prove the theorem, it is enough to show that

o ~ .
in the notations in the () Il(Ugi - UvUg; U )J(o,e)fo!l <
€ (i =1,2) for a unitary u e M and a sufficiently

i 1
small £ (> o) dimplics I(UJ(O e)fo’ J(o,e)fo}l 2 5
i

Supposing U = ((?Stmlust_l), where (?t € CC =

(1, 4)



and s,téO&; put (U)t:?t(g),

theref V). = @ -1
ercefore (U Ugi)t P t_l(? t gy )
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then (U7), = ¢ (%)

A

™ ~ 3
and so (U Ug; -Ug, U )t = @

gyt

A e
*® 2
']{Ugi_U UgiU }J(O,e)foll =

(5t e

Ly - qjt-lgi(g t); therefore

wy o 3 o
11U Vg ey U39 (o Tl

tGé‘Err g5
- -1 ~
tzc?ﬂc;)git_l(gtgi)_gatmlgif;tn Vi ()a ()
_ ~1y 2
ti%ﬂ Fy,e1 (560 Pty (57205
_ -1 2
- t%?fl?gitfggl )= Frg, (5)1%0u(¥)
i tf%jl(?gitg“l(g - Fel5 1T nly
Put f£(t) = ( Jfl ?1:(3 )IQQ/((g'))l/E; since //R is invariant
JL s
under G,
( = 1/2 -
“i’fl (g, 67 -1 (£)12) ﬁ?'f' et (PP
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2 2y1/2 . Y e
jl| 9,05 )12 (F) 12272 ¢ 11 (070, T,0)3 (g oyl < €

We put € = ((&.g); g +e) and 7F = {(4.8);e € Fl,

where F is the subsct of G defined in the proof of Lemma
6.8 ; then we can casily show that Iy gy s gil:s &
and {}',gg "L gél;gél 7 g, are mutually disjoint; therefore
by Lemma 6.7 , ( = |f(t)|¢)1/2<K £
peg Y 1
g,
. -1 1
- ~ - O _
Since gy A gy = R (4 Ciqyi C ;r), by the analogous

method in the proof of Lemma 6.9 , we have

( 3z ek, ¢

S

cﬁ\éoa»l
, o 2 2 _
since 1= [|U T HE 17 = tzgo&ﬂ ¢ (%) d/q(?j') =

s le(e)ls,
téﬁi
we have ( J;ﬁl?za(g)igd/u(if))l/g > 1 - K &, where K does

not depend on £ .; moreover, (gle Cfaefggi) - SE’Q(E}F@/&L))]-/Q

- (LL\ p.lE) - ?@qggln%/u;))l/% £, so that by
Lemma 6.9 , | cj|?e<§>|2dﬁ(§))1/9-\fso@(pd/u(;)!w Ky €

and so
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(03 (5 0)To T (0,1 o) | = | {3 (FIapu(TII > 1 -k €,

where K!' does not depend on & ; therefore if £ < 5%7 ,
(07 ) ForT 0,0y | 2 £ . This completes the proof
& 7 -

Finally we shall state an important gquestion concerning
examples. The qguestion can simply be stated as follows:

Question 4. Is there a quite new construction of examples
of factors? - that is, is there a new construction which is
different from von Neumann's ones? The construction according
to the quotient algebra (cf ﬁp?,chap II) is certainly a ncw one;
however it can not give a new scparable factor.

A concrete form of this question is as follows: Let 7?;
be a hilbert space. Modifying the fundamental operations
AL, f+g, (f,8) 1in —?5' by replacing them by A f£,f + g,

P

(f,g) Denote the set <€%1 with the new definitions of its

fundamental operations by 7%VC . Clearly "¢§,C is a
hilbert space; every opecrator A in ~¢%W is also onec in 7?’&
and cvery weakly closed *-subalgebra )2  in 'ﬂ%w is also one

in i%%t . But we shall denote the A4, J¥  of '¢§w , when
considered in ‘jg_c ., by AC‘797?CL

Now consider 2% in {5_ . The identical mapping J°
then maps ¥ in ‘%3, on Q?Q: in ;%’C and it is in this
aspect a corjugate * isomorphism of N and I -

) . 3 #* . ) o
Consider the mapping J :A—> A This maps O in %%,
] ) A a ~ - ] ) L] -
on 373 in and it is a conjugate lincar anti-*-isomorphism;

therefore J J° is a lincar anti-* -igomorphism of ¢7¢ and ckhc.



