Comptes Rendus (Doklady) de l'Académie des Sciences de l'URSS

MATHEMATICS

ON SOME GEOMETRICAL PROPERTIES OF THE SPHERE IN A SPACE OF THE TYPE (B)

By V. ŠMULIAN

(Communicated by A. N. Kolmogoroff, Member of the Academy, 30.VI.1939)

Let E denote throughout the following a Banach space (1). A function ||x|| is said to be weakly differentiable (2) at the point x_0 , if there exists

$$\lim_{h \to 0} \frac{||x_0 + h \cdot x|| - ||x_0||}{h} \qquad (x \in E)$$
 (1)

S. Mazur has shown (2) that weak differentiability of the norm ||x|| at the point x_0 is equivalent to the existence of a single supporting hyperplane to the sphere $|x| \le 1$ at the point x_0 . If the convergence to the limit of the difference ratio $\frac{||x_0+h\cdot x||-||x_0||}{h}$ is uniform in the whole unit sphere $||x|| \le 1$, then ||x|| is said to be strongly differen tiable (2) at the point x_0 .

Let Q be an arbitrary set. Then by E(Q) we denote an arbitrary linear normed space of bounded functions defined in Q, where $||x|| = \sup_{q \in Q}$

The sequence of points $\{q_n\} \subset Q$ is called extremal for the function

 $x_0(q) \in E(Q)$, if there exists

 $\lim_{n\to\infty} x_0(q_n)$

and

$$||x_0|| = |\lim_{n\to\infty} x_0(q_n)|.$$

Lemma. Let $x_0 \in E(Q)$, $||x_0|| = 1$, and let $\{q_n\} \subset Q$ be an arbitrary extremal sequence of the function $x_0(q)$.

Then for every element $x \in E(Q)$, $||x|| \le 1$, and for any number $0 \neq |h| \leqslant \frac{1}{4}$ there exists such a sequence $\left\{q_n^{(h;x)}\right\} \subset Q(n=1, 2,...)$ that

$$\left| \frac{\|x_0 + h \cdot x\| - \|x_0\|}{h} - \lim_{n \to \infty} x(q_n) \operatorname{sign} \lim_{n \to \infty} x_0(q_n) \right| \leq \left| \lim_{n \to \infty} x(q_n) \operatorname{sign} \lim_{n \to \infty} x_0(q_n) - \lim_{n \to \infty} x(q_n^{(h;x)}) \operatorname{sign} \lim_{n \to \infty} x_0(q_n^{(h;x)}) \right| \right\}$$

$$(2)$$

Moreover,

$$\left|\lim_{n\to\infty} x_0(q_n^{(h;x)})\right| - 1 \leqslant 2|h|. \tag{3}$$

[Under the symbol Lim we understand here the generalized limit introduced by S. Banach (1)].

Proof. If $x \in E(Q)$, $||x|| \le 1$ and $0 \ne |h| \le \frac{1}{4}$, then there exists such a sequence $\{q_n^{(h;x)}\} \subset Q$ that

$$||x_0 + hx|| = \left|\lim_{n \to \infty} x_0(q_n^{(h;x)}) + h \cdot \lim_{n \to \infty} x(q_n^{(h;x)})\right|.$$

Then

$$0 \leqslant \left| \lim_{n \to \infty} x_0(q_n) \right| - \left| \lim_{n \to \infty} x_0(q_n^{(h;x)}) \right| \leqslant \left| \lim_{n \to \infty} \left[x_0(q_n) + h \cdot x(q_n) \right] \right| + \\ + \left| h \right| \cdot \left| \lim_{n \to \infty} x(q_n) \right| - \left| \lim_{n \to \infty} x_0(q_n^{(h;x)}) \right| \leqslant \\ \leqslant \left| \lim_{n \to \infty} x_0(q_n^{(h;x)}) + h \cdot \lim_{n \to \infty} x(q_n^{(h;x)}) \right| + \|x\| \cdot |h| - \left| \lim_{n \to \infty} x_0(q_n^{(h;x)}) \right| \leqslant \\ \leqslant |h| \cdot \|x\| + |h| \cdot \left| \lim_{n \to \infty} x(q_n^{(h;x)}) \right| \leqslant 2 \cdot |h| \cdot \|x\| \leqslant 2 \cdot |h|.$$

