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Preface

This book is based on lectures delivered in July-August 1972, at the Suceava Summer
School organized by the Institute of Mathematics of the Academy of the Socialist
Republic of Romania, in cooperation with the Society of Mathematical Sciences.

The study of the algebras of operators in Hilbert spaces was initiated by F. J.
Murray and J. von Neumann, in connection with some problems of theoretical physics.
The wealth of the mathematical facts contained in their fundamental papers interested
many mathematicians. This soon led to the crystallization of a new branch of mathe-
matics: the theory of algebras of operators. The first systematic exposition of this
theory appeared in the well-known monograph by J. Dixmier [26), which was sub-
titled Algébres de von Neumann. It expounded almost all the significant results achieved
until its appearance. Afterwards, the theory continued to develop, for it had import-
ant applications in the theory of group representations, in mathematical physics
and in other branches of mathematics. Of great importance were the results obtained
by M. Tomita, who exhibited canonical forms for arbitrary von Neumann algebras.
In recent times fine classifications and structure theorems have been obtained for von
Neumann algebras especially by A. Connes.

The present book contains what we consider to be the fundamental part of the
theory of von Neumann algebras. The book also contains the essential elements of
the spectral theory in Hilbert spaces. The material is divided into ten chapters; besides
the basic text, each chapter has two complementary sections: exercises, comments and
bibliographical comments. The book ends with a bibliography, which includes all the
ftiitIIE: we know of, which deal with the theory of algebras of operators and some related

elds.

The reader is supposed to know only some elementary facts from functional
analysis.

In writing this book we made use of existing books and courses (J. Dixmier
[26], [42], I. Kaplansky [22], J. R. Ringrose [3), {4}, [5), S. Sakai [10], [32], M. Take-
saki [17], [18], D. M. Topping [8]), as well as many articles, some of them available
only as preprints. Some of the exercises are borrowed from J. Dixmier’s book [26).
For the bibliography we made much use of Israel Halperin's Operator Algebras
Newsletter. ,

Thanks are due to Grigore Arsene and Dan Voiculescu for the help given during
the writing of this book, for the useful discussions and for the bibliographical infor-
mation they gave us. -

We thank Sanda Stratild for compiling the bibliography and for the
careful typing of the manuscript.

The Authors






Contents

Introduction . . . . . . . e e e e e e e ..
1. Topologies on spaces of operators ...... e e e ..
Exercises . « « v v v v v 0 . . .

Comments . . ... ......

2, Bounded linear operators in Hilbert spaces . . . . . . .
Exercises . . . . . . .. .. . e

Comments . .. ... .... .

3. YVon Neumann algebras . . . . ... . e e e e e .
EXErciseS + o « o 4 o o o ¢ o o

Comments . . . . v v o o s oo

4. The geometry of projections and the classification of von
Neumann algebras . . . . ... ... ........
Exercises . » « v v ¢ ¢ 0 ¢ 0 o

Comments . . . ... ..o o ..

5. Linear forms on algebras of operators . . . . . . . ..
Exercises . . « v v v v v v v

Comments . . . ... .....

6. Relationships between a von Neumann algebra and its com-
MUANt . . & & v o 4 bt e e e e e s e e s e e e
Exercises . . . « v . v v v v ..

Comments . . .. .. ... ..

7. Finite von Neumann algebras . . . . . ... .. PP
Exercises . « ¢ v v v v v v v o .

Comments . . .. .

8. Spatial isomorphisms and relations between topologies ..

10.

Exercises . . . . . . .
Comments . . ... ......

. Unbounded linear operators in Hilbert spaces . . . . . .

Exercises . . . . .
Comments . . ... ......
The theory of standard von Neumann algebras . . . . .
Exercises . . ... .« v v s o &
Comments ... .. ..¢...

Appendix . . . . . L. . et e e e e e e e ..
A bibliography of operator algebras and related topics . . .
Subject index . . . . . ... ... ...

Notationlndex...._...............

13
19
22
25
59
62
67
84
87

93
104
107

111
130
132

139
142
143

149
166
170
173
184
186

189
233
242

245
329
334
349
353
473
477






Introduction

In the study of operator algebras there are two main methods, the first is of an alge-
braic character, while the second is more analytic.

The algebraic method proceeds by a successive reduction of problems con-
cerning the arbitrary operators to problems about positive operators and from these
to problems about projections, where one can avail oneself of the lattice-theoretical
geometry of projections. In this geometry the main notion is that of equivalence
and the main result is the comparison theorem, an important technical device being
the polar decomposition of operators. These methods are elementary, but they
afford a clear classification of the von Neumann algebras into general types. The
results obtained by these methods are presented in Chapter 4 and in the first sec-
tions of Chapter 7.

The analytic method, which is more complex and profound, consists of
a systematic manipulation with linear forms defined on operator algebras; they
may be bounded, or unbounded. Here the important facts are concentrated around
certain results which extend the classical Lebesgue-Radon-Nikodym theorem, the
main technical tool here being the polar decomposition of linear forms. The ana-
lytic methods permit the analysis of relations existing between the given algebra and
its commutant, as well as of those which relate the predual of the given algebra
to the Hilbert space in which this algebra is operating. In Chapter 6 the relations
existing between the type of the given algebra and of its commutant are studied,
whereas Chapters 7 and 8 exhibit the quantitative relations which measure the
relative wealth of the given algebra and of its commutant. For finite von Neumann
algebras the existence of a trace which measures the relative dimension of projections
allows the evaluation of the quantitative relations between the given algebra and
its commutant by a coupling function of a metric nature. In other, more general,
cases, the coupling between the given algebra and its commutant can be measured
only by projective objects, namely cardinals associated with central projections,
but the information thus obtained is not always satisfactory.

The von Neumann algebras which are well equilibrated with their commu-
tants are called standard von Neumann algebras, and the main result of Chapter
10 is that any von Neumann algebra is isomorphic to a standard von Neumann
algebra in a canonical form. This has been known for a long time in the case of
the semifinite von Neumann algebras; to be extended to the general case, it re-
quired a new technique namely a “polar decomposition’ for the involution of the
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algebra. Chapter 10 is dedicated to the study of the canonical forms of the von
Neumann algebras as well as to some applications to the theory of arbitrary von
Neumann algebras. .

The theory of operator algebras is based on two fundamental results: the
density theorem of J.von Neumann and the density theorem of I. Kaplansky, both
presented in Chapter 3.

The present book covers results contained in M. Takesaki’s work (18], and,
with the exception of the reduction theory and of the examples of factors included
there, those of J. Dixmier’s book [26].

The reduction theory aims at decomposing an arbitrary von Neumann algebra
into a family of von Neumann algebras with trivial centers (the so-called factors),
in such a manner that the algebra be obtainable from this family, whereas its pro-
perties will be derivable from those of the factors. In this manner, the reduction
theory transfers to the factors the purely non-commutative part of the algebra,
whereas the commutative part is reflected in the space of the indices of the family
of factors; the main problem of the structure and classification of the von Neumann
algebras is thus reduced to the corresponding problems for factors. For the reduc-
tion theory one can read J. Dixmier’s book [26], as well as the expository article
by L. Zsidé (3], based on the ideas of S. Sakai [t1]. Both develop the classical
reduction theory of J. von Neumann, but from seemingly different points of view,
which can casily be shown to be similar. For factor theory we recommend the works
of J. Dixmier [26]), (52), S. Sakai [32], D. McDuff [3], H. Araki and E. J. Woods
(3], A. Connes [15), [19), [21 — 24). Important results concerning the structure
of von Neumann algebras are contained in the works of A. Connes [6), [7], and
M. Takesaki [29), [33).

Our exposition refers to the spatial theory of von Neumann algebras, which
considers them as being subalgebras of the algebra of all bounded linear operators
on a Hilbert space. S. Sakai obtained in [3] the abstract characterization of von
Neumann algebras and developed the theory of von Neumann algebras by non-
spatial methods. Thus, in S. Sakai’s book [32] the reader will find some of the
results we present here, with different proofs. Also, S. Sakai’s book [32] contains
some other results which are not included in the present book. - -

*“Algebras of operators” usually designate something more general than von
Neumann algebras, the so-called C*-algebras. In our exposition we have only inci-
dentally referred to the C*-algebras, but this theory makes full use of the theory
of von Neumann nlgcbms: For this theory, as well as for its applications to the
theory ol‘gxoup_rcprcscmatnons. we refer the reader to J. Dixmier’s monograph [42].
) Other topics connected with the theory of operator algebras, but not treated
in the present book, are the following: the problem of the generation of von
Ncumaqn nlgcbl:ns (sce D. M. Topping {8], T. Saits [10]), non-commutative
har‘momc nnalysu.s and duality theory for locally compact groups (see P. Eymard
{1, L'l. Takesaki [23], M.‘Waltcr (2], [4], J. Ernest (5], [8D, non-commutative
ergodic theory (sec A. Guichardet (18]), applications to the theory of ope-
rators (see R. G. _Douglas [3]), [4), J. Ernest (9], connections with some
problems of theorctical physics (see D. Kastler [1},[3], G. E. Emch [2], D. Ruelle [4D.

ol
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Although rather a long time has elapsed since the publication of the works
by F. J. Murray and J. von Neumann and their results are included in the books
mentioned above, we consider that their works are still worth reading for those
interested in the theory of operator algebras.

The present book is self-contained with complete proofs. The exercises con-
tain results which enrich the text and which can be proved with the methods
described in it; the more difficult exercises are marked by an asterisk, whereas
some of the exercises which offer no difficulty are used in the main text and are
marked by the symbol “!”,

The final sections of each chapter include complements which contain biblio-
graphical references, as well as the names of the mathematicians to whom the
results contained in each chapter are to be ascribed.

The bibliography lists the works on operator algebras theory, as well as entries.
concerning the theory of group representations, mathematical physics and operator
theory.






1

Topologies on spaCes
of operators

In this chapter we introduce the main topologies in the space #(s#) of all bound-
ed linear operators on a Hilbert space.

1.1. Lemma. Let & be a vector space, ¢ a linear form on & and p,, p,,. . ., p, semi-
norms on &, such that o

e < k)": P, xeé.
. -]

Then there exist linear forms @y, ..., @, on &, such that

¢=E‘Pb

k=1

los)| < pu(x), x€8, k=1,...,n

Proof. Let 8" be the Cartesian product of »n copies of &, 2 = &" the
diagonal of ", p the semi-norm on &*" defined by

P(xn ceey Xg)= ’:Z pk(xk)’ (xx’ cees X, ) ES",
-1

and @, the linear form on Z defined by
Po(x 5000y X) = (x), xed.

From the hypothesis we immediately infer that the linear form @, on 9 is majorized
on 2 by the semi-norm p. With the Hahn-Banach theorem we infer that there
exists a linear form @ on &", having the following properties

B(xye ey X) = Po(xy..., X), X€ &,

[@(X1se e e x| < Px1e vy X))y X1y 0y X,) €8
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We then define the forms ¢, by the relations
o(¥) = 9(,...,0,%,0,...,0), xe& k=1,...,n,
where, in the right-hand member, x stands on the k-th place.
The lincar forms thus defined satisfy the conditions of the statement.
Q.E.D.
1.2, Let & be a Banach space, &* the dual of & and & a vector subspace of &*.
We denote by o(€; #) the weak topology defined in & by the family & of linear

forms; then the o(&'; F)-topology is defined by the family of semi-norms {p,; ¢ € #},
where

Po(X)=|o(x)|, xe8.

We consider the norm topology in &* and we denote by & the closure of &
in this topology. We denote by &, the closed unit ball in &. :

Lemma. Let & be a Banach space, ¥ < &* a vector subspace and ¢ a linear
Jorm on &.
(i) @ is o(8; F)-continuous iff*) pe#.
(ii) @ is o(&; F)-continuous on S iff pe Z.
(iti) The topologies o(&; F) and o(&; ,;) coincide on &,.

(v) If & is closed in the norm topology and ¢ is o(&; F)-continuous on &,
then ¢ is o(&; F)-continuous on &.

__ Proof. S_i) Ob\jously. if pe &, then @ is o(&; F)-continuous. Conversely,
il ¢is o(&; F)-continuous, then there exist 1eees W, €F, such that

le(1< ¥ p, (9, xee.
L 29]

By virtue of Lemma 1.1, there exist linear forms P15+« ., @, 0n &, such that

?=Y o
k=i

lou(x), < p,, (x) = W(x)]), xe&, k= L...,n
If Yy = 0, then @ =0 If ¢,
and, for any xe &, we have

[ou(x = () | < |yu(x — ¥i(x)x) | = 0.
Consequently, we have

# 0, then there exists X €&, such that Y,(x,) = 1

"
P = A¥reF and ¢ = Y nes.
. k-l -
-\*
*) "I stands for *if and only if’,
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(ii) It is easily seen that if @ € &, then the restriction of ¢ to &, is
o(&; F)-continuous. Conversely, let ¢ be a linear form on &, whose restriction
to &, is o(&; ) continuous. Then ¢ is norm-continuous and, therefore @ € &*.
Let ¢ > 0 be an arbitrary positive real number. Since the restriction of ¢ to &,
is ¢;l(é" ﬁ &)-conitnuous at 0, we infer that there exist linear forms y,...,¥,€ F
such that:

Ixl <1, ¥, p, () <1=]o(x)| <e
k=1
Hence we immediately infer that, for any x € &, we have
”
le(x)| < e llx] + loll Y Py, (x)-
k=1

By virtue of Lemma 1.1, it follows that there exist linear forms @,, ¢, on &,
such that

@ =@, + @3,
[@(x)| < ellxll, xeé,

[p:(x)| <l @] kil Py (%), x€8.

* Consequently, ;€ # and [ — 0.l = ll@1]l < e. Since ¢ > 0 was arbitrary, we
get p e F.
Statements (iii), (iv) immediately follow from (i) and (ii).
Q.E.D.
1.3. Let o be a Hilbert space and #(o¢) the space of all bounded linear operators

on . We consider #(5#) as a Banach space only with respect to the usual ope-
rator norm:

lxl = sup {Ix¢l; e, &I =1}
For &, nes# we define a linear form w,,,, on #(5¢) by:
e, o(x) = (x¢|n), xe€BK).

Obviously, ,, ,€ Z(#)* and it is easily checked that [o,,,l = NEl-lnll. The
form w,,,; will be simply denoted by ..

Let 2(s#)_ be the vector space generated in B(o#)* by the forms w, ,,
&, n € #, whereas %#(¢), denotes the norm closure of B(¢)_in Z(F)*.

Besides the norm topology we shall also consider the following topologies
in B(o#): the weak operator topology, or the wo-topology: it is the topology defined
by the family of semi-norms :

B)ax > |(xE[m)], & ned;
in other words, it is just the o(Z(¢); 2#(o%)_)-topology;
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the strong operator topology, or the so-topology: it is the topology defined
by the family of semi-norms:

BOE)sxm |xfll, Sex;

the ultraweak operator topology, or.the w-topology: it is, by definition, the
o(#(r); #(x),)topology.

We now apply Lemma 1.2, where we make & — B(H), F=RBH)_ and
F = #(X),, and by taking into account the terminology just introduced, we get
the following
Lemma. Let # be a Hilbert space, Then:

(i) BOP)_ is the set of all wo-continuous linear Jorms on B(o#).

(ii) B, is the set of all w-continuous linear forms on B(s¢).

(iii) A linear form ¢ on B(oF) is w-continuous iff its restriction to B(H),
Is wo-continuous.

(iv) In B(F), the wo-topology and the w-topology coincide.
1.4, Theorem. A linear form @ on B(H) is wo-continuous iff it is so-continuous.

Proof. 1t is easy to see that the so-topology is finer (stronger), than the
wo-topology; therefore, any wo-continuous linear form is so-continuous. Conver-
sely,if@is so-continuous, then there exist non-zero vectors ¢§,,. . ., &, € 2, such that

191 < ¥, IxEl, xe@p).
A=l

From Lemma 1.1, there exist linear forms P1se .5 @, 00 B(H), such that

leux)] < Ixg&,], XeR(), k=1,...,n

Let ke{l,...,n} be any fixed index. We obvious] h
veeey . ave off = ;
As a consequence of what we have already proved,ythe niapping{XEh *e A}
xX§y > ?i(x)

is a bounded linear form on . With Riesz’
MEXN, such that @,(x) = (x6iim), x e B(p),

Conse i
quently, for any k there exists an n, € #, such that =w fny Therefore

¢ = E wkeg(”).,’
.-l

ie, ois wo-continuoys,
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1.5. From Theorem 1.4 and from Mackey’s theorem we infer the following:
Corollary. A convex subset of B(#) is wo-closed if it is so-closed.
1.6. From the Hahn-Banach theorem and from Theorem 1.4, we infer the following

Corollary. Let M < B(H) be a vector subspace. A linear form on M is wo-conti-
nuous iff it is so-continuous. '

1.7. Lemma. The Banach space B(3¢) is isomorphic to the dual of the Banach space
() by the mapping given by the canonical bilinear form

" B(H)XB(H), 3 (%, 9) - 0(x).
Proof. Let x € #(5¢). By the formula

D(0) = o(x), @€ B(HK),,

one defines a bounded linear fofm on #(¢),, such that ||&,| < |ix|. In fact, we
have the equality || @] = ||x], as can be inferred from the following computation:

llxll = sup {Ixl; &eot, 1] = 1}
=sup {|(x¢In)|; & nesk, ¢ = lnll =1}
= sup {|wg, (x)[; & ne, I¢] = [n| =1}
< sup {| Py, »); lloog,,ll = 1} < (6.
Conversely, let & e (8(¢),) *. By the formula
o(m = ¥ay,,), & nest,

we define a bounded sesquilinear form on 5. With the help of Riesz’ theorem we
get a uniquely determined operator x € #(¢), such that

oG n) = xEm), &nesx.
It follows that ®(w,,,) = P(wq,,), for any {,nes#. Consequently, ¢ and &,
coincide on #(5¢)_. This shows that & = &,. '
Q.E.D.
1.8. Theorem. For any Hilbert space # the closed unit ball B(¥), of B(H) is wo-
compact,
Proof. According to Lemma 1.7, B(¥) = (B(5),)*; from the Alaoglu theorem,.

it follows that #(s¢), is w-compact. By taking into account statement (iv) from
Lemma 1.3, we infer that #(#), is wo-compact.

Q.E.D.

1.9. Lemma. Let # be a Banach space and B,<®B* a norm closed vector sub-
space, such that B = (@,)* through the canonical bilinear form on BXAB,. Let

2 - ¢ 1540
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N < Hbe ao(B; B,)-closed vector subspace. We denote My ={@ | .u; ¢ € By} = M*,
Then: :
(i) .# 4 is a norm closed vector subspace of M*;
(ii) for any y €./ and any e > O there exists a ¢ € By, such that

V=0lo lol <Yl +e

(iii) M = (M ,)*, through the canonical bilinear form on M XM .
Proof. (i) Let M° = {p € B,; ¢ |.4 = 0} be the polar of .# in &,. Since A
is o(#; @,)-closed, from the bipolar theorem we infer that

M=M= {xeB; ¢(x) =0 for any ¢e./°}.

The mapping B, 3¢ > @ |4€M, is linear, of norm < 1 and its kernel is equal
to.#°. Consequently, it induces a linear mapping

B[ M30[M° @ |uet,.

We shall show that this mapping is isometric. Let ¢, & 2, be such that |lp,/.#°|| =1,
i.c., dist (@o,.#°) = 1. From the Hahn-Banach theorem we infer that there exists
a bounded linear form ¢ on #,, such that 2] = &(po) =1 and P(p) =0 for
any @ €.4°. Since 4 = (8,,)*, we infer that there exists an x & 2%, such that || x| =
= @o(x) = 1 and ¢(x) = 0 for any x e.#°. It follows that x € #°° = .# and, there-
fore, [@o]all >@o(x) = 1. Thus, the mapping B,/#° — 4, we have just defined
is an isometric isomorphism.

Since @,/.4° is complete, it follows that 4 is a complete subspace of .#*
and, therefore, it is norm closed.

(i) For any ¢ €./, there exists, by virtue of what we have just proved, a
¢s € 4, such that ¢ = @yl and Y| = l@o/ ]| = dist (@y, #°). Then, for any
£ > 0 there exists a @, €.4° such that lpo + @1ll < Y] + e. Let us define Q=
= Qg+ ¢, € ¥,. Then ¢l.¢’= Y and |o] < Wl -+ e ‘

(i) For any xe.# the mapping

Vi My ¥(x)

isa bounded linear form on -# 4. By taking into account (ii) and the canonical iden-
tification @ = (2,)°, we get

W0 = sup {lY(x)[; Y e, |y] < 1}
=sup {le(x)[; @ € By, lo| <1} = |x].
Conversely, let ¢ € (-#4)*. We define a linear form on @, by the formula
o) =¥(pls), oea,.

Then ®e(2,)* and ®la = 0. Since (B,)* =2 there exi

X =4, xists an x € & such that
Mo) = o(x), for any o € @, and ¢(x) = O‘for any @ €.4°. Consequently, x € #°° =
=.4and ¥(¢|a) == ?l.alx) = ¥,(p].4), for anyoped,,ie, ¥ =1y

x*

Q.E.D.
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1.10. Let 5 be a Hilbert space and #(s#) the Banach space of all bounded linear
operators on 7.,

Let # < Z(#) be a w-closed vector subspace. We introduce the following
notations:

A .. = the wo-dual of 4, i.e., the set of all the wo-continuous linear forms
on .. Obviously, .#.. is a vector subspace of 4/*.

My = the w-dual of .4, i.e., the set of all w-continuous linear forms on ..
Obviously, ./, is a vector subspace of .#*,

Theorem. Let M < B(#) be a w-closed vector subspace. Then the following state-
ments are true:
() A~ ={plu; ¢ € BEF).};

() Ay = {@lu; ¢ € B(H)s};

(iii) A 4 = M., i.e., #y is equal to the norm closure of M .. in M*;

(iv) A = (My)*, i.e., M is identified, as a normed space, to the dual of M,
through the canonical bilinear form on A X M ,;

(v) for any y e M 4 and any & > 0 there exists a ¢ € B(H )y, such that:

ela=y, loll <yl +e;

(vi) if ¥ is a linear form on M, then \y € M, iff the restriction of Y to the
closed unit ball M, of M is wo-continuous.

Proof. The statements (i), (ii) follow from Lemma 1.3 (i), (ii), with the help

of the Hahn-Banach theorem. ,
The statements (iv), (v), as well as the fact that .#, is a closed subset of .4*,

follow from Lemma 1.9, by taking into account the statement (ii) from above
and Lemma 1.7.

By virtue of statements (i), (ii) from above, the bounded linear mapping
@ > @ | ,maps B(H). on#A . and B(H), on .. Since by Definition 1.3, B(#) _
is uniformly dense in %(),, it follows that .# .. is uniformly dense in .#,. Thus,
statement (iii) is proved.

From statements (i), (i) from above, it follows that the topology induced
on .# by the wo-topology (resp., the w-topology) of B(s#) is the o(#; A .)-
topology (resp., the o(.#;.#,)-topology). By virtue of statement (iii), A, = A ...
Consequently, statement (vi) follows from Lemma 1.2 (ii).

Q.E.D.

1.11. Let # < %(o¥) be a w-closed vector subspace. The norm-closed vector sub-
space ., of the dual M* of A is called the predual of .. This term is justified
by statement (iv) from Theorem 1.10.

Exercises

In the exercises that follow some elementary notions about bounded linear operators.
on Hilbert spaces are assumed, although these are expounded in Chapter 2.
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IE.LL Let {x;} « B(oF) be a directed set. Then
X —> 0 <> x}*x; —> 0.

*E.1.2. Let ¢ be a wo-continuous linear form on #(5#). Then there exist two families
of mutually orthogonal vectors {&1,...,¢,}, {M,..., M} = I, such that

”n
@ = Z Wy, me
k=l

lel = 3 I&d 1[nel-
k=1

E.1.3. With the help of E.1.2, show that for any w-continuous linear form ¢ on
-4(r), there exist two sequences {¢i}, {n} = o, such that 7 [&]* < + oo,
k=1

f Infi* < + oo, and:
A=l

[--]
P = Z wh- LY
k=1

In particular, the w-topology in #(o#) is defined by the system of semi-norms

0

Y (xGulnd

ko=l

X > .

where {$ha, {m)y < o, § &< + oo, E Il < + oo.
o] K=l

E.1.4. The ultrastrong topology on B(F) is defined by the system of semi-norms

-] 172
xﬂ(zuxm),
kel

where {{,}, < 0P, § [6ul* < + oo,
Koy

Show that in the closed unit ball of (¢ the ult inci
with the strong topology, (o%) the ultrastrong topology coincides

Prove the following relations between the indicated topologies:

weak < strong
topology topology
A
ultraweak < ultrastrong norm
topology topology topology
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1E.1.5. Show that the s-mapping
B(H) 3 x — x* € B(H)
Is weakly, ultraweakly and norm-continuous.

E.1.6. Let o be an infinitely dimensional Hilbert space and {£,} an orthonormal
sequence in 3. One defines the following operators:

vat E(E1E)E, n=1,2,...

Show that v, — 0 in the ultrastrong topology but, for any n, one has [[v%&,]| = 1.
Infer that:
(i) the s-operator is not strongly (resp., ultrastrongly) continuous on Z(¢).
(i) the strong (resp., ultrastrong) topology is strictly finer (i.e. stronger)
than the weak (resp., ultraweak) topology in Z(sf).
(iii) the norm topology is strictly finer than the ultrastrong topology
in Z(F).

1E.1.7. Show that, for any a € #(o#), the mappings
B(H) > x > ax € BOYF)
B(o¥) s x > xae B(X)
are weakly, strongly, ultraweakly and ultrastrongly continuous.
1E.1.8. Which of the following mappings
B(H), X B(F) 3 (x,y) > xye B(K)
B(H) X B(H), 3 (x,y) - xy € B(H)
is strongly and ultrastrongly continuous ?

E.1.9. Let ¥ be an ultrastrong neighbourhood of 0e Z(5#). With the help of
E.1.6 (iii), show that there exists a £ € # such that

sup{[]vxéll; xe ¥} =+ co.

Infer from this that, by endowing the space #(#) xX B(s#) with the product of
the ultrastrong topologies, and %(o¢) with the weak topology, the mapping

B(H) X B(H) 3 (x,y) = xy € B(X)
is not continuous.

E.1.10. Let ¥ be an infinitely dimensional Hilbert space and {£,} an orthonormal
sequence in 2¥. We define the operators

el: E—'(EIEU)E;" n=l,2,--.
xl.n=eu+ne.n myn=1,2,...
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i but no sequence
Show that 0 is ultrastrongly adherent to the set {Xu, min, me1,2,... t |
in this set converges weakly to 0. Infer from this fact that #(5#) is not metrizable

with respect to any of the topologies—weak, strong, ultraweak, ultrastrong,.

Comments

C.1.L If 2 is a Banach space and 2°* is its dual, then for any 1 > 0 we write
23 = {ped*; o] < i} '

Theorem. (Krcin~§mulian). Let & be a Banach space andlet " = &* be a convex
subset. Then X is o(X*; F)-closed iff for any A > 0, the set X" N X¥ is o(T*: & )~
closed.

In * one defines the ba(2*; )-topology as being the finest topology in &*
which coincides with the o(2*; Z)-topology in & ¥ 4> 0. One shows that the
ba(:r*; {¥)-topology is a locally convex topology (namely, the topology of uniform
convergence on the sequences from & which converge to 0). This is the main fact

nceded in the proof of the Krein-Smulian theorem. Indeed, this fact once established,
the theorem easily follows by taking into account Lemma 1.2 (iv) (one takes &F =
=F =4 and § = 2*) and Mackey’s theorem.

For the full proof of the Krein-Smulian theorem we refer the reader to N. Dun-
ford and J. Schwartz {l], V.5.7.

By taking into account Theorem 1.10, from the Krein-Smulian theorem the
following results can be obtained:

Corollary. Let . < B(H) be a w-closed vector subspace. A convex subset 4" < M
is weclosed iff, for any i > 0, the set 4 N 4 1 is w-closed.

Corollary. Let . < B(H) be a vector subspace. Then A is w-closed iff A, is wo-
compact.

If .4 < () isa s-algebra, the result stated in this corollary will be proved
by another method in 3.11.

C.1.2. With the help of the Tikhonov theorem one can easily prove the following
general result of “weak™ compacity, proved for the first time by R. V. Kadison:

Letit, .1’ b'c vector spaces, & a set of linear forms on ¢ ', which separate
the elements of .7 and #(Z, Z") the vector space of all linear mappings from g
into 7", endowed with the topology o, generated by the sets

2(x,%") = {de ¥(¥, Z'); Axe v},
ng;? X runs over &, whereas ¥” runs over the set of all 6(2”; #)-open subsets
of T°.
Theorem. If the subset & = q linearly generates & » whereas '« &' isq a(Z'; F)-
compact subset, then the set ’
C={4es(@,2); 4% = 7'}

Is g-compact. . :
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Corollary. If (%)), is a family of subsets of &, whereas (¥}) e is a family of (X', F)-
compact subsets of &', then the set

Co={AeC; A% c ¥}, iel}

is o-compact.
Alaoglu’s theorem as well as Theorem 1.8 are particular cases of this result.

For the proof of the theorem and for other applications we refer the reader
to R. V. Kadison [17] (see also Gr. Arsene [2]).

C.1.3. Bibliographical comments. The reader can easily find the few general
facts from functional analysis needed in the treatise by N. Dunford and J. Schwartz
[1], Ch. II, V. The preceding exposition follows that of J. R. Ringrose [5].
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Bounded lineér operators
in Hilbert spaces

This chapter contains the basic facts about bounded linear operators in Hilbert
spaces, necessary in order to develop the elementary part of the theory of von
Neumann algebras.

2.1, In thefirst chapter we considered only the Banach space structure of #(o¢).
By taking into consideration the multiplication of the operators, #(>#) becomes
a Banach algebra, i.e., for any x,ye Z(#) we have

llxyll < Nl Hyll.
For any x e #(o¢), the relations
(xE|m) = (Elx*n), {,nest,
determine an operator x* ¢ B(o#), called the adjoint of x. The mapping
B(HF) 3 x — x*ec B(K)

is called the canonical involution on B(5¥), or the s-operation on B(¢). Thus, B(¢)
becomes, in a canonical manner, an mvolutzve algebra, or a s-algebra, i.e., for any
x,y e B(#), Ae €, we have

(x+y)* =x*+y*,

(Ax)* = I x*,
(xp)* = y*x*,
X** = x,

We shall call a »-algebra of operators any =-subalgebra of %#(o#). The notions of
s-homomorphism and s-isomorphism between s-algebras of operators are now
obvious. ]

The connection existing between the norm, the multiplication and the s-operation
in #(o#) is expressed by the following

Lemma. For any x € B()) we have the equality

fIx* x| = [x|*
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Proof. We have
°f = *¢{l = sup sup [(x*¢|n)|= sup sup |(lxn)| < |Ix[,
B<*l u‘?;l;ex beel l!CHBI “,,”EII( |’1] HE[l=1 {inli=1 .
and this shows that

Ix?= sup [x[*= sup (x¢|x¢) = sup (x*x{[&) < [x*x]| < lIx|j%
i1 1)) =1 1ENl=1 :

Q.ED.

Inthe preceding proof we have also obtained the equality | x*|| = | x|l, x € B(oF).

2.2. Any Banachalgebra «, which is a »-algebra and in which the equality [[x*x| =
= [lx]|? holds for any x € &, is called a C*-algebra. Lemma 2.2. shows that #(5¢)
isa C*-algebra in a canonical manner. Moreover, any -algebra of operators, which
is also closed for the norm topology, is a C*-algebra; these algebras will be called
C*-algebras of operators (or concrete C*-algebras).

For any subsct & < #(#) there exists a smallest C*-algebra of operators,
which contains . This one will be called the C*-algebra generated by ¥ and it
will be denoted by €*(a).

A special class of C*-algebras of operators, which is the subject of the pre-
sent book, is the class of von Neumann algebras. Any s-algebra of operators
- = #(o), which contains the identity operator 1,, and which is so-closed (or,
cquivalently, wo-closed (sce 1.5.)) is called a von Neumann algebra.

For any subset & « #(o) there exists a smallest von Neumann algebra
which contains 27 it will be called the von Neumann algebra generated by &, and
it will be denoted by R(X).

In what follows, we shall be concerned only with C*-algebras of operators,
which will be called, simply, C*-algebras.

2.3. For any xe B(F) its resolvent set is defined by
p(x) = {2eC; A — x is invertible};

its complement o(x) = €\ p(x) is the spectrum of x.
It is casy to check that if 2o € p(x), then

{le € |2 — 2] < (R — 02 7Y} < p(x)
and, for any 4, such that {4 — 4] < (2 — x)"Y-%, we have

A =07= § (G — 2 o — 1)--,

A=
In particular, p(x) is an open subset of @ and the function
px)3 (4 = x)1e 2(5¢)
is analytic for the norm topology of @(o¥).
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On the other hand, we have
{ie €; |A]> lxl} = p(x)
and, for any 4, such that |1| > [Ix], we have

(— )= 3 a-m=1xn

n=0

In particular, we have
o(x) ={ie €C;|A| < x]},
and this shows that ¢(x) is a compact subset of .