3.96

In all cxamples of von Neumann (cf. (&) - () and
(&)), any specific non-real number is not mentioned; therefore
we can always construct a conjugatc lincar *-automorphism on
them, so that ‘271 and T??ZC arc mutually * isomorphic.

Therefore we have the following question:

Question 5 Is there a factor -371 which is not *-
isomorpnic to éﬁ?c_ ?

If we can solve this question positively, it is the most
fruitful solution to the question 4. Moreover, we shall give
some remarks in excepting the appearance of next new examples.

Let G be the free group of two generators, G, (1=1, 2, 3,...)
be the groups which are isomorphic to G and Q}n be the direct
product group of (G, [|if =1, 2, 3, ..., n}. Let B, be the
IIl—factor u(e) correspondin§-po the group C?)n’ then
clearly B =B®BP....®B = 5 B, where B is the IT,-factor
in Theorem 6.3. Then, e

Proposition 6.10. B, for n=1,2, ... has no the
property L.

Proof. Let gl,i’ gz,i be two generators of Gi. We
shall consider G, as the subgroup of (gzn for 1 =1,2, ... n
by the mapping g;—> (eq, €5, ++vy By, -+, &) where e; 1is
the unit of G,. For i, put —Ei = {(aq, Gy eney G5y weny @ ) ]ay
+ e; |, where oy € Gj(j =1, 2, ..., n) and ?2;

= {o, 05, coey 0y, e, a )| a; € F;}, where F. is

analogously defined with the set F in the proof of Lemma 6.8;

- ~1 —y =1 -1
then %U €1,1 %‘gl?i = {and T, 81 A8 gz,i%gz,i are
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mutually disjoint.

Now suppose that B, has the property L, then there is a

sequence of unitary elements (Uﬁ] such that limff(QﬂJ = 0
m

im [|US U - U e U
i

|, =0
m—yo " Bp 4 B gk,i[ 2

for 1 =1,2, ..., n, k=1, 2, where éf is the unique trace

El 2

of (B, such that Qf(l) = 1 and ||x!Eff¥{x*x)l/2. Now put
U, = Uy (T e L2(4]n})

Then for g > O,

Ut N |
[ : . |
Mo s M By 2
=% |f (e, Tt g ) - fm(t)iz)l/2 <€
tsg{n ’ :
for i = 1,2, ..., n,m?2> mey.
k=1, 2

>

Hence by Lemma 6.7

(s (022 <k, ¢
tE,E'. I . 1
1
where k;, does not depend on £ , therefore
. n ‘ n
Coay e YR s s e ) YR < (kg
te U‘EJ_ i=1 tEEi i=1
i=1

n?

n
Since = (e) v L/ ., where e 1s the unit of
q7£ i=1é;1 | | '%f

s e ()25 0 L

te (L, =

ENOTENIEN

k) E.

he13

1
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On the other hand,
_¢
£ (e) —f(Ufm)—-% 0

a contradiction. This completes the proof therefore the following
question is important.

Question 6. If m 4 n, Bmﬁ% B,?

Also we have the following question.

Question 7. Let My, M, Dbe two IT,~factors. If M, and
M2 have no the property L, can we conclude that Nﬁﬁgﬁb has no
the property L?

Notices of 6

To show the existence of different algebraical types in
IIl~factors, Murray and von Neumann [18] defined the property [7;
Pukansky [43] replaced it by the property L which is available
for any factor.

Pukansky [437] showed the existence of ITI-factors Ml having
the property L .in the construction (C,); therefore, for the
IIT-factor @ in Theorem 6.5 and a continuous hyper finite factor
A, lM@_ﬁﬂ and the above Ml are in a quite similar situation with
the one of A and AQB, where (B is the IT,-factor in
Theorem 6.3 therefore, if we assume the result of Schwartz, it is
almost certain that UM@JMdﬂ%_and s0 we have three examples of
IIT-factors.

Moreover, let B, be the restricted infinite direct product
of LI,-factors M;|i =1, 2, ....], where M,~B (cf.Takedg,
Tohohu Math. J.7 (1955) pp. 67-86, then we can write B, = NG A,
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e
E
=

where N is a IIl-factor (¢cf. Nakamura, Tohohu Math. J. 6(1954 )

pp. 205-207); therefore B_ has the property L, and if B~ A,
B3 A~B §EBOOM{BDOH A, therefore if we assume the result of Schwartsz,
Ba;ffﬂn hence B has the possibility of the fourth IIlmfactor.
Concerning the construction (), Suzuki (Tohohu Math J 11

(1959) pp. 113-124) showed the conditions in order that¢;? is a

IIl_factor, when ¢7 1s a IIlufactor,



