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ABSTRACT, In this paper, we study uniformly convex functions and uniformly smooth
functions in the framework of the nonstandard analysis. We show that in a Banach
5pace, a proper, lower semicontinuous and convesx funetion f is uniformly eonvex on the
whole space if and enly if its conjugate function is uniformly Fréchet differentiable on
R(8f), Let o [0,00) — (—o9, 0] be a function, We characterize the uniform convexity
and the uniform smoothness of the function z = (||2||) on bounded balls in a normed
linear space. We also show sufficient conditions which ensure the uniform convexity and
Lhe uniform smoothness of the function z #(|lz]|) on 2 whele normed linear space.

L. Introduction. In 1983, Zélinescu [10] studied the uniformly convex functions with
some characterizations and examples of such functions. He showed that if a proper, lower
semicontinuous and convey function defined on a reflexive Banach space is uniformly convex
on the whole space then its cenjugate function is uniformly Fréchet differentiable on the
inferior of the domain of the conjugate function and that the converse is true under some
conditions. Let ) - [0,00) — [0,00] be a function, He also characterized the uniform
convexity of the function 2 s fn”I” ¥(2) dt defined on bounded balls in a Banach space. On
the other hand, it is well known that in a Hilbert space H,

(1.1) Pz + (1~ 2yl = Aje)? + (1 - Ml = A1 = W)z - y|12

orall 2,y € H and 0 < A <1 Lim [5], Prus and Smarzewski [6], Smarzewski [7] and
Xu [8, 9] have studied inequalities that are analogous to (1.1) in a Banach space. These
nequalities are related to the uniform convexity and the uniform Fréchet diﬂ'erentiability
of the functional z s JJ]|?.

In ihis paper, we study uniformly convex functions and uniformly smooth functions in
“he framework of the nonstandard analysis [3]. Let E be a rea] normed linear space, let
B — (=20, co] be a function and let ¥ be a subset of E such that there exists ¢ > 0

Wih Y + {z e B, lzll <2} ¢ dom f. We mean that fis uniformly smooth on ¥ if

tim L+ 1) — £(5)
t—0 t

“ists uniformly for y € ¥ and v € FE with |lul] = 1. If £ is convex and for each y € ¥,

sup lim Mt—qi—)—:m <00, then f is uniformly smooth on v if and only if f is
=i t—0

if itg conjugate function ig uniformly Fréchet differentiable on R(3f). Let ¢ : [0,00) —
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(~00, 00] be a function. We cliaracterize the uniform convexity and the uniform smoothness
of the function z — ¢(||z|) on bounded balls in a normed linear space. We also show
sufficient conditions which ensure the uniform convexity and the uniform smoothness of the
function z + ¢(]|z||) on a whole normed linear space.

2. Nonstandard analysis. We adopt the notational conventions and the framework for
the nonstandard analysis described in [3]. For convenience, we state some definitions. We
denote the set of all real numbers and the set of all positive real numbers by R and R,
respectively. Let a,b € *R. We define symbols ~, 2 S 'Z and S as follows:

ax~bifforany e € Ry,la—b| <e;
aZbifa>boran~y;
aSbifa<bora~b;
azbifa>bandapp
aZbifa<bandagb.

We recall that a is finite if there exists a standard positive real number ¢ with |a| < ¢ and
that a is infinite if a is not finite. Let E be a normed linear space and let z,y € *E. We
write z > y if [z — y|| ~ 0, and we denote by pe(z) the set {2 € *E: z ~ z}.

3. Preliminaries, Throughout this paper, all vector spaces are real, o denotes the origin
of a vector space and if E is a normed linear space then E¥ denotes its topological dual. Let
E be a normed linear space. We write (z#,z) in place of 2% (z) for z € E and z# ¢ B#,
Let C and D be subsets of E. € + D denotes the set {z+y € E:z € Cye D} and
Int C denotes the set of all interior points of C. C is said to be convex if Az 4+ (1 - Ay € C
forall z,y e Cand 0 < A < 1. Fora positive real number a, Sg(a) and Bg(a) denote
{z€E:|z||=a} and {z € E: ||z|| < a} respectively. B is said to be uniformly convex if
for any € € Ry, there exists 6§ € R, such that for any z,y € Sg(1),

llz — yl| > & implies HETHN <1-6.