Lemma. For any x € B(), the spectrum p(x) is non-empty, the sequence (|| x"|'"™p1
converges and

lim | x*|¥* = sup {|1]; A€ o(x)}.

Proof. Let a(x) = inf [|x*|"". It is easy to check that if x,ye Z(o#) and
n>0
xy = yx, then g
al(xy) < alx) o(y).

Let ¢ > 0. There exists a natural number n,, such that [|x"|""¢< a(x) + ¢. For any
n > 0 there exist natural numbers g, r, which are uniquely determined by the con-
ditions

n=nq+r,0<r<n—1.

We have
%7 = |x"? x| < 1x™ 19)|x " < (a(x) + &)™ [x|" = («(x) + &)*" |x]",

and, therefqre, we have

r
n

1=
=" < (@(x) +€) " [x]";
consequently, we can write

a(x) < lim inf [x"]"" < lim sup [|x"|"" < a(x) + &.
n=o0

n-»Qo"

L
n

Since £ > 0 was arbitrary, it follows that the limit lim [x"||" exists and it is equal

n-»00
to a(x).
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If |4] > ax), then 3 1x" /2" < + 0o and this implies that the series

n=0

E X"/ A" converges with respect to the norm. It follows that 1 — (x/4)is in-

:-;:tiblc and this implies that 4 — x is invertible. Consequently, we have
a(x) > sup {|1]; 4 ea(x)}.

In order to prove the reversed inequality, as well as the fact that the
spectrum o(x) is non-empty, we distinguish two cases.
If a(x) = 0, then O0€ a(x), i.e., x is not invertible. Indeed, if x is invertible,

then
I = a(l) = a(xx"?) € a(x)a(x1) =0,

and this is a contradiction.
If a(x) > 0, let us assume that a(x) > sup {|A|; A€ a(x)}, in order to get a
contradiction. Since o(x) is a compact set, there exists an r€(0, a(x)), such that

olx)c {Ae C; |A| <r}.
Consequently, we have
D={leC; |A]>r} < p(x).

It is casily checked that for any bounded linear form ¢ on #(o¢), the function
A=+ 9((2 — x)™1) is analytic in D. Moreover, for |A]| > a(x) we have

(4 — X)) = E‘, A="=1p(xm),

Ne0

It follows that by the formula

0 for u=0
f01)={¢ ((:—‘ —x)-l) for 0 < |u| < r?

one defines an analytic function in the set

D ={ueC; |u| <r}.
Since the Taylor expansion of Sfat0is
(- -]
S =Y, u+1 o(xm,
A=0

the same formula holds for any ue D",
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Now let Ay e € be such that r < |1,]< a(x). Then ;'€ D-? and, therefore,
for any bounded linear form ¢ on #(5#) we have

lim A5 ! o(x™) = 0.

n—-o0
From the Banach-Steinhaus theorem, we infer that

su}; [4o]~" "t Ix") = ¢ < + oo.

Consequently, for any n > 0, we ha\"e
Ix" < Ao+t

whence

: 1+ L
a(x) = lim [ < Tim ¢ [d] © ™ = [ o] < (%)
n-00 n-+00

and this is a contradiction.

Q.E.D.

One usually denotes

1
n

|o(x)| = sup {|A]; 2ea(x)} = Jim 7]

and the number |a(x) | is called the spectral radius of x. Obviously, we have
Jo(x)| < lIxI
and, for any x, y € #(5¢), such that xy = yx, we have
fo(xp)| < |o(x)|-|6(3)].
It is easily seen that Aeo(x*) <> 1€ o(x); consequently, we have
[6(x*)[ = [a(x)].

2.4. Now let x € 2(o#) and p(4) = ¢y + a,4 + ...+ 24" be a polynomial.
One defines

pX)=ag+ ayx+ ... x"
Lemma. With the above notations, we have

o(p(x)) = {p(2); Aeo(x)}.
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Proof. If p is a constant, the assertion of the lemma is obvious. Therefore, let
n3 1, a #0. If oea(x), then 4y — x is not invertible, whereas from

N

§io) — )= 3 (5 — 34 = (g — ) %, 00 3, 471,

k=0 k=1 j=1

we infer that p(4,) — p(x)is not invertible, too. It follows that p(4y) € a(p(x)). Con-
versely, if u ¢ {p(4); Lea(x)}, and if 4,,..., 4, are the zeros of the polynomial
p(A) — p, then 2,,...,2, ¢o(x). Since
p(x) —H= an(x - ’11)' . '(x - }'n)a
it follows that p(x) — p is invertible, and this shows that p ¢ a(p(x)).
Q.E.D.

2.5. An operator x € B(F) is said to be normal if
xx* = x*x.
It is casy to sce that if x € () is normal, then, for any ¢ e # we have

lx*&ll = x&l,

and conversely.
The operator x e B(¢) is said to be self-adjoint or hermitian if

x*=x

Obviously, any hermitian operator is normal.
Lemma. Let x e (o). Then
() if x is normal, then le(x)| = |ix}.
(i) if x is self-adjoint, then a(x) = R.
Proof. If x € B(o) is self-adjoint, then

[a(x)] = lim 112" = x|,

from Lemma 2.1.

If xe #() is normal, then x*x is self-adjoint, x and x* commute and,

&:;cforc. by taking into account what we have proved in Sections 2.1, 2.3, we

Bxl* = Px®xl = Jo(x*x)| < [o(x*) | [0(x) | < [¥*] Ix]) = [ix[%,
whence

[o(x)| = [x].
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Now, if xe B(H) is self-adjoint and A = a + if e a(x), o, B € IR, then for
any n > 1 the operator

X=X — a -+ inf

is normal and i(n 4 1)B € o(x,). By taking into account what we have proved in
Section 2.3, we have

(n + 1% < |o(x,) P < Ixal®=]x3x,]
= (x —a —inf) (x — a + inf)] = ll(x — a)®* + n*p?|

= sup sup (((x — a)*¢ |n)+ (B2 [n))
Jnli=1 (|&}}=1

< ||x — «||? 4 n?p2
Since n > 1 is arbitrary, we have 8 = 0, and this shows that A ¢ [R.
Q.E.D.

2.6. The following theorem will enable us to construct *“‘convenient’” elements
from Z%(s#). For any compact space 2 we shall denote by %(Q) the set of all
continuous complex functions, which are defined on 2. With the pointwise defined
algebraic operations and with the s-operation defined by complex conjugation,
the set €(Q) becomes canonically a commutative C*-algebra, if we endow it with
the uniform norm. Any element from %(Q) is “normal”’, whereas the “self-adjoint”
elements are the real functions. The “spectrum” of an element fe €(£2) coincides
with the range f(Q) of the function f.

Theorem (of operational calculus with continuous functions). Let x € B(H#) be a
self-adjoint operator. Then there exists a unique mapping

€(o(x)) 2 f > f(x) € B()
such that
@) if f is a polynomial, f(2) = 09 + ;X + ...+ a,A" then
) =ag+ o x+ ...+ a,x",
@) 1fCN = NIfll, for any fe €(o(x)).

Moreover, this mapping is a s-isomorphism of the C*-algebra %(c(x)) onto the C*-
algebra €*({x, 1}).

Proof. The set of all polynomials can be mapped by restriction, which is a
s-homomorphism, onto a s-subalgebra #(o(x) in ¥(o(x)). By taking into account the
Stone-Weierstrass theorem, we infer that 2(o(x)) is dense in €(o(x)) for the norm
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topology. For any “polynomial” p € 2(o(x)) we define p(x) as we h?.VC done g'n
Section 2.4°). The set {p(x); p e P(o(x))} is a s-subalgebra and it is dense in
%€° ({x, 1}) with respect to the norm topology. For any pe P(o(x)) we have

Il = |a(p(x))| = sup {| ul; 1 € o(p(x))}
= sup {|[p(D)|; Lea(x)} = |p|.
Conscquently, the mapping
P(o(x)) 3p = p(x) € B(¢)

is corrcctly defined and isometric. Thus, there exists a unique isometric extension
of this mapping to €(a(x)), and this proves the existence and the uniqueness of the
mapping having properties (i) and (ii).

The relations

(f+8)(x) =1 (x) + g(x), f,ge%B o)),
(fe)x) =f(x)glx) , fge@(o(x),
AN@=2f(x) , 2e @, fe¥((X),

f@ =@ , fe¥o),

are casy to prove, first for polynomials, and then by tending to the limit, for
arbl!rary continuous functions. This shows that the mapping just defined is indeed
3 e-isomorphism of the C*-algebra %(0o(x)) onto the C*-algebra E*({x, 1}).

Q.E.D.

.(r X,y €:B(F) are commuting self-adjoint operators, xy = yx, and if
Je€(o(x), ge %(a(3)), then f(x) and g(y) are commuting normal operators:
S(R(y) = g(Y(x); indecd, this fact is obvious if fand g are polynomials; for the
general case one tends to the limit.

If f(O)_r: 0, then J(x) € 6*({x}), because in this case f can be approximated
by polynomials without constant terms.

2.7. By taking into account the isomorphism we have just obtained, as well as its
uniquencess, one can immediately get the following:
Corollary. Let xe Br) be a self-adjoint operator. For any fe €(o(x)) we have

o) = {f); A eax)).
whereas if f is real and g € €(a(f(x))), then

8(x) = (g ) (»).

*) By using the lemmas from 2.4 and 2.5, it is ecasy to show that if p is a polynomial

nd plo(x) = -0 thi .
(th "l; \ ‘33, I?J.o tl:;f'np(x) 0; this shows that p(x) is correctly defined for any p e #(o(x)).
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2.8. Corollary. If x € B(ot) is an invertible operator, then x~' € €*({x, 1}).
Proof. If xis self-adjoint, the statement immediately follows from Theorem 2.6.
Now let x € B(o#) be any invertible operator, and y = x™1. Then y* = (x*)-},
yy* = (x*x)71, and, therefore, yy* € ¥*({x*x, 1})=¥*({x, 1}). Since x* e¥*({x, 1}),
we have

x1=y=y(y*x*) = Op*)x* € €*({x, 1}).
' Q.E.D.
2.9. An operator x € #(5¢) is said to be positive it it is self-adjoint and
o(x)c R+ = {leR; 1> 0}.

Corollary. If x € B(s¢) is a positive operator, then there exists a unique positive
operator a e B(¥), such that

at = x.
Proof. Since we have the inclusion o(x) = [R*, the function defined by
@) =2, e o), |

belongs to %(o(x)). From Corollary 2.7, by denoting a = f(x), we have a? = x
and a is a positive operator.

Let be #(o#) be an arbitrary positive operator, such that 52 = x. Let us
consider a sequence {p,} of polynomials which converges uniformly on o(x) to the
function f we have just defined. Since o(b) = R+, from o(x) = {43; 1 € a(b)},
we infer that the polynomials p,(4%) converge uniformly on ¢(b) to the identical
function. By taking into account Theorem 2.6, we have

lim b — p ()l = lim [Ib — p,(B%)]} =0,

and this shows that b =lim p,(x) =f(x) = a.
n-co

Q.E.D.

The unique positive operator a € #(o#), such that @ = x is denoted by x!/2,
We observe that x!/ e €*({x}).

2.10. Corollary. Let x € B(#) be a self-adjoint operator. Then there exist positive
operators a, b € B(3¥), such that

x=a—b,
ab =0,
and they are uniquely determined by these conditions.

3 - c 1540



34 LECTURES ON VON NEUMANN ALGEBRAS
Proof. Let us consider on o(x) the continuous functions defined by the
cqualitics .

A for Az0

1) =
.f() { for A <0
0 for Az=0

1) =
A {—,1 for <0

Then the operators a = f(x), b = g(x) satisfy the two conditions required in the
corollary, and this proves the existence part of the corollary.
In order to prove the uniqueness, we observe that

(a+ b)*=x
By taking into account a remark we made in Section 2.6, we get:
a+ b= (a4 bR

This shows that @ + b and x? are positive operators (see 2.5, 2.7) and from Corol-
lary 2.9, we infer that

a4 b=y
This implies that

a= %«.ﬁ)m +x), b= % ()7 — ),

Q.E.D.

The operators a and b, given by this corollary, are denoted: g = xt, b=x".
We observe that x+, x-¢ €*({x}). Thus, we hag

X=Xt — x~
xtx= =0,
2.11. Lemma, Let X€HB(XH). Then:
() x =0 (x¢|&) =0 for any et
(ii) x is self-adjoint = (x| eR for any Eesw.
Proof. It is easy to prove the following “‘polarization formula”
LT 1) = €+ m &+ 1) — (& — ) & — )

+ i + in) | + in) — i(x(¢ — in) 1§ —in),
which holds for any §, neJsr.
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If (x¢ | &) = O for any £ e 5, by taking into account the polarization formula
we infer that (x |n) = 0, for any &, n € 2#; in particular, we have || x¢[|2=(x¢]| x§) =
= 0, for any £ €2, and this shows that x = 0.

If x is self-adjoint, then for any £ €%,

&18) = € x8) = (T,
i.e., (x£|&) is real. Conversely, if (x¢|¢€) is real, we have
(e —x*8 D) =) —(x*¢ 18 = (¢ ) — € |xF)
=58 —(x¢]8)=0.

With the first part of the lemma, we infer that x* = x.
Q.E.D.

2.12, The following proposition characterizes the positive operators:

Proposition. For any operator x e B(3¢), the following statements are equivalent:

(i) x is positive;

(ii) there exists a positive operator a e B(X), such that x = a®;

(iii) there exists an operator y € #(), such that x = y*y;

@(v) (x¢|&) = 0 for any Eeo¥.

Proof. The implication (i) = (ii) follows from Corollary 2.9, whereas the
implications (ii) = (iii) = (iv) are trivial.

Let us now assume that (x¢ |{) > 0 for any ¢ e . From Lemma 2.11, x is
self-adjoint. From Corollary 2.10, we infer that there exist positive operators
xt, x~ € €*({x}), such that x = x* — x~, x+x~=0. Then, for any € ¥, we
have

"0 < (x(x=8) | x7) = (xxx~§[ &) = —((xPE Q)
=—(x"(G"Ix§<o,
and this shows that
(x| =0, Eesr.

From Lemma 2.11, it follows that (x~)® = 0. By taking into account Theorem
2.6, we hence infer that x~ = 0. Consequently, x = x+ is a positive operator.

Q.E.D.

2.13. An operator e € B(#) is said to be a projection if e* = e and e® = e. Any
projection is a positive operator. If e is a projection, then 1 — e is a projection
too; it is sometimes denoted by el(= 1 — e).

If e B(5¢) is a projection, then e is a closed subspace of >, called the
projection subspace of e, whereas (1 — e)o¢ is the orthogonal complement (es#)L
of ex. Conversely, to any closed subspace & < # there corresponds a unique
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projection e € #(r), such that es’ = &; this projection will be called the pro-
Jection on the subspace & and it will also sometimes be denoted by &; for example,

we have =1 — &, ) ) )
The set of all projection in 2(5¢) will be denoted by P gr). It is easily checked

that if e€ Par), € # 0, then )
flell = 1.

Two projections e;, e; € Par) are said to be orthogonal if e,e,=0. The follow-
ing statements are easily checked:

€6 € gﬂ(x) <> 6,6 = €26y,
e+ e;€ Pax) <> €16, = 0.

Let xe #(¥). We introduce the following notations:
n(x) = the projection on the kernel of x:{fes’; x& = 0},
I(x) = the projection on the closure of the range of x: x%,

r(x) =1 — n(x).
It is casily checked that

1(x) = I(x*)

and I(x)(resp., r(x)) is the smallest projection e e #(#) such that ex=x (resp., xe=x).
One says that I(x) (resp., r(x)) is the left support (resp., the right support) of x. If x
is self-adjoint, then the following notation is used

s(x) = I(x) = r(x)

and one says that s(x) is the support of x.
For any xe #(oF) the following relations hold

I(x) = s(xx*),
r(x) = s(x*x).

An operator v € #(F) is said to be a Partial isometry if there exists a closed
subspace & < o, such that

el = ¢, for any ¢e &,
t§ =0, for any ¢ e &4,

- The closed subspace & (resp. vS) is called the initial subspace (resp., the final sub-
space) of the partial 1sometry v. It is easy to check that

r(v) = o*s, 1I(0)=vo*.
The projection r*¢ (resp., cc*)is called the initigl projection (resp., the final projec-

u’on)_of the partial isomc‘tr}_' v. The projection subspace of the initial (resp., of
the final) projection of v is Just the initial (resp., the final) subspace of v.
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Conversely, if ve #(5¢) and if v*v is a projection, then vv* is also a pro-
jection, whereas v is a partial isometry whose initial subspace is &= (v*v)#.
Indeed, by taking into account the relation (v*v)? = v*v, it follows that

lo — vo*vfl2 = [|(v* — v*vv*) (v — VV*D)]| = ... =0,
whence v = vv*v and (vv*)2 = vo*. We then h~ave
e =E=rv*f=|¢I?= (£ = (v*v§|) = [vll*

e PL=0=0*0f =0 = vv*vi= vé.

2.14. Theorem. (the polar decomposition). For any operator x e B(¥) there exist
a unique positive operator a € () and a unique partial isometry v e B(H’) such that

x=va
v*v = s(a).
Proof. We define a = (x*x)'* and the operator v, on as¥ by the relation
vo(@l) =x¢, Cest.
Since, for any e ¥, we have
llvo(@d)li® = [Ix¢||* = (x*x{ | E) (@218 = llagl?,

it follows that the operator v, can be extended, in a unique manner, to an isometric
operator (i.e., one which conserves the norm), for which we shall keep the same

notation, defined on the space a3 = s(a)#. We then define a partial isometry
ve B()) by the relations

oE = {v,,é for & e s(a),
0 for ¢ e (s(a)o)L.
It is now easy to check that
x = va,
v*v = s(a),

and this establishes the existence part of the statement.
In order to prove the uniqueness, let us remark that from the conditions of
the statement it follows that
x*x = av*va = as(a)a = a?
and this implies that a = (x*x)!2, Then one can easily see that the partial iso-
metry v necessarily maps according to the above definition.

Q.E.D.
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The operator a = (x*x)'? is called the absolute value (or the modulus) of x
and is denoted by |x|. We remark that |x| € €*({x}). The relations

x=v|x|, v*v=s(|x|)
arc called the polar decomposition of x.
2.15. Let xe #(#) and let
=olx[, v*v=s(x]|)
be the polar decomposition of x. It js easy to check the relations
X* = p*(v | x|v*), w*)*v* = s(v]x|v¥),

and, therefore, according to Theorem 2.14, they yield the polar decomposition of
the operator x*. In particular, we have

|%*| = v x|v*
and

= |x*v, pv* = s(|x* D.

For this reason one sometimes says that (2.14) is the left polar decomposition,

whereas the preceding formulas yield the right polar decomposition of the
operator x,

It is casy to check the following relations
r(x) = s(|x|) = v*p,
I(x) = s(| x*|) = po*,
If xe 3(#) is a self-adjoint operator, and if

X =p|xf, v*v= s(|x]),

is its polar decomposition, then the following relations are immediately obtained

x| = x+ 4 x-,
V= s(x*) - s(x‘);
in particular, we have p = o*,

- 2.16. We shal} sometimes denote by B(s) the set of all self-adjoint operators in
@ ¥). The notion of posittve operator allows the introduction of an order relation
in #(p, Namely, for x,ye B(>) we shall write x < y if the operator y — x
1s pqsm\;?; p.y_ taking into ‘account Proposition 2.12, it is €asy to check that the
relation LM s indeed an order relation in 2(¢)". From now on we shall use
the notation x = 0in order to express the fact that the operator x is positive and
we shall sometimes denote BOF)+ = {xe20r); x > 0}.

et i
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The set B()" is a real wo-closed vector subspace of Z(¢), whereas 20r)+
is a wo-closed convex cone.

If a,beB(H#)+ and ab = ba, then abe B(X)*.

If a, be B(#)* and a < b, then x*ax < x*bx, for any x € B(¥).

Proposition. Let {x;}ic; = B(#)* be an increasing net, such that there exists a
y € B(#) for which x; < y, i€ I. Then there exists an x € B(K)", such that

X = supx,.
tel

Moreover, x is the limit of the net (x,)ic; for the so-topology in B(¢).
Proof. We can assume, without any loss of generality, that 0 < x<1,
iel
For any & es# we define
F(&, &) = sup (x,£ [¢) = lim (x,{ | §)
iel lel

and, for any &, ned,

F(é,n>=%<F(¢+n,c+n)—F(«:—n,:—n>+ir(c+in, £+ in)

— iF(§ — in, & — in).

Then F(.,.) is a bounded positive sesquilinear form, whose norm is < 1.
According to the Riesz theorem, there exists a unique operator x € (),
Ix] <1, such that

F(cs ") = (Xf l")s é;"e'#’

and, according to Proposition 2.12, we have x> 0.
Since, for any i € I and any £ € )%, we have’

(x$18) = F(E, &) = (x£12),

it follows that x is an upper bound of the net (x;),;c;. On the other hand, if x,€
€ B(o¢)* is an upper bound of the family (x;);e;, then for any e, we have

(%1 = F(&, ) = }gl (xi£18) < (x6€1%)

and this implies that x < x,. Hence
x = sup x; in B(H#).
. tel
Finally, for any { €s#, we have ’
NG — x)E* < N0 — x)22l(x — x)V2E |12
< ((x—x)§18) = F(§, &) — (x5 — 0

and this implies that x is the limit of the net (x,);e; for the so-topology in 2(¢).
Q.E.D.
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If (x)ier = BOF) is an increasing net and if x € B(s¥): belongs to the
wo-closure of the range of this family, then x = sup x; and, therefore, x belongs

€l
to the so-closure of the range of the same family. In this case we shall write
X; T X.

This notation means that the net (x)ieris increasing, x = sup x, in B(s£) and
that x belongs to the so-closure of the range of the family (x,),c;. The same notat-
lon will be used for the “increasing convergence” of real numbers:

217, Letxe B(X),0 < x<1,and €€ Pgr). Then
X < e<>x=Xxe.

Indeed, from the relation x < 1 we infer that exe < e, whence if x = xe, we
deduce that x S e. Conversely, if 0 < x < e, then we get successively :

0= (I —e)yl —e) < (1 —e)x(1 —e) < (1 —e)e(l —e)=0,
(1 —e)x(1 —e) = 0, |
(1 —e)x'?)((1 — e)xizy» — g,
(I—exiz =,
(I —ex =0,

and this implies that x = ex = xe,

In particular, if ¢,,¢;€ Pa ), then & <eiff e, = e, It is easy to check
that we have G S e iff oof < o0,

CLet(e)g, < ? . be any family of projections. One can define the following
projections

I\E/,c, = the projection on the subspace Y, e,
ic1

é\’ €; = the projection on the subspace () e,
11

th respect to the order
) by the order relation just defined in B(FY. If the set
v+, 1}, then one also uses the following notations

relation induced on P
. of indices is finitc, 1 = {1

n
c,V...Vc,,=Ve,, for V e,
te1 ter

n
CGA...Aey = Aei for p e,
I=1 ey
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From the preceding results and from Proposition 2.16, we get the following

Corollary. (i) Paye) is a complete lattice.
(i) If (e)iey is an increasing net, then

€; T V €.
ter

(iii) If (e)ies is a family of mutually orthogonal projections, then the family
(e)ier is summable for the so-topology, and

Ye=Ve,.

ie1 tel
We observe that for any e,,. . ., e, € Pg.r), we have

sq+ ... +e)=e, VvV ... Ve,

2.18. We shall now extend the operational calculus given by Theorem 2.6 to a larger
class than that of the continuous functions. In order to do this we shall need the
following.

Lemma. Let x € B(3¢) be a self-adjoint operator and let {f,} and {g.} be two bounded
increasing sequences of positive functions from 6(a(x)), such that

sup f(2) < supg,(2), Aea(x).
Then
sgpﬁ.(:c) < sup 8n(x).

Proof. By taking into account Theorem 2.6 and Proposition 2.16, we infer
the existence of the elements sup f,(x), sup g,(x), and the relations
n n

L)1 sup %), g.x)1 sup &(*)-

Let n be a natural number and & > 0. For any 2 € o(x) we have
S —e< fid < Sup f(4) < sup g,(2);

consequently, there exists a neighbourhood ¥, of A and a natural number my,
such that .

L) —e <gn), peV,

Since o(x) is compact, it follows that there exists a natural number m,, such that
fi—e< g, in %(o(x).

Consequently, by taking into account Theorem 2.6, we have

) —e<g, ()< SUp ga(%),
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whence, by taking into account the fact that & > 0 is arbitrary, we get
(%) < sup g(x);
m

since n is arbitrary, we have A
sup f,(x) < sup g,(x)
n m
v Q.E.D.
2.19. Let x € #(o) be a self-adjoint operator. We shall write
m(x) = inf {1; Ae a(x)}, M(x) = sup {4; A € a(x)}.

Since o(x) is compact, we have

m(x), M(x) e a(x).
For any 4 € R we shall consider the continuous functions

[ 1 , for te(——oo,,l—l],
n

fi= nA—1) , for ze[z—l, ;.],
n

0 » for te[d, 4 oo).
Then we have

St Ym0 n(D), telR,
(HHO 1 oo a(t), te R,

where by y, we denote the characteristic function of the set D < R.
According to Proposition 2.16 and Lemma 2.18, there exists a projection
¢, € 3(r), such that .

SHx) t e,
In what follows we shall prove some properties of the projections e;.
@) e, € A({x}); in particular, ¢, commutes with any operator commuting with x.

This fact follows from the definition of the projections e,, from Theorem 2.6
. and from the obvious equality #({x}) = so-closure of €*({x, 1}).

(ii) ).1$13=>elseg.
Indeed, for any n we have
RSS2 in €o(x),
and this implies that

S3x) < f2x);
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the required property now follows by tending to the limit
(iii) At A= e, tes.
Indeed, we then have

3% 1 Y—co, 2 POINtwise;

by taking into account Lemma 2.18, the definition of the projection e, and (ii),
we get

€, = e;,' = f:}"(x) T €
and, therefore, e, 1Tew

@iv) A<mx)=>e,=0; 1> Mx)=e, =1

Indeed, if 2 < m(x), then £3 = 0 in ¥(s(x)), for any n, whereas for 1 > M(x)
we have f} = 1 in ¥(o(x)), if n is sufficiently great.

) xe, < Aey, x(1—e) 2 A1 —ey).
Indeed, we have the following relations

tfXD <A Y, telR,
11 —fi0) > (z —-%)(1 —f4D), teRR,
whence
xfHx) < AL,
xa—ﬁw»>(b—iyb—ﬁ@»
n

and the stated inequalities can be obtained by tending to the limit.
From property (v) we infer that if u < A, then
I‘(el - p) < x(el. - p) < )'(el - u)'
Let now, 6 > 0, ¢ > 0, and let
Ad={mx)=l<ih<... < Ay = M(x) + 5}
be a partition of the interval [m(x), M(x) + 8], whose norm is 4] = sup {1, —
—A13 §=1,2,..., n} <e. We shall now consider the “Darboux sums”’:

s(d) = i Ai-aley,—ey, ),
=1

S(4) = ’z"; Aer—en_y).
-]
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By taking into account the preceding results, we can easily prove the following
relations
s(d) < x < S(4),

1S(4) — s(4)]| < e,

and these enable us to write

+o00 (x)+0
(vi) x = S Ade, = SM Ade,,
-00

'm(x)

where the integral is to be considered as a vector Stieltjes integral, which converges
with respect to the norm. ‘

Asspcc;ions (i)—(vi) make up what is usually called the spectral' theorem for
the self-adjoint operator x, whereas the family of projections (e1): is called the
spectral scale of the self-adjoint operator x.

For any ¢, neJ# we shall consider the function e;, , defined by the relation

oD = (@), ieR.
Then the functions e, , are positive, increasing, and
e,e < [ISI%

whereas the functions e, , are of bounded variation, and their total variationcan
be majorized with the help of the Cauchy-Buniakovsky inequality -

Viee, ) < &I nd).

We recall that any function of bounded variation on R determines a bounded,
Borel measure, whose norm is equal to the total variation of the function; the
integral corresponding to such a measure is usually called the Lebesgue-Stieltjes
integral. In particular, the functions €,o determine bounded Borel measures; by
the same method as in the proof of statement (iv), one can show that the support
of the measures defined in this manner is contained in the spectrum o(x) of x,

From property (vi), or by direct verification, it follows that

(vif) (&) = Smweg,,(z), & ne.

-0

2.20. For any topological space Q we shall denote by 2(0) the set of all bounded
complex Borel functions, defined on Q. The set 2(Q) can be endowed'canonically
with a structure of a C*-algebra, with the usual algebraic operations and with the
uniform norm (i.c., the sup-norm). If the space 0 is metrizable, then, by virtue of
a theorem of Baire, #(Q) is the smallest class of Junctions, closed with respect to

the pointwise convergence of the bounded Sequences and which contains the bounded
continuous functions,

g
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Theorem (of operational calculus with Borel functions). Let x € #(#) be a self-
adjoint operator. There exists a unique mapping

#(a(x)) o[+ f(x) € B(K)

such that
() if f is apolynomial, f(A) = oo + o)A + ... + a, A" then f(x) = ag+ x4 ...
ees +ax",

(i) if f,f, € B(6(x)), sup llfill < 4 oo and f,+—+f pointwise, then f(x)— f(x)

for the so-topology in B(¥).

Moreover, this mapping is a t-homomorphzsm of the C*-algebra B(c(x)) into
the von Neumann algebra R({x}), and it is an extension of the t-tsomorplusm given
by Theorem 2.6. C

Proof. Any mappmg which satisfies conditions (i) and (u) obviously coincides
with the mapping given by Theorem 2.6, when restricted to ¥(o(x)). In this way
the uniqueness is an immediate consequence of the theorem of Baire, already men-

tioned above.
In order to prove the existence, as well as the other properties of the mapping,
described in the statement, we shall define, for any fe #(c(x)):

F&m) = S“” f(A) de, (A), & e,

where we used the Lebesgue-Stieltjes integral; more precisely, the function f can
be extended to a Borel function on [R, whereas the integral does not depend on
this extension, since the support of the measure is included in o(x) (see Section 2.19).
Then F((.,.) is a bounded sesquilinear form, defined on # X #: :

[F & m| <[flIV(eq,y < IAIUEH Inll, & med.

From the theorem of Riesz it follows that there exists a unique operator
J(x) € B(s#), such that

+00
Uiy =" 0y deg, D, & nest.
In this manner we have defined the mapping:

B(o(x)) 3.f > f(x) € B(K).

It is easy to show that this mapping is linear. By taking into account the relation
& p= e,,'g, §,nes, it is easy to show that 1) = (fG)*.
Let f, g € #(o(x)). For any &, ne ¥ we have

(=) g(x)¢In) = @XEISf(x))*n) = Swg(l) deg, (g ().
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But we have

e, unany(d) = (@5 [(f(x)*n) = (f(x)e;¢|n)
oo A
= {100 der = 70 deg 0,
where the last equality follows from 2.19 (ii). Consequently, we have

(& = g0y a ( j;foo de;, ”w))

-0

ol " 8) £(1) de, (1)

= " Ue)A) deg, ) = (CRIIE

the second equality above is obvious if g is the characteristic function of an interval;
this fact already implies that the measures d( S' 16 deg.,,(u)) and (2) de, (1) are

-0
equal, and, therefore, the same equality is true for any g € B(0(x)). We have thus
shown that (fz)(x) = J(x) g(x). Consequently, the mapping f+» f(x) isa *-homo-
morphism of the C*-algebra B(o(x) into B(F).

If f(2) = 1, 2eo(x), then, obviously, Jo(x) = 1. If £,()) = A, A € o(x), then,
by taking into account 2.19, (vii), we get Ji(x) = x. Since the mapping f > f(x)
is multiplicative, we now immediately get property (i).

For any fe #(a(x)) and any { €, we have the relation

(+) bzt = | D dey ).

-0

Indeed, we have
LI = (&1 f(x)E) = (S f)¢ 10
=[N0 = (£ 16)

= Smlf(l)l’deg. €A,
Property (ii) now casily follows since
165 s = "D =) deg (0,

whereas the integral converges to 0, by virtue of the dominat
of Lebeare y inated convergence theorem
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Finally, the set { fe #(a(x)); f(x) € #({x})} contains the polynomials and it
is closed withrespect to the pointwise convergence of bounded sequences; therefore,
from the above mentioned theorem of Baire, it equals #(a(x)).

Q.E.D.

If x,y e %B(e#) are commuting self-adjoint operators (i.c., xy = yx), and if
fe B(o(x)), g € #(a(y)), then f(x) and g(y) are commuting normal operators.

If x e B(o#) is a self-adjoint operator, and if e € B(5F) is a projection which
commutes with x, then for any function fe #(o(x)), f(0) = 0, we have

flex) = ef(x).

Indeed, this equality is easily checked for f, a polynomial without the constant
term, and then, by tending to the limit, it obtains for any fe 2(a(x)), f(0) = 0.
Relation (») from the proof of the theorem is useful in other situations, too.
For example, with its help one can easily prove that if f,, f€ 2(c(x)), and f; = f
uniformly, then f,(x) — f(x) for the norm topology.
We also observe that, since it is a s-homomorphism, the mapping f+> f(x)
is positive.

