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INTRODUCTION

The notion of approximative compactness has been introduced recently
by N. V. Efimov and S. B. Stechkin [1]. Let E be a metric space and
G a subset of E. A sequence {g,} C G is called a minimizing sequence for
an ve K, if *) lim ¢ (2, g,) = p (, G). The set Gis called [1]**) appro-

ximatively compact, if for each < F every minimizing sequence {g,}CG
contains a subsequence converging to an element of G.

Let us also recall the following remarks of [1]: a) Every appro-
ximatively compact set G is an existence set (i.e. for each ze E there
exists a ¢, @ such that ¢ (x, g,) = ¢ (2, G)) and hence closed. b) Every
closed boundedly compact set is approximatively compact. Thus appro-
ximative compactness is an intermediate notion between closed
boundedly compact sets and existence sets. The importance of the notion
of approximative compactness is obvious from the fundamental result of
[1], according to which a Chebyshev set G (i.e. a set G such that for each
x = F there exists a unique g.,€G satisfying po(x, ¢.) = o (2, G)) in a
uniformly convex and smooth Banach space E is convex if and only if
it is approximatively compact.

In the present paper we shall study some further properties of appro-
ximative compaectness.

Recently V. Klee [5] has asked whether in a Hilbert space the
metric projection onto a Chebyshev set @ (i.e. the mapping which mdps
every wel into the unique point g, =G satisfying ¢ (2, g.) = ¢ (2, @
is continuous. The first continuity property of the metric projection in d
general metric space has been given by M. Nicolescu ([8], theorem 2).

*) We denote by p the distance in the metric space E.
**) Actually in [1] this definition is given only for E = a real Banach space.
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Various other continuity properties of the metric projection have been
given by V. Klee ([5], propositions 2.3 and 2.4), Ky Fan and I. Glicksberg
([2], theorem 8). In § 1 of the present paper we shall give some semi-
continuity properties of the set-valued mapping Pgy: z— Py(x) =
= {geG | p(w, g) = p (2, G)} in a general metric space. In the particular
case when G is a Chebyshev set, the mapping P, reduces to the metric
projection onto G and our results will imply that the metric projection
onto an approximatively compact Chebyshev set is continuous. This
contains the known continuity properties mentioned above as well as
some new results (which we shall give at the end of § 2).

In § 2 we shall be concerned with approximative compactness
in Banach spaces. N. V. Efimov and 8. B. Stechkin have given the follow-
ing result ([1], lemma 1): In a uniformly convex Banach space every
sequentially weakly closed set is approximatively compact. Let us call
this property of uniformly convex spaces the Efimov-Stechkin property.
In § 2 we shall give some characterizations of Banach spaces having the
Efimov-Stechkin property. It will turn out that this is an intermediate
class between Banach spaces satisfying the equivalent conditions given by
Ky Fan and I. Glicksberg in paper [2] and reflexive Banach spaces.
Finally, we shall give some characterizations of reflexivity for separable
Banach spaces in terms of the Efimov-Stechkin property and of the
Fan-Glicksberg conditions.

§1. APPROXIMATIVE COMPACTNESS AND THE MAPPING Pg
IN GENERAL METRIC SPACES

For a metric space I we shall denote by 2% the collection of all
closed nmonvoid subsets of F. Let us recall that a mapping U: H —> 2F
is called (see e.g. [7]) upper semi-continuwous respectively lower semi-
continuous, if the set

{xePR| Ulx)C M}

is open for each open subset M of F, respectively if it is closed for each
closed subset M of F. These conditions are obviously equivalent to the
following : the set

{xe B | Ux)NN + 0}

is closed for each closed subset N of F, respectively it is open for each
open subset N of I

THEOREM 1. Let E be a metric space and G an approzximatively
compact subset of K. Then P; maps E into 2° and it is upper semi-
CONBINUOUS.