E is said to be uniformly smooth if

i 12ty = ls]
t—0 t

exists uniformly for z,y € Sg(1). The modulus of convexity of £ and the modulus of
smoothness of E are defined respectively by

8@ =it %3] oy € B lall = ol = 1, e -l 2}, 0<e<o

and
Tyl + ||z ~
o(r) =supf 28l =l _

It is easy to see that E is uniformly convex if and only if 6(¢) > 0 for any € € (0,2] and

that F is uniformly smooth if and only if Hfg B{L} = 0. In the nonstandard representatiof,
T T

liz,y€ E,|z]| =1,y =7}, >0

L is uniformly convex if and-only if for any z,y € *E such that llzll, llyll are finite and

+ Jlyll
2 b)

z 2y implies “z;y” S llz||

EE—— LT T
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and E’is uniformly smooth if and only if

=+ ull = flzl| _ fl2 —uf) - =
[l =l

foz-' Z'DY « € *E such that ||z|| is finite and l|z]] % 0 and for any u € "B\ {0} with u ~ 0. Let
g B (.—oo,oo] be a function, dom f denoctes the set {zeE: fz) < co}. fis said to
€ proper .lf dom f # 0. Let X be a convex subset of E, f is said to be convex on X if

FO2 + (1= 2)y) < Mf(a) + (1 = ) ()

f(;)r any z,y e.dozlnf ﬂ.X and for any ) ¢ [0,1]. f is said to be strictly convex on X if the

above mequa:hty 1s#str1ct forz # yand ) ¢ (0,1). Let g: E — (—00,0] be a proper and

li;nvex function. g# . g# _, (=00, 00] denotes the conjugate function of ¢ which is defined
. 98(=%) = sup{(a*,2) ~ g(a) : s € B}, o* € F

and g#% ; F (00, 00] denotes the second conjugate function of g which is defined by

9" (@) = sup{(a¥,2) - g*(z#) . 2* ¢ B#), e

It is well known (cf (1]) that g = g## ; and only i i g
. . h if ly if low i e
S ifferentisl 5F'g 2. hy tg ) tg Y 11 g 1s lower semicontinuous. Th

(09)(@) = {z* € B* . g(3) > g(a) + (e%,y —z) for all y € E).

ﬁ]y 99, we mean the set {(z,m#)_e E x E# ; ¢o# ¢ (8g)(z)} and by R(8g), we mean
the s;ft U{(39)(z) : = € E}. 1t is well known (cf. [1]) that (z, z#) € 8g if and only
'1f (%, ) = g(z) + g#(z#). Let ¥ be a real valued convex function defined on an open
interval I of R. It is also well known (cf. [4]) that ¢ is continuous on I and that if ¢ is
differentiable on then its derivative @' is continuous on J. v

4, t;I.J'mit')ormly conw.e).( functions and uniformly smooth functions. We start this

zicbsl;_wtnonysomfz de{i;usloﬁs. Letg: E > (=00, 00] be a function and let X be a convex
- . giss i i i

e g ald to be uniformly convex on X if for any e € R, , there exists 6§ € R,

e ~yll > & implies g(zT"'y) < 9(@) +9(y) _s
; _ 2
lor any z,y ¢ domgnX. Let h: E — (=00, 0] be a function and let Y be a subset of £

such that th i i i i
b ifa ere exisis ¢ € R, with ¥ + Bg(e) C dom h..We say that A is uniformly smooth

i P+ tu) — h(y)
! - t—0 t
=xists uniformly for y € ¥ and o € Sp(1). We recall that h is uniformly Fréchet differen-

tlab]e an }r if fol an IR-‘- .
F Y € e y the € e lStS 6 suc that or an 1 E } 3 there

O0<[t|<6 and u e 5p(1) implies ‘M‘:—)?_}_@l—@#,u)( <e.

h(y 4 tu) — b,
T )

Il 4 is convex and for each y € v, sup lim (y)l < 0o, then A is uniformly

= . L llul]=t t—0
s‘n§ooth on Y if a,1.1d only if A is uniformly Fréchet differentiable on Y. In the nonstandard
T¢presentation, A is uniformly smooth on v if and only if

t - s
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for all y € *Y, u € *Sg(1) and t,s € *R \ {0}. If h is convex, then h is uniformly smooth
on Y if and only if

hy+u) —h(y) _ h(y —u) — h(y)
[ B =l

% =~ o implies

for all y € *Y and u € *E \ {0}. Concerning uniform convexity and uniform smoothness,
we have the following propositions. The first one is Remark 2.6 in [10].