2.21. The following fact has already been established in Section 3.19, but we men-
tion it again due-to its special usefulness:

Corollary. Let x € #(o¥) be a positive operator and & > 0 a positive number. Then
there exists a projection e € R({x}), such that

xe >
x(1 —e) < a(l —e).

We observe that one can take e = ¥ +)(X) OF €= J(a. +c0)(X), and this fact
shows that the projection e is not uniquely determined by the preceding conditions.

2.22. If xe B(F) is a self-adjoint operator, then:

ae,

s(x) = re\(0)(*).

Indeed, from the obviousequality 1. xp\ (o) (1)=4, 4 € R, it follows that xyg\ (0)(X)==
= x, and this implies that s(x) < xg\(0)(x). On the other hand, from the relation
xs(x) = x, it follows that f{x) s(x) = f(x), first for f a polynomial without constant
term, and then, by tending to the limit, for any f'e Z(¢(x)), f(0) = 0. In particular,
we have ygx\ (0)(X)s(x) = xm\(0j(¥), and, therefore, ym\ (0)(x) < s(x).

From the proof we also inferred that for any fe %(o(x)), such that f(0) = 0,
we have

S(f0) < s(x).
If £, € #(a(x)), sup I}l < + oo, and f, = %r\(0}, then

Ju(x) —> s(x).
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For example, if x > 0, we have
nx(1l 4+ nx)'l"—°>s(x),

xim 25 s(x).

Also, it is easy to show that there exists a sequence of polynomials without constant
terms, in x, which is so-convergent to s(x).

Corollary. Let x € B(¥) be a positive operator. Then there exists a sequence of pro-
Jections {e,} < R({x}), such that

1
Xey = — e,
n

e, T s(x).
One can take
en= Z(%‘ +m)(x)‘

2.23. Already the spectral theorem (219, (vi)) implied that any self-adjoint operator
x € #(r) is the limit, for the norm topology, of linear combinations of projections
from #({x}). In particular, any von Neumann algebra coincides with the norm-closed
lincar span of its projections. These results can be further strengthened by the
following. o

Corollary. Let xe B(F), 0 < x < 1. Then there exists a sequence of projections
{e) € R({x}), such that :
® 1
x=1Y —e,;
= 2" "

the scries converges in the norm topology.

Proof. The sequence {ea} can be defined inductively in the following manner:
According to Corollary 2.21, there exists a projection e, € A({x}), such that

1
xey > ‘2—ex,
Xl —e) < -—;—(l —e).

~ From Corollary 2.21, there exists a projection ey € R({x}), such that
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One can easily prove, by induction, and by using the hypothesis that 0 < x < 1
that we have

»

o1 1
0<x—V —¢, < —,
kg]zk k n

whence the desired assertion immediately follows.
Q.E.D.

The preceding corollary corresponds to the dyadic decomposition of the
eal numbers be tween 0 and 1.

2.24. If x € #(s¢) is an arbitrary operator, then the operators
x= 2O, =L — e ()

are self-adjoint, and
X = xl + ix:.

An operator u € #(¢) is said to be unitary if it maps isometrically o onto .
It is easily checked that u € B(o#) is unitary iff

= uu* =1,

Proposition. Let x € 2(>¢) be an arbitrary operator. Then x is a linear combination:
of unitary operators from €*({x, 1}). -

Proof. Because of the preceding remark, we can assume, without any loss.
of generality, that

x*=1x |x]<]l.
In this case, we define
| u=x4i(l —x22,

and it is easy to check that u is unitary and
1
x = — (u 4 u*).
3 ( )

Q.E.D..

In fact, we proved that any operator (resp., any self-adjoint, positive operator)-
is a linear combination of 4 (resp., a linear combination with positive coefficients
of 2) unitary operators from the C*-algebra with identity, generated by it We-
observe, therefore, that any C*-algebra of operators (resp., anyC*-algebra of ope-
rators with identity) is the vector space generated by the self-adjoin (resp., the-
unitary) operators it contains.

2.25. For arbitrary bounded linear operators on # one can define an operational.
calculus with functions analytic on a neighbourhood of the spectrum,

4-c. 1540



50 LECTURES ON VON NEUMANN ALGEBRAS

Let x € @(¢). We shall denote by of(0(x)) the set qf all analytic fupctions
defined on a neighbourhood of the spectrum o(x) of x (nelghb.ourhood which can
depend on the considered function). By identifying two functions from A (0(x)),
if they coincide on a neighbourhood of the spectrum o(x), we can dqﬁne canomcally,
in of(a(x)), an algebra structure. For any fe o#(c(x)) we shall consider closed recti-
fiable Jordan curves, with the positive orientation, Iy, I',..., I';, such that the
interiors of these curves be mutually disjoint, the union of the interiors of these
curves contain a(x), whereas the closure of this region be included in the domain
of f. We denote I' = {I',..., I';} and define

Sy =@yt fA— ),
‘ &
as a Cauchy integral, which converges in norm. From the well-known theorem
of Cauchy, f(x) does not depend on the choice of I

Theorem (of operational calculus with analytic functions). Let xe€B(#) be an

arbitrary operator.

() If [ is a polynomial, f(A) = ag+ ayd + ... + a,A", then fe sf(o(x)) and
SX) =ag+ ayx + ...+ X"

ii) The mapping

H(0(x) S f.(x) € B(H)

is an algebra homomorphism.

Morcover, f(x) e €*({x, 1}), for any fe A (o(x)).

Proof. The mapping frrf,(x) is obviously linear. Consequently, in order
to prove (i), it suffices to consider the case fQA)=2" n>0. Let I be a circle
centered at 0 and of radius > ||x], positively oriented. For any AeI' we have

(A—x)t= :{‘, Ak-1xk,

k=0

he scries being convergent in norm. Hence
L) = (2.~.i)-1S PO =)l = 3 (@ni)? S Ark-1dz)ek = xn,
r k=0 r

We still have to prove the multiplicativity of the mappin > f(x). Let

- 8€ of(o(x))and I, .. I Ih,. .., be closed rectifiable Jor%iat{ cur{:s(, )positivelf)‘:
oriented, such that the interiors of the curves Iy,..., Iy be mutually disjoint and
their union l_ngludp a(.g). the closure of this union be included in the union of the
mutually disjoint interiors of the curves ry,.. ., I'; whereas the closure of this last
union be included in the intersection of the domains of f and g. We denote I' =
={l..,M}and "= {5, T}}. From the identity

A== - = (= )2 — X7 — x)t,
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we infer that

J4(¥) 8.%) = — (dmt)~1 (j SO x)-ldz)(s 8~ x)"du)

r

=— (4n=)-1§ Sﬂf(l)goz)(l — X)" Y — x)~'dAdy

=— (4n?)~2 S (A — )™ — ( — x)~HdAdy

Ir

SM
r h—A

= — (4n®) Srf(l)(l —x) (S ,Tg% d" ) “

(s — SP% ) au

= (2ni)" S SR — x)-1dA = (1) ().
I

Q.E.D.

The mapping o/(0(x)) € f > f,(x) € B(#) is also called the Dunford opera~
tional calculus for the operator x.

2.26. Corollary. Let x € #(#) and fe o(6(x)). Then
o(f(x)) = {f(D); Aea(x)}.

Proof. Let Ag € o(x). We shall consider, on the domain of £, the analytic func-
tion g defined by the formula

S —f()
g(l)={ do — 4 for 4 # 4
(%) for A = 4,
Then, from Theorem 2.25 (ii), we have ~
SC0) — fu(x) = (2o — %) g.4(x);

hence, the invertibility of f(2,) — f,(x) implies the invertibility of 2o — x, acontra~
diction. Consequently, f(4,) — f,,(x) is not invertible and f(1,) € o(f,(x)).
Conversely, let py€ o(fAx)). If po ¢ {f(A); A€ a(x)}, then the formula

1
h(2) =
@ o — f(2)

defines a function from «f(s(x)) and, from Theorem 2.25 (ii), we have

h ) (o — fo(®) = 1,
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contrary to the assumption that py€ o(f(x)). Therefore, we have u,e {f(1);
Aea(x)}).
Q.E.D.

2.27. Corollary. Let x € B(K), f€ (0(x)) and g € A (o(f (x)). Then we have
8u4([u(%)) = (g0 f) (%)

Proof. Let Iy, Iy, Iu Ihse e sy I'} be positively oriented, closed, rectifiable,
Jordan curves, such that the interiors of the curves I'y, I, . . ., I’y be mutually disjoint
and their union include o(x), the closure of this union be included in the domain
of fand its image by f be included in the mutually disjoint union of the interiors
of the curves I'y, I's... ., I'j, whereas the closure of this union be included in the
domain of g. We denote I'={I',,..., I }and " = {ri,...,Ij}.For any pe I,
the formula

1
B —fd)
determines a function & e of(0(x)). From Theorem 2.25 (ii), we have

(1 — ff(x)) hy(x)=1, .

h2) =

and, therefore,
W =gt = h oy (x).

Therefore, we have
£ f()) = (2ni)~1 S 80 — £,/(x) dp
r

= - st (Sr P —'lf(z) ¢- ")-1‘”)

= (2ri)-! S Ef)D A —2)1di = (g0 f) ().
I

.E.D.
2.28. In the set. €\ {4; Red < 0, Imi = 0} we define the function In by the f(:rmula
Inl=In||4+argd, —a< argil < m,
In the same set, and for any a € €, we define the function
A j*=exp(aln 2).

The functions 2 ~+In 2 and A - j* are analytic in their domain of definition. Th
fore, for any operator x e 8(o¢), such that o(x A'a l?(o : o Ton. _erc-
the operators In x and X%, ae €, are well dgfgnldc. T\ Red <0, Imi = %
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Corollary. Let x e B(#) be such that o(x) = €\{4;Re 1 <0, Im1 = 0}. Then
the mapping

Coamx*cB(H)

is an entire function (with respect to the norm topology in &()).
Proof. Let y = In x. From Corollary 2.27, for any a € € we have

x* = exp (ay).
By taking into account Theorem 2.25, it is easy to verify the relation
. © 1 .
exp (@y) = §; —y"a",
n=o N .
whence it immediately follows that the mapping o ~> exp (ay) is an entire function.

Q.E.D.

2.29: The following proposition yields a natural connection between the operational
calculus with continuous functions (2.6) and the operational calculus with analytic
functions (2.25). We obviously have /(o(x)) = ¥(o(x)), x € Z(F).

Proposition. Let x € B(oF) be a self-adjoint operator and fe s#(o(x)). Then we have
LX) = f(x).

Proof. For aﬁy g € s#(a(x)), the operator g_(x) is normal. By virtue of Corol-
lary2.26, we have

o(g4(x)) = {g(2); Aea(x)},

and, therefore, from Lemmas 2.5, 2.3, we have

gl = |o(gAx)) | = sup {|g(D)]; A€ a(x)}.
Therefore, the mapping

gla(x) > gd(x)s g € (o(x)),

is isometric. Since {g|.(x; & € A (0(x))} is a dense subset of €(a(x)), the preceding
mapping can be uniquely extended to an isometric mapping of %(c(x)) into B(¢).
By taking into account Theorem 2.25 (i), and also the uniqueness part of Theorem 2.6,
we infer that this extension coincides with the mapping

€(o(x)) 3 f > f(x) € B(F),
which was defined in Theorem 2.6.
Q.E.D.

We observe that from the preceding proposition it follows, in particular,
that for any self-adjoint operator x € #(>¢) and any f'e &/(a(x)) the operator £,,(x)
depends only on f/ox. .
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2.30. Let e €, Rea > 0. We consider the mapping
[0, + 0)5i e C,

defined on (0, 4 o) as in 2.28, and equal to zero at 0. This mapping is Borel
mecasurable and bounded on compact sets. Thus, for any positive operator x e B(F)
the (normal) operator x* makes sense. From Proposition 2.29, this definition is
compatible with that given in 2.28.

Corollary. Let x € B(#) be a positive operator and ¢ €; then the mapping
x> x* el

Is continuous on {a; Rea > 0} and analytic in {o; Rea > 0}, with respect to the
norm topology in .

Proof. From Corollary 2.22, there exists a sequence of operators {e,}
< A({x}), such that -

xe, > l € e, 1 s(x).
n
We write

(1—e)+ xe,.

Xy =

X |~

Sincea(x,)= {1; Rei > —l-}, from Corollary 2.28 it follows that, for any
$ee M, the mapping "
a > x* = (x,)%
is continuous on {x; Re «>0} and analytic in {2; Rea > 0}.
Obviously, if {en(x)# (with the notation from 2.13), the mapping
A x"6=0

is continuous on {a; Re x>0} and analytic in {a; Rea > 0},
Let now ¢eofr be arbitrary. Since the set

n(x).?!"uGe,,x’

Re=]

is total in , there exists a sequence {{;}, which converges to ¢, and is such that
the mappings

exG k=1,2,...
be continuous on {a; Rea > 0} and analytic in {«; Rea > 0}. Since the mappings

&+ X%, converge uniformly, on any compact subset of {x; Rea > 0}, to the

mappinga -+ x¢, it follows that the ma ping & +» x°f is continuous on {«; Reax>0
and analytic in {a;Req > 0}. PRI { }

Q.E.D.
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2.31. In the preceding sections we already used the fact that, since the function
exp is an entire function, for any operator x € #(5¥) the operator exp(x) makes
sense .and the relation

exp(x) = E —1—' x"

n==l

holds.
We hence infer that, for any x e #(5#), we have
(exp(x))* = exp(x*);
also, if x, ye %B(#), xy = yx, we have
exp(x) exp(y) = exp(x + y).
In particular, if x € #(>¢) is self-adjoint, then the operator exp(ix) is unitary.

Proposition. Let xy, x3, ye B(H#). If xy,xy are normal and if x,y = yx,, then
X g,k
X1y = YX3. .
Proof. The function

f: @© 3 A= exp(—Ax{) y exp (Ax}) € B(#)

is an entire analytic function with respect to the norm topology of #(o¢).
From the relation yx, = x,y we infer that, for any Ae €, we have

» = exp Ixy) y exp(—Ixy),
and, therefore, we have
S () = exp(— 2x7) exp(dxy) y exp(— Zx,) exp(Ax})
= exp(i(ilx} — ifxy)) y exp(i(ilx, — i1x})).

Since the operators iAxf — ilx, and ilx, — ilx}¥ are self-adjoint their exponen-
tials are unitary operators; therefore, the function f is also bounded.

From the Liouville theorem it follows that f is constant. Consequently, its
derivative is equal to zero:

0 =f'(3) = —xTexp(—Ax]) y exp(AxZ) + exp(—Ax}) y exp(x}) 7.
In particular, we have f'(0) =0, and this implies that
Xy = yx%.
Q.E.D.

From the preceding proposition we infer, in particular, that if an operator y
commutes with a normal operator x, then it commutes with its adjoint x*, too.

2.32. In this section we recall the structure of operators in Hilbert direct sums of
Hilbert spaces and we introduce some notations.
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i i i Ia set of indices

Let o be a Hilbert space, y an arbitrary cardinal number, X

whose cardinal is v, and (5#)),; a famxly_ of Hilbert spaces, such that Hy=H
for any iel. We consider the Hilbert direct sum

#, =@ H,
lel

The clements of the Hilbert space .527’, are the families & =(§l),e 1 €5, such that

-~

Y 181! < + oo, whereas for any two elements ¢ =(¢)ier, 1 = (1));ex e.;i"’,, we
it

have, by definition
Eim=% &n.
For any iyeI we consider the operator
w3 & u (8 e #,,

where, for any ues¥, we define

u, (&) = (E)iesy & = {0 for ii,

§ for i=i,
The adjoint of this operator is
uf:#, s Erruf(®) esr
where, for any & = Cier e.f?",, we have
uf(@) = ¢,

Itis casily checked that for any i e I the operator u; is a linear isometric operator,
and

wfu; = the identity on s,
uuf =the projection of #, onto X,

To any operator xe :?(J?,,) one can associate a “matrix’’ (x1x) of operators
from 20r), by the relation

X = uf oxoyy, kel
- with its help the operator x can be recovered by the formula
() T= Y toxgouf,
iketl
where the series s So-convergent,

Conversely, if ¥ is a finite cardinal number, then to any “matrix” of elements
from 2(oF) there corresponds an operator from Q(.;?",) by the formula (»).
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If v is an infinite cardinal, then, of course, only those “matrices” which

satisfy the convergence condition from (s) can yield operators from .93(3?,). For
example, for any family (x;);e; = (), such that sup [x,| <+ oo, the “matrix”
ter

(Oux;) yields an operator from .43(.;?.,) which leaves invariant all the subspaces

2¥;; obviously, any operator from Q(.Z”,), having this property, is of this form.
In particular, for any x e #(5#) we can consider the operator

% = (Oux) € B(F,),

which commutes with all operators u,u,‘:‘e.a(i",). It is easy to see that, if an

operator (x;) € #(2#,) commutes with all the operators uuf € #(#,), then x; = 0
for i#k and x;; = x for any i, k € I; consequently, there exists an x € #(¥¢),
such that (x;) = X.

Let & < 2Z(s¢). We shall use the notations:

Mat (%) = {(xu) € B(#,); x e X for any i, kel}
Z,={xeB(F,); xe T}
Therefore, we have Q(.;é’,) = Mai,(@()f’)).
If A€ € and (xux), (Vi) € B(H7,), it is easy to check that we have
(xie) + ) = i + yu),
Mxw) = (Axw),
(xuw)* = (<3,

(i) Oi) = (Z Xy yjk)v

JEI

the series in the right-hand member of the last equality being so-convergent. In
particular, for A e €, x, y € Z(5¢), we have

x+y=(x+))",
A = (M),
(x)* = (x%)",
Xy =@y

In what follows, if y is a finite cardinal number, i.e., a natural number n, we
shall write n instead of y, whereas if y is an infinite cardinal number, known from
the context, then we shall omit it.

2.33. Let %, X be two Hilbert spaces and #®X their (algebraic) tensor produét
as vector spaces. In ¥ ® X" onecan define a unique pre-Hilbert structure, such that

G ®m & ®n) = (§1182) (ma [ ma),
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for any §,. {3 €2, ny, € X, This pre-Hilbert structure is separated. The Hilbert
space obtained by the completion of the pre-Hilbert space o ® ¢ is called the
Hilbert tensor product of the spaces # and X and it is denoted by # @ 1.

Let x € H(F), y € B(X'). The tensor product, x ® y of the linear operators
X, y isa continuous linear operator on3¢ ® . Indeed, sincex @ y = (x ® 1)(1 ®y),
we can assume, for example, that y = 1. Let

é fk@'he-#@f;

k=1
we can assume that the vectors #, are mutually orthogonal. We then have

u®n§a®m' i
kw1

2

Y X6 @n
k=1

2

i§k®'lk

k=1
and the assertion is proved. Consequently, x ® y can be extended in a unique man-

ner to a continuous operator x ® ye B(H# ® X).
It is casily verified that the mapping

BOF) X B(A) 3 (x, ) > (x ® y) e B(H# ® X)
is bilincar®); also, for any x,, x3€ B(¥), y1,y,€ B(X), we have

=§hmwmwwijmhm=hm
- -]

(x 5 ) (x, @ Y2) = x1x 5 Y1)z,

and, for any xe #(F), yeB(X), we have

. . x® N=x*Q® e
_ln wrtxcular, il x e B0, yeB(x) are__self-adjoint (resp., normal, unitary or pro-
jection) operators, then x ® ye B(F ® X) is a self-adjoint (resp., normal, uni-
tary, projection) operator. Also if x e B(o¢), yeB(X) are positive operators,
then x@ ye B ® X) is a positive operator. If x B(X), ye B(KH) and x=
=u|x foy= v]y] are the polar decompositions of these operators, then x ® y =
= (W® r)(Ix|®|y]) is the polar decomposition of x Ryed(H ® X).
2.3(-}. Let o, X" be Hilbert spaces, (nier an orthonormal basisin ¢ andy =
=dim X" = card I. In what follows we shall show that the orthonormal basis
wcdhafe chosen allows a canonical identification of the Hilbert spaces ¥ @ X
and

Indeed, for any iel, the linear, isometric mapping

K i@merX@x

determines a canonical identification of the Hilbert space # with a closed sub-
space X of X" ® A. The spaces X, are mutually orthogonal, whereas their

*) On s 1 . .
product )“ : e “::1: show that the corresponding linear mapping from the algebraic tensor
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union {_J 5%, is total' in # ® X". Consequently, # ® X is the Hilbert direct

Ier
sum of the spaces 5#;. Therefore, the mapping
Cdier —~ Z &i®m
ier
establishes a canonical identification
K, =HON.

Once this identification has been done, the operators from #(# @ X)) can be
represented by “matrices” of operators from #(5¢). For example, it is easily
checked that, for any x € Z(s¢), we have

¥=x®1.

Exercises

E.2.1. Let x, y e #(s¢). If 1 — xy is invertible, then 1 — yx is also invertible. Infer

that
a(xy)\{0} = a(yx)\ {0}.
E.2.2. Let xeB(o¢) be self-adjoint. Show that
x| = sup {|(x¢1&)|; e, Il = 1}.

IE.2.3. Let e, fe #(s#) be projections. Show that

lef)=e—en(l—f), ref)=f—(0—eAS;

(1 —f))=e—eAf, re(l —f) =evf—f
E.24. Let e, fe #(o#) be projections. Then the sequence {(¢f)"} so-converges to
eAf.

E.2.5. For any projection e € #(5¢), the operator s = 1 — 2e is a symmetry (i.e.,
self-adjoint and unitary). Conversely, any symmetry is of this form.

1E.2.6, Let a, be B(#), 0 < a < b. Show that there exists an x € (o), x| <1,
such that g = xb'~,

IE.2.7. Let a,be #(#), 0< a < b, ab=ba. Show that 0 < a* < b2 Infer that
ax’ < bi¥.

E.2.8. Let a,bec B(¥), 0 <a<b, a invertible. Then b is invertible and
0 <biga™l

E.2.9. Let {x;};er = 2(5#) be a net of normal operators, which so-converges to the
normal operator x € #(>¢). Then the net {xf},c, is so-convergent to x*. In other
words, the restriction of the s-operation to the set of normal operators is so-con-
tinuous,
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E.2,10. Show that if x € B(F) is normal, then [x[* = ||x2].

E.2.11. Two opcratdrs x,ye B(H) are said to be similar (resp., unitarily equi-
valent) if there exists an invertible (resp., unitary) operator se .@3(9?’), such that
¥ =2 5xs~), Show that two normal similar operators are unitarily equivalent.

E.2.12. Let of be a commutative Banach algebra with unit 1 e . Show that any
clement x e A, such that |1 — x|l <1 is invertible. Infer that any maximal ideal
4R of o is closed and any non-zero element from the Banach algebra «//M is inver-
tible. Then, with the help of the Liouville theorem infer that o7/ consists of the
scalar multiples of the unit element.

E.2.13. Let x € #(¢) be normal and AeC. Then Aeo(x) iff 1 — x belongé to a
maximal ideal of ®*({x,1}).

E.2.14. Let x € B(o¢) be normal and P (.,.) be a complex polynomial in two variables.

Then:
o(p(x, x*)) = {p(4, }); L € a(x)}.

E.2.15. Extend Theorem 2.6 and Corollary 2.7 to the case of normal operators
X € 4(r).
E.2.16, Let xe (o) be a self-adjoint operator, {es} its spectral scale ang
J € €(a(x)). Then

+00

=" 1@ dey,

-0

where the integral is a norm-convergent vector Stieltjes integral.

E217. Let xe 3(o) be a self-adjoint operator. For any Borel subset D of the
spectrum o(x) of x we define the spectral projection of x, which corresponds to the
D, by the formula

(D) = xp(x).

Then, for any fe #(a(x)), we have
I/GW = inf sup | £(3)

e(D)=1 1eD
and

o(f(x))= «DQ /W 2e D} e {7y Teoo).

'E.2.l8. Let xe B(or) be a self-adjoint operator and fe B(o(x)), real. Then, for
any ge B({f(4); 1 e a(x)}), we have
8(f(x)) = (go f)(x).

*E.2.19. An operator X € RB(F) is said to be compact if for any bounded subset
S <o the set X&) is relatively compact, d

One usually denotes byX'( the set of all com H#pact operators from (o).
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Show that X (o#) is the smallest non-zero, norm-closed two-sided ideal of -
#(#). If S is infinitely dimensional and separable, then X' (57) is the only proper,
norm closed? two-sided ideal of B(s¢).

*E.2.20. Let x € #(o#) and 1€ €. One says that A is an eigenvalue of x if &, =
= ker(x — A) #0; in this case the non-zero vectors from &, are called eigen-
vectors, and the dimension of &, is called the multiplicity of the eigenvalue A.
If A is an eigenvalue of x, then 1€ a(x). The eigenvectors which correspond to
different eigenvalues of a self-adjoint operator are orthogonal.

Show that if x e (##) and 0 # A€ a(x), then 4 is an eigenvalue of finite
multiplicity of x. Thus, the spectrum of a compact operator is either a finite set,
or forms a sequence converging to zero.

E2.21. Let xeX' @#), x>0, a(x)\{0}={4,, 4,,. ..} and let ¢, be the orthogonal
projection onto &,,. Then the projections e, are mutually orthogonal and
X = 2 A ey,
k

the series being norm-convergent.

*E.2.22. Let x € (o), |x] < 1. Show that there exists an isometry v of .3?’ into
a Hilbert space 2 and a unitary operator u € #(X’), such that

) x"=v*"v; n=12,...
(i) the set Ezu"v(.#) is total in X
€

n
The pair (v: o — X, u) is called the minimal unitary dilation of the ‘‘contraction”
x and it is unique, in an obvious sense.

E.2.23. Let xe B(), x|l <1, and p(-) be a complex polynomial. With the
help of the unitary dilation of x, prove the following von Neumann inequality

Ip(x)l <sup {Ip(})|; e €, |1|=1}.
E.2.24. Let x e 2(5¢), |x|| <'1. Show that for any £es#, we have
x{ = x*={
whence infer that
n(l — x) = n(l — x*) < I(x) Ar(x).
By denoting y = x — n(l — x), show that
o(l —y)=n(l —y*)=0.

E.2.25. Let xe B(¢), [x] < 1. Show that for any { € we have the following
convergence

%(é+xé+ e X" o pE,

where p is the orthogonal projection onto {{ € #; x{ = (}.
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This result is the mean ergodic theorem of von Neumann. _(Hint: Let o, =
= {{e; x{={}and ¥, = {n — xn; n € #}; in accordance with E.2.24, we have
Ny = A{, and, therefore, # =, @ H#,; the convergence can be cl.lecked, sepa-
rately, for { €X', and {eo¥,. The proof we have sketched here is by B. Sz.-
Nagy. For other information we refer the reader to N. Dunford and J. Schwartz
[1), ch. VIII),

Comments

C.2.1 In this section we will state briefly some results concerning the theory of
abstract C*-algebras. In doing so we will repeat the operational calculus for normal
operators,

If of is a C*-algebra, in the algebra s obtained by the adjunction of the
unit clement to & one can introduce canonically a structure of a C*-algebra. For
- simplicity’s sake, we shall assume in what follows that all C*-algebras encoun-
tered have a unit. The ideas and results from Sections 2.3, 2.4, 2.5 also extend to the
casc of the abstract C*-algebras, and with the same proofs. '

Let of be a commutative C*-algebra. A character of of is any non-zero homo-
morphism w: o — €. For any x € s the element w(x) — x belongs to the kernel
kerw, which is a two-sided ideal of o, and, therefore, o(x) e o(x). It fol-
lows that | w(x)]<lo(x)| < x| and, if x is self-adjoint, then w(x) is real. Con-
sequently, {gw{] =1 and o(x*) = w(x), x€ &f. The set 2, of all characters of s,
endowed with the topology induced by the a( ", sf)-topology, is a compact space,
called the spectrum of . Any clement x e of determines a function X e €.,
given by

o) =), we Q.

The mapping @ »» ker o establishes a bijection between the set of all characters’
of o and the maximal (two-sided) ideals of (see E2.12). If xe of and A€ a(x),
then L — x belongs to a maximal ideal of «f (E.2.13); therefore, there exists an
we R, such that o(x) = ), Consequently, for any xe€ &/, we have

Bxl = Jo(x)| = sup {lo(x)|; we 0} = J3].

From the preceding results and, by taking into account the Stone-Weierstrass
theorem, we infer the following

Thcor_rm (the Gelfand representation), Let sf be g commutative C*-glgebra. The
mapping

A
XX

gz(gnlgxhcs an isometric s-isomorphism of the C*-algebra st onto the C*.algebra
)
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Let x be a normal element of an arbitrary C*-algebra, e.g., a normal operator
from B(#). If of = ¢*({x, 1}), then the mapping

o — w(x)

establishes a2 homeomorphism of ©, onto o(x). Consequently, there exists an iso-
metric *-isomorphism

G(o(x)) o f = f(x) € €*({x, 1}),

which is called the operational calculus for the normal element x. In particular,
Theorem 2.6 also extends to normal operators (see E.2.15).

The notion of positive operator extends, with the same definition, to the
notion of a positive element, whereas the results from 2.7—2.10 extend to arbi-
trary C*-algebras, with the same proof. Also, the equivalence of statements @),
(i), (iii) from Proposition 2.12 remains true, but, in order to prove this, the
following remarks are necessary. Let f be a C*-algebra and o+ = {xe &f;
x > 0}; a self-adjoint element xe o, |x| <1, is positive iff |1 — x]| < 1; this
can easily be proved by using the Gelfand representation; with the help of this
result one can easily prove that o#+is a closed convex cone and &+ N (— H+)=
= {0}. If xe o/ and x*xe(~—a/+), then x = 0. Indeed, let x = k + ik, where
h, k € of are self-adjoint. From the hypothesis —x*x € &+ and from E.2.1 it follows
that — xx* e &/+. Then one can immediately check that

x*x =212 + 2k® + (—xx*)e £,

hence x*xe &+ N (— o#*) = {0}, and this implies that x = 0. With the help of
these hints, the implication (iii) = (i) from 2.12 follows with a slight modification
of the argument just used in the implication (iv) = (i) from 2.12.

By using the Gelfand representation and the first remark from Section 3.12,
one can show that any injective s-homomorphism of C*-algebras is isometric.

Let o be an abstract C*-algebra. For any element x € &, x # 0, we have
—x*x ¢ o#*. From the Krein-Rutman theorem, there exists a positive form (see 5.1}
@, on &, such that @, (—x*x) < 0. With the help of the form ¢, one gets, as
in Section 5.18, a s-homomorphism x,_: &f — B(#,,), 7,.(x)#0. By denoting

. sl = BOF)

the direct sum of the mappings 7,_, x € &, it follows that 7 is an injective »-homo-
morphism of the C*-algebra & into the C*-algebra #(5#). We can thus obtain
the following:

Theorem. Any C*-algebra is isometrically-s-isomorphic with a C*-algebra of operators

on a Hilbert space.
1. M. Gelfand and M. A. Naimark defined the notion of a C*-algebra by

the following axioms:
(I) of is s-algebra;
(II) o is a Banach space, with the vector structure of (I);
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(1) Bxpl < OIx] Iyl, for any x,yess; ,

(IV) [x*x} = x*] Ix]l, for any xe 7

(V) Ix*] = lix]l, for any xe o:

(VD) 1 4 x*x is invertible in o, for any xe .

With this definition they proved the preceding theorem and they made the
conjecture that axiom (VI) and axiom (V) follow from the other axioms,

M. Fukamiya [2]*) and J. L. Kelley and R. ‘L. Vaught [1] proved that,. indeed
axiom (VI) follows from the other axioms, that is, they proved the equivalence
of statements (i), (ii), (iii) from 2.12 for the abstract case, by using the arguments
we have briefly mentioned above.

J. Glimm and R. V. Kadison [1] and T. Ono [3] proved that axiom )
also follows from axioms (D—(V), if o has the unit element; J. Vowden [1] pro-
ved the same for the general case, thus solving positively and completely the Gel-
fand-Naimark conjecture. .

The conjunction of axioms (IV) and (V) is obviously equivalent to

(V) [x%xf = [x]®, for any xe &,
this being the axiom we have adopted here (2.2). H. Araki and G, A. Elliott [1]
have shown that from axioms (D), (I1) and (1V’), axiom (1) follows; they have
also shown that axiom (M) follows from axioms (), (1), (IV), by assuming that
the s-operation is continuous (see also Z. Sebestyén [11, 2n.

For the theory of C*-algebras the reader is also referred to the books of J.
Dixmier [42] and M. A. Naimark (6], where he can find a detailed exposition of the
arguments presented in this section (see also R.S. Doran and J. Wichmann [1]).