Proof. By remark a) of the Introduction, G is an existence set,
whence Py maps F into 29 Let N be an arbitrary closed subset of G.
We shall prove that the set B = {x e K| Py(a)\ N 5+ 0} is closed.
Let {x,} be a sequence in B, converging to an element z < E. Since {z,} C_B,
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there exists a sequence {g,} C @ such that g, Pg(x,) NN (n =1, v Sy &
Then, by ¢, Ps (@) (n =1, 2,...) we have

e (z, G) <p (2 gu) <Lp(x, @) +e (m,.,‘g,,) =
= p (@, @)+ p (&, F) < 20(x, @) + (2, Gy (n=12...) (1)
whence, by lim p(x, x,) = 0 we infer lim p(, 7,) = o(x, @), ie. {g,}

- oo n-» @
is 2 minimizing sequence for x, Hence, since G is approximatively compact,
there exists a subsequence {g"k} of {g,}, converging to an element geG.

By (1) we have then
o(z, G)<p(x, 9) < plx; gu) + P (Gn,r 9) <
< 20 (@, m,,) + e, Q) + o (¢n> 9) (k=1,2,...),
whence, for k — oo,
ez, g9) = ela, @),

i.e. ge Py(x). On the other hand, since N is closed and since {g, } C &,
lim g, =g, we also have g € N. Consequently, g € P, (2) XY, whence
k—»oo

x€ B, which completes the proof. . )
THEOREM 2. Let E be a meiric space and G an approximatively
compact subset of I. Then -
1° lim xz, = « implies lim o (Py(2,), Ps(x)) = 0.

N—

2 lim a, — « implies the ewistence of two sequences {g.}, {9, C G,

n—>
with g, € Pg(@)y g € Pe(x) (n =1, 2,...), such that Lim o (g,, Ga) == 0.
i = 0
3° lim a, = @ implies the exstence, for each sequence {g.} C G with
Npso
g € Po(x,) (m=1,2...), of a sequence {g,} C Pg(x) such that
lim p(gn, ¢a) = 0. i

n— oo

4° lim x, — @ implies the ewistence, for each sequence {g.} C G

n-r0
with g, Pg(x,) (n =1,2,...), of a subsequence {,} C {g.)} and of an
element ge Pg(x) such that ’lim I, = 9-
t—p 00
~ Proof. The assertion 4° is implicitly contained in the above proof
of theorem 1. On the other hand, obviously 3°= 2°= 1°. Thus it remains
to prove 3°. Assume, a contrario, that for a sequence {g.} C G with
go € Pe(m,) (n =1, 2,...) there exists no sequence {g.} C Pg(x) satis-
fying lim ¢(gn, g.) = 0. Then, taking {g.} C Po() such that p(g,, g.) <
1= CO

<olgh, Pe(@) +S(n =1, 2,...), it follows that Tim p(g.,Pu(a))#0,
n - 00

i.e. that there exists an infinite subsequence { g,,k} of {g,} and an
gy > 0 such that
o (gny. Py (@) > ¢ (b =1; 2,y..). “(2)
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On the other hand, from 4° applied to {,}, {g,} it follows that
there exists a snbsequence {g,,‘1 } of {g,) and an element ge Py(x) such
that lim g, = g. Then

M—p %0

0 =1lim p(g,, , 9) > lim P (g, » Pal@)),

=y 0O M= Co

which contradicts (2). This completes the proof.
Remark 1. One can also give the following direct plOOf of 3°. Assume

that lim #, = « and that {_)H}C @, g.€ Py(w,) (n =1,2,...). Let
Tt GO
. 1
M, (z) = U int 8 \g, -—) (k=1,2,...), (3)
UE"Gt-f’ k