Proposition 4.1 (Zilinescu). Let E be a normed linear space and let X be a conver
subset of E. Let f : E — (—o0,00| be a proper and convez function. Then the following are
equivalent;

(i) f is uniformly convez on X, i.e., for any z,y € *(dom f N X),

T 2y implies f(x;y) S f(a:)i"f(y),

(ii) for any € € Ry, there ezists § € Ry such that for any z,y € dom f N X and
0< A<,
lz —yll 2 ¢ implies f(Az + (1 - M)y) < Af(z) + (1 = A)f(y) — A(L = M)S,
i.e., for any z,y € *(dom f N X) and for any X € *(0,1),

FOz+(1=Ny) o AMf(2)+ (1= N f(y)
AL =2) oy A1 =) ’

Proposition 4.2. Let E be a normed linear space and let f : E — (—o0, oo] be a function.
LetY be a subset of E such that there exists € € R, with Y + Bg(e) C dom f. Assume that
f is uniformly smooth on'Y. Then for any y,z € *Y with y # z and for any A € *(0,1),

fAy+(1=N2)  Af(y)+(1-Nf(2)
M=M=z~ AT~=Nly—=2] °

i.e., for any € € Ry, there exists § € Ry such that for any y,2 €Y and 0< A < 1,

ly — 2l <& implies l/\f(y) +(1=Nf(2) - fOy+(1 - ’\)Z)l <A1 = Nelly — 2|I.

z 2y implies

y =~ z implies

PROOF. Let y,2z € *Y such that y # z and y ~ 2, and let A € *(0,1). We may assume
A € *(0,3]. From (4.1), we get

Y-z
) —si) = B =2 - 1)

PEE Ty — =
7=+ 2y ==l =) - £(2)
= Xy - 2|
_ fOw+ (1~ Nz) = f(2)
Aly — 2| ’

and hence we have

fOw+(1-X2) M)+ (1 - ()
AMy=2 =7 Xy-al

Since A # 1, we obtain

Fy+(A-Nz) M) +(1-A)f(2)
AU=Nlly =~z = Mi=Nly -zl
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By the transfer principle, we obtain the standard representation. O

Let ¢ be a real valued convex function defined on an“open interval I of R. It is well
known that if ¢ is strictly convex on I then for any bounded and closed interval J(C I),
 is uniformly convex on J and that if i is differentiable on I then for any bounded and
closed interval J(C 1), ¢ is uniformly smooth on J. Let 1 : R — R be uniformly smooth
on R. Tt is easy to see that if ¢,s € ‘E\ {0}, t # s and t ~ s then ¢'(t) ~ ﬂ%"ﬂﬂ ~ '(s).

Next, we show relation between a proper, lower semicontinuous and convex function
defined on a Banach space and its conjugate function. The following was partly obtained
by Zélinescu [10]. In the following, the proof of (i) = (ii) and (v) = (ii) is essentially same
as the proof by Zilinescu.

Theorem 4.1. Let E be a Banach space and let f i1 E — (~00,00] be a proper, lower
semicontinuous and convez function. Then the following conditions are equivalent;

(1) f is uniformly convez on E,
(ii). for any (z,2#) € *(8f) and for any y € *E,

y#x implies f(y) 2 flz) + (z#,y — z),
(ili) for any (z,z%*) € *(8f) and for any y € *E,
f(y) —f(.’I.') > (:r#,y—.?:)
. =l * Ty—al
(iv) for any (z,z#) € *(8f), for any u# € *E# \ {0} with u#* ~ o and for any y € *E,

y 2z implies

k)

(z# +u# y ~ z) + f(z) > f(y) implies y ~ z,
(v) *(R(8f)) + ng#(o) C *(dom f#), and for any (z,z%) € *(8f) and for any u# €
*E# \ {0} with u* ~ o,
f#(z#* + u#) —f#(z#) N < u¥# >
o] A\

i.e., there exists e € Ry such that R(8f)+ Bg(c) C dom f#, and f# is uniformly
Fréchet differentiable on R(f).

PROOF. (i) = (ii). Let (z,z%#) ¢ *(0f) and let y € *E with y % z. We may assume
y € *(dom f). Since y # z, we have f(3'2ﬂ) b ﬂﬂ;—f(ﬂ Hence, by (z,z#) € *(8f), we get

) 2 2/ (52) - f(a)

= f@) +2(£(22Y) - 1)
2f(:c)+2<:c#, x-2+-y —z>
= f(2)+ (a*,y - 2),

Therefore (ii) is valid.