C:Z:Z. Many results from the theory of C*-algebras extend in a natural, but not
trivial manner, to more general Banach algebras with involution. The older results
in this dircction can be found in the classical books of M. A. Naimark [6] and

C. Rickart{6). An clegant exposition of the new results can be found in V. Ptik [2]
and F. Bonsall and J. Duncan [3].

C.2.3. To any normal operator x in a separable Hilbert space one can associate
canonically a class of absolute continuity of finite Bore] measures on g(x), called
the spectral type of x, and a function, defined on o(x) and taking values in [N U
U {400}, measurable with respect to the spectral type, and called the spectral mulii-
plicity funcrioq of X. One can prove that two normal operators in separable Hilbert
spaces are unitarily equivalent iff they have the same spectral type and the same
spectral multiplicity function. The spectral type and the spectral multiplicity func-
tion allow the construction of 5 canonical form of the normal operator, called the

C.2.4._ I}ibliognphical comments. There exist many treatiseS and monographs
containing thc. spectral theory of bounded linear operators in Hilbert spaces. We
mention especially the books by R. Fiesz and B. Sz.-Nagy [1], N. Dunford and
—— T

*) Fulamiya' considered only the commutative case, but his arguments were general, as
P

::n:;: ll;;;'l Kaplansky and recorded by J. A. Schatz in his review of the paper of M. Fu-
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J. Schwartz [1], Ch. VI, VIIL, IX, X, P. R. Halmos [5] and C. T. Ionescu-
Tulcea [2]. In our exposition we used these sources, as well as a course by J. R.
Ringrose [4]. See also C. Foias [1].

For the analytic operational calculus we refer the reader to N. Dunford and
J. Schwartz[1], Ch. VII. The case of the finite dimensional Hilbert spaces is master-
fully treated in the book by P. R. Halmos [2]. One was able to develop an analytic
operational calculus of several commuting operators; this culminates with a deep
theorem due to G. Shilov, R. Arens and A. Calderén (see N. Bourbaki [3]).
New investigations in this direction have been initiated by J. L. Taylor [4], [5], [9].

Proposition 2.31 is known as the Fuglede-Putnam theorem, whereas the proof
given here is due to M. Rosenblum [1] (see also C. R. Putnam [1]).

A systematic approach to the theory of unitary dilation can be found in the
book by B. Sz.-Nagy and C. Foias [1]. The unitary dilation theorems are due to
M. A. Naimark and B. Sz.-Nagy, whereas extensions of such theorems to C*-al-
gebras were made by W. F. Stinespring[1]and W. Arveson [7](See also LSuciu [1]).

.

S=c. 1540
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Von Neumann 'algebras

In this chapter we present the density theorems of J. von Neumann and I. Kaplansky
and we introduce the elementary operations on von Neumann algebras.

3.1. Let o# be a Hilbert space. For any subsets Z < #(#) and & < o we write
XS = {x¢; xe X, Le S},
[ 5] = the closed vector subspace generated by 2%,

The projection in #(5#) which corresponds to the closed vector subspace [Z5] will
be denoted by [Z2F] too. If & ={&}, £ e, we shall simply write

XL = ¢,
(2] = [Z¢).
For any subset & < %(o¢) we shall denote by 2" the commutant of Z':
Z' = {x¥' € B(H#); X'x = xx', for any-xe Z},
and by X" the bicommutant of Z':
z" =),
by induction we can define the (n + 1)-th commutant of & to be the commutant
of the n-th commutant of 2. Itis now easy to see that, whereas the obvious inclusion
X"
may be strict, for any k£ > 1 we have:
the (2k — 1)-th commutant of & = &,
the (2k)-th commutant of &' = Z'.

For any subset 4 < #(o¢), 2" is an algebra which contains the identity operator
1 € #(5¢); moreover, it is easy to check that 2’ is so-closed (equivalently, it is wo-
closed (1.4)). If ¥ = &'*, then 2’ is a von Neumann algebra (see 2.2). In particular,
if # is a von Neumann algebra, then the commutant.#’ is a von Neumann algebra.
Tlhe l;va.rsage to the commutant is the first elementary operation on von Neumann
algebras.
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¥ cHH)T=3%andec B(H)isa projection, then e e Z' iff xe = exe
for any xe 4. In particular, if = Z*, then [Z¢]e &' for any Eegp.

3.2. The fundamental result of the theory of von Neumann algebras is the following

Theorem (von Neumann's density theorem). Let of = B(H#), 1 € of, be a *-algebra
of operators. Then the so-closure of ¢ coincides with the bicommutant of .

Proof. 1t is sufficient to show that o is so-dense in &". To this end, let us
choose an clement x e o7,

Let { €. Then [«/f] e of’ and this implies, in particular, that the subspace
[2#{] is invariant for any operator from <. Since l e o, it follows that ¢ € [o7¢&)
and, therefore,

x""¢ e [HE].
Let now §,,..., &, €. We introduce the notations (see 2.32):
§= o &) edB,,
o, = Fixew} e .43(.??,,).
Then o, B, is a s-algebra, 1€ &, and
(o) = o) xpe o', iy j= 1,..,n} = Mat, ().
Indeed, the relation
0 = %(xj) — (x()F = (xx} — x}x), in B(H#,)
is satisficd for any ¥ e.&,. iff the relations

XXy = xjx, in BH), i,j=1,..,n
arc satisfied for any v e .
Consequently, for any (xp) € (s,), we have

) = (R = (x"xj — xj) = 0,
i, X" e (o))"
According to the first part of the proof, it follows that
#' el
Hence, there exists a sequence {x,} c &, such that
”l'i_x‘rcx'° '~ x)al =0, k= | P S

It follows that x js so-adherent to .
Q.E.D.
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3.3. Corollary. Let # < B(¥), 1 €M, be a »-algebra of operators. Then the follow-
ing statements are equivalent:
(i) # is a von Neumann algebra;
(i) A =.4".
3.4. Corollary. Let .# < B(#) be a von Neumann algebra and xe Z(¥). Then
the following properties are equivalent
() xedt
- (ii) xe’' = e'x, for any projection &' e M',
(iii) u'*xu' = x, for any unitary operator u' € /',
Proof. By taking into account 2.23 (resp., 2.24), from property (ii) (resp., (iii))
we infer that x e .#'’ and, therefore, with Corollary 3.3, we have x e /. ED
Q.E.D.

3.5. Corollary. Let M < B(H) be a von Neumann algebra and x e M. Then I(x),
r(x)e .

Proof. We recall (see 2.13) that I(x) is the smallest projection e e #(o#), such
that ex = x.

Let u’ € #' be a unitary operator and e € #(5¢) a projection. Then u'*xu’ = x
and, hence, ex = x iff (u'*eu’)x = x. Consequently, we have u"*I(x)u’ = I(x).

From Corollary 3.4, it follows that I(x) e #. One can similarly prove that
r(x)e.

Q.E.D.

3.6. Corollary. Let A < R(¥) be a von Neumann algebra and xe M. If x=v|x|
is the polar decomposition of x, then |x|, ve.f.
Proof. Since # is closed in the norm topology, we have |x| = (x*x)'?e./.
Let u' e’ be a unitary operator. Then u'*xu’ = x, u'*|x|u' =|x|, hence x =
= (u'*vu’)| x|, and u'*vy’ is a partial isometry whose initial projection equals the
support of | x|. From the uniqueness of the polar decomposition (see Theorem 2.14)
it follows that #'*vu’ = v. With Corollary 3.4, it follows that ve /.
Q.E.D.

3.7. We recall (see 2.17) that the set of all projections in Z(3#) is a complete Iattice

in a canonical manner.

Let # < #(5¢) be a von Neumann algebra. We shall denote by 24 the set
of all projections in .#. We shall consider on 2 4 the order relation which is induced
by the order relation already defined in the set of all projections in 2(o¢).

Corollary. Let # < B(o¥) be a von Neumann algebra. Then P 4 is a complete

lattice.
Proof. Let {e;};c; =« P« and e = \/ ¢;e #(¢). For any unitary operator
ter

u' e M’ we have: )
uteu' =\ (u*ep’y =\ e, =e,
1er ie1

and hence, with Corollary 3.4, we have e e .#. It follows that ee 2 4 is the Lu.b.
of the family {e;};c; in P.a.
Q.E.D,
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3.8, Let.# < B(#) be a von Neumann algebra and £ e . We shall write
pe=[#3), p;=[HE].

By taking into account the last remark from Section 3.1,and also Corollary 3.3,
we get the following: :

Corollary. Let .4 < B(H) be a von Neumann algebra and & € #. Then
p;eAl, pred.

The projections of the form P (resp., p;), € € #, are called the cyclic projec-
tions in . (resp., '),

If {{.} is a sequence of vectors in 2, and if the projections P¢, are mutually

L]
orthogonal then V/ Pe. is a cyclic projection in .. Indeed, we can assume that
L3}

- -

< < 27% and we then define ¢ = Y. ¢a €. Since the projections P, are mutually
LT}

orthogonal, and PeSa = ¢&,, we have Pe.é = ¢&,. Then we have

Pe=[H'C] > [M'p 8l =[#'E) = p,,

©0
and this implies that P: 2\ p,; since the reversed inequality is obvious, the proof
Rel
is complete.
A sct of vectors & < o is said to be totalizing for M if M F] = 3#; it is said
to be scparating for A, il
Xel, x{=0forany (e & = x — 0.
It is casy to prove that & is totalizing (resp., separating) for 4 iff & is
scparating (resp., totalizing) for .#’.

) A vector ¢ € 2 is said to be cyclic (or totalizing) for M (resp., separating for )
iff the sct {} is totalizing (resp., separating) for /.

The vector ¢ .4 is cyclic (resp., separating) for .« iff Pz = 1(resp., pe=1).

’I;::. Let . # < @(of) be a von Neumann algebra and ' < A(5¢) its commutant
cn

Z=M04
is the common center of the algebras .# and .#".
It is obvious that & < B(P) is a (commutative) von Neumann algebra. We

shn.ll denote by (4. .4') = #(2r) the von Neumann algebra generated by .« y.4'.
It is casy to check that

M) = 2,

A von Ncurqann algebra is said to be a Jactor if its center is equal to the set
of all scalar multiples of the unit operator,

P U . . . .U
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A projection in . will be called a central projection if it belongs to the center
of . A factor is characterized by the fact that its only central projections are
0 and 1.

Corollary. Let # < B(3#) be a von Neumann algebra and x € #. The set of all
central projections p such that px = x has a smallest element, denoted by z(x),
which can be calculated by the formula.

z(x) = [(7x)#).

Proof. By taking into account Corollary 3.7 (applied to 2), we define z(x)
by the formula '

2(x) = A {pePa; px = x} €Py,.

If pe ?, and px = x, then ps# > x#. It follows that 2(x) # > x3# and, therefore,
zZ(x)x = x.

Let p = [(#x)]. Since [(#x)>#] is a subspace invariant with respect to
the operators in . and ', it follows that p e #' N A = Z. Since [(Ax)#] o xH,
it follows that px = x. Hence p > z(x). On the other hand, it is obvious that z(x)»#’
is invariant with respect to the operators in .# and z(x)o# o x; hence, we have
2(x)# o [(MAx)#], ie., z(x) > p. Consequently, z(x) = [(Ax)#].

Q.E.D.

The projection z(x) will be called the central support of x. We shall consider,
in particular, the central support of the projections in 4. Obviously, z(x) = z(I(x)) =
= 2(r(x)). It is easy to check that for any e € &, we have z(e) = V {u*eu; ue A,
unitary}. -

3.10. A very important result in the theory of von Neumann algebras is contained
in the following

Theorem (I. Kaplansky's density theorem). Let M < B(X¥) be a von Neumann
algebra and of < M a so-dense s-subalgebra of M. Then the unit ball (resp.,
the self-adjoint part of the unit ball, the positive part of the unit ball) of s is
so-dense in the unit ball (resp., in the self-adjoint part of the unit ball, in the positive
part of the unit ball) of .

Proof. For any subset & < #(#) we shall denote, for this proof, by 2
(resp., Z*, resp., Z'*) the unit ball (resp., the self-adjoint, resp., the positive part)
of &.In accordance with Corollary 1.5, the statement is equivalent to the following
assertions:

o, (resp. =P, resp. of ) is wo-dense in ., (resp. Af, resp. M),

In order to carry out the proof, we shall assume, without any loss of generality,
that «f is closed for the norm topology. Without any further comment, we shall
use the theorem (2.6) on the operational calculus.
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(1) The mapping
MIx El- (x + x*) et

is wo-continuous and the image of « by this mapping is /", Since o is wo-dense
in ./, it follows that &#* is wo-dense in /",

(1) Let now xe./#% The function
[— L 1)stm 201 + )le[—1, 1]

is continuous, strictly increasing and onto; therefore, it has a continuous inverse.
It follows that there exists an element y e 4%, such that

X =2p(1 + p»-1,

In accordance with (I) there exists a net {b;} = o#* which is so-convergent to y.
For any / we define

a;p = 2b(1 4 b},
Then {a,} = o'} and for any i we have:
@ —x=(1+ )21 + %) — (1 + b6})2y) (1 + y»-1

=21+ 571 (b, — y) (1 + y2)-1 2L+ 57,y — byy(1 + y2)-1,
and this equality obviously shows that the net {a;} is so-convergent to x.
Conscquently, of* is so-dense in AME

. (I Letxe.#f andyp=x'In accordance with (II), there exists a net {b;} = o,
which is so-convergent to J. We denote a; = b, ¢ /1. Then the net {a;} is wo-
convergent to x, as one can see from the following formula

[ ~a)iin)] = |(O*y - A
=100 = b)E[n) + (0> — b n|
=HO = 6)¢ 1) + b&|(y - b))

S A0 =880 Il + jov — bonll NN, &, nesr.
Conscquently, & is wo-dense in M,

(IV) Let us now consider the Hilbert space o, and the s-algebra Maty(sf) =

< #(,), as well as the von Neumann algebra Mat,(#) < 2(%,). It is easil
verified that Maty(a) is so-dense in Mat,(./gl). () (#3) y

Let xe.#,. Then the clement

*
(0 * )e Mat,(.#)
x 0
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1s self-adjoint and its norm is less than 1. From (II) we infer that there exists a net

xlll x{z B
{( o xgz)}C(Ma‘z‘“’”“

which is so-convergent to the element given by the preceding matrix. It follows
that |x};|| <1, and the net {x},} is so-convergent to x. Consequently, 7, is so-
dense in .

Q.E.D.

3.11. Corollary. Let M < B(K), # 31, be a *-algebra. Then the following state-
ments are equivalent
(i) A is a von Neumann algebra,

(ii) A is w-closed,

(iii) A, is w-compact,
where by M, we here denoted the closed unit ball of M.

Proof. If # is a von Neumann algebra, then 4 is wo-closed, and, therefore,
w-closed. If # is w-closed, then, from Theorem 1.10, we have .# = (.#,)*, and
this implies that .#, is w-compact, in accordance with Alaoglu’s theorem.

We still have to prove the implication (iii) = (i); in other words, we must
prove that . is wo-closed if we know that .#, is wo-closed (see 1.2 (iii) and-1.10).
If x e #(5¢) is a wo-adherent point to .#,, then, in accordance with Kaplansky's
density theorem, there exists a net {x,} = ., |x;| < ||x|l, which is wo-convergent

to x. Since ., is wo-closed, it follows that x e ..
Q.E.D.

3.12. Let of;, = B(3¥)), &;31,j=1,2, be two C*-algebras of operators and let
7 : of, = £, be a «-homomorphism, such that n(1) = 1. Then |=] = 1.

Indeed, it is easily verified that for any element x; € &, we have a(n(x¥x,)) <
‘< o(xTx,) and, therefore, by taking into account Lemma 2.5, we get:

IaCe)l® = lCe)*aCe)ll = InGx)l < [xPxll = Jxl%

Let M, = B(X)), j= 1,2, be two von Neumann algebras and let n : .4, = A,
be a wo-continuous s-homomorphism, such that n(1) = 1. Then = is w-continuous.

Indeed, it is sufficient to show that, for any w-continuous linear form ¢,
on ./#,, the restriction of the linear form ¢, o to the unit ball of .#, is w-con-
tinuous. But this fact is obvious since the w-topology coincides with the wo-topology
on the unit ball of a von Neumann algebra, whereas wis wo-continuous and [z} = 1.

Corollary. Let nt : My = My < B(Hs) be a w-continuous s-homomorphism between
two von Neumann algebras, such that n(1) = 1. Then n(#y) = B(),) is a von Neu
mann algebra.

Proof. In accordance with Corollary 3.11, it is sufficient to show that the
closed unit ball of the s-algebra n(.#,) is w-compact.
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Let x; € n(.#}), such that ||x,|| < @ < 1. Then there exists an X €4, such
that x, = x:zx,).(Lc{ X, = 0] X/, v,’l x| e#,, be the polar decomposition of x, (see
Corollary 3.6), and let e€ 2 ,, in accordance with Corollary 2.21, be such that:

[xle> ae, [x{(1 —e) <ol —eé).

We have

(| xi hn(e) > anfe), -
whence :
aliz(@ < Izl X, DI = ln(@*v [x; DIl < Jm(o [ x, D] = [|%,]ls
and, thercfore,

lln(ell < (I1x4ll/e) < 15
since =(e) is a projection, we have

n(e) = 0.

It follows that v|x,| (1 — e) e, lv|x|(1 —e)] <1 and

xs = n(v|x [(1 — e)).
Consequently, we have

{xren(H); Ixall < 1} = n({x; € Hy; x| < 1}).

Since the closed unit ball of .4, is w-compact, and since xis w-continuous, it follows
that the closed unit ball of r(H)), i.c.

{x1€ n(.4)); xe] <1} = a({x, e My; [x] < 1}),
is w-compact.
Q.E.D.
3.13. Let xe X < #(oF) and €€ Pg, We shall write

Xe = ex ,cx Eg(e'*,)’
T, ={x; xeq} c B(es¥).

As_nnoth;r consequence of Kaplansky's density theorem we shall prove a theorem
which will enable us to introduce other elementary operations on von Neumann

algebras.

Thcorct}!. Let .4 < A(2) be a von Neumann algebra and e € P . Then we have that
!') -, < B(eH) and ('), = Bles¥) are von Neumann algebras,
(@) (4) = (),
Proof. The mapping

A 3X - xie (M), < Ble)
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is a wo-continuous *-homomorphism, which is onto; from Section 3.12, we infer
that (#'), is a von Neumann algebra.

It is obvious that ., = ((/’),)’. Conversely, any element in ((#'),) is of
the form x,, where x € Z(5¢), x = exe. For any x’' e /' we have

X Xy = XX, in B(e¥),
whence
xx' = x'x in #(¥),

and this implies that x e #"' = # (see 3.3).
Thus, we proved that #, = ((.#’),)'; in particular, .4, is a von Neumann
algebra. By passing to the commutant in this equality, we get

) = ().,

because (#'), is a von Neumann algebra (see Corollary 3.3).
‘ Q.E.D.

Henceforth we shall write
M= (M) = (M),

3.14. We now introduce other elementary operations on von Neumann algebras:
the reduction and the induction.
Let # < %2(5¢) be a von Neumann algebra and e € 4. The von Neumann
algebra #, is called the reduced von Neumann algebra of # with respect to e.
It is easy to check that the mapping

efledxrrx.eM,

is a s-isomorphism of s-algebras.
Let # < %(o¢) be a von Neumann algebra and ¢’ € 2 4. The von Neumann
algebra .. is called the induced von Neumann algebra of .# with respect to e'.
In the proof of Theorem 3.13, we observed and used the fact that the mapping

MOIX > XpEMy

is a wo-continuous s-homomorphism of von Neumann algebras. This s-homo-
morphism is called the canonical induction determined by €' € 2 .

Proposition. Let # < B(¥) be a von Neumann algebra and ¢' € P . Then the
canonical induction M - M, is a s-isomorphism iff z(e') = 1.

Proof. We have (1 — z(¢')) = 0 and, therefore, if the canonical induction
is a s-isomorphism, we have z(e') = 1.

Conversely, if z(e’) = 1, then, in accordance with Corollary 3.9, we have
[(H'e)o#] =o#. If xeM and x,. =0, then xe's” = 0 and, therefore, we have
x{(.#'e)>¢] = 0, hence x = 0. Consequently, the canonical induction is a -iso-
morphism.

Q.E.D.
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3.15. If p is a central projection in the von Neumann algebra # < A(#), then
the mappings

Mp3xr+x,eM),

Mp3xX > x eM,
establish the canonical identifications

Mp =M, = B(pH),

M'p =M} < B(pH).

Corollary. Let ./ < B(#) be a von Neumann algebra with the center 2%, and
let e€ P 4. Then the common center of the algebras M,, M, is equal to ..

Proof. If e is a central projection, the assertion is obvious. Consequently,
We can assume, without any loss of generality, that z(e) = 1. Then, in accordance
with Proposition 3.14, the canonical induction A’ — #, is a s-isomorphism and,
therefore, the center of . is the image of the center & of .4’ by this *-iso-

morphism,.
Q.E.D.

In particular, if .# is a factor, then ./, and A, are factors.

3.16. Before introducing a new clementary operation on von Neumann algebra,
namely the tensor progiuct, WC prove some commutation relations for “matrices”
gfz opc:iﬂ;rls: such relations have already been considered in the proofs of Theorems
.« and 3.10.

Let o be a Hilbert space, Y any cardinal number and I a set of indices,
such that card / = y. We use the notations already introduced in Section 2.32.

Lemma, Let i < @(K) be any subset. Then Jor the sets .%7,, Mat,(2) = .93(95",)
the following relations

(&) = Mar(@"), (&) = "),
hold; if &30, 1, then we also have the following relations
(Mat,())’ = (27),, (Mat,(@))" = Mat (z").

. Proof. The relation (;'2.',)' = Mat(2’) can be proved in the same manner
as in the proof of Theorem 3.2

We observe that, for any i, kge I we have
“:.":. = (5:.1» 5&.0-

Conscquently, if 50,1, then all the operators uu?* belon
iy, oy g to Mat(2) and,
therefore, in accordance with a remark from Section ‘2."32, it follows thatt7

Mat,( @)y « ZGP),
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On the other hand, we have I3 y © Mat,(Z), and, therefore,
Mat,(@)) < (£,) = Mat,(%"),
Consequently, we have
(Mat,(Z)) = (), N Mat,(2") = (£7),,
Since the reversed inclusion is obvious, the relation (Mat(%))' = @ "), is proved.

The other relations are immediate consequences of the already proved ones.
Q.E.D.

3.17. Let A < B(¥), ¥ < &(A) be von Neumann algebras. Then:

MRON = {Z Xk ®@ Vi3 XM, €N, n= 1,2,.--}
k-l

is a =-algebra of operators on 2 ® X. The von Neumann algebra generated in

B(# Q@ A’) by # @A is denoted by

MARQN

and it is called the tensor product of the von Neumann algebras 4 and 4.

We recall that for any Hilbert space ) one denotes by #(o#) the set of
all the scalar multiples of the identity operator on J; obviously, €(¢) < #(¢)
is a von Neumann algebra. It is easy to check that

BEE) = €(F), €Y = AX).
In the following proposition we use the identifications we have agreed upon in
Section 2.34.
Proposition. Let # < #(#) be a von Neumann algebra and X" a Hilbert space,
4 = dim X". Then we have
(i) M @ C(N) =M Q CX) =M,

(i) 4 B B() = Mat,(), _ ~

(if) (M ® GAH)) =M@ B(X), (M ®BN)) =M Q 4(X).

Proof. The relation # @ (X)) = 4, is an immediate consequence of Sec-
tion 2.34, whereas from Lemma 3.16 it follows that (#,)" = (#"'),= .#,, and assertion
(i) is proved. .

_ For any von Neumann algebra 4~ < #(X), it is easy to prove that
H BN =R(M R E(X) U E(H) N),
whence we get
M RN =(M @ €(X)) N (4(F) ®ANY.
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In particular, we have
(# @ BA) = (M ® C(KH)) N (¥(F) ® BAH)Y
= (4 @ EX)) N B(H) ® ¢(X) =M & €(X),
where the two last equalities are easily checkéd by direct verification. We then have
(4 @ X)) =(N" B B(H) = (M @ BA) =M @ B(N),

and this proves assertion (iii). o
Finally, by taking into account properties (i), (iii)) and Lemma 3.16, we get

MO BAY=(H' @ €(KA)) = (A}
= (Mat,(4))" = Mat,(#") = Mat,(/),

and assertion (ii) is proved.
Q.E.D.

3.18. If .4 = B(#) is a von Neumann algebra and " a Hilbert space, then
the mapping
Haxrrx@led @ €(X)

is a e-isomorphism, called amplification. With the usual identifications, this iso-
morphism can also be written in the following form

NEFPI= ¥ eJ?,, v = dim ».

With the notations from Section 2.32,let ; = uyup be the projection of Jf", onto ;.
Then ¢, € Mat,(4(oF)) = €(#) @ B(X), for any i e I; it follows that

Qe ® BN, icl,
CQeM @ BN)= (M B N, iel
We can, therefore, consider the reduced algebra
(4 ® BxX)),, = B(w)

and the induced algebra
(4 ® €(x)),, = Bw).

It is easily seen that the mapping

X upxuf e,

is a e-isomorphism of .« onto (.# @ BX)),, = (M © ¥(x),,
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Thus, the passage from 4 to 4 @ B(X) (resp., to # ® ¥(')) and the pas-
sage from a von Neumann algebra to a reduced algebra (resp., to an induced
algebra) are reciprocal operations (see also Section 4.22), whereas the s-isomor-
phism reciprocal to an amplification is an induction.

3.19. Since the closed unit ball of a von Neumann algebra is w-compact (see 3.11),
it has extreme points, by virtue of the Krein-Milman theorem. The following
lemma, which describes the nature of these extreme points, will be used in the
proof of Theorem 5.16.

Lemma. Let # be a von Neumann algebra and v an extreme point of the closed
unit ball of #. Then v is a partial isometry.

Proof. We must show that v*v is a projection and, in order to achieve
this, we must show that o(v*v) = {0, 1}. If this be not true, let e o(v*1),0 < A <
< a <1, and £ > 0 be such that £(1 + ex)* < 1. Let us define

a = eXgg, o) (v*0).

It is easily verified, by taking into account the operational calculus, that
the following relations hold

i1 +ap*v(1 +a) <1,
[l —a)o*v (1 —a)] < 1.
Consequently, the clements
v;=0(l +a), vy=10( ~—a)
belong to the closed unit ball of .# and

1 1
0= — 0y 4+ — U,
2 2"

Since v is an extreme point, it follows that v; = v, = v, whence va = 0. Conse-
quently, we have v*va =0, and, therefore, v*vX(o,.(v*v) =0, a contradiction.

Q.E.D.

3.20. In the last sections of this chapter, we consider some general properties of
the ideals of the algebras of operators.

Proposition. Let of be a C*-algebra and N = of a left ideal of of. Then there
exists a net {u,},er © N, such that
o<y <1, ael,
(ii) @« < B = u, < uy;
(iii) [x — xuj g 0, for any xe k.



80 LECTURES ON VON NEUMANN ALGEBRAS

Proof. We denote by I' the set of all pairs (n, F), where n is a natural
integer and F is a finite subset of 9N. Endowed with the order relation

(n,F) <(m G)+>n<mand FcG,

I" becomes a directed set. For any « = (n, F) e I', we define

v, =Y x*xeN, u,=(n"14+ ),
E{-3 4

We observe that u, = £,(v)), where f,(1) = (n=1 + 1)~1t. Since 0 < f,(1) < 1, for any
t » 0, from Theorem 2.6, it follows that

0<
Ifa=(n, F) <(m G) =P, then v, < vy and, therefore, with E.2.8, we have
(nr 4 0) > (172 + )L

Sincen~}(n=! 4+ )= > m~Ym=1 + 1)1, for any t > 0, with Theorem 2.6, we infer
that

u, < 1.

n~Y ot + )71 > mi(ml - py)-2,
Consequently, we have
I=n 4 e ) M S 1 —n ¥l 4 p)-1 g1 — m=(m=1 + py)-1,
i.c.,
Uy < U,
Finally, for any x = (n, F)eT, we have

E [‘-(l - ‘II)]. [.\'(l - a)] = (l — U, U,(l - ua)

xeF
=n"n"1 + v)~t, < 4~

because we have (n=! - 1) < 4-1n, for any te [R. We, therefore, have

(U — w))*[x(l — w)] < 401, xeF,
whence
fx(l —u)]* < 4", xeF.
It follows that
Ix — xu,j =0, for any xe M.
Q.E.D.

The net {:{_,_},e,- is called an approximate unit for the left ideal 9. We observe
that property (iii) remains in force for any x belonging to the norm closure

N of N.
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In the preceding proposition we did not assume the existence of a unit
element in the C*-algebra & < %(5#), all inverses being considered in .43(.??’).
In particular, it follows that any two-sided ideal of ., which is also dense in &
for the norm topology, contains an approximate unit {u }eer for «f;in this case,
by replacing, in property (iii), the element x by x*, it follows that we also have:

[ — u,x]| = 0, for any xe «.

Corollary. Let # be a von Neumann algebra and | < M a left ideal. Then
there exists a unique projection e € A, such that

N” = Ae.

Any approximate unit of M is so-convergent to e.
Proof. Let {u,} be an approximate unit of ¢, in accordance with the pre-

ceding proposition, and let e = sup u, e N* (see 2.16). For any xe 9 we have
a
x — xu, — 0, hence x = xe. Consequently, we have
x = Xxe,

for any x e 9”. In particular, we have e* =e, i, e is a projection. We have
Me = N, since N” is a left ideal, and also N¥ = e, as we have already proved ;.
it follows that .

v = Me.

The uniqueness of the projection e is immediate.
Q.E.D.

We observe that the adjoint of a left ideal of .# is a right ideal. Conse~
quently, the w-closed left (resp. right) ideals of .# are of the form .#e (resp., e.#),
where e is a projection in . If N = e is a w-closed two-sided ideal of .,
then, for any unitary ue.#, we have

Me = N = uNu* = M (ueu®),

and this implies that e = weu*. From Corollary 3.4 we infer that ee#’, and,
therefore, e is central. Consequently, the w-closed two-sided ideals of .# are of
the form .#p, where p is a central projection, and conversely.

3.21. Let of be a C*-algebra. A subset § < &/* is said to be a face if it has the

property
a,bef, ceAdt, c<at+b=ce§

It is easy to prove that if f c &+ is a face,then F+ F < § RtF < §.
For any face § = &+ one defines

N = {xedf; x*xeF),

M= N*N = {2 ¥xp; x5 v, €N, ne IN}.
Jml

6-c. 1540
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Proposition. Let § <« o+ be a face. Then
(i) N is a left ideal and M is a s-subalgebra of oA ;
(ii) M+ = § and M is the linear hull of P+ ;
(iii) there exists an approximate unit of N, which is contained in M+.
Proof. (i) Let x,ye N and ae o/. We have

(+ '+ ) < 2x*x + y*)e §
and, therefore, we have x 4+ y e N. We then have
(ax)*(ax) = x*a*ax < |a|*x*x € §,

and this implies that ax e N. Consequently, N is a left ideal of 7.

(ii) Let a€ §. From Proposition 2.12, we infer that there exists an xed,
such that g = x*x. Then we have xe®N and, therefore, x*x e M N oF+ = W+,

It is easy to prove the following polarization relation
3

Yox =471y iK(x + *p)*(x + %)), x,ye .
<o

If a= Y »Px e M4, y,, x; €N, then, by taking into account the polarization
eyl
relation, we get

a=4"1y (x;+y)* s+ y) —(x;—y)* ;=¥
i=1

< 4! 2‘,1 G+ x;+y) e,
S

and, therefore, we have g ¢ s
We have thus shown that M+ = 5.

) It is obvious that M contains the linear hull of M+
inclusion casily follows from the polarization relation.

(iif) We shall use the notatjons introduced in the
For any « ==_(a, F)er, we have U, € § = M+, Since
! > 0, by taking into account Theorem 2.6, we get

, whereas the reversed

proof of Proposition 3.20.
(™! + 1)1t < nt, for any

=01+ 0), < nve G,
" and, since M* s a face, we get
g €M+,
Q.ED.

-algebra &f, such that M+ is a face and M,
called a facial subalgebra. Any facial subalgebra

) A subalgebra M of the C*
itself, is the linear hull of M+, is
is sclf-adjoint,
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The following corollary characterizes the reduced algebras of a von Neumann
algebra.

Corollary 1. Let # be a von Neumann algebra and M < M a w-closed subset.
The following statements are equivalent:

(i) M is a facial subalgebra of M ;

(ii) there exists a projection e € M, such that M = eMle.

Proof. We assume that M is a facial subalgebra. Since M is w-closed,
the face § = Wi+ is w-closed, and, therefore, the left ideal Nt = {x e #; x*xe §}
is w-closed. In accordance with Corollary 3.20, there exists a projection e .,
such that it = #e. In accordance with the preceding proposition, we have

M = N*N = (Me)*(Me) = eMe.

We have thus proved that (i) = (ii). The implication (ii) = (i) offers no difficulties.
Q.E.D.

Let M be a two-sided ideal of the von Neumann algebra . If xe.#
and x = v| x| is the polar decomposition of x (see 3.6) then |x|= v*x €M, and
x* = | x| v* e M (see 2.15). Consequently, any two-sided ideal of a von Neumann
algebra is self-adjoint.

A face § = .+ is said to be inmvariant if

aey, ued, unitary=> ugu*e §.

By using the polar decomposition it is easy to show that a face § = .#* is inva-
riant iff

.

xeM, x*xeF =>xx*e§.

The following corollary characterizes the positive parts of the two-sided
ideals of von Neumann algebras.

Corollary 2. Let A be a von Neumann algebra. Then mappings
BVt > M+,
& > the linear hull of §,

are reciprocal bijections between the set of all two-sided ideals M < M and the
set of all invariant faces § < M+,

Proof. Let M = . be a two-sided ideal and be M+, If ae.#* and a < B,
then, in accordance with exercise E.2.6, there exists an x € .4 such that a*’® = xb/2,
It follows that a = xbx* e M+. We infer that M+ is a face, obviously invariant,
since M is a two-sided ideal. -

The remaining assertions in the corollary are easily verified, by taking into
account the preceding proposition.