where int S (y, —;c-) :{ze Elp(z 9) < %} Then M(x) is open and
we have P,(x) C M,(x) (k =1, 2,...). By theorem 1, the sets
Dy(x) = {2z E | Pyg(z) C M, (x)} (=1, 2 .:.)
are open. Consequently, since xe Di(x) (k =1, 2,...) and lim z, = =,
there exists a sequence of natural numbers {n,} such that .
x, € Di(w) for m>m (k=1, 2,...),
i.e. such that
Pyx,) C My(x) form>mn (k=1,2,...).
Hence, by (3) and ¢,€ Pg(@,) (n =1, 2,...), there exist elements
g e Py(x) such that g, € int S(ggf" 1) for n > n, (k=1, 2,...), i.e.
such that ‘

e (gus g <—i~ for n>mn, (k=1,2,...). (4)

Now, let ¢;,..., g, -, be arbitrary elements of Pg(z) and let
gn = gu (<M <My —1, k= =1, 2,...).
Then, by (4), we shall have lim o(gu, gn) = 0, which completes

the proof. fPeD

Remark 2. In the particular case when G is compact, 2°has been
proved by M. Nicolescu ([8], theorem 2).

COROLLARY 1. Let E be a melric space, G an approximatively com-
pact subset of E and x an element of E such that Pg(x) consists of exvactly
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ome element, say g. Then lim x, = x implies that lim g, = g for each sequence
- o

t—x L
(g} C @ satisfying g, Pe(x,) (n =1,2,...).
In fact, this is a particular case of the assertion 3° of theorem 2.

(QOROLLARY 2., Let E be a metric space and G an approwimatively
compact Chebyshev set in B. Then the metric projection onto G is continuous.

Remark 3. a) In the particular case when @ is a boundedly compact
Chebyshev set, the continuity of the metric projection onto G was estab-
lished by V. Klee ([5], proposition 2.3).b)In the particular case when ¥
is a Banach space satisfying the equivalent conditions given by Ky
Fan and I. Glicksberg in the paper [2] and @ a closed convex subset of H,
the set G is approximatively compact (this is a consequence of condition
(E. 3) of [2]), whence corollary 2 above implies theorem 8 of [2]. (In
its turn, this latter implies proposition 2.4 of [5]). ¢) We shall give some
new consequences of corollary 2, concerning the continuity of metric
projections onto Chebyshev sets in Banach spaces, in § 2, corollaries
4 and 5.

Remark 4. Let us mention that sometimes another notion of semi-
continuity is also used. We shall call it (K)-semi-continuity, since it has
been investigated by C. Kuratowski [6]. Amapping U : E — 27 is called
upper (K)-semi-continuous, respectively lower (K)-semi-continuous, if
the relations lim a, =, y, € U(x,) (=1, 2,...), lim y, =y imply

Ti=p GO fn— o
y € U(x), respectively if the relations lim @,=x, y € U(x) imply the exis-
Tomp GO

tence of a sequence {y,} with y, € U(x,) (n = 1,2,...), suchthat lim y, =y.

9= O

It is known that every upper (lower) semi-continuous mapping is upper
(lower) (IK)-semi-continuous, and the converse is true when F is com-
pact [6]. However, this latter is no more true if F'is only approximatively
compact. Now, let us consider the mapping P;. From the proof of theorem
1 given above, it follows immediately that if G is an arbitrary exisience
set in a metric space B, then the mapping Pg: B — 2% is upper (K)-semi-
continuous. In the particular case when @G is a finite-dimensional linear
subspace of a Banach space K, this result has been proved by K. Tatar-
kiewicz [9]; actually, the method of proof of Tatarkiewicz remains also
valid if @ is an arbitrary existence set in a metric space E.

We conclude this paragraph with some examples showing that
in certain respects the above results cannot be improved.