(ii) = (iii). Let (z,2%) € *(8f)andlet y € *E withy ¢ z. We may assume y € *(dom f).
If ly — z|| is finite, it is clear that (ili) is valid. Assume that ||y — || is infinite. Put
U=+ Wﬁ Then we have [lu - z|| = 1 and, by the convexity of f,

W = =) o e
o 2/ @)
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Hence, by (ii), we get

fy) - f(=)

D3> 1) - 50
o (z#,u )
<I#ay _'7:)

ly—=f
Therefore (iii) holds.

(iii) = (iv). Let (z,z#) € *(8f), let u¥* ¢ *E# \ {0} with u# ~ 0, and let y € *E such
that (z# + u#,y — ) + f(z) > f(y). Suppose y % x. Then we get

(a* +ut,y—2) _ f(y) - f(a)
ly—2ll = Jly -z

(x#:y_ 3")
ly — ]

=7

So we have |Ju#|| 2 0, which contradicts u# ~ o. Therefore y = z.
(iv) = (v). Let (z,2%#) € *(8f) and let u# ¢ *E# \ {o} with u# ~ o. First, we shall
prove z# + u# € *(dom f). By the definition of f#, we have

F#(* +u#) = sup{(c* + u¥,9) - f(y):y € *E,
(@ +u# ) — fy) > (=* +u?,z) — f(z)}.

Take y € *E such that (¢# + u#,y) — f(y) > (z# + u#,z) — f(z). Then, by (iv), we get
y =~ z. Hence we obtain

(e% +u#,y) - f(y) = ((a%,9) - F(v)) + (u?, )
< FF*) + ((w#,y —2) + (u¥, 1))
S FF(a?) + (u¥, 2).

So we have z# + u# € *(dom f). Next, we shall prove that the Fréchet derivative of f at
z# is . By the definition of f#, we can choose 2 € *E which satisfies

fHe? +u#) — ((a* +u#, 2) ~ f(2))
|

~0

and
(a® +u# 2) — f(2) > (% +u*,z) — f(z).
We have z = z by (iv). Since (z,z#) € *(8f), we get
(o* +u¥, 2~ 2) + f(z) - f(2)

< (o +u*, 2~ 0) + f(2) - (&%, 2 - ) + f(a))
< ez - =]l
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Hence we obtain

F#(@# +u#) — f#(a*)

]
o 5+t 2) - f(z) - fH(a#)
]
_ (o +ut2) — 1(2) ~ ((2*,2) - f(a))
]
_ (@ +utz -2+ 5@) - 1) + k0
B 1
u#
3 <nu#n %)

Therefore f# is uniformly Fréchet differentiable on R(Of).

(v) = (ii). Let (z,2%) € *(8f) and let y € *E with Yy # z. Since y # z, there exists a
standard positive real number € such that ||ly — z|| > 2e. By the transfer principle, there
exists a standard positive real number § such that for any u¥# € ‘E#,

f#(a# + u¥) - f#(a#) — (u#, 2)

0< |[u*} <6 implies
i ]

<e.

Hence we get
fw) = ()

= sup{(y¥,y) - f*(y¥) : y* € *E*}
2 sup{(a® + u¥,y) - fH(e* + u#) :u# € EF,0 < |u?| < 6)
2 sup{(? +u¥,9) = (F#(@%) + (u¥,2) + efut])) s u# € 'B#,0 < |u#] < 5)
= sup{{u¥,y —2) —ellut| : u* € "B¥,0 < |[u#| < 6} + (a#,y) — f#(z#)
2 8lly = ol - e6 + (a%,9) - ((a*,2) - f())
2 f(@) + (z*,y - 3.

Therefore (ii) is valid.

(i) = (i). Let y,z € *(dom f) such that y # z. By Theorem 2 in [2], there exists
(z,z#) € *(8f) such that

S(557) =1+ (o 15 -2,

By (ii), we have £I= ~ g, and hence y # 2 and z # z. So we have f(y) 2 flz)+ (z#,y — )
and f(z) 2 f(z) + (2%, z — z). Hence we get

f(y+z) :f(w)+<m#,y;'z_m>

2
_ f@) + (a*,y — ) + f(2) + (a*, 2 — a)
2

L f@)+1G)

. 2

Therefore f is uniformly convex on E. [J
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Remark. If a Banach space is reflexive, Z3linescu [10] showed that if a proper and lower
semicontinuous function f : E — (—oo0, 00| is uniformly convex on E, then f is uniformly
Fréchet differentiable on Int(dom f#). In the case, R(8f) is open, and hence R(of) =
Int(dom f#).