Q.E.D.
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Exercises

E3.1 Let .# <« () be a von Neumann algebra, {x,} =« and xe B(¥F).
If we have .

X& = x§, weakly, and x¥¢ - x*&, weakly,
for any §{ belonging to a total subset of J#, then x e ..

Let o be a separable Hilbert space and {£,} an orthonormal basis of .
We define the operators x,, x, y € #(o#) by the formulas

2%, — 3¢, for k=2,
Xh=1—né + %"fa for k = n,
0 for k # 2,n.
xEp = { 2, —3& for k=2,
0 for k # 2,
® 1
Z —4 for k=1,
Jj=1J
.\'fg =
1
— for k # 1.
k & or k #

Show that x,&, — x§, for any &, but, although we have x,y = yx,, for any n,
we have (1§, | &) # (0§, | &,); it follows that x ¢ A({x,}.

E.J.2. A von Neumann algebra < B() is a factor iff for any x, y e A there
exists an a€.#, such that xay % 0.

E.3.3. Let.# < (o) be a von Neumann algebra and {e;},c; = 2.4, Then we have
2(Ve) =V ze).
lel ter

EJd. Let o/c#(oF) be a s-algebra and x € B(#) an invertible operator, such that
the mapping ar~+ x~1ax be a s-automorphism of &. Then there exists a unitary
te @), such that x~1gx = u*au, for any a e &. If, moreover, & is a von Neu-
mann algebra and x e &, then one can find such a u, having the above properties
and, morcover, belonging to .

EJ3.S, One says that a von Neumann algebra M < B(5#) is of countable type if
any family of mutually orthogonal non-zero projections in . is at most countable.
Any von Neumann algebra in a separable Hilbert space is of countable type.
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Show that the closed unit ball of a von Neumann algebra of countable type
is so-metrizable, whereas the closed unit ball of a von Neumann algebra in a sepa-
rable Hilbert space is wo-metrizable.

E3.6. Let o/ c M « N < B(#) be von Neumann algebras, such that & be
included in the center of 4.
For any xe &', x ¢ M, there exists a pe P, p # 0, such that

gePH 0#£g<p=>xq¢M.

If Mg # Nq, for any ge P, g # 0, then there exists a projection ee 4,
such that eq ¢ .#, for any qe2?,, q # 0.

1E.3.7. A von Neumann algebra # < #(5#) is of countable type iff there exists
an ./-separating orthonormal sequence in .

1E.3.8. A commutative von Neumann algebra is of countable type iff it has a sepa-
rating vector.

1E.3.9. A vector £ €5 is called a trace vector for the von Neumann algebra
M = B#) if

(xy&1&) = (xE| &), x,ye .

Obviously, if # is commutative, then any & € 5% is a trace vector for /.
Let # = Z(5#) be a von Neumann algebra which has a cyclic trace vector
Ees#. Then £ is separating for # and the mapping

MExE >+ x*eME

is isometric; hence, it extends in a unique manner to a conjugation J on 5 ; i.e., an
antilinear, involutive (J2= 1) and isometric mapping J:# — 3.
Show that

Jx'E) = (x)*, x'ed.
‘(Hint: x'¢ = lim x,&, x, € 4).

n=+00

Infer from the preceding properties that the mapping
x—Jx*J
is a s-antiisomorphism of .# onto .#’, which acts identically on the center of /.

!E.3.10. A von Neumann algebra # c #(¥) is said to be maximal Abelian if
it is commutative and maximal (with respect to the inclusion) with this property,
in #(5). The von Neumann algebra 4 is maximal Abelian iff 4 =.#'. Any
commutative von Neumann algebra in #(o) is included in a maximal Abelian
von Neumann algebra in A(F).

Show that a commutative von Neumann algebra, of countable type, is maxi-
mal Abelian iff it has a cyclic vector.
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E3.11. Let ./ < #()) be a von Neumann algebra with tl'ze center ﬂ' =N ./l:
Show that for subsets {x;;; 1 <i,j< nfc and {xp; 1 <i,j<n} cu',
the following assertions are equivalent:

(l) Z anl,‘l = 0, 1< i’j <n,
kel

(ii) there cxists a subset {z;;;1 <i,j <n} = &, such that
n n
Y xuzy =0, Vzpxiy=xp5 1<ij<n
i k=1

(Hint: (x,)) €. @ B(H,), (xj) e’ @ B(H); (i) <> (x,)) (x]) = 0).

E3.12. Let .# < #(F) be a factor, {x;,...,X} = a linearly independent
subset of .#, and {x;,...,x;} = #'. Then

n
Y axi=0ex,=0, 1<k<n
gt

Infer that the mapping
n — n
Y xu®x— ¥ xx
kol ka1

is a e-isomorphism of the «-algebra # ® .4’ onto the s-algebra generated in ()
by .4 and 4.

E3.13. Let .# = B(F) be a von Neumann algebra, {x,, ..., x,} =.# and

n

{S1e .+ .. &) = F be such that Y, % = 0. Then there exists a subset {x,;1 <
kel

< i, j € n} ./, such that

n
Y ;=0 1<j<n,
£31

n
zxufx=fn I<ign,
k=1

In other words, o is a flat .#-module.

EJ.IJ.'Le':t M <= #(F) be a von Neumann algebra and e e 2. Show that:
() if & <.« is a +-subalgebra and . = R(X), then M, = R(Z,)
(i) if ' <. &' and ' = R(Z'), then M, = R(ZT)).

IE3.18. Let 4, < _:_?(x’,), My = B(#,) be von Neumann algebras and e, e & o
€67 4. Then ¢, @ €€ P 454, and the following relations hold:

(#, ® My)eyr, = (M), B (My).,,
(M3 ® Moz, = (M), ® D),
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E.3.16. Let A, = B(H#)), My < .43(3_?’,) be von Neumann algebras. Show that if
My = RZ), My = R(Zy), then M, @ My = R(X), where we have denoted Z' =
={x®1; xeZ}U{l ® xs; X262}

1E.3.17. State and prove an associativity property for the tensor product of
von Neumann algebras.

E.3.18. Let of be a C*-algebra, 9 a left ideal of of and {u,}.er an approximate
unit for N. :
Show that

N ={xeo; |x —xul - 0}.

E.3.19. Let o be a C*-algebra and it < o a closed left ideal of «/. With the help
of an approximate unit of 9N, show that

aeN+, 1> 0=deNt.

(Hint: it is sufficient to prove that a'?e 9t+). ,

E.3.20. Let of be a'C*-algebra, a € of+ and N, the closed left ideal of of generated
by a in /. Show that

@) 4, = (1~* + a)~! a is an approximate unit of N,;

(i) if xe o and x*x < aq, then xeN,.

Comments

C.3.1. A wo-closed subalgebra of of #(5), which contains the identity operator
(but which is not assumed to be self-adjoint) is said to be transitive if 0 and ) are
the only closed linear subspaces X° < o, which are &f-invariant, i.e., such that

xed=>x(X)cX.

Obviously, #(o) is transitive.

From the von Neumann density theorem (3.2) it easily follows that any self-
adjoint transitive subalgebra & = #(#) coincides with B(3).

If o is finitely dimensional, then a classical theorem of Burnside (see H. Weyl
{2]) states that any transitive subalgebra of = #(#) coincides with B(F).

The problem of establishing whether this statement is, or is not, true in the
general case, is still unresolved; nor is the weaker problem of the existence
of an invariant closed non-trivial vector subspace, for any operator in #(>%).

The first problem is known as the “problem of the transitive algebras”, whereas
the second is known as the “problem of the invariant subspaces”.

An important contribution towards the solution of this problem, which has
a surprisingly simple proof, was obtained by V. I. Lomonosov [iI]. We state it
in the form given by H. Radjavi and P. Rosenthal [1}:
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Theorem. Any transitive subalgebra of < B(H), which contains a non-zero compact
operator, coincides with B(X).

Corollary. Any operator x € B(H#) which commutes with a non-zero compact ope-
rator, has a non-trivial closed invariant vector subspace.

The result contained in the preceding corollary was obtained independently
by D. Voiculescu [3), who used methods completely different from those of
V. 1. Lomonosov.

A vector subspace X" < M is said to be para-closed if it is the range of an
opcrator in #(¥). C. Foias [2] has shown that any subalgebra & < (o), whose
only invariant para-closed vector subspaces are 0 and H, coincides with B(s#); this
is another cxtension of the Burnside theorem.

Extensions to von Neumann algebras have been obtained by D. Voiculescu
{11 and C. Peligrad [2].

For other information we refer the reader to H. Radjavi and P. Rosenthal [1].

C.3.2. The essential fact in the proof of the density theorem of I. Kaplansky (3.10)
is the so-continuity on Z(#¢)* of the mapping x +» f(x), where f(f) = 21(1 + ¢2)-1,
The continuity in the so-topology of the functions of normal operators has been
studied by I. Kaplansky [11] and, more recently, by R. V. Kadison [26]. We
mention the following result of R. V. Kadison:

Theorem. Let Q = € be a subset such that:
\Q)ne=9g

and let f: Q — @ be a complex Junction. Then the following properties are equivalent :
(i) the mapping x > S(x) is so-continuous on the set of all normal operators,
whose spectrum is contained in Q;
(i1) the function S is continuous, bounded on bounded sets and such that f(2)/z is
bounded at infinity.

. Thcrcfor!;. the thcorcrp is valid for open or closed sets Q. In particular, by
taking Q=R in the preceding theorem, it follows that any continuous and bound-
cd funcnoq S:R = @ is so-continuous on the set of all self-adjoint operators,
a result which extends the fact that was used in the proof of the density theorem
of I. Kaplansky.

C3.3. By using the density theorem of I. Kaplansky, R. V. Kadison [15] proved
the following:

Theorem. L_ct .c/_c B(F) be a wo-dense C*-algebra. Then for any x e 2(¢) and
any finite dimensional vector subspace X < X there exists an a€ &, such that

x==af, fexX.

Morcover, if x is self-adjoint, then a can be chosen so as 1o be self-adjoint too, whereas
if x is unitary and o contains the identity operator, then a canbe chosen to be unitary.

A C*.algebra o < B(K) is said to be irreducible if the only closed vector
subspaces of o, which are invariant for all operators in &, are 0 and J#; the
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C*.algebra &/ is said to be’ strictly-irreducible if the only invariant (not necessarily
closed) vector subspace of 5 are 0 and 5#. From the preceding theorem one can
infer the following

Corollary. A C*-algebra of < B(¥) is irreducible iff it is stricly irreducible.

For the proof of these results, with more precise formulations, we refer to
the books of J. Dixmier {42] and S. Sakai [32].

M. Tomita [8] (see also K. Saitd [2]) has obtained extensions of these results.
For an exposition of these extensions we refer to L. Zsidé [4).

A study of the strict irreducibility for the representations of the Banach alge-
bras with involution has been carried out by B. A. Barnes [8].

C.3.4, Let # = B(5F) be a von Neumann algebra. For any set 2’ < .#+ we denote
by Z° (resp., ;) the set of all elements of 4+ which are suprema (resp., infima) of
increasing sequences (resp., decreasing sequences) of elements in 2'; we also de-
note by Z™ (resp., &,,) the set of all elements of .#+ which are suprema (resp., in-
fima) of bounded increasingly (resp., decreasingly) directed subsets of 4. Recently,
G. K. Pedersen [5], [7], proved the following remarkable result:

Theorem 1. If.#f < B(#) is avon Neumann algebra of countable type, and if o < M
is a C*-algebra, which is wo-dense in M, then

(1))s = M.
If .# is not assumed to be of countable type, then this theorem fails to be

true even in the commutative case. Nevertheless, we have the following result,
due to G. K. Pedersen (loc. cit.):

Theorem 2. If # = B(¥) is a von Neumann algebra and if of < M is a wo-dense
C*-subalgebra, then
(L)) = M.
From these theorems one can get the older results of R. V. Kadison [13],
[14], which we shall now state:

Corollary., Let M < B(K¥) be a C*-algebra. If (M) < M, or if # is separable
and (M;})° = M, then M is a von Neumann algebra.

A proof of the results of G. K. Pedersen can be found in L. Zsidé [4]. The
results of R. V. Kadison are also presented in S. Stritild [1].

€.3.5. J. Dixmier and O. Maréchal [1} proved the following

Theorem. The set of all cyclic vectors of a von Neumann algebra M < B(H) is a -
G,-set, which is either empty, or dense in .

We observe that for the proof of this result they also showed that any element
X in a von Neumann algebra M/ is the so-limit of a sequence {x,} of invertible elements

in M, such that |x,| < |x].
We also mention the following result of M. Broise [5]:

Theorem. Let M, N < B(I¥) be von Neumann algebras, such that &' is abelian and
of countable type. If # and A have the same cyclic vectors, then M = N,
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C3.6. Let (Q, %, u) be a finite measure space. We shall now consider the Hilbert
space H, = £%(u) and for any fe £*(u) we shall denote by x, e Z(#,) the ope-
rator given by the multiplication by f. Then

My = {xp; fe =)} = BX)

is a maximal abelian von Neumann algebra of countable type.

On the other hand, if . # < #(5#) is a maximal abelian von Neumann algebra
of countable type, then .# has a cyclic and separating vector (see E.3.10), which
determines in a natural manner a measure p on the spectrum of .4 (see C.2.1).
It is casily shown that .# is s-isomorphic with ., and, therefore, .# and M, are
spatially isomorphic (E.5.22).

Conscquently, the maximal abelian von Neumann algebras of countable type
can be described in a simple manner, modulo the spatial isomorphism. This descrip-
tion can be casily extended to arbitrary maximal abelian von Neumann algebras.

C.3.7. In this chapter we introduced the following elementary operations on von
Neumann algebras: the passing to the commutant, the reduction, the induction
and the tensor product; the amplification, which is a particular case of the latter.

Another important operation, which did not explicitly appear in our presen-
tation is, of course, the direct sum: if M < #B(¥) and & < B(5#) are von Neumann
algebras, then ‘

MNON={xDyeB(H¥ ®X); xed, yeN}

is a von Neumann algebra.

ol Another operation is the cross-product, which we shall describe in what
olows,

Let.# (o) be a von Neumann algebra, Aut (#) the group of all *-auto-
morphisms of .#, G a locally compact group, dg its left Haar measure, and

Gogr>n e Aut (W)
a homomorphism of groups, such that for any x e ./, the mapping
Gagrra(x)es

is continuous for the wo-topology in /.

' One considers the space X'(G, #) of all functions defined on G and taking
values in O, which !mve. compact supports and are continuous for the norm
'lopology; we endow it with the scalar product

Gl f)= SG (£(8) | £:(z)) dg

and we denote by ZL*G;9r) the Hilbert space obtained by completion.
For any xe.# the Operator . € B(L*G,x)) is defined by the relations

LN @) = =22 (f(2"), fe X (G; X*), g'€G,
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whereas for any ge G one defines the (unitary) operator u, € B(£*G; X’) by the

relations:
(N @E)=fg1g), feX(G;¥#), g'€GC.

The von Neumann algebra generated in #(#*G; 5#)) by the operators t,, x € 4,
and u,, g € G, is called the cross-product of # by the action = of G and it is denoted
by #(A, n) or, simply, by # X G.

If G is discrete, the preceding construction appears in the work of F. J. Mur-
ray and J. von Neumann [1] in connection with the construction of different types
of factors (see C.4.3), whereas systematic expositions of this construction appear
in .]I Dixmier [26] (Ch. I, §9.2), T. Turumaru [3], N. Suzuki [4], V. I. Golodets
122], etc.

In the general case, this construction first appears in the paper of S. Dopli-
cher, D. Kastler and D. W. Robinson [1]; it is systematically studied by M. Take-
saki [33). If G is a separable abelian locally compact group, which acts by «-auto-
morphisms of the von Neumann algebra # < (), where o is assumed to be

separable, then the group G of the characters of G acts in a natural manner by
s-automorphisms of # X G; M. Takesaki [33] has shown that the von Neumann
algebra
(#XG)XGC

is *-isomorphic to the von Neumann algebra

M @ B(LG)).
In particular, if 4 is properly infinite, then the following isomorphism
(/£ X G) X G ~ M

holds, thus yielding a duality theorem. For extensions to the non-abelian case
we refer to S. Stratild, D. Voiculescu, L. Zsidé [1], (2], [3), M. Landstad [1], [3]

and Y. Nakagami [5], [6].

Another definition of a cross-product, which is better adapted to the con-
struction of factors, has been given by W. Krieger [3].

Finally, let us mention the fact that one can define a notion of infinite tensor
product for von Neumann algebras, for which we refer to J. von Neumann [12],
D. Bures {1] and A. Guichardet [15].

C.3.8. The extreme points of the closed unit ball of a C*-algebra have been tho-
roughly studied, the fundamental results being the following two theorems of
R. V. Kadison [2], which we state in the improved version given by S. Sakai {32]:

‘Theorem 1. The closed unit ball of a C*-algebra sf has extreme points iff &£ has the
unit element. In this case the unit element is an extreme point.

Theorem 2. An element x of the closed unit ball of a C*-algebra 54 is extreme iff
(1 — xx*) (1 — x*x) = {0}.

Lemma 3.19 is an easy- consequence of the last theorem.
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R. V. Kadison used these results in order to study the isometries between
algebras of operators, in generalizing the classical theorem of S. Banach and

M. H. Stone (see N. Dunford and J. Schwartz [1], V.8.8).
We also mention the following strong result due to B. Russo and H. A. Dye[1]:

Theorem 3. /n any C*-algebra < with a unit element, the uniformly closed convex
hull of the set {u € of; u unitary} coincides with the closed unit ball of .

For other related results we refer to: P. E. Miles [2), B. Yood [3], J. B.
Conway and J. Sziics [1], F. Bonsall and J. Ducan [3].

C.3.9. Bibliographical comments. Theorem 3.2 is due to J. von Neumann [2], whereas
Theorem 3.10 to 1. Kaplansky [10], [11). Elementary operations on von Neumann
algebras have been considered by many authors, among whom we mention: F. J. Mur-
ray and J. von Neumann [1], J. von Neumann [12}, J. Dixmier [15], 1. E. Segal [9],
Y. Misonou (4], M. Tomita [2), [4]. For a detailed exposition of the properties of
ideals of algebra of operators, as well as for the corresponding references, we refer
to §. Stritild [1].

The term *‘von Neumann algebra” was introduced by J. Dixmier [26];
F.J. Murray and J. von Ncumann called these algebras “rings of operators”.

I. M. Gelfand and M. A. Naimark called the Banach algebras “normed
rings"; the term *“*Banach algebra” was introduced by E. Hille. The terms *‘C*-
algebra™ and *‘J¥*-algebra” (see C.5.3) have been introduced by I.E. Segal.
Sometimes, for C*-algebras one uses the equivalent term *“B*-algebras’™; this double
terminology is related to the problems discussed at the end of Section C.2.1.

In writing this chapter, we used the books by J. Dixmier [26], [42), and also
the course by D. M. Topping (8].




4

The geometry “of projections and
the classification of von Neumann algebras

In this chapter we study the relations existing between the lattice operations and
the equivalence of projections and we also introduce the classification of von Neumann
algebras according to types.

4.1. Let # < B(#) be a von Neumann algebra. We shall denote by 2.« the set
of the projections in #. Then 2 4 is a complete lattice (see Corollary 3.7).

Two projections e, f€ P« are said to be equivalent, and this relation is denoted
by e ~ f, if there exists a partial isometry u € .#, such that e = u*u and f = uu*;
then ue = u = fu. We say that e is dominated by f, and we denote by e < f this
relation, if e is equivalent to a subprojection of f. The relation **~"" is an equi-
valence relation in 2., whereas the relation “~" is a preorder relation in 2 4.

If e < pg, &€, then there exists an n e, such that e = p,.
If e ~ f, then z(e) = 2(f); in particular, if e ~ 0, then e = 0.
If e ~ fand p € P, then ep ~ fp.
If e ~ f via the partial isometry u, then the mapping

efled x> uxu* € flf

is an isomorphism of s-algebras. The image ugu* of the projection geefe is a

projection equivalent to g.
If e =\/ e;, where ¢; are mutually orthogonal projections, and if f~ e,

ier
then there exists a family {f;};e; = 2.4, where the f; are mutually orthogonal
projections, such that f =‘V, fiand f; ~ e, for any i€ L.

€

4.2. Proposition. Let {e}er, {fi}ier © P.a, where the e; are mutually orthogonal
projections, and the f; are also mutually orthogonal projections. If e; ~ f,, for any

iel then \] ¢, ~\/ Ii.
tel ter
Proof. Let u;e# be such that
e, =, fi=uuf, iel,

and, for any finite subset J c I, let
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We then have a net {u,}, of operators, about which we shall prove that it is
so-convergent, In ordgr to do this, we have only to show t!lat for any fex’,.the
net {1, ¢}, is convergent (in accordance with the Banach-Steinhaus theorem). Sn_:ce
the vectors u,{ are mutually orthogonal, this is equivalent to the following condition

Y luélt =1im Y] fugl? < + oo;
iel J ieJ

indeed, we have

Z fudht = Z Wu|d) = Z €f|d)= ((Vel)élé) < + co.
i€l i€t ier ter

Consequently, the operators

u=Yu, o=Yu
i€l ier

exist by so-convergence and they belong to 4. From u=s0-Y, u, it follows that
lel
u® = wo-Y; u? and, therefore, v = u*. From the equalities uu, = 6,¢,, it follows
ier

that u'u =\ ¢, uu* = \/ f,.
ter ler

QED
4.3. Theorem. For any xe.# one has I(x) ~ r(x).

Proof. Let x = u|x| be the polar decomposition of x in . Then the partial
isometry u implements the equivalence I(x) ~s(| x[). From n(| x|) = n(x) we also
infer that s()xj) = I(] X|) = I(x*) = r(x).

Q.E.D.
4.4. Corollary. (The parallelogram rule). For any e, fe P 4 one has the relations
(i eVf—f~e—eAf,
(ii)e—e/\(l—f)~f—(l-—e)Af: .
Proof. It follows from Theorem 4.3 and exercise E.2.3.
Q.E.D.
4.5. Corollary. Let e, SeP 4 The Jollowing assertions are equivalent ;
(i) e.#f # {0},
(ii) there exist ¢,, f, €24, 0#¢,<e, 01, < f, such that e, ~ f,,
(iii) z(e) 2(f) # 0. :
Proof. (i) = (ii): if xe.# and exf# 0, then e, = I(exf) and f; = r(exf)
satisly condition (ii);
(i)=@):ife>e = ut, £ > fi = uu* #£0, then we have eu*f = y* #0;
(i) = (iii): if 2(c) 2(f) = 0, then exf = 2(c) exf2(f) =0, for any xe.#;
(iii) = (i): by taking into account Corollary 3.9, from edlf= {0}, it follows
that ez(f) = 0, and thercfore z2(e)z(f) = 0.
Q.E.D.
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4.6.h Theorem (the comparison theorem). For any e, fe P 4 there exisls a PEPy,
such that

ep < fp,
e(l —p) > f(1 —p).

Proof. Let ({e;};er, {fi}ier) be a maximal pair of families of mutually ortho-
gonal projections, such that

€ < e, .fl <j; €; ~j;) iel
In accordance with Proposition 4.2, it follows that

e=Ve ""\e/’ft = fi.

iel

If e, = e — e, and f, = f — f;, then, due to the maximality of the chosen pair and
to Corollary 4.5, it follows that

z(es) z(f2) = 0.
Let us define p = z(f;). Then we have
ep = eip + e;p = eyp + e;2(e)z(f2) = erp ~ f1p < Jp,
S =p)=£(0—p)+ (1 —p) = £l — p) ~ e(1 — p) < e(1 — p).
Q.E.D.

4.7. Theorem (von Neumann's Schréder-Bernstein type theorem). Let e, fe P 4.
If e <f and f<e, then e ~ {.
Proof. Let w, ve s be such that

ww*=¢e, Ww<</f, vw*=f, vv<e.
For ge P4, g <f, we define
o(g) = f — w*(e — v*gu)w.
It is easy to see that ¢ is an increasing function on the complete lattice

{gePas g <f}. Let T = {g; g < o(g)} and h= \Gng. If ge &, then g < h and,

4
therefore, g<p(g)<¢(h); hence h<e@(h). Consequently, we have ¢(h)<@(e(h))
and, therefore, @(h) € Z'; it follows that () < /. Consequently, we have

h=f— w*e — v*ho)w.
The partial isometries v and (e — v*hv) w yield the equivalences
h~v*he and f— h ~ e — v*ho.

Consequently, we have e ~ f.
Q.E.D.
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4.8. A projection ee 2 4 is said to be abelian if the reduced algebra ele is com-
mutative,
A projection e€ 2 4 is said to be finite if

feg’-l’fse’f_"'e:af:e'
One says that a projection ee 2, is properly infinite if
P € P2, pe finite = pe =0.

Any abelian projection is finite.
If e is finite and f < e, then fis finite.
If eis abelian and f < e, then f is abelian.

4.9. Proposition. Let e, fe 2 ,. If e is abelian and f < e, then S = ex(f).
Proof. Since esle is commutative, for any x € .4 we have
Jele —f) = flexe)(e — f) = fle — f) (exe) =0,

hence f#(e —f) = {0}. In accordance with Corollary 4.5, it follows that
z(f)z(e —f)=0. In particular, we have f ez(f).
Q.E.D.

4.10. Proposition. Let e,f€Px be abelian projections. If 2(e) < z(f), then e < f.
If 2(c) = 2(f), then e ~ A

Proof. In accordance with Theorem 4.7, it is sufficient to prove only the first
assertion. For this, in accordance with the comparison theorem (4.6), we can suppose

;‘h:u J < e But then f= ez(f), in accordance with Proposition 4.9. Therefore, we
ave

e = ezfe) = ez(f) = f.
Q.E.D.

4.11. Proposition. Let e €P 4 be such that it dpes not contain any non-zero abelian
subprojection. Then there exist ey, eq€ P 4, such that

e=¢ 4 e, eey =0, e ~ e,

Proof . Let (fer.i}ier, {es,1}1e1) be a maximal pair of families of mutually
orthogonal projections, such that

Gu<e, € S e, €18, =0, €, ~egy iel
In accordance with Proposition 4.2, it follows that
€y = V"x.l ~V €, = €, ee; =0,
1er ter
If

,l=e'—el—cg#0,
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then & is not abelian; consequently, / contains a non-zero subprojection g, which
is not central in Ah#h. It follows that

g (h — g) # {0}.

In accordance with Corollary 4.5, this result contradicts the maximality of the
chosen pair; consequently, A =0, i.e.,

e=¢ + é;.
Q.E.D.

4,12, Proposition. Let e € 2 4. Then e is properly infinite iff there exists a countable
Sfamily {e,} = P 4 of mutually orthogonal projections, which are bounded from above
by e, and such that

e=\Ve,
n
e, ~e, foranyn.

Corollary. A projection ec P 4 is properly infinite, iff there exist e, e;€Pa,
such that

e=e + e, ee, =0, e,~e;~e.

Proof. We proceed by steps:
(D) If e is not finite, then e contains an infinite set of mutually orthogonal
subprojections, which are equivalent and different from zero.

Indeed, let e, < e, e, # ¢, e, ~ e and f; = e — ¢,. There exist e;, o€ P4,
such that

e =é; +f;’ ezfz=0, € ~ &y, fl ~f2'
Then there exist e;, f3 € P .4, such that
ee=e+/fy €f3=0 e~e, fi~f,
Now we proceed by induction. The required set is
{fis fos fare oo}

(I1) If {e;},es is an infinite family of mutually orthogonal, equivalent pro-
jections, e= \/ ¢, and if fe P4, fe =0, f < ¢, then there exist {i},e; = P.a,

ter
such that the A, be mutually orthogonal and e 4- f =‘V Ji, e~ Iy for any iel.
el
Indeed, let iye I and let f,, g, € 2.« be such that

elo =fk+glo’ j;ogl. =0, -fl. ~.f’
For any ie I, there exist fj, g,€ 2.4, such that
e=fi+g, JS&=0, Ji~fuw 81~ 8o

7 -~ ¢, 1540
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Let ¢ be a bijection between the sets {&}ier and {f,f}ier, and let

h=g+o), iel

Now the assertion s obvious.

(1) If {e}},e; is a maximal infinite family of mutually orthogonal, equi-
valent projections, then there exist pe Py, p # 0, and {&}lier = 2.4, where the
&8s are mutually orthogonal, such that p = 'V g and g; ~ pe,, for any ieJ.

€r ’

Indeed, let e = / e;and iy € . Since the relation éw<1—eisnot possible (due
ler !

€ . = .
to the maximality of the family), by applying the comparison theorem to e, and
I — ¢, it follows that there exists a p e Pa, p 5 0, such that p(1 — ¢) < pe,,. But
P=p(l-e) v (v Pey), and the assertion follows from (II).

ter

(V) If lew is properly infinite, then 1 is the least upper bound of a coun-
table family of equivalent, mutually orthogonal projections.

Indeed, with (I), there exists a maximal infinite family of equivalent, mutually
orthogonal projections, whereas from (IIT) we infer that there exists a pe Py,

P % 0, which is the Lu.b. of a countable family of equivalent, mutually orthogonal
projections.

Since 1 —pisalso properly infinite, the proof proceeds by transfinite induction.

VM IfeeP,is properly infinite, then, in accordance with (IV), there exists

a countable family {f.} of equivalent, mutually orthogonal projections, such
that \/ f, = e, Let us define

&=V {f.; ndivides m and f,e, = 0 for k < n}.

Then e = Ve and e, ~ ¢, for any n; the first part of the proposition is proved.
L]
The other assertions follow immediately.

4.13. One says that a projcction e €2 4is of countable type if any family of mutually
orthogonal non-zero projections, majorized by e, is at most countable,

Proposition. Les &f€EP 4, with e of countable type and properly. infinite. I
He) S xf), then e < f. d > 4

, Proof. Let {e:}1es be a maximal family of mutually orthogonal non-zero
projections, such that
& <e e<f iel
By virtue of Corollary 4.5 and of the maximality of the chosen family, we infer that

e=Ve,.

lel
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Since e is of countable type, the set Iis at most countable. With Proposition 4.12,
it follows that there exists a family {f;};c; of mutually orthogonal projections,
such that

f=,\ell.ﬁ. finf, el

It follows that e; < f;, iel, hence, e < f.
. Q.E.D.

4.14. Lemma. Let {e};cr be a family of finite (resp., abelian) projections, whose
central supports are mutually orthogonal. Then e = \/ e, is a finite (resp., abelian)
ter

projection.
Proof. Let fePa, f<e, f~e. Since e —e; <\ 2(e), it follows that
: ntl

e; = ez(e;). Since ¢, is finite, it follows that
e, = fz(e,)) < f, iel
Consequently, e = f. .
For the case of abelian projections, the proof is similar.
Q.E.D.

4.15. Proposition. If e, fe P« are finite projections, then eV f is a finite
Dprojection.

Proof. We can assume that e V f= 1. We shall also assume that 1 is not
finite and we shall get a contradiction. From Lemma 4.14, there exists a finite
central projection p € 2o, such that 1 — p be properly infinite. Therefore, we can
assume that 1 is properly infinite. From Corollary 4.12, there exists a ge P4,
such that

g~1l~1l—g
From the parallelogram rule (4.4), we get
l—e=eVf—e~f—eAf</,

hence 1 — e is a finite projection.

We now apply the comparison theorem (4.6) to the projections g A (1 — ¢)
and (1 — g) A e. It follows that we can consider that one of the following relations
holds, without any loss of generality

o - gA(l —e)<(1—g)Ae,
¢) (I1—g)he<gA(l—e).
In the first case, by taking into account the parallelogram rule, we get
g=gAl—e&+(E—gA(l ~¢)
<A—-gAe+Vv(l—-e—(1—-e)<e,
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and this contradicts the finiteness of e. In the second case, a similar argument
leadsto 1 — g <1 — ¢, thus contradicting the finiteness of 1 — e, The proposition
is proved.

Q.E.D.
4.16, Let . # < B(¢) be a von Neumann algebra.

-# is said to be finite if 1 is a finite projection.

A is said to be semifinite if any non-zero central projection contains a non-
zero finite projection. :

# is said to be of type I'if any non-zero central projection contains a non-
zero abelian projection,

- is said to be of type I1if it is semifinite and it does not contain any non-
zero abelian projection,
. . +# is said to be of type III if it does not contain any non-zero finite pro-
jection,

- is said to be of bype In if it is finite and of type I

# is said to be of ype I, if it is not finite and it is of type I.

# is said to be of ype 11, if it is finite and of type 1I.

# is said to be of ype 11, if it is not finite, but it is of type II.

Other terms used in this connection are introduced by the following definitions:

-# is said to be discrete if it is of type I.

-# is said to be continnous if it is of type II or IIL

«# is said to be Properly infinite if 1 is a properly infinite projection.