The inequality (3) is thus proved. We proceed now to prove the inequality (2). We have

$$\begin{aligned} & \|x_0 + h \cdot x\| - \|x_0\| \geqslant \left| \lim_{n \to \infty} x_0(q_n) + h \cdot \lim_{n \to \infty} x(q^n) \right| - 1 = \\ & = [1 + h \cdot \lim_{n \to \infty} x(q_n) \cdot \operatorname{sign} \lim_{n \to \infty} x_0(q_n)] - 1 = h \cdot \lim_{n \to \infty} x(q_n) \cdot \operatorname{sign} \lim_{n \to \infty} x_0(q_n). \end{aligned}$$

On the other hand,

$$\|x_0 + h \cdot x\| - \|x_0\| = \left| \lim_{n \to \infty} x_0(q_n^{(h;x)}) + h \cdot \lim_{n \to \infty} x(q_n^{(h;x)}) \right] - 1 =$$

$$= \left[\left| \lim_{n \to \infty} x_0(q_n^{(h;x)}) + h \cdot \lim_{n \to \infty} x(q_n^{(h;x)}) \cdot \operatorname{sign} \lim_{n \to \infty} x_0(q_n^{(h;x)}) \right] - 1 \le$$

$$\le h \cdot \lim_{n \to \infty} x(q_n^{(h;x)}) \cdot \operatorname{sign} \lim_{n \to \infty} x_0(q_n^{(h;x)})$$

For the proof of inequality (2) it remains only to compare the last two inequalities.

Theorem 1. Let $x_0 \in E(Q)$, $||x_0|| = 1$. Then for the strong differentiability of the norm ||x|| in E(Q) at the point x_0 it is sufficient that the following condition should be satisfied.

For every extremal sequence $\{q_n\} \subset Q$ of the function $x_0(q)$ and every

 $x(q) \in (Q)$ ($||x|| \le 1$) the sequence

$$\{x(q_n)\cdot x_0(q_n)\}$$

converges uniformly in the unit sphere ($||x|| \le 1$) to a limit not depending on the choice of the extremal sequence $\{q_n\}$.

Proof. From the condition of the theorem follows that the righthand side of the inequality (2) may be represented in the form

$$\left| \lim_{n \to \infty} \left[x(q_n) \cdot x_0(q_n) \right] - \lim_{n \to \infty} x(q_n^{(h;x)}) \cdot \operatorname{sign} \lim_{n \to \infty} x_0(q_n^{(h;x)}) \right|. \tag{3}$$

In order to prove the theorem it is sufficient to show that the expression (3) tends to zero for $h \rightarrow 0$ uniformly with respect to $||x|| \leq 1$ -Asssume, on the contrary, that there exists such an $s_0 > 0$ that for every

$$0 < |h_p| \le \frac{1}{2^{p+1}}$$
 $(p=1,2,...)$ there may be found an $x_p \in E(Q)$, $||x_p|| \le 1$, for which

$$\left|\lim_{n\to\infty} \left[x_p(q_n)\cdot x_0(q_n)\right] - \lim_{n\to\infty} x_p(q_n^{(h_p;x_p)})\cdot \operatorname{sign} \lim_{n\to\infty} x_0(q_n^{(h_p;x_p)})\right| \geqslant \varepsilon_0 > 0.$$
 (4)

Take such a sequence $\{n_p\} \rightarrow \infty$ that

$$\left| x_0(q_{n_p}^{(h_p;x_p)} - \lim_{n \to \infty} x_0(q_n^{(h_p;x_p)}) \right| \leqslant \frac{1}{p} \quad (p = 1, 2, \dots), \tag{5}$$

$$|x_p(q_{n_p}^{(h_p;x_p)} - \lim_{n \to \infty} x_p(q_n^{(h_p;x_p)})| \le \frac{1}{p} \quad (p = 1, 2, ...).$$
 (6)