Example 1. If @ is an existence set, but not approximatively compact,
then the conclusions of theorems 1, 2 and corollary 1 are no more valid.
In fact, let  be the closed half-space {z = {E.) |E; <1} of the real Hilbert
space 12, endowed with the metric induced by 12, and let G be the sequence
{g.}=, € E defined by

1
G =0, g =11, =, 0,...,0,1,0,...}(n=1, 2...).  (5)
n n—1
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Then G is an existence set (since for each < E, the sequence {|lz — g,[[}= ,
is convergent and lim |z — g,|| > |l ¢ — ¢,|,, whence p (z,G)= inf ||z —g,|l

n=$x ogn< oo
is attained), but @ is not approximatively compact (since {g,}= ,
is a minimizing sequence for #, = {1, 0, 0,...}  E, but it has no conver-
gent subsequence, because of po(g;, ¢;) > 1 for i = j). Let N be the closed
set ]erJ | |l }%} Then for the sequence {x,}® < K defined by

] n=10

1
2, = {1, 0, 0,...}, mn:{1, _7;,0,0,...} (n=1,2,...) (6)

we have lim x, = @y, Py(#z,)NN=2g, (n =1, 2,...) and Pg(xy) N N =0,

n-ycc .

which shows that {z € E| P; () N = 0} is not closed, i. e. that
Py is mot upper semi-continuous. The same example also invalidates
the conclusions of theorem 2 and corollary 1 for non-approximatively
compact G. _

Example 2. The continuity properties given in theorem 2 and corol-
laries, 1, 2, are not uniform. In fact, let I/ be the subset {x = {§,, £,} |0 <
<|g| <1, E,=00U{1, 1} U {—1, 1} of the real Euclidean plane R2,
endowed with the metric induced by R2, andlet ¢ = {1,1}U{ — 1,1}.

Then G is a compact Chebyshev set, but for x, :{l, 0} e B y,=
n

={—l, 0} e E(n=1,2,...) we have lim o(x,,v,) = 0 and p(P;(z,),
n Nn-pco
Py(y,) =2 (n=1, 2,...).

Finally, let us mention that, in general, the mapping P, is not lower
semi-continuwous since it need not even be lower (K)-semi-continuous (see
remark 4), as shown by an example (with a compact &) of K. Tatar-
kiewicz [9].

§ 2. APPROXIMATIVE COMPACTNESS AND THE EFIMOV-STECHKIN
PROPERTY IN BANACH SPACES

We shall say that a Banach space*) B has the Efimov-Stechkin
property if every sequentially weakly closed set in E is approximatively
compact (see the Introduction).The following theorem gives some charac-
terizations of Banach spaces having the Efimov-Stechkin property.

THEOREM 3. For a Banach space E the following conditions are
equivalent :

1° E has the Efimov-Stechkin property.
2° Every weakly closed set in I is approximatively compact.

*) All Banach spaces considered in this paragraph are assumed to be real.



REMARKS ON APPROXIMATIVE COMPACTNESS 173

~1

3° Hwvery closed convex set in B is approximatively compact.

4° Bvery closed hyperplane in H is approzimatively compact.

5° B is reflexive and satisfies the following condition : (€2) Whenever
{x,) C B, xekl, ||z, —|x| and {x,} is weakly convergent to z, then there
ewists a subsequence {x,} of {x,} such that ||z, — x| — 0.

Proof. The implications 1°=2° and 3°=4° are obvious, while
2° = 3° is a consequence of the fact that every closed convex set in K
is weakly closed.

Assume now that we have 4°. In order to prove that E is reflexive
it is sufficient, by a theorem of R. C. James [3], to prove that each feIf*
attains its supremum on the unit sphere of each separable closed linear
subspace of K. Let H, be an arbitrary (not necessarily separable) closed
linear subspace of K, and let

| £l = sup f(a).
=1

If ||fll, = 0, then obviously f attains its supremum on the unit
sphere of K, Assume now that [[f|l, #= 0. Then there exists a sequence
{x,} C E, with |lz,l=1 (n =1,2,...) such that 0 < f(@,) = IIfllo-
Take, by the Hahn-Banach theorem, a ¢ & E* such that o(z) = f (@) for
all xe K, and that | ¢| =|fll,. Then for the closed hyperplane H =
={zeF| ¢(z) = 1} and for the sequence