# is said to be purely infinite if it is of type III.
4.17. Theorem (of classification). Let .4 B(#) be a von Neumamz algebra,

Then there exist unique projections p, €Ps,i=1,2,3,4,5, such that Y pi=1and
=]
Ap, is of type Iy,
Ap, is of type I,
#py is of type 1I,,
“p, is of type 1,
“Hpg is of type III.
Proof. The theorem follows from the superposition of the following three
decompositions:
(i) There exist unique projections p,, g, € P, such that Podo=0,pg+ gy = 1,
#p, is semifinite and -4 q, is purely infinite.
Indeed, let us define Po=V{pePs; Mp is semifinite} and g, =1 — p,,
. (i) There exist unique p,, 9€2Ps, such that p,q, — 0, po+go=1, p,
is finite and .4y, is properly infinite,

Indeed, let us define Po=V{pePs;p is finite} and g, = 1 — p,. The fact
that p, is finite follows from Lemma 4.14,

(i) There exist unique p,, g, € Py, such that =0,po+qgo=1, &
is discrete and A, is continuoous.o * Poto Pt do=1 Ap,
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Indeed, let us define Po=V{pePs; Mp is discrete} and g, =1 — p,.
Q.E.D.

4.18. Corollary. A factor M < B(H¥) is of one and only one of the types Itin, Lo,
1L, I, IIL

4.19. Proposition. Let # = B(H) be a von Neumann algebra. Then 4/ is discrete
(resp., semifinite)) iff # contains an abelian (resp., finite) projection, whose central
support is equal to 1.

Proof. Let {e;}ier be a maximal family of abelian (resp., finite) non-zero
projections, whose central supports be mutually orthogonal. With Lemma 4.14,
we infer that the projection e —-Ve, is abelian (resp., finite), whereas from the

maximality of the chosen family wc infer that z(e) = 1.
Q.E.D.

4.20. Corollary. .# is discrete (resp., semifinite) iff any non-zero projection in M
contains an abelian (resp., finite) non-zero projection.

Proof. Assumingthat ./ isdiscrete (resp., semifinite), let e € 2 4, be an abelian
(resp., finite) projection, such that z(e) = 1 and let fe 2 4, f # 0. With the compa-
rison theorem we infer that there exists a p € 24, such that ep < fp and e(1 — p) >
> f(1 — p). It follows that f(I — p) is abelian (resp., finite), whereas fp contains
an abelian (resp., finite) projection, which is equivalent to ep. If p # 0, then ep # 0,
since z(e) = 1.

Q.E.D.
4.21. Table about the classification of von Neumann algebras
1 Type 11
Type Iy, B B e g e ] e il Type Il
discrete discrete continuous continuous continuous
semifinite semifinite semifinite semifinite purely infinite
finite properly infinite | finite properly infinite | properly infinite

4.22. Two von Neumann algebras 4, c #(#)), M < B(H,) are said to be
spatially isomorphic if there exists a unitary operator u : J; — X, (i.e. uis isometric
and onto), such that u.#,u~! = .#,. In this case .#, and .#, are s-isomorphic.

The following theorem provides a link between the geometry of projections
and the tensor product (see also Section 3.18).

Theorem. Let M < #(#) be a von Neumann algebra and {e}ier = M a family
of equivalent, mutually orthogonal projections, such that Y, e, = 1. We denote by

‘€1
¥, a Hilbert space whose dimension is equal to card (I1). Then M is spatially
isomorphicto.#,® B(H;), for any i€l
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Proof. Let usfix an index ipe I Forany ie 1, let v,e.# be a partial isometry,
such that

Wo=e, , vo¥=e,. |
Let then {n,},e,; be an orthonormal basis in ;. We define the linear operator
u 3x9f'->§,”:'(f) ® M € €,(K) @ #}.
It is casy to see that it is a unitary operator.

Let xe B(oF), { e e,(¢) and i e I. We then have
uxuY{ @ n;) = uxv({) =/<Z vExv() ® n,.
er

If we denote by wy,s the partial isometry in @(#;), such that W iwe, = [Cnyl,
whereas w, , w}, = [Cn,), we have

uxu™! = E (vkxv) 5”’&.1-
i.ker

Hence we immediately infer that

whu c M, @ B(H))
and it is casy to see that
Wl < (M) @ COF)) (Mo, B B,
By taking into account Corollary 3.3, we deduce that
wH = My, @ R(H)).

Q.E.D.

4.23. In this final section we exhibit the relations existing between the two-sided
ideals of a von Neumann algebra and the ideals of its center,

Let .4 be a von Neumann algebra, whose center is 2.

Lemma 1. For any ideal 3 of Z we have (MJ)n 2 = 3.

Proof. Let ae(.#3)n 2, a > 0. With the help of the polar decomposition
(sce 3.6), we can write

»
a=3 x;y, x;=xtecd, 0 <y,e3.
=1

Then0 €a < Y bx;0y,. With the help of exercise E.2.6, we find an element z € Z,
J=1

L]
such that @ =z Y] Ix,l y,. Hence ae.
=1
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From the foregoing result and with the help of the polar decomposition we
get the inclusion (#J) N Z<J. Since the reversed inclusion is obvious, the lemma

is proved.
' ‘ Q.E.D.
Lemma 2. Let M and N be two-sided ideals in M. Then we have
M+MNZ=|MNZ +NNZ.

Proof. Let aecM+MnZ, a=>0 and letxeM, x=x* yeRN, y=r*
be such that '

=x4Y.

Since ae%, it follows that x and y commute. Let e = s((2x — a)*)
(see 2.10, 2.15); it follows that e € .4 and

0<ae<2xe, O0<a(l—e)<2(l—e)
From exercise E.2.6, we.infer that there exist s, t € 4, such that
ae = sxe, a(l —e)=u(l —e),

hence gee D and a(l — e)eN.
With the comparison theorem (4.6) we infer that there exists a projection

pe %, such that
ep < (1 —eép, (1—e)l—p)=<e(l—p)
Consequently, there exist two partial isometries u, v € 4, such that
u*u = ep,uu* < (1 — e)pand v*v = (1 — &)(1 — p), vv* < e(l — p).
Hence we infer that '
ut(l —e)pu=ep, ve(l —p)v=>0—2e)(1—p)

Thus, by taking into account the fact thatae Z, from what we have already proved
we infer that

u*a(l — e)pu=aepeMnNN,
v*ae(l — p)v = a(l — e)(1 —p)eMNAN.
Consequently, we have
ap=a(l —e)p+ aepeN

a(l — p) = a(l — e)(1 — p) + ae(1 — p)eM
and
a=al=p)+apeMn2 +RNN2.

We have thus proved the inclusion (R + NN X< 24N n 2. The reversed
inclusion is obvious.
Q.E.D.
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Theorem. Let # be a von Neumann algebra and % its center. For any ideal
3 of Z, the set of all two-sided ideals M of M, such that M 0 &=S has a smallest
clement, denoted by My(J), and a greatest element, denoted by M(J).

Proof. With Lemma 1, the ideal My(J)=~T obviously is the smallest element
of the considered set. This set is inductively ordered by inclusion and, therefore,
it has a maximal element M(3). From Lemma 2 it follows that the considered
set is increasingly directed and, therefore, M.o(3) is its greatest element.

Q.E.D.

From the preceding theorem one can easily infer the following
Corollary. Let ./ be a von Neumann algebra with the center Z. Then the mapping
M->Mnz =3

Is a bijection between the set of all maximal two-sided ideals M of # and the
set of all maximal ideals 3 of 2.

Exercises

In the exercises in which the symbols # and % are not otherwise explained,
they will denote a von Neumann algebra and its center.

E4.l Let e, fe P 4. Then
e < f e there exists a ge P, such that e <g~f
E.d4.2. Let e, fe P 4. Then there exists a p € P+, such that
ep < Jp,
(I —e)t = p) < (1 — 1)1 — p).

Ed3. Let ey, 00, /1, fr€ Pa, ey =fifs=0.If

et e =fi+f,

€ ~ &y, fl ~f3v
then ¢; ~ f,.

Edd. LetefePy, a=c + S—1 and s=1—2s(a~). Then s is a symmetry
and sefs = fe.

E4S. Lete,fePa e A(l =f)=(1 — &) A =0, Then there exists a symme
se.4, such that ses = f. ( N ’ “'y

' Ed.6. Foranye, fe 2 « there exists a symmetry s €4, such that s(eVf— e)s =
=f—¢A /. In particular, the parallelogram rule now easily follows (see 4.4).

E.4.7. For any pair of cquivalent projections e, fe.#, there exist projections
1)1 J1€Pa, 00y = fify = 0 and unitary elements u,, u, € 4, such that

e=¢ + e, S=H+1

“x“’x"x = fu ugesu, = f3
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YE.4.8. Let ¢, fe P 4, with e finite, f properly infinite. Then
e < f<«2(e) < z(f).
1E.4.9. Let ¢,fe 2 4 be equivalent finite projections. Then
l—e~1-—f.
Consequently, there exists a unitary element u € 4, such that u*eu = f.

E.4.10. Let ee P4 be a continuous projection (i.e., the reduced algebra .#, is con-
tinuous). For any natural number n there exists a finite set {e;,...,e,} € Pu
n

of equivalent, mutually orthogonal projections, such that e = Y, e,.
i=1

E.4.11. Let # be a (properly) infinite factor and e, fe #.4. Then
‘ eVf~lee~lorf~1

E.4.12. A projection e e 2 4 is said to be minimal relatively to the central support
if e # 0 and

fePa f< e,.Z(f)=z(e)=>f=e.

Show that a non-zero projection is minimal relatively to the central support iff
it is abelian.

A factor is of type I iff it contains a minimal projection and, in this case, it
is s-isomorphic to a #(5¢), the dimension of J# being uniquely determined.

E.4.13. Any finitely dimensional von Neumann algebra is of type Ifi,. Infer from
this result that if 4 is continuous and e€ 2 4, e # 0, then dim (e)¥’) = + o0,

!E.4.14. One says that ./ is homogeneous of type I, (resp., uniform of type S,).

where v is any cardinal, if there exists a family {e,};¢; of abelian (resp., finite) equi-

valent, mutually orthogonal projections in .4, such that ¥, e; =1, and card I = y.
ter

In this case, # is of type I (resp., semifinite).

Show that for any von Neumann algebra # of type I (resp., semifinite and
properly infinite) there exists a family I’ of distinct cardinals (resp., distinct
infinite cardinals) and a family {p,},er of mutually orthogonal central projections,
such that ¥, p, = 1, and, moreover, #p, be homogeneous of type I, (resp., uniform

E.4.15. If n is a natural number, and .# is homogeneous of type I,, then any
family of non-zero, equivalent, mutually orthogonal projections in .# has at most
n elements. In particular, if m, n are natural numbers, whereas .4 is homogeneous
of type I,, and of type I,, then m = n (see also Section 8.4).

E.4.16. Let 4 be a von Neumann algebra, which is homogeneous, of type I,
Show that there exists a commutative von Neumann algebra 2, which is s-isomorphic
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to the center of #,and a Hilbert space #, such that .# be spatially isomorphic

102 ® #0r).
In particular, any factor of type I is s-isomorphic to w(x’), where ¥ is

a suitable Hilbert space.
.
Ed.17. Let e, f;,. . ., f. € Pa, with abelian fi,...,f,. If e< Y f;, then there exist
. K=t

mutually orthogonal, abelian e, ..., e, €24, such that e = Y e,
J=1

E.4.18, Let .# be a von Neumann algebra of type I (resp., of type II; resp.,
of type 1II),and e € # 4. Then#, isof type I (resp., of type II;resp., of type III).

E.4.19. Show that any factor of type II is spatially isomorphic to the] tensor pro-
duct of a factor of type II, by a &(#).

IE.4.20. Let .# be a finite von Neumann algebra and 5 a Hilbert space. Show
that the von Neumann algebra # ® #8(o¢)is finite if dim (3¢) < + o0, and properly
infinite, if dim (o) = .

1IE4.21. Let e€ P 4 be such that
pEP2, ep abelian = ep = 0.
Show that there exist e, e,€ 2P 4, €65 = O,Vsuch that
e= 'e, + ey
z(ey) = z(ey) = z(e).

E.4.22, Show that any abelian von Neumann algebra is s-isomorphic to a maximal
abelian von Neumann algebra.

E4.23. Let .4 be a von Neumann algebra and “~” an eqmvalenoc rclatxon
in @4, such that

() If {e;}1ar and {f},e; are families of mutually orthogonal projections in
A, such that

elth iEI,

then .
Z a=Yfi
ier ier _
(ii) If e, f€ P 4 and if there exists a unitary element u € .4, such that
e = u*fu,
then

exf.
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With the help of Proposition 4.12 and of E.4.9, show thatif e, fe ? 4, and
‘ A .y
exf.

Consequently, the relation *“~* is the minimal completely additive extension of
the relation of “‘unitary equivalence™.

E.4.24. Let # be a factor. Show that:

(1) any non-zero two-sided ideal of .4 is w-dense in 4.

(2) if # is finite, or of type III and of countable type, then .# has no non-
trivial two-sided ideals.

(3) if # is semifinite and properly infinite, then the linear hull of the set of all
finite projections in . is equal to the smallest non-trivial two-sided ideal of 4.

(4) if # is of type III, but it is not of countable type, then the linear hull
of the set of all projections in ., which are of countable type, is the smallest non-
trivial two-sided ideal of 4.

then

Comments

C.4.1. The geometry of projections developed in an algebraic frame, started by
C.E. Rickart [1] and by I. Kaplansky [13}, [17], [22], for the so-called s-Baer
rings. A complete exposition of the results obtained in this direction can be found
in the book by S. K. Berberian {11].

A C*-algebra, which is, at the same time, a s-Baer ring, is called an AW*-
algebra (algebraic W*-algebra; for the notion of a W*-algebra, which is, essen-
tially, the same as that of von Neumann algebra, see C.5.3). For AW*-algebras
almost all results in this chapter are true, with essentially the same proofs. Any
commutative 4W*-algebra is s-isomorphic to ¥(f2), where Q is a stonean space
(a Hausdorff compact space, in which the closure of any open set is open), whereas
any commutative von Neumann algebra (commutative W*-algebra) is s-isomorphic
to €(£2), where Q is a hyperstonean space (cf. J. Dixmier [17]). For expositions of
these results see W. G. Bade [2] and L. Zsidé [4].

C.4.2. R. V. Kadison and G. K. Pedersen [1] defined an equivalence relation for
the positive elements of a von Neumann algebra .#; namely, two elementsa, be.#,
a,b > 0, are said to be equivalent if there exists a family {x,};e; = 4, such that

a=Y, xIx, b=Y xx
i€t Iel

They developed a theory for this equivalence relation, which is similar to the geo-
metry of projections, and they showed that, for projections, the equivalence they
introduced coincides with the usual equivalence of projections (4.1).

C.4.3. From exercises E.4.14 and E.4.16 there follows a complete description of
the structure of von Neumann algebras of type I.
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The structure of the continuous von Neumann algebras is still far from being
well understood, even for the case of separable Hilbert spaces. Since, in this case,
a “reduction theory™ exists, which reduces the study of general von Neumann
algebras to that of the factors — theory which was developed by J. von Neumann
(15] (sce also J. Dixmier [26), L. Zsidd [3]), the difficulty remains the classification
of the continuous factors,

F.J. Murray and J.von Neumann [3] constructed two non-isomorphic
factors of type II,. As late as 1963, J. T. Schwartz [1] constructed a third factor
of type II,. S. Sakai [25] and Wai-Mee Ching [1] added two more examples
of non-isomorphic factors of type 1I,. J. Dixmier and E. C. Lance [1] constructed
two other factors of type II,, whereas G. Zeller-Meier [5] succeeded in constructing
another two new factors. Thus, in 1969, only nine non-isomorphic factors of type II,
were known. In the same year, D. McDuff [1] constructed a countable family
of mutually non-isomorphic factors of type II,; afterwards, D. McDuff [2] and
S. Sakai [28] have shown that there exists a family of mutually non-isomorphic
factors of type 1I,, having the power of the continuum. In the same article, S. Sakai
has shown the existence of a family, having the power of the continuum, of mutually
non-isomorphic factors of type Il.. For an exposition of the present state of the
theory of factors of type II, we refer to D. McDuff [3], S. Sakai [32], and to the
recent papers of A. Connes [14 — 19], [21], [22].

As far as the factors of type III are concerned, F.J. Murray and J. von
Ncumann have shown the existence of a factor of type III. Only in 1956, L. Pu-
kinszky {4] found a second example of a factor of type III and, afterwards, in
1963, J. T. Schwartz (2] found a third example. Thus, in 1967, only three mutually
non-isomorphic factors of type 1II were known. In the same year, R. T. Powers[1]
proved the existence of a family of **hyperfinite” factors of type 1II, having the
power of the continuum; in 1968, H. Araki and E.J. Woods [3] found another
family of mutually non-isomorphic hyperfinite factors of type III, having the power
of the continuum. In 1970, S. Sakai [27] showed that there also exists a family of
mutually non-isomorphic non-hyperfinite factors of type III, having the power
of the continuum. Expositions on this state of the theory of factors of type III
can be found in J. T. Schwartz [5] and S. Sakai [32].

Recently, the theory of factors of type III greatly expanded, overcoming
the stage of the “fight with cardinals™. These investigations started with the paper
of A. Connes [6] and were developed by A. Connes [8 — 11], {22 — 24] and M. Take-
saki [29], [33]. The main technical instruments used in these investigations are the
cross-products, infinite tensor products and, especially, the theory of Tomita, which
we shall present in Chapter 10.

The structure and the classification of factors is, at present, one of the main
ficlds of rescarch in the theory of operator algebras.

Cdd. Let .4 < B(r) be a von Neumann algebra and 2 be the center of .
Forany x €.4 we dengt_g_ by #(x) the convex hull of the set {u*xu; u € 4, unitary}
and by ¥(x)" (resp., ¥(x)") the closure of #(x) in the uniform topology (resp.,
the w-topology). Following an idea of J. von Neumann, J. Dixmier [12] introduced
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the sets . L
X(x)=2n Ux)",
4(x) = Z nu(x)".

The fundamental result obtained by J. Dixmier is the following

~Theorem 1. Let M < B(#) be a von Neumann algebra. For any x € # one has that
X(x) # 9.

With the help of the spectral theorem, the proof reduces to the case in which x
is a projection, whereas, in this case, the proof uses the geometry of projections
(see J. Dixmier [26], Ch. III, § 5). The significance of this theorem is discussed
in C.7.1.

As far as the inclusion X'(x) = %(x) is concerned, H. Halpern [13] and
S. Stritild and L. Zsidé [2] have proved the following

Theorem 2. Let # < B(o¥) be a properly infinite von Neumann algebra. Then
the following properties are equivalent

(i) for any xe M the equality X (x) = €(x) holds.

(ii) A is of countable type. .

In the case of finite von Neumann algebras the equality X(x) = ¥(x) always
holds; more precisely, these sets reduce to a single element (see C.7.1).

By studying the derivations of von Neumann algebras, S. Sakai [17] proved
the following

Theorem 3. If # < B(H) is a von Neumann algebra of type III and of . countable
type, then H (x)\{0} # O, for any xe M, x # 0.
On the other hand, L. Zsidé [5] obtained the following result

Theorem 4. Let M < B(H¥) be a properly infinite von Neumann algebra. Then,
for any xe M, the set €(x) is the w-closed convex hull of the set 2 n-{u®*xu;
ue.#, u unitary}”.

C.4.5. Bibliographical comments. The results in this chapter were obtained
by F. J. Murray and J. von Neumann for the case of factors. The reduction theory
of J. von Neumann [15] provided the possibility of extending these results to von
Neumann algebras with a separable predual. In general these results have been
obtained by global methods by J. Dixmier [18] and I. Kaplansky [13], [17], [22].
In the book by J. Dixmier [26] the classification of von Neumann algebras is per-
formed on the basis of apparently different criteria, from those we have given here
(loc. cit., Ch. I, §§ 6, 8), but one can prove that it is equivalent to what we have
given here (loc. cit., Ch. III, §§1,2,8). The proof of Theorem 4.7 is due to
A. Lebow [l1]. .

The result in Theorem 4.23, for closed ideals, as well as Corollary 4.23, are
due to Y. Misonou[1]. In the general form given here, the result belongs to D. Voicu-
lescu [2]. We note that if the ideal J of 2 is closed, then M (3J) is closed, too
(see J. Dixmier [26], Ch. III, §5).

In our exposition we used J. Dixmier [26] and 1. Kaplansky [22]. The
results E.4.4, E.4.5, E.4.6 appeared in the course by D. Topping [8].






5
Linear forms on algebras
of operators

This chapter is dedicated to the study of the predual of a von Neumann algebra,
i.e., to the study of the w-topology in the algebra. In this manner, ‘the algebra
appears to be, and it is studied as, the dual Banach space of its predual,

5.1. Let & < #(#) be a s-algebra of operators. By a form on & we shall
mean any linear functional on &. To any form ¢ on & one can associate its
adjoint form ¢*, defined by

¢*(@) = 9(@*), aed.

A form ¢ is said to be self-adjoint (or hermitean) if ¢ = @*. The form @ is
self-adjoint iff it takes real values at the self-adjoint elements of the s-algebra .
Any form ¢ has a unique decomposition .

@ =@, +ipy

where @, and @, are self-adjoint forms. The form @ is bounded iff ¢, and @,
are bounded.

A form ¢ on & is said to be positive if it takes positive values at positive
clements of &f. If & is a C*-algebra of operators, then any positive form on & .
is self-adjoint.

5.2. Proposition. Any positive form @ on a C‘-algebra & is bounded.
Proof. Let

= sup {p(a); ae &, a>0, la] <1}

If & = 00, then there exists a sequence {a,} = &, a, > 0, la] <1, such that
@(a,) > n. On the other hand, for any sequence (A), of positive numbers, such
- -] [--]

that 3,1, < 400, the series z A.a, converges to an clement a € &, and, since
-] Rl
@ is "positivc, it follows that .

:I:]ll.w(a.)= ¢(.§"3 l.a.) < q»(a), m=12,...

-1



112 LECTURES ON VON NEUMANN ALGEBRAS

[--]
It follows that the series ¥, A,0(a,) converges. Since the sequence {4,}, 4,> 0,
A=l R .

such that 3} 4, < +o00 was arbitrary, this fact contradicts the relation '<p(a,,) > n,

A=l
n 2 1. Consequently, we have a < o0, -
Now, forany x = x*e &, |x|| <1, we have

[0()] < o(x*) + ¢(x7) < 2a,
Q.E.D.
whence [lo] < 42,

5.3. Proposition. (the Schwarz inequality). Let ¢ be a positive form on the
s-algebra sf. Then, for any a,be of we have

Ip(ad) |* < o(aa*) o(b*b).

Proof. If ¢(ab) = 0, the inequality is obvious and so we can assume that
¢(ab)# 0. For any 2 € € we have 4

, o((a + %) (Aa + %)) >0,
1.c.,

[2[*p(aa®) + Ap(ab) + Ap(ab) + o(b*b) > 0.
If we take in this inequality 2 = (| p(ab) |/p(ab)), t e IR, it follows that
1'p(aa®) + 2t| p(ab) | + ¢(b*b) > o.

If we now write that the discriminant of this real polynomial is negative,
we get

|@(ab) |t — p(aa*) p(b*b) < 0.
Q.E.D.

5.4. Proposition. Let ¢ be a bounded Jorm on the C*-algebra &, assumed to have
the unit element. Then o is positive iff o(1) = |g|.

Proof. If @ is positive, with the help of the Schwarz inequality we easily
get o(1) = llof.

Conversely, assume that (1) = llp] =1 and that there exists an ge o,
a > 0, such that ¢(a) is not positive. Then there exists a disk {2 14— 2] <r}
in the complex plane, which contains the spectrum of g, but does not contain ¢(a).

Since the spectrum of the normal operator @ — 1, is included in the disk
{2i 12] <r), we have la — A0 < r. It follows that

|#(a) = Jo| = |@(a) — Lp(1)] = | p(a — 2)] < la— 2l <r,

a contradiction.
Q.E.D.

5.5. Proposition. Let M c_.'?(x’) be a von Neumann algebra and ¢ a bounded
Jorm on M, Theno is positive iff it takes positive values at all the projections in 4.
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Proof. The proposition is an immediate consequence of Corollary 2.23.
Q.E.D.

5.6. Let ¢ be a bounded form on a von Neumann algebra /# — #(#). One
says that ¢ is completely additive if, for any family {e;},e; of mutually orthogonal
projections in .#, one has

o (Y e) = Y, ole).
iel iel

Obviously, any w-continuous form on . is completely additive. As we shall see
later (Theorem 5.11), the converse is also true. .

In order to prove this, we need some preparation.

Let ¢ be a bounded self-adjoint form on # and a« a real number. By
taking into account Corollary 2.23, it easily follows that, if there exists an a ek,
a >0, |a]l <1, such that ¢(a) > a, then there exists an e € 2.4, such that ole) > a.
Consequently, if ¢(e) < « for any e € 2 4, then @] < 4a.

5.7. Lemma. Let ¢ be a bounded, self:adjoint, completely additive form on M.
For any ec P4 there exists an fe P4, [ < e, such that o(f)> @), whereas
the restriction of ¢ to fAHf be positive,

Proof. Let {e;};e; be a maximal family of mutually orthogonal projections,

majorized by e and such that @(e,) <0, iel; let f=e — Y. e, Since the consi-
ier

€
dered family is maximal, ¢ is positive at any projection which is majorized by f and

therefore, according to Proposition 5.5, it is positive on f4f. On the other hand”

since ¢(e;) <0, iel, and since @ is completely additive, we have o(N = ole)
Q.E.D.

5.8. Lemma. Let ¢ be a completely additive positive form on M and let e € P a,.
e#0. Then there exists an fe Px, f#0, f < e, and a { €, such that

le(xN| < IxfEll, xe .
Proof. There exists an n € X, such that
(w0, — @) (€) = llenli* — o(e) > 0.

From Lemma 5.7, we infer that there exists an fe P4, f < e, such that the res--
triction of w, — ¢ to f#/f be positive and

~ (w, — ) () > (v, — @) (o).
It follows that f#0 and, for any x € .4,
I/l — @(fx*xf) = (@, — @) (fx*x/) > 0.
By using the Schwarz inequality (5.3), we get
C leGNIE < o(1) e(x*xf) < (1) Ixfmllt,
and, therefore, we can choose ¢ to be equal to a suitable scalar multiple of #..
Q.E.D..

8 - c. 1540
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5.9, Lemma. Any positive form @, which is completely additive on M, is w-continuous.
Proof. Let {e};e; be a maximal family of mutually orthogonal non-zero
projections in .#, such that for any ie ] there exists a {; € with the property

that
|o(xe)| < lIxeGill, xe.

From Lemma 5.8, we infer that

Ze,=l.

€1
Since ¢ is completely additive, we get
Y. ole) = o(1).
ier =
Let ¢ > 0. Then there exists a finite subset J < I such that, if we ‘denote
e=Ye, f=Ye,
1es €N
we have :
o(f) < ellef .
We now define the bounded forms ¢;, ¢, on 4 by
?1(x) = o(xe), xeA,
?x(x) = o(xf), xe M.
Then @ = @, + @,, @, is w-continuous, because
I‘Pl(x) | < ‘§, "xelCl"’ x G.//,
whereas o, < ¢, as a consequence of the following computatibns
121 = 1e(NI* < eMe(fx*xf) < llgl IxI*e(f) < )xt, xe.

_chce we obtained a @, €.4,, such that |p — ¢:ll <e. Since 4, is uniformly closed
:;1 «A* (cf. Theorem 1.10), we infer that ¢ €.4,, and this shows that ¢ is w-con-

nuous. )
.E.D.

) 0 Q
5.10. Lemma. Let ee () be a projection, xe 20F), Ixl <1 and «, B,y be
real numbers, such that a, B, af — y* > 0. Then

ae + (1 — e) + y(ex(l — &) + (1 — e)x*e) > 0.

Proof. For any real numbers s,¢ we have
ast 4 Bt — 2|y|st > 0.
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Hence, for any £ e ¥ we have -

a(e€| &) + B — e)E 1) + ylex(l — e)¢|&) + v((1 — e)x*el|{)
= aflef||? + BlI(1 — e)Z[®* + 2y Re(x(1 — )¢ |ed)

Zafell® + BI(L — e)3fi* — 2{v [ 1Q1 — &)1l 1ed]l > 0.
: Q.E.D.

5.11. Theorem. A bounded form on a von Neumann algebra is w-continuous iff it
is completely additive.

Proof. Let @ be a completely additive bounded form on the von Neumann
algebra . We can assume that ¢ is self-adjoint and [l@|| < 1. We write

p=sup {p(a); aeH, 0<a<l}

Then 0 < p < 1. Let ¢ > 0, & < 3/4. There exists an ae 4, 0 € a < 1, such that
¢(a) > p — &. From Corollary 5.6 and Lemma 5.7, we infer that there exists a
projection e, €4, such that ¢(e,) > p —¢, whereas the restriction of @ to e,.#e,
be positive. From Lemma 5.9, we infer that the restriction of @ to e,.#e, is w-con-

tinuous.
Let e, = 1 — ¢;. We define the forms ¢, e#* by

@y(%) = plexe)), xeM; i,j=1,2.
Then ¢,, is w-continuous and @ = @y + P12 + P + Pas If fePa, [ <e, then
p > ole, + )= ole) + o(f) > p — e+ o(f),

and, therefore, @(f) < e.
We now investigate the norms [@.l and Joyull. Let xed, x| <1. We

_denote
y = (1 — e)ey + ee; -+ (1 — &)'Plesxes -+ exx*ey).
Then
1 — y = eey + (1 — £)es — €¥3(1 — £)'P(erxes + exx*ey).
With Lemma 5.10 we infer that 0 < y < 1; hence:
1> 00) = (1 — Oele) + epler) + &7(1 — &)\ Pp(exes + ex*e)
> (1 —e)(u—e) —e+ 271 — £)V2 Reg(e;xey).
We hence obtain .

1 24p—e 1 3
Re = Re g(e,xes) < —et o —¢1? = 3t
P1a(x) e p(erxes) 2 (-7 2 (1/ay"

Therefore, we have [@il < 3¢ and, analogously, [@n] < 3¢'.
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We denote by ¢ the restriction of (— ¢) to exAe,. Then Y| <1 and, for
any projection f < ey, we have Y(f) > — e. By repeating for ¥ the preceding argu-
ment, we get the projections f;, f,, such that f; + f; = e, and, by denoting

Vi) =y(fixf)), xeenlley; i,j=1,2,

the following properties should hold: y,, is w-continuous, [[y,,[ <3e'3, |y, |l<
<3c'%, and, for any projection 1< f;, Yn(f) < . It follows that |Yn(f)| < e,
for any projection f < f;; hence 122l <4e (see 5.6). Consequently, we have

¥ — ¥ull < 4e + 6617,
We define the form ¢, on 4 by
Yo(x) = Ynlexe;), xedl.
Then ¢, is w-continuous and
19 — @u — Yol < 4e + 12677,

Since .#, is closed in * and 0 < & < 3/4 is arbitrary, it follows that oeM,,
i.c., @ is w-continuous. A

Q.E.D.

5.12. Corollary. 4 bounded Jorm on a von Neumann algebra is w-continuous iff its

restrictions to maximal commutative von Neumann subalgebras of M are w-con-
tinuous,

5.13. Corollary. Any s-isomorphism between two von Neumann algebras is w-con-
tinuous,

Proof. Let .4 < B(#), # = B(#) be two von Neumann algebras and let
Rl - A bea s-1somorphism between them. Then for any element x € 4 we

have g(x*x) = a(r(x*x)) (see Corollary 2.8) and, hence, by taking into account
Lemma 2.5, we get :

bl = %2l = In(x*)] = In()*n(ol = faGo)e,

i, 7 is an isometry.

Letybea w-continuous form on 4. Then @ =y o mis a bounded form on.#.
If {c,}.,e,ls a family of mutually orthogonal projections in .#, then {n(e)}ier is
a family of mutually orthogonal projections in A and

“(Z t’:) = R(V el)= V a(e) = Z n(ey).
let et ler iel

Consequently, we have

#(Te)=v(x(Fe)) = WEne) = T vinte)) = & 9.

Thus, @ is complc_tcly additive and, by virtue of Theorem 5.11, ¢ is w-continuous.
It follows that x is w-continuous,

Q.E.D.
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5.14. Another consequence of Theorem 5.11 is the characterization of the weakly
relatively compact subsets of the predual of a von Neumann algebra.

Theorem. Let # < B(#) be a von Neumann algebra, M, the predual of M and
F < M, anorm-bounded subset. The following assertions are equivalent

() F is o(My; M)-relatively compact;

(ii) for any countable family {e.} of mutually orthogonal projections in A
one has @(e,) — 0, uniformly for pe F.

Proof. (i) = (i). Since # is a bounded subset of 4, < #*, it follows that
its o(M*; M)<closure F in M* is o(M*; M)-~compact. It is, therefore, sufficient
to show that #F < #,; indeed, we then have ¥ < F cMyand Fis o(Me;
)-compact, since the (M ; H)-topology is just the restriction of the o(#4*;
Al)-topology to #,.

Let ¢ € #. There then exists a net {@u}rex = F, which is o(.#*; M)-con-
vergent to @.