 $\left|x_p(q_{n_p}^{(h_p;x_p)} - \lim_{n \to \infty} x_p(q_n^{(h_p;x_p)})\right| \leqslant \frac{1}{p} \quad (p = 1, 2, \dots). \tag{6}$ Evidently, $\lim_{n \to \infty} \left|x_0(q_{n_p}^{(h_p;x_p)})\right| = 1. \text{ We may suppose that } \lim_{p \to \infty} x_0(q_{n_p}^{(h_p;x_p)})$

exists and that, consequently, the sequence $\{q_{n_p}^{(h_p;x_p)}\}$ is extremal for the function $x_0(q)$. From the relations (4), (5) and (6) it follows that

$$\left| \lim_{n \to \infty} [x_p(q_n) \cdot x_0(q_n)] - x_p(q_{n_p}^{(h_p; x_p)}) \cdot x_0(q_{n_p}^{(h_p; x_p)}) \right| \geqslant \frac{\varepsilon_0}{2}, \tag{7}$$

if p is sufficiently large. Since $\{q_n\}$ and $\{q_{n_p}^{(h_p;x_p)}\}$ are two extremal sequences for the function $x_0(q)$, from the condition of the theorem immediately follows the impossibility of the inequality (7) for arbitrarily large p. The theorem is thus proved.

Corollary 1. If E is an arbitrary Banach space, then for strong differentiability of ||f|| in \overline{E} at the point f_0 , $||f_0|| = 1$, it is sufficient that the following condition should be satisfied: from $f_0(x_n) \rightarrow ||f_0|| = 1$, $||x_n|| = 1$ (n = 1, 2, 3,...) follows that

$$||x_n - x_m|| \to 0$$
 for $n, m \to \infty$.

Corollary 2. If E is an arbitrary Banach space, then for strong differentiability of ||x|| in E at the point x_0 , $||x_0|| = 1$, it is sufficient that the following condition should be satisfied: from $f_n(x_0) \rightarrow ||x_0|| = 1$, $||f_n|| = 1$ (n = 1, 2, 3, ...) follows that

$$||f_n-f_m|| \to 0$$
 for $n, m\to\infty$.

Observe that Theorem 1 is a complement to my following theo-

The orem 2. Let $x_0 \in E(Q)$, $||x_0|| = 1$. Then for weak differentiability of the norm ||x|| in E(Q) at the point x_0 it is necessary and sufficient that the following condition should be satisfied: for every extremal sequence $\{q_n\} \subseteq Q$ of the function $x_0(q)$ and any $x(q) \in E(Q)$ the sequence $\{x(q_n)\cdot x_0(q_n)\}$ blunds multiplies with some strength and

converges to a limit not depending on the choice of the extremal sequence $\{q_n\}$.

Corollary 1. If E is a Banach space, then for weak differentiability of ||f|| in \overline{E} at the point f_0 , $||f_0|| = 1$, it is necessary and sufficient that the following condition should be satisfied: if $f_0(x_n) \rightarrow 1$, $||x_n|| = 1$ (n = 1, 2, ...), then the sequence $\{x_n\}$ converges weakly.

Corollary 2. If E is a Banach space, then for weak differentiability of ||x|| in E at the point x_0 , $||x_0|| = 1$, it is necessary and sufficient that the following condition should be satisfied: if $f_n(x_0) \rightarrow 1$, $||f_n||=1$, then

-x2 and land works olim $f_n(x)$ exists for all $x \in E$, avoid of radio of pression (3) tends to vero) for head uniformly win he respect to telect-

We shall say that the Banach space E is semi-uniformly convex, if from the relations

$$||x_n|| = 1, \lim_{n \to \infty} \left| \frac{x_n + x_{n+h}}{2} \right| = 1$$
 (8)

(the convergence being uniform in k=1,2,...) follows that

$$||x_n-x_m|| \to 0 \text{ for } n, m\to \infty.$$

Every uniformly convex (3) space is semi-uniformly convex.

We shall say that the space E is weakly semi-uniformly convex, if from the relations (8) it follows that the sequence $\{x_n\}$ converges weakly to a certain element $x' \in E$. Every semi-uniformly convex space is weakly semi-uniformly convex.

Theorem 3. If the space E is semi-uniformly convex, then |f|is everywhere in \overline{E} strongly differentiable.