5. Characterization of uniform convexity and uniform smoothness on bounded
balls. In this section, we characterize the uniform convexity and the uniform smoothness
of ¢(|| - |) on bounded balls in a normed linear space. The following is essentially same as
Theorem 4.1.(ii) in {10]. Compare these statements.

Theorem 5.1 (Zilinescu). Let E be a normed linear space and let ¢ : [0,00) — [0, o0]
be an increasing function. Let M = sup(dom ) > 0. Then (|| - ||) is uniformly convez on
Bgla) for any a € (0, M) if and only if @ is strictly convez on domy and E is uniformly
converz.

PROOF. Suppose that g is strictly convex on dom ¢ and that E is uniformly convex. Let
a € (0, M) be a standard real number. We remark that ¢ is uniformly convex on [0, a]. Let
z,y € *Bg(a) such that = 2 y. If ||z|| # ||y||, the uniform convexity of ¢ yields

(p(“z_;r_y“) < (p(lel -; Ilyll) s w(llxll};rlp([lyll)_

So we may assume ||z|| = ||y||. Sincc z % y, the uniform convexity of I yields

‘V;W§Hﬂzmm

So we have

z+y llzll + llwlly o edi=l) + «(llyll)
o([F57]) 2o (555 < TR,
We shall show the necessity. Suppose that (]| - ||) is uniformly convex on Bg(a) for any
a € (0,M). Fix an element zo € E such that ||z|| = 1. Let r,s be standard real numbers
such that r,s € [0, M] and 7 # s. Since r and s are different, we have r 2 s. Assume
7,8 < M. In virtue of the uniform convexity of ¢(|| - ||) on Bg(max{|t|,|s|}), we get

(%) =o(1%5=2))

< (P(Ilmoll);rw(llswoll)

_ olr) +e(s)
= ;
Hence we obtain 90(%) < ﬂibzﬂﬁ. If M # o0, M € domp and r or s is equal to M,

then we can also show tp(f—%ﬁ) < ﬂﬂ%{:ﬂ from the convexity of ¢. Next we shall show
that E is uniformly convex. Suppose not. Let b € (0, M) be a standard real number. Then
there are z,y € *Sg(b) such that z % y and HE%HH ~ b. The uniform convexity of o(|| - ||)
on Bg(b) yields
Tty z|)+ 1
(p<‘ ’ H) < (=) . e(llvl) _ o(b).

But, by the continuity of ¢ on Int(dom ), we have

o= ) = w0

which is a contradiction. Therefore E is uniformly convex. O
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Using our theorem and Proposition 4.1, we have the following. Compare this with The-
orem 2 in [9].

Theorem 5.2. Let E be a normed linear space and let a be a positive real number. Let
¢ : [0,00) — [0, 00) be a function such that p(0) = 0 and it is strictly convez on [0,00). Then
E is uniformly convez if and only if there ezists an increasing function g : [0,00) — [0, c0)
such that g(0) = 0, g(¢) > 0 for allt > 0 and

e(llAz + (1 = Nyll) < Ae(llzll) + (1 = Nellyll) = ML = Ng(llz - y]))
for all x,y € Bg(a) and 0 <A < 1.

The following is the dual version of Theorem 5.1, which characterizes the uniform Fréchet
differentiability of (|| - ||) on bounded balls.

Theorem 5.3. Let E be a normed linear space and let o : [0,00) — [0,00] be a strictly
increasing and convez function such that p(0) = 0 and ¢'(0) = 0. Let M = sup(dom ¢) > 0.
Then (|| - ||) is uniformly Fréchet differentiable on Bg(a) for any a € (0, M) if and only if
w is differentiable on (0, M) and E is uniformly smooth.