g, ! 4eB, (n=1,2,...)
(P(m") f(wn)
we have goeH (n=1,2,...) and p(0, ya) =l 4ull = —+— > ——=
1 | f(,)! £l
:—” ” — ¢ (0,H), ie. {y,} is a minimizing sequence in H for the
9

element 0 K. Since, by 4°, H is approximatively compact, it follows
that there exists a subsequence {y,} of {y,}.converging to an ele-
ment y € H. Then [y, || — [[y]. On the other hand, by the above,

1 1
— . Consequently, [y =
”f |‘.U ’ Hf “0

we obtain
1 1! i1
f(nyu y) - “’(uyu v) =y = s

i.e. f attains its supremum on the unit sphere of I, . Thus F is reflexive.

Let us prove that FE also satisfies condition (). Assume that
{w,} C E, xeE, ||x,| — |lz| and that {z,} is weakly convergent to .
Choose fe E* such that ||f|f =1, f(«) = «[. Then f(2,) —f(2) = |l@||

» whence, since y € B, H,

I yu, || —
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and we may assume (omitting, if necessary, a finite number of the z,)
that |f(x,)]|> 0 (n =1, 2,...). Let

Yo = f(i") z (m=1,2...), Y= j(%n)' . (8)
Then we have
f) =1m=1,2,..), f) =L lml ~—2 3 ()
| ()]
and {y,} is weakly convergent to y. Since for the closed hyperplane
H= {2z E|f(z) = 1}we have p(0, H) — ”—}ﬁ —1, it follows from (9)

that {y,} is a minimizing sequence in H for 0. Hence, by 4°, there exists
a subsequence {y, } of {y,}, converging to an element ze H. Since {Ya,}

is also weakly convergent to y, we infer z =y, i.e. y, — y. Consequently,
Ty, =f(wnk) Yuy = flx)y = ,

which proves that F satisfies condition ((2). Thus 4° = 5°
Assume, finally, that we have 5°, and let & be an arbitrary sequen-
tially weakly closed set in E. Furthermore, let « be an element of F and
{9, C G a minimizing sequence for x. Then lim ||z — ¢,| = p(2, G),
i

whence {g,} is bounded. Since ¥ is reflexive, there exists, by the theorem
of Eberlein, a subsequence {g,} of {g.}, converging weakly to an element
g€ I. Since @ is sequentially weakly closed, we have geG. Now, choose
feE* such that ||f|| =1, f(z — g) = ||z — g|. Then we have

e —gll=f(z —¢) =lim f(z — g,) <lim [z — g, || =
koo k=seo
=ple, @) < llz— gl

whence ||& — g, [ — |2 — g|l. Since {z — g,} is also weakly conver-
gent to & — g, it follows from (L) that there exists a subsequence
{2 —g, } of {—g,} such that z — o, = & — Gy i.e. such that
g, —>g. This proves that @ is approximatively compact. Thus 5°= 1°,

which completes the proof of theorem 3.

Remark 5. Every Banach space satisfying the equivalent conditions
given by Ky Fan and I. Glicksberg in paper [2], has the Efimov-
Stechkin property. In fact, this follows comparing theorem 3 with anyone
of the following conditions of [2]*):

(E.3) For each convex set G in E, every sequence {g,} C G satisfying
lim || g.|| = ing llgll s convergent.

N=p GO ge

*) It is also interesting to transform the olher conditions of [2] in order to obtain
some more characterizations of Banach spaces having the Efimov-Stechkin property.
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(B.4) For each closed hyperplane H in E, every sequence {y,} C H
satisfying lim |ly,/| = inf |y || is convergent.
- vEH

(H)A(R) E is strictly convex and reflexive, and satisfies the follow-
ing condition :

(Q,) Whenever {w,} C E, x€B, |z, — || and {x} is weakly
convergent to x, then |z, — x| — 0.