Proof. Let $||f_0|| = 1$, $f_0 \in \overline{E}$. Suppose that $f_0(x_n) \to 1$, $||x_n|| = 1$. We have to show that in this case $||x_n - x_m|| \to 0$ for $n, m \to \infty$. In fact,

$$||x_n|| + ||x_{n+k}|| = 2 \le f_0(x_n) + f_0(x_{n+k}) + \varepsilon_n = f_0(x_n + x_{n+k}) + \varepsilon_n \le ||x_n + x_{n+k}|| + \varepsilon_n \le ||x_n|| + ||x_{n+k}|| + \varepsilon_n,$$

where $\lim s_n = 0$. Therefore the sequence $\{x_n\}$ satisfies the relations (8) and in virtue of the semi-uniform convexity of E the sequence $\{x_n\}$ converges. The theorem is proved.

Similarly we may prove the following proposition.

Theorem 4. If the space E is weakly semi-uniformly convex, then If I is everywhere in \overline{E} weakly differentiable.

We have also the following

Theorem 5. If the space E is uniformly convex, then from a) x_n converges weakly to x_0 and b) $||x_n|| \rightarrow ||x_0||$ follows $||x_n - x_0|| \rightarrow 0$.

D. Milman (4) has recently shown that a uniformly convex space is regular. From one result obtained by D. Milman in common with the author follows that a weakly semi-uniformly convex space is also regular.

S. Mazur (5) has proved the following proposition. Let: a) the unit sphere of E be weakly compact, b) the norm ||x|| be everywhere strongly differentiable. Then:

1) For any bounded convex and closed set K and an arbitrary point $x_0 \in E$ lying outside K there exists always a closed sphere such that it

contains the set K and does not contain the point x_0 . 2) A sequence $\{x_n\}$ converges weakly to x_0 then and only then when it is bounded and every closed sphere containing infinitely many elements of $\{x_n\}$ contains also the point x_0 , i. e.

3) A sequence $\{x_n\}$ converges weakly to x_0 then and only then when it is bounded and

 $\lim_{n\to\infty}\|x_n-x\| \geqslant \|x_0-x\| \quad (x\in E).$

If the unit sphere of E is weakly (compact and if the norm ||x|| is everywhere in E weakly differentiable, then the space E is regular (7). Since, moreover, the unit sphere of a regular space is weakly compact (6), the spaces E possessing the properties a) and b) of S. Mazur's theorem referred to above coincide with regular spaces with strongly differentiable norm ||x||.

From the preceding propositions easily follows that if the space E (\overline{E}) is semi-uniformly convex, then the space \overline{E} (E) possesses the properties a) and b) of S. Mazur's theorem.

Theorem 6. Let the space E satisfy the conditions a) and b) of S. Mazur's theorem and let $\{x_n\} \in E$, $||x_n|| = 1$, (n = 1, 2,...). Then, in order that the point xo should possess the property:

$$\lim_{n\to\infty} f(x_n) \leqslant f(x_0) \leqslant \overline{\lim}_{n\to\infty} f(x_n) \quad (f \in \overline{E}),$$

it is necessary and sufficient that every closed sphere containing almost all $\{x_n\}$ should contain also the point x_0 , i. e. that

$$\overline{\lim}_{n\to\infty} \|x_n - x\| \geqslant \|x_0 - x\| \quad (x \in E).$$

Theorem 7. Let E and \overline{E} be both uniformly convex. Then, in order that $||x_n-x_0|| \to 0$, it is necessary and sufficient that the following conditions should be satisfied:

a)
$$\lim_{n\to\infty} ||x_n - x|| \ge ||x_0 - x|| \quad (x \in E),$$

b) for some
$$x = x' \in E$$

$$\lim_{n \to \infty} ||x_n - x'|| = ||x_0 - x'||.$$

Odessa State University.

Received 2. VII. 1935

REFERENCES

¹ S. Banach, Théorie des opérations linéaires (1932). ² S. Mazur, Studia Math., IV, 70 (1933). ³ J. A. Clarkson, Trans. Amer. Math. Soc., 40, 396 (1936). ⁴ D. Milman, C. R. Acad. Sci. URSS, XX, No. 4 (1938). ⁵ S. Mazur, loc. cit., 128. ⁶ V. Gantmakher a. V. Šmulian, C. R. Acad. Sci. URSS, XVII, No. 3 (1937). ⁷ V. Šmulian, Rec. Math., 6 (48), 4 (1939).

3) A sequence (2a) converges weakly to k, then and