PROOF. Suppose that ¢ is differentiable on (0, M) and that E is uniformly smooth. Let
a € (0, M) be a standard real number and let z,u € *E such that ||z]| < a,u ~ o0 and u # o.
We remark that ¢ is uniformly smooth on [0,a]. If z =~ o, we get

elllz +ul) —e(lel) _ ellz+ul) - e(lel) iz +ull - |||

W 5 Terul=lel Tl
= /(e Izl el
o+ 3l = ]
=0 Oy

and similarly,

¢e(llz — ul)) = e(ll=ll)
=l

~ 0.
Ifz # o, we get
ellz +2)l) - e(llel) _ ellz +ull) — e(l=ll) |z +u] ~ |||

([l llz + ulf — | [l
~ Pz —ull) — el lz = ulf — ||z
I R =l
_ #lliz = ul)) = w(ll=l))
=l '

Hence we have
' ¢(llz +ull) — e(lz]) _ ez —ull) - ellzll)

[[ul =l
On the other hand, it is easy to see that z € Bg(a), u € *E \ {0} and u ~ o implies
Iw(llx +ufl) — e(ll=]l)
]
Therefore (|| - ||) is uniformly Fréchet differentiable on Bg(a). Next we shall show the
necessity. Suppose that (|| - ||) is uniformly Fréchet differentiable on Bg(a) for any a €

| S ¢/Clal).
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(0, M). Fix an element 2o € E such that |[zo]| = 1. Let r € (0, M) be a standard real
number and let s € *R \ {0} with s ~ 0. Then we have

e(r+5) —o(r) _ e(llrzo + szoll) — ¢(llrzoll)
s llszol|
- Pllrzo — szoll) = &(llrzoll)
B = || szal|
@(r—s) —o(r)

which shows that ¢ is differentiable on (0, M). Next we shall prove that E is uniformly
smooth. Let b € (0, M) be a standard real number. Let z € *Sg(b) and let u € *E \ {0}
with u ~ 0. Then we get

Iz +ufl = flell _ _ llz+ul=llzll ez +ull) — (=)
Jlu] e(llz +ul) — e(ll=]) flell
~ =l =zl ez —ull) — e(i=|l)
= ellle = ull) - e(lll) ~llull
ozl — iz
B (]|

Therefore E is uniformly smooth. O
By the same argument, we have the following.

Theorem 5.4. Let E be a normed linear space and let a be a positive real number. Let
@ : [0,00) — R be a function such that ¢(0) = 0, ¢'(0) = 0 and ¢ Z 0 on [0,a]. Then
@(l| - 1) is uniformly smooth on Bg(a) if and only if ¢ is uniformly smooth on [0,a} and E
s untformly smooth.

Using Theorem 5.3 and Proposition 4.2, we have the following. Compare this with
Theorem 2’ in [9].

Theorem 5.5. Let E be o normed linear space and let a be a positive real number. Let
@ 1 [0,00) — [0,00) be a strictly increasing and convez function such that (0) = 0 and
¢'(0) = 0. Then E is uniformly smooth if and only if there ezists an increasing function
g:[0,00) — [0,00) such that g(0) =0, ¢'(0) = 0 and

e(llAz + (1= yll) = Ae(lizll) + (1 = Nellyll) = AL = Ng(llz - yl)
for all z,y € Bg(a) and 0 < A < 1.

6. On uniform convexity and uniform smoothness on whole space. In this sec-
tion, we show sufficient conditions which guarantee the uniform convexity and the uniform
smoothness of the function (]| - ||) on a whole normed linear space. We begin with the
uniformly convex case. We need the following lemma. We omit its proof.

Lemma 6.1. Let ¢ : [0,00) — [0,00) be an increasing and convex function. If R, M,§ and
e are nonnegative real numbers such that R < M and § < ¢, then

(M + ) — (M)
! .

so(R+ g—) - p(R) <
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Theorem 6.1. Let E be a normed linear space and let ¢ : [0,00) — [0,00) be a function
such that it is uniformly convez on [0,00) and ©(0) = 0. If for some positive real number
¢, the modulus of convezity & satisfies 6(¢) > cyp(e) for any e € [0,2] and

(6.1) lim ((t)e(s) - wits)) >0,

a—
10

then o(|| - ||) is uniformly convezx on E.

PROOF. Let ¢ be a positive real number such that §(e) > cp(e) for any € € [0, 2] and let
(6.1) be satisfied. Let z,y € *E such that z % y. We shall prove

(6.2) (P(wa;yu) < cp(!lxll);tp.(llyll)

If ||z|| # ||y||, the uniform convexity of ¢ yields

(|22 < o Lot ) ol + el

So we may assume ||z|| ~ |ly||. If |z||, |ly| are finite, by the uniform convexity of E, we have
252 g L=lHivll Hence we obtain

“p(szﬂ“) s (p(ll-rli;rllyll) < ‘P("E”);‘tﬂ("y“]'

Assume that ||z|[,||y|| are infinite. Without loss of generality we may assume ||z| < ||y||.
Put

z|
T+ Y
= e M+ =l R = [T ana s 8 < 22

Since § < ¢ and R < M, we have

3 (1) -

by Lemma 6.1. If we prove

v L=l
T+ Y
2

) < PllylD = e(ll=[)
B 2

74 =l
(6.4) w(“wn) 5 (=),

then this inequality and (6.3) yield (6.2). Suppose (6.4) is false. Then the convexity of ¢,
©(0) = 0 and p(¢) >0 for all t > 0 yield

o(|5222) < B2 tioly < o1,

and hence

s =)l
e+ e Y “
]

W%(Hzll) = ¢(|l=l]).