Let us observe that the converse is not true, since for instance a non
strictly convex finite dimensional Banach space has the Efimov-Stechkin
property but does not satisfy the conditions of Ky Fan and T. Glicksberg.
However, we have the following corollary of theorem 3:

COROLLARY 3. For a Banach space E the following conditions are
equivalent :

1° E satisfies the conditions of Ky Fan and I. Glicksberg given in [2].

2° E is strictly convex and has the Efimov-Stechkin property.

Proof. The implication 1° = 2° has been remarked above. In order
to prove the implication 2°= 1° it is sufficient, by 5° of theorem 3 and
(H)A\(R), to prove that in an arbitrary Banach space E the conditions
(Q) and (Q,) are equivalent. Since obviously (Q,) = (Q), we have to prove
that (Q) = (Q,). Assume, a contrario, that K satisfies (£2) but there exist
{x,} C E and ¢ € K with |z,|| — |lz| and {z,} weakly converging to «,
guch that ||@,— x| —/-> 0. Then there exist ¢, > 0 and a subsequence
{m,,k} of {x,} such that

[ln, — @[] > < k=1, 2,...). (10)

However, [since |, || — [lo] and {«,} is weakly convergent to z,
there exists, by (Q), a subsequence {a‘-,lkm} of {x,} such that|z, —x| -0,
which contradicts (10). This completes the proof.

In order to complete the picture of the intermediate situation of
Banach spaces having the Efimov-Stechkin property, between Banach
spaces satisfying the conditions of Ky Fan and I. Glicksberg [2] and
reflexive Banach spaces, let us also give the following example of a re-
flexive Banach space which does not have the Efimov-Stechkin property :

Exzample 3. Let

s'={ 2= (£} el ||l < 1,|E] <

b0 | =

I, (11)
J
l@lly = inf || (ze?). (12)

Then |lz|lg is @ norm on [2, equivalent to the [2norm |z| =
y €q

- 1

— V Y &2 (since lallg > ll@|l > 5 llzlls for all mer“)' Let K be the
i=1 &

space 12 endowed with the norm |z|s.. Then E is a reflexive Banach space
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(since E is isomorphic to [2), but # does not have the Efimov-Stechkin

. 1.5
property (smce the closed hyperplane H = {x ={%,} e F |, = T} is not

approximatively compact |-

However, we have the following characterizations of reflexivity
for separable Banach spaces, in terms of the Efimov-Stechkin property
and of the Fan-Glicksberg conditions :

THEOREM 4. For a separable Banach space E the following conditions
are equivalent : .

1° B is reflexive.

2° There exists an equivalent norm ||| z|| on E, such that E endowed
with this new norm has the Efimov-Stechkin property.

3° There ewists an equivalent norm || x|l on H, such that E endowed
with this mew morm satisfies the conditions of Ky Fan and I. Glicksberg
given in [2].

Proof. The implications 3°= 2°=1° are obvious consequences of
corollary 3 and theorem 3. On the other hand, if ¥ is reflexive, then there
exists, by a result of M. I. Kadec ([4], theorem 2 and formula (3a)), an
equivalent norm |[| /| on X, such that ¥ endowed with this new norm
satisfies the condition (H)A (R). This completes the proof of theorem 4.

Finally, let us return to the problem of the continuity of metric
projections onto Chebyshev sets (see the Introduction). From corollary 2
and the implication 5° = 1° of theorem 1 follows

COROLLARY 4, - In a reflevive Banach space satisfying econdition
(Q) *) the meiric projection onto a sequentially weakly closed Chebyshev set
18 CONTINUOUS,

From corollary 2 and theorem 4 follows

COROLLARY 5, In every reflexive separable Banach space there exists
an equivalent norm || x|l such that in this new norm the metric projection
onto a sequentially weakly closed Chebyshev set is continuous.
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