Let {e;} ;e be a family of mutually orthogonal projections in # and e = 'Ee:, e

We then have
o(e) = lim @(e),
kekK

ole) = lim @ (e), for anyiel,
kek

oe) = Y, @ile)), uniformly for keK.
fet

In fact, we have y(e) = ‘Z y(e,), uniformly for Y € #. Indeed, if this be not

true, then there exists a sequence {Y.}» = F, a sequence (J,), of finite mutually
disjoint subsets J, = I, and a 6 >0, such that for any n we havc|,§ Yale)| =6.

We define f,= 3 e, Then {f}, is a countable family of mutually orthogonal

l Jll . . . .0 -

projections in J{Eand, for any n, we have |¥( 1)1 = 6, a contradiction if (ii) is
taken into account.
It follows that

ole) = E‘Za, (e,

hence ¢ is completely additive and, therefore, by virtue of Theorem 5.11, @ is
w-continuous, i.e., @ € s.

(i) = (ii). We shall proceed by contradiction.

Hence, there exists a sequence {ea}s of mutually orthogonal projections
in ., a sequence {p,} = F and a & > 0, such that, for any n, we have

[@aled | > 40

Since F is o(M4; #)-relatively compact, we can assume that the sequence
{@.} is o(.#4; M)-convergent to a form @e.#,. Since the sequence {e} is
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w-convergent to 0, we have lim ¢(e,) = 0 and, therefore, we can assume that, for
A= 00

any n we have '

lo(e)| < 4.

The sequence of forms ¥, = ¢, — p €M, is a(v/{.;./l)-convergent to 0 and, for
any n, we have : :

) 1¥u(e)| > 36.

We shall now construct an increasing sequence {n(1), n(2),...} of natural
numbers, with the following properties ‘ -

k—1 :
Q) Y Yam(enp)| <6, forany k=2,3,...
J=1
. o0
3) Y Wam(e)<d, forany k=1,2,...
Jeantk+ 1) :

In order to do this, let us first observe that for any Y e/, we have
wv .
%, [¥le)] < +oo,

, - o
because for any bounded sequence {44} of scalars, the series Y Ae,is w-convergent,
n=l

[ -]
hencetheseries 35 40(e,) is convergent.
A=l

We begin the construction by taking n(1) = 1 and we assume that n(1),...
ceny — 1) have already been constructed, such that condition (2) be satisfied
for k=2,...,p— 1, whereas condition (3) be satisfied for k = L...,p—2.

i o«
Since {y.} is o(.#,;.#)-convergent to 0 and since Y [Wap-nle) < +oo, for a
: j=1
sufficiently great n the following inequalities are satisfied

<4,

-1
ng wl(eltl))

I§ l'tbu(p-l)(ej)l < é.

Consequently, r_elnu‘on (2) is satisfied for k = P, whereas relation (3) is satisfied
for k = P — 1, if we choose n(p) > n(p — 1) to be sufficiently great. The required
construction is thus possible by induction.
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From relation (3) it follows that

©0

(4) z l'lln(k)(en(j))l‘: 6’ k= l' 2.- )

J=k+1

. L]
We now consider the projection f= Y e, €#. We then have
i=t

‘l/ll(k)(.f) = ng wn;k) (en(]))p k= 1, 2,. .o

From relations (1), (2) and (4) we infer that
l'l’n(k)(f)l > 6! k=1, 2,...,

thus contradicting the fact that the sequence {¢,}» is (M 4; #M)convergent to 0.
' Q.E.D.

5.15. The w-continuous positive forms on a von Neumann algebra are also called
normal forms. Let @ be a normal form on . and let ae#,a >0, be such that

¢(a) = 0. Then ¢(s(a)) = 0. Indeed, in accordance with Corollary 2.22, there exists
an increasing sequence {e,} < 2.a, such that V e, = s(a), and ae, >(1/n)e,, for

any n; it follows that g(e,) =0, for any n, and, therefore, @(s(a)) = 0.

Ife, feP.a, o(6)=0and p(f)=0, then plev £)=0, because eV f =s(e + /).

Consequently, if ¢ is a normal form on .4, then the family {e €Pa;
¢(e) = 0} is increasingly directed and, therefore, by denoting by 1 — s() the Lu.b,
of this family, we infer that ¢(1 — s(@)) = 0. The projection s(p) is called the
support of @. One says that @ is Saithful if s(@) = 1.

With the help of the Schwarz incquality, one can casily prove that

o(x) = p(xs(p)) = @(s(P)x), xeA.
From the definition of the support it follows that
xeM, x>0, @(x)=0z=s(@)xs(p)=0;
in particular, the form ? is faithful iff the implicatiovn

xeH, x>0, o(x)=0=>x=0.

holds.
Let @ be a form on 4 and ae.4. We then define the forms

(L9) (x) = @lax), xe.H,
(R.?) (x) = ¢(xa), xeH
(T.9) (x) = p(a*xa), xeH.
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If ¢ is bounded (resp., w-continuous), then Lo, R, T,p are bounded
(resp., w-continuous).

5.16. The following result often allows the reduction of problems on w-continuous
forms to problems on normal forms. '

Theorem (of polar decomposition Jor forms). Let ¢ be a w-continuous form on
the von Neumann algebra M. Then there exists a normal Jorm |@| and a partial
isometry ve.H, uniquely determined by the conditions _

¢ =R,|o],
v*o = s(|@|).

Proof. The set {xe.#; x| <1, ¢(x) = |lol} is a non-empty, w-compact,
convex part of .#. Let u be an extreme point of this set. Then u is an extreme
point of the unit ball of ./; consequently, by virtue of Proposition 3.19, it is a
partial isometry.

We define ¢ = R,9. Since

V(1) = o(u) = ol > Y] > y(1),

it follows that y(1) = ¥ll. From Proposition 5.4, we infer that § is positive and,
therefore, it is normal.

We define v = u*s(y). Since u is a partial isometry, we have u = uutu,
whence Y(1 — uu®) = o(u — uu*u) = 0 and, therefore, uu*> s(y). It follows that

and, for any x €.4, we have

V() = ¥(x s¥)) = o(x s(W)u) = g(xv*).

We shall now prove that ? =Ry, ie., ¢(x) = Y(xv), for any xe/.
Indeed, if this is not true, then there exists an xed, x| <1, such that

o(x(1 — vv*)) =a> 0.
For any natural number n we have
[no® + x(1 — co¥))2 = l(no* + x(1 — v*)) (no + (1 — bv‘)x‘)l]
= [n**o + x(1 — oo*)x*] < nt 41,
hence ' '

l(no® + x(1 — vo*)| < [pl(n* + nya,
On the other hand, we have

P(10* + x(1 — 00%)) = Y(n) + @(x(1 — vo*)) = [oln + a.
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Thus, we have
loln + « < @l + DV2;

an impossible inequality.if n is sufficiently great.

It follows that, if we denote |@| = ¥, we have ¢ = R,|@ | and v*v = s(|@]),
the existence part of the theorem being thus established.

Let  and §’ be two normal forms on 4, and v, v’ partial isometries
in 4, such that ¢ = Ry = R’ and v*v = s(¥), v"*v’' = s(y').

We have

¥(1) = Y(v*v) = (v*) = ¥'(v*0") = Y'(v"*0'v*0") = @(v"*0'v®)
= Y(v"*v'v*0) = Y(v"*?'),

hence v'*v’ > s(y) = v*v. Analogously, we have v*v> v'*v’, hence v*v = v’y =e,
Since v'*v = v'*v'v'*vv*v = ev'*ve eefle, We can write

v'*v = a+ ib,
where a, b € efle are self-adjoint. We have
¥(a) + ig(b) = Y(v'*v) = o(v'*) = ¥'(v"*v") = I¥'ll = ¥,

hence Y(a) = [y|l. Hence, (e — a) = 0. Since e —a > 0, we find that a=e.
It follows that [le + ib]] < 1, whence b = 0. Consequently, we have

v'*v =e.
Since v'*v = e, we also have v*v’ = e, and we can write
V'Y’ = 0’0’0’ = vev'* = v'v*vv*v'v'e,
v'o'*(1 — oo*)'v'*t =0,
(1 — vo*)o’v'* =0,
v'o'* = vv*v'v'* < vut.
Analogously, we find that vo* < v'v'®, and, therefore,
vo®* = U0’ = f.
We finally have
v = vv*o = fo=vv* = ve= V" =1,
and, for any xe./,
V() = Y(xv*o) = p(xo®) = Y(xo°v") = ¥'(xe) = ¥'(e).

The uniqueness part of the theorem is thus proved.
Q.E.D.
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5.17. Theorem 5.16 then gives us:

Theorem (the Jordan decomposition). Let ¢ be a w-continuous self-adjoint ] Jorm
on the von Neumann algebra 4. Then there exist normal forms ¢, and @,, uniquely
determined by the conditions .

Q=0 — 4’2*
s(¢1) s(ps) = 0.

Proof. Let Y be the normal form on .# and ve the partial isometry,
which, in accordance with Theorem 5.16, satisfy the properties

Q= Ruw’
v*o = s(y).

We now define the normal form y, = T,3. Then we have S(lﬁo) = po*, Since go'is
self-adjoint, for any x e.# we have

?(x) = @(x*) = Y(x*0) = Y(v*x) = Y(v*x0*) = Yo(xv*).
From the uniqueness part of Theorem 5.16, we get o
v=0* and § = y},.

It follows that v = e, — e,, where e, and e; are orthogonal projections. We define

@1 = R, and ¢, = — R,0. Since y = Yo and since s(y) = e, + e,, we infer
that, for any xe.#, we have
Y(x) = Y(erxe, + eyxey).

We hence infer that o, anq 3 are positive. The other conditions in the statement
9f the thdconcm are now easily verified and, thus, the existence part of the theorem
is proved.

Let now ¢; and @2 be normal forms whose supports ej, e; be orthogonal,
and such that @ = @} + @.. We denote V' =0+ psand v’ = ¢ — e}. It is easily
scen that @ = R,.§’ and v'*y’ = s(y"); hence, from the uniqueness part of Theorem
5.16, we have v’ = p and V' = . It follows that

e;_e;=el—e!t
€1+ eg = SW)=s()=e, + €y,
hence e} = ¢,, ¢} = ;. We now immediately get the equalities
Pr1=01 ¢1=0,

Q.E.D.
5.18. Let of be a C*-algebra with the unit clement, ) a Hilbert space and

R - @), x(1) =1, a o-homomorphism. Then any vector § e determines
& positive form @ = w, o on of.
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(;onversely, let ¢ be a positive form on a C*-algebra «f, assumed to have
the unit element. With the help-of the Schwarz inequality, it is easy to show that
the set

N, = {ae of; p(a*a)=0}

is a left ideal of of. For any ae o we shall denote by a, the canonical image
of a in of, = [N, We define on s, a scalar product by the relation

(a"bO ( 4 = ¢(é‘a)’ a.) b’ € d,.

Then &, becomes a separated pre-Hilbert space. We denote by J, the Hilbert
space obtained by the completion of «f,. For any xe of we define

n3(x)a, = (xa),, o€ A,
Since
173 (x)a,le < lx[} la,l,,

" it follows that z3(x) can be uniquely extended by continuity to an operator m,(x) €
< B(H,).
It is easily seen that the mapping

Tyt o 3 X > 7 (x) € 20¢,)
is a s-homomorphism, 7:,(1) =1 and:
P = 0, oT,.
‘We observe that the vector 1, €, is cyclic for n(), ie.,
(rg(sf Nyl = Hy.

Proposition. Let # be a von Neumann algebra and ¢ a normal form on M.
Then =, is a w-continuous s-homomorphism, n,(1) =1, n(H4) = B(¥,) is avon
Neumann algebra and

¢ = 0’1. o ﬂ’,
1,e#, is a cyclic vector Jor m(M).

Moreover, if s(p) =1, then =, is a s-isomorphism of M onto ny(#) and 1, isa
separating vector for n,(H). 4

Proof. Let {x};er = M, x€.#,% 1 x. Then n,(x) is an upper bound for the
increasing net {r(x)};er and, since ¢ is normal, for any ae.# we have

l,ié‘,‘ (ny(x)a,la,) = 1}2 o(a*xa) = ¢(a*xa) = (n,(x)a,]a,).

Consequently, we have 7,(x)) T 7,().
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In particular, =, is a completely additive mapping. Since l]n¢!l < 1, by virtue
of Theorem 5.11 (see also E.5.17), it follows that =, is a w-continuous *-homo-
morphism. The fact that (/) c #8(#,) is a von Neumann algebra is a conse-

quence of Corollary 3.12. ,
Let us now assume that s(¢) = 1. If xe.# and To(x)1, = 0, then x, = 0,

i.c., @(x*x) = 0, whence x = 0.
Q.E.D.

By taking into account E.5.6, from the preceding proposition it follows that
any von Neumann algebra of countable type is s-isomorphic to a von Neumann
algebra which has a separating cyclic vector. )

5.19. If ¢ and ¢ are linear forms on a =-algebra of operators, we shall write
o <Y if Y — ¢ is a positive form. ,

Lemma. Let of « B(X), of 31, be a s-algebra, (¥ and ¢ a positive form
on of, suchthat ¢ < we. Then there existsana' e o#',0 < a’ < 1, such that

(p = wa,e.
Proof. For any x, ye o, we have
[00*x)| < o(*») 2p(x* X2 < ||pE| ||x¢].
If we write
(x5 1580 = @(r*x),

we define a positive sesquilinear form of norm < 1 on [«#£]. Hence there exists
a lincar operator a, on [&#¢], 0 < ay < 1, such that

P0*x) = (x§ | ¥E)o = (apx¢] y&).
For any x,y,z€ o we have |
(@8] 28) = 0(z*xy) = (a3 | x*28) = (xaoy¢| 26),
hence
ao(x | [E)) = (x| [E])a,.
Thus, if we denote ¢, = [ e o', it follows that
€oayces€ 5.
Let @ = (¢4 0 a4 0 €)%, Then o' € o', 0 <a' <1, and, for any x € o, we have
Px) = (a6x§ | &) = (a'*x¢ | &) = We(x).
Q.E.D.

;';.20. Lemma. Let ¢ be a positive Jorm on the C*-algebra of andac . If L >0,
hen

Lp < fale.
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Proof. Let xe o/, x > 0. Then
(Lp)x) = oax) = o(ax'x12) < g(axa*)2p(x)!2.
Since L,p > 0, it follows that
p(axa*) = (L,9) (xa*) = {L,9) (@x*) = (L,9) (ax*) = o(a*),

hence
Lao >0,
L)) < (La) (P20,

We proceed analogously with the forms
, L@, ooy Lyn-190,
and, by induction, we get A

(L9) (%) < (Lyn @) (YT @(x)}2 44

< lolelal Jx|Vemp()+ - +17.

By tending to the limit for n = o<, it follows that

(Lp) (x) < lalo(x).
. Q.E.D.
5.21. The following result, due to S. Sakai, is an extension of the Radon-Nikodym
theorem from measure theory; it is very important in itself and also because of
its applications.

Theorem (of Radon-Nikodym type). Let @ and ¢ be two normal forms on the
von Neumann algebra M = R(¥), such that ¢ < V. Then there exists an aeM
uniquely determined by the properties

0<acx<l],
s{a) < s(¥),
Q= L.R.'l’-

Proof. Without any loss of generality, we can assume that s(y) = 1. Then,
because of Proposition 5.18, we can assume that ¢ = wy, with a suitable vector

&es. Since s(¥) =1, we have
xel, xt=0=>x=0,
=
From Lemma 5.19, there exists an @’ €.#', 0 < a’ < 1, such that

Q = m.og-
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We now consider on 4’ the forms ¢’ and [, determined by the relations -
') = (x¢|),
J'&)='¢|af).

From the polar decomposition theorem (5.16; see also exercise E.5.10), it follows .
that there exists a normal form g’ on ', and a partial isometry v’ e #’, such that

J'=Lyg,
g =Lyf".
Thus, we have g’ = L,..L,.¢' = L9, and, with Lemma 5.20, we infer that
g <9 =aw,
If we apply again Lemma 5.19, we getabe#,0 < b <1,such that
8'(¥) = ap(x') = (x'¢| b%), x e’
Let us denote g = %, For any X’ e.#' we have
(€138 = (Lin0) (¥) = (@v'*x¢[8) = (¥E|v'a’ s
(E1ad) =f1(x) = g'(v'x") = ¢'(@'v'*v'x’) = (W& |v'*v'a’).
Since [.4'¢) = o, it follows that
al = v'a'§,
al=v'*'qg't,
Hence, for any xe.#, we have :
P(x) = (xa¢|a'E) = (xv'*v'a’¢ | a'¢) = (xv'd'|v'a'§) = (xa|ad)
= w(axa) = Y(axa),
and the existence part of the theorem is proved.
In order to prove the uniqueness, let a,bed,0<a, b<1, be such that

for any xe.# we have

o (axa) = wy(bxb).
Since
Ixall! = o ax*xa) = w(bx*xb) = || xb&[s,
we can define a partial isometry u’ e 4" by the relation
u'(xaf) = xbe.
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We now consider the following normal forms on .4’
g.(x) = (¥af|), x' e,

gy(x’) = (x'b¢|8), x'ed'.
Then we have
gi(x’) = (x'wal[{) = (Rega) (x'),
u'*u = s(g,).

From the uniqueness of the polar decomposition of g; it follows that the partial
isometry «' maps identically [.#af] onto [#af]. In particular, we have

at = u'a = b¢,
whence
a=>,.
Q.E.D.

5.22. As applications of the Radon-Nikodym type theorem, in the following sec-
tions we present some fundamental results which are essentially due to J. von
Neumann. These results are at the basis of the subsequent theory and are themselves
Radon-Nikodym type theorems.

Let # < #() be a fixed von Neumann algebra and £ e ). The restriction
of the form w, (1.3) to .4 will be denoted also by w,, whereas the restriction of
the form w, to .4’ will be denoted by @;. With the notations already introduced
in Section 3.8, we have the following relations, which can be easily verified

2(pe) = 2pp) = [MM'E),
s(w) = s(w¢|-#) = Py
| s} = slwe|4') = pi |
Lemma. Let ¢ be a normal form on the von Neumann algebra M = B(KH), and {e . If
@ > ar; and s(@) = Py
then there exists an neX, such that
@ = o, and p, = p¢.

Proof. Since @ > ,, and from the Radon-Nikodym type Theorem 5.21,
there exists an ge.#, 0 < a <1, such that

- @ = LR,
s(a) = ().
Since s(w,) = s(p), it follows that s(a) = s(@) = p.
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From Corollary 2.22, there exists a sequence {e,} = 2 4, such that e, and a
commute and : ,

ae, » —!- €ns
n

e, 1 s(a).
Then ae, is invertible in e,.#e,, hence there exists an X, € epfle,, x, > 0, such that

ax, = e,.
We define n, = x,£. Then, for any n > m, we have - --

"".— 'ln"’ = ((xll - xm)él (xn - xm)é)
= 0(x, — x)") = o(a(x, — x,)%a) = ¢(e, — e,,),
and, since ¢(e,) converges to @(s(a)), it follows that {na} is a Cauchy sequence.

Let # =lim »n,. For any xe# we have
M-e 0O

?(x) = (s(a)xs(a)) = lim p(e,xe,) = lim p(ax,xx,q)
A-00 n-s00
= lim (xx,{| x,8) = (xn | 1) = w,(x),
hence ¢ = w,.
, On the other hand, we have n€#§ for any n, hence ne[#¢] and, therefore,
Py < pe- Conversely, we have
@) = lim ax,{ = lim e,¢ = s(a)¢ = p,(¢) = ¢;
B ~e0O L]
i.c., {e.#n, whence p: < py.

Q.E.D.

5.23. Theorem. Let b be a normal Jorm on the von Neumann algebra M < B(¥)
and {eoX. If

s(¥) < p,,
then there exists an nel.#n0[a'¢), such that

V=0,
Moreover, if s(y) = Py, then there exists an ne X, such that
¥ =0, and p,=p;

Proof. Let @ = ¥ + w,. By virtue of Lemma 5.22, there exists an 1, € I,
such that

¢ =0, and p, =p.
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Since ¥ < ¢, from the Raddn-Nikodym type theorem, there exists an a€.4,
0<a<1, such that

¥ = L.R.0,
s(a) < s(@) = p,.
Let us define n = aro. Then, for any x €./, we have -
Y(x) = o,(axa) = 0,(x),

i.e., ¥ = w, Since n = any€ Mno, it follows that 5 e[#¢]. On the other hand,
we have

n = an,es(@)X < pot =M}

Let us now assume that s(¥) = p,. Then, with the preceding notations, it
follows that s(a) = p,,. By taking into account Corollary 2.22, we find two sequen-
ces {e,} = P and {x,} < e fe,, X, > 0, such that

ax, = x,a =é,,
e, 1 s(a).
We denote 1], = X, = X,@No = €xMo- Since #, = xn€.4#1n, we infer that
1o = Pr(0) = s(a) (o) ="l£r: euo €[An).

Thus, we have. p}, < p,,. But p;, = p;, hence p¢ < pp. On the other hand, it is
obvious that p, < p;. Consequently, we have p, = p;.
Q.E.D.

5,24, Corollary. Let # < #() be a von Neumann algebra with the property that
there exists a vector & € X, which is separating for M. Then, for any normal (resp.,
normal and faithful) form @ on M, there exists a vector n €M), such that ¢ = o,
(resp., ¢ = w, and p, = pe)

5.25, Corollary. Let M, c #(H#)), My < A(HH5) be von Neumann algebras, such
that there exist vectors & €H,, &s€Xy which are cyclic and separating for M,

(resp., Ms). .
For any s-isomorphism n: My — M there exists a unitary operator u: X, = Xy

such that, for any x, € #, we have
- (xy) = uoxyou®,

In particular, n is wo-continuous.
Proof. We define a normal form ¢ on .4, by

@(xy) = @y (n(xy)), x1 €44

9-c. 1540
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Then ¢ is faithful, because ¢, is separating for .#,, whereas mis a t-isorporphism.
From Corollary 5.24 it follows that there exists a vector n,, which is cyclic for My,

such that
‘ Q= w”l.
But in this case n, is also separating for .#,;, because ¢ is faithful.
We now define a linear mapping ug : M5, = M0, by .

up(xymy) = n(xy)ng.
This mapping is isometric:
Loy = w.,.(-";‘-\'x) = @(x$x) = wc,("(x?xl» = ||n(x;)& 02

Since the vectors n,, & are cyclic respectively for .,, #,, it follows that the
mapping u, can be uniquely extended, by continuity, to a unitary operator u: ¢, —
— Xy For any x,,y,e.#, we have

r(x)r()és = r(x ) = ueX )y = (UoXy) (1ymy) = Uox Uy 'n(11)&s,

hence r(x;) = wox;ou-t.
Q.E.D.

Excrcises

In the cxercises in which the symbols # < B(H) are not explained, they will denote
a von Neumann algebra M which acts on the Hilbert space 5#.

E.5.1. Let o be a C*-algebra and @ a bounded form on . If there exists an
a€ o, 0% a >0, such that (a) = lloll lall, then ¢ is positive.

ES.2. Let of © #(X). of 51, bea s-algebra. If &, y € # and ifw,,| o is positive,
then there cxists a { e, such that We, | o = wg| . Infer that if @ is a positive

wo-continuous form, then there exist & oo ey &,€52, such that o= Y w,lH.
=1
E.5.3. Let ¢ be a normal form on .« and {x:} a net in the closed unit ball of .#.
Then we have
P(xTx)) = 0 <> x,5(0)3 0.
E5d4. Let ¢, ¥ be normal on .#. Then s(¥) < (o) iff on the closed unit ball

of .4 the topology determined by the seminorm x @(x*x)V? is stronger than
the topology determined by the seminorm x - Y(x*x)lie,

zs.s{.s. On a von Neumann algebra one considers the s-topology given by the
semi-norms

8,(x) = p(x*x)2, xe.,

where @ runs over all normal forms on /.
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Show that if @, is a normal form on .#, such that s(g,) = 1, then, on the
closed unit ball of .#, the s-topology is determined by the norm s,,.

!E.5.6. A projection e e.# is of countable type iff it is the support of a normal
form on .. In particular, ./ is of countable type if there exists a normal form @,
on ., such that s(p,) = 1.

E.5.7. Prove the following implications:
X is separable = the predual .#, of ./ is separable =.# is of countable
type => the closed unit ball of # is s-metrizable.

E.5.8. Show that, for any net {x;} < .#, one has
x; 50 =x¥*x, > 0.

Infer that on the closed unit ball of # the s-topology coincides with so-topology.
Show that for any form ¢ on ., ¢ is s-continuous <> ¢ is w-continuous,

E.5.9. Let ¢ be a normal form on .#. For any e€ P4, e # 0, there exist f€ P.a,
0 # f< e and e, such that

o(fxf) = w(x), xeM.

1E.5.10. Let ¢ be a w-continuous form on .# and ¢ = R,j¢ | its polar decomposi-
tion. Then the polar decomposition of the form ¢@* is

‘P‘ = Ru' l(p‘l' Iq"l = Lv'RuI¢]'
In particular,
o=L,o*], vo*=s(e*]).

E.5.11. Let ¢ be a w-continuous form on .#. Then | @] is the unique normal form
Y on .# with the properties

Iyl = lel,
[e(®) [ < loll¥(xx*), xe.4.
E.5.12. Let @, ¢ be w-continuous forms on .#. Then, for any xe.#, we have
e+ ¢ < (el + W) (o (xx*) + [¥](xx*).
E.5.13. Let @ be a normal form on .# and a€.#. Then
L] < lale.
E.5.14. Let @ be a w-continuous form on .# and e € # 4. Show that

Lo =9 < Lol =0l
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!IE.5.15. Let ¢, ¥ be normal forms on .#. Show that

s(@)s(¥) = 0.« [l — ¥|| = ||oll + [¥].

E.5.16. Any normal form on the von Neumann algebra .# = #(:#) extends to
a normal form on B(¢). Infer that any w-continuous form ¢ on . extends to a
w-continuous form § on 2(¢), such that || = |¢].

E.5.17. Let.#,, .#, be von Neumann algebras and ¢ :My — M, a bounded linear
mapping. Then & is w-continuous iff ¢ is completely additive,

*E.5.18. Show that the assertions (i), (ii) from Theorem 5.14 are equivalent to

the following assertion
(iii) there exists a normal form ¢, on .#, such that for any ¢ > O there exists

a § >0, with the property:
xel, x|l <1, @x*x+ xx*)<6= |o(x)] < e, for any @ e #.

E.5.19. Let .#, be the predual of the von Neumann algebra #. If F isa a(.ll;, M-
relatively compact part of ) = {pety; ¢ >0}, then the set {Lp; pe &,
xed, Ix|| <1} is also o(A,, A)-relatively compact. .

E.5.20. Produce an example in order to show that there exist o(M 4, M)-relatively
compact parts & c.4,, such that the set {| ¢ |; ¢ € #} is not o(AM o, M)-relatively
compact.

E.5.21. Show that the following assertions are equivalent:
(g} any normal form on . is of the type w,, E e, i
(ii) for any e € 2 4 of countable type, #, = RB(est’) has a separating vector. l

E.5.22. Show that two s-isomorphic maximal abelian von Neumann algebras
are spatially isomorphic.

Comments

C.5.1. Besides the uniform topology (i.e., the norm topology) and the topologies
lwo._ W, 50, on a von Neumann algebras .# one also considers the following topo-
ogies: :
the s-topology, given by the seminorms
5o(x) = p(x*x)V2, x e,

where ¢ runs over the sct of all normal forms on .4 (see E.5.5);
the s*-topology, given by the seminorms

5o(x) = p(x*x)12, xe.,
5o(x) = @(xx*)2, xe.u,

where @ runs over the set of all normal forms on .#;
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the t-topology = (M ; M,), i.c., the Mackey topology associated with the
topology w = o(.#; .#,); this topology is given by the seminorms

Px(x) = sup|o(x)], xeH,
PEX

where ¢ runs over the set of all a(.#,;.#)-compact, convex, equilibrated subsets
of J,, and it is the finest locally convex topology on . which determines the
same set of linear,continuous forms on .#, as the w-topology (see Bourbaki [1]).

The general relations existing between these topologies are represented in the
following diagram

1)
wo € @ so
@A A G)
w < s £ & £ 1
@ &) ©®

Relations (1) and (2) are obvious from the definitions of the corresponding topolo-
gies (see 1.3, 1.10); relations (3) and (4) easily follow from Proposition 5.3 and
E.5.8; relation (5) is trivial, whereas relation (6) follows from E.5.8, if we observe
that the =-operation is t-continuous.

As far as the restrictions of these topologies to the closed unit ball of 4 are
concerned (denoted below by the subscript 1 to the corresponding symbol of the
topology), we have the following relations:

wo;, < S0

@ | Il ()

W, < s =< 5 = T

Equality (a) has already been established (1.3, 1.10), equality (b) follows from (a)
with the help of E.5.8, whereas equality (c) is proved by C. A. Akemann in [1].
The cases in which the equalities wo = w, so = s hold, are discussed in
Chapter 8.
For other results concerning topologies on von Neumann algebras, we refer
to: J. F. Aarnes [2], C. A. Akemann [1], S. Sakai [6], [14], P. C. Shields [1].

C.5.2. One calls a derivation of an algebra o any linear mapping 9 : of = &,
such that
8(xy) = x80) + (x)y, X, ye .

Any clement ae of determines an inner derivation
9,: 53X+ ax — xa€ o/

The study of the derivations of algebras of operators has been started by
1. Kaplansky [18), [23], who proved that any derivation of a von Neumann algebra
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of type I is inner (aided by the fact that any derivation of a commutative C*-algebra
is identically zero, a result due to I. M. Singer) and made the conjecture that any
derivation of a C*-algebra is uniformly continuous. This conjecture has been posi-
tively solved by S. Sakai [9], and afterwards B. E. Johnson and A. M. Sinclair
[1] showed that any derivation of a semi-simple Banach algebra is continuous,
With the help of the results of I. Kaplansky and S. Sakai, already mentioned,
R. V. Kadison [23] showed that any derivation of a C*-algebra . of = B(H#) is
wo-continuous and extends to an inner derivation of AB(H); S. Sakai [17)], with
the help of Kadison’s result, proved the following theorem: ‘

Theorem 1. Any derivation of a von Neumann algebra is inner.

Other proofs of this theorem have been given by B. E. Johnson and J. R.
Ringrose [1], and by W. B. Arveson [10]; D. Olesen [1] has shown that any deri-
vation of an AW*-algebra (sce C.3.1) is inner, by extending the arguments
of W. B. Arveson.

On the other hand, S. Sakai [22] has shown that any derivation of a simple
C*-algebra with the unit element is inner, whereas other results in this direction
have been obtained by: S. Sakai [22], [31], [34], D. Olesen and G. K. Pedersen
[1}, G. A. Elliott [9], C. A. Akemann, G. A. Elliott, G. K. Pedersen and J. Tomi-
yama [1), and others. .

As an extension of the study of the derivations, the theory of the cohomology
of algebras of operators and of general Banach algebras was also developed:
R. V. Kadison and J. R. Ringrose [4], B. E. Johnson, R. V. Kadison and J. R.
Ringrose (1], B. E. Johnson (11], L. C. Craw [1], [2]. ‘

Along the study of the derivations, significant results were obtained in the
theory of automorphisms of algebras of operators, for which we refer the reader
to the works of R. V. Kadison and J. R. Ringrose [1], [3], [5], R. V. Kadison,
E. C. Lance and J. R. Ringrose [1] and H. J. Borchers - {4].

We recall, that any *-isomorphism between two von Neumann algebras is
w-continuous, hence s-continuous (5.13). In connection with the continuity of the
algebraic isomorphisms, we mention the following result of T. Okayasu [2], which
we state in the form given by S. Sakai [32]:

Theorem 2. Let ¢: o/—B be an algebraic isomorphism of C*-algebras, Then there
exists a derivation 3 of st and a s-isomorphism ¥ : sf — B, such that

¢ = Y¥exp(9).

In particular, one infers from this result that any pair of algebraically iso-
morphic C*-algebras are s-isomorphic (L. T. Gardner [2]) and that any alge-
braic isomorphism between two C*-algebras is uniformly (i.e., norm) continuous
- (C. E. Rickart [3]).

On the other hand, from Theorems 1 and 2 one obtains the following result

Corollary. Let & : . — A4 be an algebraic isomorphism between von Neumann alge-
bras. Then there exists an invertible positive element ae M and a *-isomorphism
¥l >, such that )

#(x) = ¥Y(axa~l), xe..
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Thus, any algebraic isomorphism between von Neumann algebras is conti-
nuous for the topologies w and s.

Let 8 be a derivation of a von Neumann algebra #. By virtue of Theorem 1,
there exists an a €., such that = 9,. In connection with the selection of the
element a, one knows that there exists a unique age 4, 3 = .9,9, such that, for any

central projection p e # one has
P8Il = 2 |l pagl.
In particular, we have
I8 = 2inf {llall; 9 =3,}.

This result has been obtained by J. G. Stampfli [1] for the case in which
M=RB(H#), by P. Gajendragadkar [1], for the case .#=von Neumann algebra
with a separable predual, and by L. Zsidé [2], for the general case. For other
information concerning the norm of the derivations, we refer the reader to
C. Apostol and L. Zsidé [1].