On the other hand, §(e) > cp(c) for any € € [0,2] yields

oy Y

=l " 1wl =l Y

B 2 oo - )
L)

|
2
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So we have

=iy
2

ollel) 2 —rr=ellel) + e (| 2~ o ) etlel)

= ellel) + oo (|| 72 = o )l

If o — Tenll # 0, it is clear that cp(”ﬂ—;—” — rriDedlzll) Z 0. If ”ﬂ%ﬂ — &yl = 0, then by
(6.1), we get
2z _ Y ) > “_MH>_
g~ manlDetien 2 oo~ ) 20
Hence we have ¢([|z||) Z ¢(l|z||), which is a contradiction. This completes the proof. O
The following is due to Xu [9]. In his paper, he wrote p > 1, but if 1 < p < 2, there
exists no normed linear space such that || - [P is uniformly convex on the whole space.

Theorem 6.2 (Xu). Let p > 2 be a fized real number. Let E be a normed linear space.
Then the following are equivalent;
(i) there exists a constant ¢ > 0 such that 6(e)>c-eP forall0 < e <2,
(ii) the functional | - ||P is uniformly convez on E,
(ili) there exzists a constant d > 0 such that

Az + (1 = A)yl” + A1 = N)dllz — y||P < Mjz||P + (1 = A)|ly|l”
forallz,y € E and 0 < A < 1,

PROOF. (i) = (ii). Put ¢ : [0,00) — [0,00) by @(t) = t? for ¢ > 0. It is easy to see
that ¢ is uniformly convex on [0, ), ¢(0) = 0, and 6(e) > cyp(e) for all 0 < e < 2. The
definition of @ implies ©(t)¢(s) — ¢(ts) = 0 for all t,s > 0. Hence, by our theorem, | - ||? is
uniformly convex on E.

(ii) = (ili). Let z,y € *E such that = # y, and let A € *(0,1). Since || - ||? is uniformly
convex, by Propesition 4.1,

”,\ﬂz—zw+(1—x)ﬂﬁ—y”|” = ‘p+(1—,\) r%n”p
A(1-2) e A1 -2) :

By the transfer principle, there exists a standard positive real number d such that

P P P
e ra-vgzall et - sl
lz—yll liz~yl] +d< | l=—yll flz—yll
A1 =2) - A=)
for all z,y € E and A € (0,1), i.e.,
Az + (1 = 2yl” + M1 = Ndjlz - y|1” < Allel|l” + (1 = M)yl?

forallz,y e Fand 0< A < 1.
(iii) = (i). Let z,y € *Sg(1) with z # y. By (iii), we have

z+yHP 1 ®
== - <
|55+ gela - vl <1,
and hence
1 1 z+yp_ 1
6.5 - “ 2 ;d.
(6.5) le—olF Te—wll 2 I| 212
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We claim that there exists a standard positive real number ¢ sﬁch that

1 1 u+v
lu—a]P ~ [ju—o|P U 2

2c

for all u,v € Sg(1). Suppose not, i.e., there exist z,y € *Sg(1) such that

1 N 1 T+y
e =yl = flz - yllr 2 “
Then for any standard natural number n, we have
1 z+yIm 1 :v+4y ntl
llz —yll? ” 2 1 flz—ylr H 2
Hence we obtain
1 N 1 T +y|P
lz—gl? = flz -yl 2 H ’

which contradicts (6.5). Therefore (i) is valid. O
The dual version of Theorem 6.1 is the following.

Theorem‘6.3. Let E be a normed linear space and let @ 1 [0,00) = [0,00) be a function
such that it is uniformly smooth on [0,00), (0) = 0 and ¢'(0) = 0. If for some positive
real number c, the modulus of smoothness p satisfies p(7) < ep(7) for all T > 0 and

(6.6) tim [o/(4) 24| = o
e i

then (|| - ||) is uniformly smooth on E. Moreover, if  is convez then o - 1) is uniformly
Fréchet differentiable on E.

