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LINEAR TOPOLOGICAL SPACES AND THEIR CONNEXION WITH
THE BANACH SPACES

By V. SMULIAN
(Communicated by I. M. Vinogradow, Member of the Academy, 28. I. 1939)

I. Let Er denote a linear topological space, i. e. a linear space which
is topological and in which the operations of addition and multiplication
by a scalar are continuous. This definition belongs to A. Kolmogoroft @)
An other definition for a linear topological space was proposed by
J. Neumann (?)." J. Neumann’s definition is based on the considera-
tion of neighbourhoods which satisfy some 6 axioms. J. Neumann showed
that the linear topological space in this sense is also a linear topological
space in the sense of A. Kolmogoroff. V. Wehausen showed (®) that, con-
versely, every linear topological space in the sense of A. Kolmogoroff
satisfies all 6 axioms of J. Neumann except the second.

Since, however, J. Neumann uses his second axiom only for pro-
ving the theorems 16 —20 of his paper, in studying the linear topologi-
cal space in the sense of A. Kolmogoroff, we can make use of the prin-
cipal results of J. Neumann. Besides, Wehausen remarked (%) that locally
convex  linear topological spaces of Kolmogoroff coincide with convex
linear topological spaces of J. Neumann.

Theorem 1. A compact set of a linear topological space is totally
bounded (*). :

' This theorem, the proof of which is not difficult, contains a theorem
of D. H. Hyers ().

Theorem 2. Let Er denote a topologically complete (%) locally con-
vex linear topological space. If S is a compact set in Er, the smallest
convex set containing S is also compact. :

To prove this theorem it is sufficient to use the preceding theorem
and the theorems 14 and 11 of J. Neumann.

Definition4. ThesetSC Er will be said to be complete, if for
every fundamental [in the sense of G. Birkhoff (")] sequence {z.}— S, where o
runs over some directed set, there exists an element Zy € E, such that
[in the sense of G. Birkhoff (7)] z,— ,.

Theorem 3. A closed set SC Er is bicompact, if and only if it
is totally bounded and complete.

Proof. If § is a bicompact set, its completeness follows from the
definition. By theorem 1 S is totally bounded. The second part of the
theorem follows easily from the lemma of G. Birkhoff at p. 49 of his
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Consequently, the regularity of E is equivalent to the following con-
dition: ;

If for some {2} there exists 1im [ (%) for feE, where |z, | <1 and o
runs over some directed set, then there exists such an element z,¢ B
that :

lim f (2.) = f (o) for feE.

It is easy to see that this criterion of H. Goldstine can be put in the
following form:

The regularity of E is equivalent to the quasi-com pleteness of, Er.

For this it is sufficient to use the theorem 22 of J. Neumann. Now,
by theorem 3 we have: .

Theoren} 8. In order that the space E should be regular, it is

IT1. The following theorem completes the theorem A) of H. Goldstine.

Theozem 9. Let the uniz sphere of E be weakly compact. Then
every FEE with | F|=1 can be represented in the following form:

F(f)=lim f (z,),

where all =, belong to some conver set lying on the boundary of the
unit sphere E and o runs over some directed set. T herefore the regulariiy
of E in this case is equivalent to the following condition: if for some {x,]},
belonging to a conver set lying on the boundary of the unijt sphere E,
there exists lim f(2.) for all f€E, where o runs over some directed set,
then there exists an element Zo€ K such that lim [ (Za) =f (24) for fEE.

The proof of this theorem, as well as of the theorem A) of H. Gold-

stine, is based upon the following fact: every F €L can be represented in
the form

F(f) = jf(x) dd (e),
Q

where Q is the wunit sphere of E and ®(e) is an additive function of
bounded variation on the sets e€ Q.

By comparison with the preceding theorem we find
Theorem 10. In order that a space E should be regular, it is ne-

After this paper was sent to print, the author got information that
both theorem 8 and theorem 3 (for regularly topological spaces) had
recently heen proved by N. Bourbaki (C. R., Paris, 206, 1701) and
H. Weyl (Actualités scient. et industr., Publ. Inst. Math Univ. de Stras-
bourg, Ne 551) respectively.
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