PROOF. Let ¢ be a positive real number such that p(t) < cp(t) for all T > 0, and let

(6.6) be satisfied. Let z € *E, let u € *Sp(1) and let ¢,s € *R\ {0} with ¢ ~ 0 and s ~ 0.
We shall prove

(6.7) @(llz + tull) — (||| ~ Pllz + sull) — o(|=])
¢ s '

First we assume & = 0. Then we get

gz + tull) — e(ll=ll) _ (t) - »(0)
t t
=~ ¢'(0)

=0.

Hence we obtain (6.7). Next we assume z # o. Then we get

elllz + tull) — p(lzl) _ w(lz + sul)) = p(lj=])

t 8
_ @llz +tull) — o(ll2]]) ||z + tu]] - ||=| _ ellz + sull) — e(l|=|l) |lz + sul| - |||
llz + tul| ~ |jz| t lz + sul] ~ ||| s

= o (app (Lt = bl e ol ey
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If ||z|| is finite then ¢'(||z||) is finite, and hence we can derive (6.7) from the uniform
smoothness of E. So we may assume that ||z|| is infinite. Let o = max{|t|,|s|}. Since
p(1) < cp(r) for all 7 > 0, we have

ziau + L—ol
I = | I|WI| i cha(i),
2 &

ie.,

2+l + lz = aul ~ 2] ., #zEn)

o e

[E]
So (6.6) yields

(p/(”m”)(”l’ +tul| —flzf| |z + 31;” = Hzﬂ)l < ‘q&'(”m”) lz + aul| + ||a;— aufl — 2||z||

t
< 2c](afp 2T
=T
~ 0.

Therefore we obtain (6.7). This completes the proof. O

The following is also due to Xu [9]. In his paper, he wrote g > 1, but if ¢ > 2, there
exists no normed linear space such that ||-||¢ is uniformly Fréchet differentiable on the whole
space. h

Theorem 6.4 (Xu). Let g be a fized real number with 1 < q < 2. Let E be a normed
linear space. Then the following are equivalent;

(i) there ezists a constant ¢ > 0 such that p(7) < c-79 for all T > 0,
(i) the functional || - ||9 is uniformly Fréchet differentiable on E,
(ili) there exists a constant d > 0 such that
122 + (1 = Nyl + A1 ~ Ndllz - y[1? > All=]1? + (1 = V)ly)*
forallz,y€e E and 0 < A< 1.
PROOF. (i} = (ii). Put ¢ :[0,00) = [0,00) by @(t) = t9 for t > 0. It is easy to see that
(

¢ is uniformly smooth on [0, 00), ¢(0) = 0 and ©'(0) = 0. The inequality p(t) < ¢- 79 for
all 7> 0 implies that p(7) < cp(r) for all 7 > 0. By the definition of @, we have

lim (p’(A)@ =limga?"! = 0.
pae A gl0
So, by our theorem, || - ||7 is uniformly Fréchet differentiable on E.

(i) = (iii). Let M be any infinite element of *R.. Let z,y € *F with 2 # y. Then
=l = M”;’_y” - Let A € *(0,1). Since |- || is uniformly Fréchet differentiable on E, by
Propesition 4.2, we have

AT [ —A x 9] (]
o + a1 Alarpsgl” + (@ = Ml sy
YGEEDY) B A1 =) '

Hence we obtain

Mlzl}? + (1 = Mllyll? — Az + (1 = A)y])e 1
A1 =2 M|z — yl|s

~ 0.
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So we have
Allz|7 + (1 = Myl = Az + (1 — Ay 1 <1
Ni-%) Mo 3T < &

ie.,
Mzl + (1= Vllll? = 1Az + (1 - Myl|? < MIAL - N)||z — yJ°.
Therefore, by the transfer principle, (i) is valid. .
(iif) = (i). Let = € Sp(1) and u € E\ {0}. Since |jz|| = 1 and |z + || + |z — u|| > 2,
we have ||z + ul| + [l — u|| < ||z + u[|? + ||z — u]|?. From (iii), we can derive

I + ull + Jlz — u| < lz+ull?+ |z —ulj?

2 2
g+u)+(@—u)ye 1 1
SH(T u)z(x 2 +5 5l +v) = (@ -
= llef? + 29~ 2dljuf.
Hence we obtain
o+ ull + 1z —ul] _, 29-24[ulj?,

2
which implies that p() < 2972d .79 for all + > 0. O
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