The study of isometries between von Neumann algebras has been carried
out by R. V. Kadison [2], [5], who obtained the following result:

Theorem 3. Let ® : of — B be a linear isomorphism between two C*-algebras
with the unit element, such that ®(1) = 1. The following assertions are equivalent

(i) ¢ is an isometry;

(ii) for any ae ", one has ®(a) € " and P(a") = ¥(a)", neN;

(iii) for any xe.# one has: x = 0 < ¥(x) > 0.

If of and B are von Neumann algebras, then the preceding assertions are equi-
valent to the following one: A

(iv) There exist central projections p€ s/, q€ &, such that @ induces a s-iso-
morphism of sfp onto Bq, and a s-antiisomorphism of /(1 — p) onto Z(1 — q).

Condition (ii) is equivalent to the fact that @ is a Jordan s-isomorphism,
i.e., @ commutes with the s-operation and conserves the “Jordan product”, aob =

—%— (ab + ba). Condition (iii) is equivalent to the fact that @ is a bipositive linear

isomorphism, such that ¢(1) = 1. Thus, the linear isometries which map 1 to 1,
the bipositive linear isomorphisms which map 1 to 1 and the Jordan s-isomorphisms
are equivalent notions, whereas in the case of von Neumann algebras, they are
characterized by condition (iv) in terms of s-isomorphisms and s-antiisomorphisms.
Consequently, Theorem 3 is a general, non-commutative, extension of the Banach-
Stone theorem (see N. Dunford and J. Schwartz [1], Ch.V, 8.8). :

R. V. Kadison’s proof is based on the study of the extreme points of the
closed unit ball and on some older results of N. Jacobson and C. E. Rickart [1].
Another proof of the equivalence (i) <> (ii), based on the notion of numerical range,
was obtained by A.L.T. Paterson [1), whereas extensions of the theorem to
C*.algebras without the unit element, were given by L. A. Harris [1] and
A.L.T. Paterson and A. M. Sinclair [l].

Other results concerning the Jordan structure of C*-algebras are contained
in some papers by E. Stdrmer, D. M. Topping et al.
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With the help of the above theorem of Kadison and of the Tomita theory,
A. Connes [7) obtained the characterization of von Neumann algebras as ordered
linear spaces. :

A lincar mapping ¢ : of — @, between the C*.algebras o and 4, is said
to be n-positive, ne N, if the natural extension : :

9, : Mat,(of) = Mat, (@)

is a positive mapping. If ¢ is n-positive, for any ne [N, then & is called completely
positive,

The fundamental result concerning the completely positive mappings is the
following theorem of W. F, Stinespring [1]:

Theorem 4. For any linear mapping P : of — B(H) the Jollowing assertions are
equivalent :

() @ is completely positive; .

(ii) there exists a ‘s-representation n: o = B(A) and a bounded operator
Ui = X, such that ’ . ‘

(a) = v*a(a)v, ae .
Corollary. If ¢ : o — B(OX) is completely positive, then
[®@) [ < d(al), ae .

) If cither of or # is commutative, then any positive linear mapping &: of - &
Is completely positive. Thus, from the preceding corollary trivially follows the
“Schwarz type inequality” of R. V. Kadison [5].
For the study of positive and completely positive mappings we refer to W. B.
. Arveson [7), R. V., Kadison (1], (5], E. Stérmer [1], [25).*) A detailed analysis of the
n-positive mappings can be found in Man-Duen Choi [1]. Some applications of
the completely positive mappings to the theory of operators and to the theory of
algcbm? of operators can be found in W. B, Arveson [7], I. Suciu[l]and L. Zsidé [4].
Linear mappings between C*-algebras, which map unitary elements to unitary
clements, have been studied by B. Russo and H. A. Dye [1] and B. Russo [1].

C.5.3_. '\.Ve recall (C.2.1) that the C*-algebras of operators possess an axiomatic
dc§crlpt{on. The following theorem of S. Sakai [3] (see also [10], [32]) allows an
axiomatic description of von Neumann algebras:

Theorem. A C*-algebra .4 is s-isomorphic to a von Neumann algebra iff it is the dual
of a Banach space.

A proof of this theorem has also been obtained by J. Tomiyama [1].

One calls a W*-algebra any C*-algebra which is the dual of a Banach space.
On account of the preceding theorem, von Neumann algebras are also called con-
crete }W*-algebras.

The proof of the preceding theorem required that some results, already known
for von Neumann algebras, be obtained by non-spatial arguments. These essentially

*) See also the recent papers by D. E. Evans.
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developed methods, used in the theory of abstract C*-algebras, the compactness
of the closed unit balls in W*-algebras and the Krein-Smulian theorem (C.1.1).
Among the abstract C*-algebra techniques, we mention the “Arens trick”, presen-
ted in the proof of Lemma 2.5. A characteristic sample is the proof of Theorem
5.16. The advantage of this technique lies in the invariance with respect to s-iso-
morphisms of the results obtained with its help. Not incidentally, all the results, which
are invariant with respect to s-isomorphisms, have proofs of this nature. The book
of S. Sakai [32] is an excellent exposition of the theory based on these ideas.

If of is a C*-algebra and ¢ € &*, ¢ > 0, we have already defined the repre-
sentation m, : &f — B(,), of o into B(#,)(5.18). If we denote by n : of — B(¥F)
the direct sum of all representations n,, one defines the enveloping von Neumann
algebra of the C*-algebras s as being the von Neumann algebra #(n(s¢)) = Z(¢)
(see J. Dixmier [42], §12).

The bidual o/** of the C*-algebra of can be orgamzcd, in a natural manner,
as a W*-algebra and it is s-isomorphic to the enveloping von Neumann algebra
of of (see for example, M. Tomita [9]). The multiplication that one introduces
in &/** is a natural one (first defined by R. Arens [3]) and called the Arens multi-
Dplication.

Any continuous linear form on the C*-algebra & can be extended in a unique
manner, by continuity, as a w-continuous linear form on the bidual W *-algebra
£**; hence, (**), = o/*. Any s-representation n: of — Z()#) can be extended
in a unique manner to a normal s-representation % : &/** — B()), and F(A**) =
= R(n(f)). These facts allow the extension of some results, known for w-conti-
nuous linear forms on von Neumann algebras, to the bounded linear forms on
C*-algebras.

In S. Stritild, L. Zsid6 [6] there is a unified exposition of the topics re-
corded in this section and in Section C.2.1.

C.5.4. The theory of operator algebras allowed the extension of the integration
theory to a non-commutative framework. The first results in this direction were
obtained by J. Dixmier {23] and I. E. Segal [11]. For further developments we
recommend the works of S. K. Berberian, T. Ogasawara and K. Yoshinaga,
H. Umegaki, L. Pukénszky, E. Nelson, A. R. Padmanabhan, K. Saitd, E. Chris-
tensen, F. J. Yeadon, E. C. Lance, U. Haagerup, A. Connes and I. Cuculescu.
A presentation of the results and of the directions of research in the field of
““abstract integration’ can be found in the expository paper by I. E. Segal [26).

On the other hand, extensions of a different kind of the measure theory to
the C*-algebras have been obtained by G. K. Pedersen and F. Combes. An almost
complete exposition of the results obtained in this direction can be found in
S. Stratild [1].

C.5.5. Bibliographical comments. Theorem 5.11 and Corollary 5.12 are due to
M. Takesaki [2], but in our exposition we followed the proof of B. E. Johnson,
R. V. Kadison and J. R. Ringrose [1]. Theorem 5.14 is due to C. A. Akemann [1].
Theorems 5.16 and 5.21 were obtained by S. Sakai [7], [15]), whereas Theorem 5.17
by A. Grothendieck [2]. The construction from Section 5.18, with the help of
which, to any positive form @ on a C*-algebra «f, one associates a *“‘cyclic repre-
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sentation™ =, of <, is sometimes called the Gelfand-Naimark-Segal construction
or, bricfly, the GNS construction. Theorem 5.23 is essentially due to F. J. Murray
and J. von Neumann [1], whereas our proof follows that in the paper of J. Vowden
[2] (see, also, the talk by Kadison [16]). Corollary 5.25 is due to F. J. Murray
and J. von Neumann [2], and sometimes appears in the literature under the name

the spatial theorem of J. von Neumann.
Crucial results in the theory of operator algebras are Radon-Nikodym type

thecorems. Under the same hypotheses as those in Theorem 521, S. Sakai ([10],
Remark, p. 1.46; [32], Proposition 1.24.4) has also shown that there exists an

hetl,0 <h <1 such that

¢ = %(Lh'// + Ry).

We shall come to the Radon-Nikodym type theorems again in C.6.1, C.6.2,

and in Chapter 10.
In our exposition we also followed J. Dixmier [26], J. R. Ringrose [5] and

S. Sakai [32].




6

Relationships between a von Neumann
algebra and its commutant

In this chapter we shall show that the passage to the commutant of a von Neumann
algebra is an operation which conserves the type and, afterwards, we shall give
two applications of this result.

The following lemmas can be looked upon as being corollaries to Theorem 5.23.
We shall use the notations already introduced in Sections 3.8 and 5.22.

6.1. Lemma. Let A < B() be a von Neumann algebra and {,ne. If p; < p,
(resp., ps ~ p,), in M, then py < p, (resp., pz ~ py) in M'.

Proof. By virtue of the Schroder-Bernstein type theorem (4.7), it is sufficient
to prove the first assertion of the theorem.

Let ve.# be a partial isometry, such that:
v*v = pg, vv* < p,.
We denote 1o = vé. Then & = v*n,€.4n,. On the other hand, we have n, € [/#'n],
hence s(w,,) < p,. From Theorem 5.23, there exists a &, € [.#7], such that

(D,,. = wc.'
If we define
V'(xgo) = x10, XEM,
and if we observe that
lixEoll? = @ (x*x) = @, (x*x) = [Ixnof%,

it follows that we thus define a partial isometry v’ € .#’, such that

vltv! =pé.' vle‘ =p",.. .
Consequently, we have ;

P& < Po, ~ Pty < Prr
Q.E.D.

6.2. Lemma. Let M < Q(J?) be a von Neumann algebra and let Ee€X. Then p¢
is an abelian projection in M iff p; is an abelian projection in M. A

Proof. Let us assume, for example, that p, is an abelian projection in ..
We now consider the von Neumann algebra

N =My Bp),
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whose commutant is
N = "”;2 c g(pgx).

We must thus show that 4 is abelian.
For any nep;o# we denote

G=W¥nleNs, q=[¥neN"

Since p, is abelian in ., the projection g: = (pg),- is abelian in 4", Moreover,
the vector ¢ is cyclic for the abelian von Neumann algebra 4" ag- With exercise E.3.10,

we infer that
‘/Vgg ="/V.0€’
hence Aq is abelian. , : .
Since z(p;) = z(p;), it is easy to see that, in the von Neumann algebra 4,
the central support of the projection g; is equal to the unit element. With
Proposition 3.14, we infer that 4 is *-isomorphic to 4" ,’,‘,, hence 4™ is abelian.
Q.E.D.

6.3. Lemma. Let # < B(H) be a von Neumann algebra and let £ € 3. Then P:
is a finite projection in M iff Pe is a finite projection in M'.

Proof. We shall get at a contradiction, if we suppose that p; is finite, whereas

pg is not. Without any loss of generality, we can assume that Pz is properly infinite.

_ Let g be a central projection; -such that gp, be abelian. Then Pgz = qpg is
abelian. With Lemma 6.2, we infer that Pqz = gp; is abelian, hence it is finite.
Since p; is properly infinite, it follows that gp; = 0, and, since z(p,) = z(p;), we
have gp, = 0. :

By taking into account exercise E.4.21, it follows that there exist e, fePa,
such that py =e + f, ef =0, z(e) = 2(f) = 2(p;). If we denote a = ¢f, B =fT
we havee =p,, f= Ps-

We now consider the projections e’ = p, ' = Ps- We shall show that e’ and f”
nre‘ﬁm.te projections in .#’. Indeed, if e’ is not finite, then there exists a central
projection g # 0, such that the projection ge’ be properly infinite and z(ge’) =
= q < z(p;). Hence the projections ge’ and gp; are properly infinite, of countable
}y;‘)_c l(lsce cx:rclse E.5.6) and their central supports are equal. From Proposition 4.13,
it follows that

ge' ~ gpy,
hence, with Lemma 6.1, we have

qe ~ qp..

But qpf; =ge+ qf and of # 0, because 0 # ¢ < z(p) = z(p,) = z(f) Hence qpé
1S not finite, but this contradicts the fact that p, is finite. Analogously, one shows
that f” is finite. . . .

_ Since ¢’ is finite, whereas Pe is properly infinite, with the help of the com-
parison thcorem (4.6), we find an e € P 4, such that ¢ < Po €' ~ €. By taking
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into account Proposition 4.15, it follows that p; — e’ is also a properly infinite
projection, hence f’ < p; — e”’. Consequently, there exist e', f"' e P such that

‘ el ~ en s pé’ fl ~fll Spé) eufu J— 0.
We shall show that there exist v, 6 € %, such that

e=p, e’ =p,,
) f=ps ['=ps
Indeed, let v’ €.#' be a partial isometry, such that
V¥ = ¢, vv'*=¢".
Then we have
' e=p,=[Md] >[MVa] > [MV*Va]=[Ma]=¢,
hence e = p,,. On the other hand, we have
[Av'a] = v'[Mo] = €",

hence €’ = p.,. We have thus found y and we can analogously find 6.
' The following computations show that p, = p,., and " + f" = p} '

pe= e+ f=py+ps= LMY+ [H'8] > My + 5)]
S (M + O+ LfC 4+ O] = L] + [4'8) = p, + s,
¢ [ = pl + ph = [y + [M8] o [A(y + )]
> [Aely + 8)] + [Mfy + )] = [AY] + [#6] = P}, + pi.

The contradiction we should arrive at is the following: since p; = p,.s, from
Lemma 6.1 we infer that pi ~ p; ., hence pj 4 is properly infinite in .#’; on the
other hand, since p;,,=¢€" -+ f", from the above results and from Proposition 4.15,
we infer that p),, is finite in A’

Q.E.D.
6.4. Theorem. Let # c B(#) be a von Neumann algebra. Then A is of type I
(resp., of type II; resp., of type I1I) iff ' is of type I (resp., of type II; resp.,
of type III).

Proof. Itis sufficient to prove that if .4’ is discrete (resp., semifinite), then . #
~ is discrete (resp., semifinite) (see table 4.21). Let ¢ be a non-zero central projection.
Since  is discrete (resp., semifinite), there exists an abelian (resp., finite) non-zero
projection e’ €#, such that ¢ <gq. Let £€e'(o#). Then p; < ¢ is an abelian
(resp., finite) projection in ', such that z(p) < ¢. From Lemma 6.2 (resp., 6.3),
it follows that p, is an abelian (resp., finite) projection in ., such that z(p;) < g.
Thus, any non-zero central projection contains an abelian (resp., finite) non-zero
projection in ., hence . is, indeed, discrete (resp., semifinite).

Q.E.D.
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6.5. Corollary. Let M < B(H#) be a von Neumann algebra. Then M is discrete
(resp., semifinite) iff M is x-isomorphic to a von Neumann algebra whose commutant
is abelian (resp., finite). '

Proof. If M is discrete (resp., semifinite), then, according to Theorem 6.4,
A’ is discrete (resp., semifinite). With Proposition 4.19, we infer that there exists
an abelian (resp., finite) projection e’ € #’, such that z(e’) = 1. Then A,y =
= ('), is an abelian (resp., finite) von Neumann algebra and .# is *-isomorphic
to .#, (see Proposition 3.14 and Theorem 3.13).

The converse is an immediate consequence of Theorem 6.4 and of the evident
fact that types of von Neumann algebras are conserved by =-isomorphic.

Q.E.D.

6.6. Let.# c#() be a von Neumann algebra, 4 its commutantand & = .4 N4’
its center. With the help of Corollary 3.3, it is easy to see that 2’ is the smallest
von Neumann algebra included in #(s¢), which contains .# and M, le., it is
the von Neumann algebra %#(#, #’), generated by # and 4.

From Theorem 6.4 the following corollary obviously follows

Corollary. Let .# < B(K) be a von Neumann algebra. Then R(AM, M) is a von
Neumann algebra of type 1.

Exercises

E.6.1. Let .# = B(#¢) be a von Neumann algebra, e’'e 24 and £esf, such
that ¢’ ~ p;. Then there exists an 5 € #, such that

€=p, pi=p,

E.6.2. Let .#/cB(#) be a von Neumann algebra and e, fe P . If M B(esX)
has a separating vector, .#,c#(fs#) has a cyclic vector and z(e) < z(f), then

e<f

lE.6.3. If a von Neumann algebra has a cyclic vector and a separating vector,
hen it has a vector which is both cyclic and separating (compare with C.3.5).

E.6.4. If .« is a finite von Neumann algebra and if it has a finite totalizing family,
then .#' is also finite,

E.6.5. Let J be a separable Hilbert space and # < 2(5%) a finite von Neumann
algebra with a properly infinite commutant. Then there exists a sequence {{,} <,
©0

- such that the projections Pg, be mutually orthogonal, Y p;.=1 and, for any n,

Nl

Pe. =1 (Hint: see 7.18).

E.6.6. Let o be a separable Hilbert space and 4 < 2(¢) a properly infinite
von Neumann algebra with a properly infinite commutant. Then .« has a separating
cyclic vector.,
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E.6.7. Let .# be a von Neumann algebra, with the center 2. A projection pe &
is the central support of a cyclic projection iff it is of countable type in 2. Infer
from this result the statement in E.3.8.

E.6.8. Let # = %(#) be a von Neumann algebra. For any x e and any ée€ ¥,
we have p,: < e
If, moreover, £ € [x*5#], then p; ~ p;.

1E.6.9. Let .# < B(#) be a von Neumann algebra, and J 1 ¥ — M a conjugation,
such that x ~> Jx*J is a s-antiisomorphism of .# onto A'. Then, for any { €,
we have

P: = Jpsel.

E.6.10. Let .# be a von Neumann algebra of type I (resp., II; resp., 111) and
e € P 4. Thent, is of type I (resp., 1I; resp., 111).

E.6.11. Let # be a von Neumann algebra and ee.# a minimal projection in /.
Then z(¢) is a minimal projection in 2, whereas #z(e) is a factor of type L
Infer from this result that the Lu.b. of the set of all minimal projections in .#
is a central projection.

Comments:~-

C.6.1. Let # < B(#) be a von Neumann algebra and ¢ eJt. By taking into
account Theorem 5.23, which is the basis of all results in this chapter, it is only
natural to inquire about the structure of the vectors in the space [#¢]. Since any
such vector is the limit of a sequence of vectors of the form x,¢, where x, €4,
it is natural to search for the conditions which make true the following assertion

for any n €[] there exists a closed *) operator T in J, affiliated **)
(N to 4, such that

n=T;§.

This deep problem was first considered by F.J. Murray and J. von Neu-
mann [1] in connection with the results presented in this chapter. They gave a
partially positive answer, by showing that the following statement is always true

for any n e[.#¢] there exists a closed operator T in o, affiliated to ./,
(BT) and an operator Be.#4, such that

n = BT¢.

The (BT)-theorem enabled F.J. Murray and J. von Neumann to obtain
Lemma 6.1 from this chapter, for factors. For the proof of the (BT)-theorem we

") See Section 9.1.
**) See Section 9.7.



144 LECTURES ON VON NEUMANN ALGEBRAS

refer to S. Sakai [32], 2.7.14, or C.F. Skau [2], whereas for the prgof _of the
results in this chapter, with the help of the (BT)-theorem, we refer to J. Dixmier [26],
Ch. II1, § 1.3, 1.4, 7 :

As far as statement (7)) is concerned, H. A. Dye [1] has shown that the
projection p,, { €5, is finite iff the following implication holds:

¢ e[#]] = for & the statement (T) is true.

H. A. Dye called a von Neumann algebra 4 < B(o#) essentzially Sfinite if any cyclic
projection p; €.#, §{ € &, is finite. Thus, the statement (7)) is true for any vector
in ) iff . is essentially finite.

In particular, if .# is finite, then statement (T) is true for any vector in ¢,
a result already known to F. J. Murray and J. von Neumann. The proof of this
fact immediately follows from the (BT)-theorem, with the help of exercise E.9.26.

On the other hand, if # < #(o) is a von Neumann algebra, ¢ € #, and
is & normal form on .#, such that s(¥) < s(w,), .then Theorem 5.23 shows that
there exists an n € [#§], such that ¢ = w,. Having in mind the problem (T), there
naturally arises the question whether the vector n € [#¢], such that Y = w,, can
be chosen so that n = T¢, where T is a closed operator in 5, affiliated to /.
Thercfore, a new problem arises, namely to establish the conditions under which
the following statement is true:

for any normal form ¥ on 4, such that s(y) < s(w;), there exists a
(RN) { closed operator T in o, affiliated to , such that S

Y=o ‘

Since the condition s(¥) < s(w,) is a condition of *absolute continuity”,
and since the operator T plays the role of a “density”, the statement (RT) is
obviously analogous to the classical Radon-Nikodym theorem. -

By taking into account Theorem 5.23, it is obvious that T

" (T) = (RN).

In particular, if .# is essentially finite, then the statement (RN) is true for
any vector in . In fact, the statement (RN) is true for any vector in 5, without
any restriction on .#, as we shall see in Chapter 10, where we shall make more
precise considerations concerning the density 7.

C.6.2. Let us consider again a von Neumann algebra 4 < #(>¢) and a vector
{ €X', Concerning the commutant /' < 2(o¢), the analogous statement to sta-
tement (T) is the following C ‘ o

for any n e [.#'&] there exists a closed o;;erator T’ in 57, afﬁiiated to ;l(',

() such that '
=T : .
If ¥ is a normal form on .#, such that s(¥) < s(w,), Theorem 5.23 shows

that there exists an n e [.#'¢], such that y = w,. By taking into account statement
(T’), there naturally arises the question whether the vector n € [#’¢], such that
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Y = w,, can be chosen so that n = T'¢, where 7’ is a closed operator in 5,
affiliated to .#’. Consequently,-a new problem arises, namely to establish the
conditions under which the following statement is true:

positive self-adjoint operator A’ in 5, affiliated to .#’, such that
' Y= g

‘ Together with this problem, one poses the analogous problem, concerning
the statement:

for any normal form ¥ on ., such that s(¥) < s(w,), there exists a
D

positive self-adjoint operator 4 in 5, affiliated to .#, such that
V' = wy.
The solution to problems (D) and (D’) was given by H. A. Dye [1], along
with the solution to problem (T) (C.6.1). We remark that statements (D) and (D')
are also of the Radon-Nikodym type, but the density now belongs to the commu-

tant. A similar, but trivial, situation was considered in Lemma 5.19 (see, also,
exercise E.9.33).

We now state the theorem of H. A. Dye and we also give a sketch of the
proof, by using some of the results in Chapter 9.

Theorem. Let M = B(#) be a von Neumann algebra and £ eo#. The following
Statements are equivalent.

(1) p¢ is a finite projection in M ; v

(2) EelH#L]) = for £ the statement (T) is true;

(3) §el#'C) = for § the statement (D) is true;

(1") p; is a finite projection in M#'; )

(2") ¢ M) = for & the statement (T') is true;

(3") & el M) = for § the statement (D') is true.

The proof proceeds according to the following diagram i

03] m()_)

> ><(3)
== N

The equivalence (1) <> (') coincides with Lemma 6.3.

The implication (1) = (2) immediately follows from the (BT)-theorem, with
the help of exercise E.9.26. . o

" 'The equivalence (2') <> (3) easily obtains from Theorem 5.23 and exercise

E.9.32.

It is obvious that the implication (1) = (2) and the equivalence (2)«=(3)
obtain in a similar manner. ‘

We have still to prove the implication (2') = (1), since the implication =019
is obviously simildr to this one. o

for any normal form ¢’ on ', such that s(y’) < s(w}), there exists a
€29

10~c. 1540
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Let us assume that the projection p, is not ﬁnjte in .//l: Tl}en we can assume
that p, is properly infinite. It follows that there exist a projection ee.#, e < p,,
e # p;, and a partial isometry ve.#, such that

v*v = pg, v* = e, Up; = v = ev = p;v;
n(l — v) =n(l — v*) = 0.
Therefore, the operator 1 — v is injective, and (1 — v)# is a dense subspace of 7.
From exercise E.9.8 we infer that ]
A=il 4 v)(1 — v)?

is a closed (symmetric) linear operator in 5, such that 2, = (1 — v)#. Of course,
A is affiliated to .

We have { =(1 — v){eD,. It is easily verified that & e[.#’f] and, since
n(l — v*) = 0, it follows that we even have the equality p: = pr- Hence, if we
again use the relations n(l — v) = n(l — v*) =0, we get
O] 240[A(p; — €) {] = {0}.

Let us now assume that hypothesis (2') holds.

We shall first show that for any projection ge.#, 0 # g < P:, there exists
a projection r’ .4, such that

FE#0 and rEelAqe)

Indeed, we have g € [.#'¢] and, therefore, from hypothesis (2’), there exists a
closed operator T’ in o, affiliated to .#’, such that

9§ =T
Then, for any ¥’ e.#’ we have
X'T'¢ e[ M'qE].

By_ taking into account the polar decomposition Theorem (9.28) and the ope-
rational calculus with positive self-adjoint operators (9.11, 9.13), it is easily seen
that there exist an x’ e.#’ and a projection r’ € 4’ such that

rE=xTE£0.

A familiar argument, based on the Zorn Lemma, shows that for any projection
q€.4,0 # q < p,, there exists a projection ¢’ € 4, such that

[#°qf] =[#'q'{)

) In particular, let ¢ = p, — ¢. Since € 2, and since A s, affiliated to .#,
it follows that (see E.9.25):

HgE e D, 0 [MgE);
hence

(o9) Lun[H'(p; — ) E] is dense in [#'(p; — e) &].
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The contradiction between relations (s) and (+x) proves the implication
(2") = (1) and, thus, the theorem is also proved.

Corollary. Let # < B(5#) be a von Neumann algebra. The following statements
are equivalent:

(1) A is essentially finite;

(2) the statement (T) is true for any vector & e,

(3) the statement (D) is true for any vector & e ¥.

We stress the fact that, while the statement (RN) is always true, the state-
ment (D), of Radon-Nikodym type, of H. A. Dye, depends on finiteness conditions.

C.6.3. From Lemma 6.3 it follows that the von Neumann algebra # < 2Z(#)
is essentially finite iff #' < B(oF) is essentially finite.

It is easily seen that any essentially finite von Neumann algebra is semifinite.

Conversely, according to Corollary 6.5, any semifinite von Neumann algebra.
is s-isomorphic to an essentially finite von Neumann algebra.

On the other hand, #(oF) is essentially finite, but it is properly infinite if J#
is infinitely dimensional.

C.6.4. Bibliographical comments. Lemma 6.1 was proved, for the case of the
factors, by F. J. Murray and J. von Neumann [1]. Lemmas 6.2, 6.3 and Theorem 6.4
are stated by I. Kaplansky [10], whereas proofs have been given by H. A. Dye (1],
E. L. Griffin [2], J. Dixmier [24], R. Pallu de 1a Barriére [5] and R. V. Kadison [14).

In the proofs of Lemmas 6.2 and 6.3, we followed D. M. Topping {8] and,
respectively, R. V. Kadison [14]. For another proof of Lemma 6.2, see L. Zsid¢ (3],
1.7.7, whereas another proof of Lemma 6.3 is proposed in exercise E.7.20. A proof
of Lemma 6.1 based directly on the polar decomposition theorem was given
by R. Herman and M Takesaki [2].






7
Finite von Neumann algebras

In this chapter we study the lattice of the finite projections in a von Neumann
algebra and we characterize the finite von Neumann -algebras with the help of
the traces.

7.1, Theorem. Let # be a von Neumann algebra and e,f,ge Pu. If e < g and
if the projection (eV f)Ag is finite, then ‘

(eVf)rg=1eV(fAg).
Proof. Let h = (eV f)Ag, k=eV(fAg). The relation k < h is obvious
in view of the hypothesis that e < g. On the other hand, we have
eVf=(EeVEANVI< eV INDVS<eVS,
hence
hVf=kVf=eV],
and : : ‘
A< EVUARDASS{eVAIADANSEAS;
therefore, we have
hAf=kAf=gA][
By taking into account the parallelogram rule (4.4), we get
h—fAg=h—hAf~hVf—f=eVf—f
=kVf—f~k—kANf=k—fAg.

It follows that # ~ k. Butk < hand, 'by hypothesis, 4 is finite. Consequently,
we have h=k. '
Q.E.D.

7.2. One says that a projection e € ./ is piecewise of countable type if there exists

a family {g,}sex Of mutually orthogonal central projections, such that ¥, g, =1,
kek

and eg, is of countable type, for any ke K.
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Lemma. Any finite projection e in a von Neumann algebra M is piecewise of
countable type.

Proof. Let ¢ be a normal form on ., with 0 # e =-s(¢p) <e, and let &
be a maximal family of mutually orthogonal subprojections of e, which are all
cquivalent to e,. Since e is finite, this family is finite. Let & = {e1,. .., e,}. By

applying the comparison theorem (4.6) to the projections €, e—Y e, and by
i=1

taking into account the maximality of the family &, it follows that there exists a
central projection ¢ # 0, such that

q(e— Y e,)< geo.

{a]

In accordance with exercise E.5.6, e is of countable type. From the preceding
results, it follows that ge is of countable type, q # 0.

Let now {g,},ex be a maximal family of mutually orthogonal central non-zero
projections, such that qxe is of countable type, for any k € K. From the maximality
of the family and from the first part of the proof it follows that Ya=1

kek

Consequently, e is piecewise of countable type.
Q.E.D.

7.3. Lemma. Let .# be a von Neumann algebra, fe P 4, and {e,} an increasing
Sequence of finite projections in . If e, < f for any n, then Ve, <f.

Proof. We shall construct an increasing sequence {fi} ga.,,': such that
Lh<fifi~e; n= 1,2,...
Then, by taking into account Propoéition 4.2., and exercise E.4.9, we shall obtain:
Ve.~V /< f.
n n

For the construction we shall proceed by induction. Let us assume that Sise e s S
have been alrez.xdy.constructed. By hypothesis, there exists an equivalence between e,
and a subprojection of J. We deduce that there exists a 8€P.4, g < f, such that

€-1 ~ g and O = €4y '<f_ .
Bute,_, ~ £,_,, whence, in view of exercise E.4.9,
f—./;-x;""f"‘ &.

Consequently, there exists an he P 4, such that

G = ~h<f—f_,.
We then define

So=faar+ b
Q.E.D.




FINITE VON NEUMANN ALGEBRAS 151

4.4. Theorem. Let 4 be a von Neumann algebra, f€ P 4 and {e;} ;e an increasingly
directed family of finite projections in M. If \[ e, is piecewise of countable type,
el
and e; < f, for any iel, then\] e; < f.
i

el
Proof. We shall first assume that e = \/ e, is of countable type. In accordance
ier
with exercise E.5.6, there exists a normal form ¢ on .#, such that e = s(p). It

follows that

@(e) = sup @(e)),

el

hence there exists a sequence {i,} < I, such that

@(e) = sup oley,)-
We now define by induction the sequence {e,}, in the following manner

C € = ell,
e, = e, whereie l,e; > e, and ;> e, fork < n.

The definition is possible, because the family {e;},; is increasingly directed. Then
{e,} is an increasing sequence of finite projections in M, e,<f,and e= Ve,
. n

because ¢(e) = sup ¢(e,) and e = s(o).

With Lemma 7.3, we infer that e < f.
Let us now assume that e is piecewise of countable type and let {g:},ex be
a family of mutually orthogonal central projections, such that ¥ ¢, = 1, such that

kek
eq, is of countable type, for any k € K. By virtue of the first part of the proof, it
follows that eq, < fq,, for any k € K. By taking into account Proposition 4.2, we
infer that e < f.

Q.E.D.

7.5. Corollary. Let # be a von Neumann algebra, f€ P and {e.}1er an increas-
ingly directed family of projections in M. If ’V’ e; is finite and if e; < f, for any
€

iel, then\/ ¢, < [.
el

7.6. Corollary. Let # be a von Neumann algebra, f€ 2 .x and {e.} 11 an increasingly
directed family of projectionsin M. If \I e, is finite, then
tel
VieAf)=(e)Af
el er
Proof. Let
e=Ve‘, g=V(e‘Af).
© tel tel

We must show that e A f = g. The relation ¢ < e A f is obvious. We now consider
the projection
h=eASf—g.
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The -following computation, based on the parallelogram rule (4.4), shows that
h<e—e;. .
h<eAf—eAf=eAf—(eAf)Ae ~

~(eAf)Ve,—e <e—e,.

We now show that e,’-< e — h, for any i. If this is not true, by taking into
account the comparison theorem (4.6), we would find a central projection g # 0
and a projection g, < ge,, g, # qe,, such that

gle—h) ~ g,

On the other hand, from what we already proved, it follows that there exists a
projection A, < g(e — e;), such that : .

qh S~ hl’
Consequently, we have
ge~ g +h <qge, g +h +# ge,

nndlthis result contradicts the finiteness of ge.
According to Corollary 7.5, it follows that

e=\e <e—h
ier

Sint:é e is finite, we infer that h = 0.
- 2 . Q.E.D.
7.7. Let £ be a lattice. One says that & is a modular lattice if o

e,f,8e, e Sg=(eVS)Ag=eV(f Ag).

One says that & isa complemented lattice if it has a smallest element 0, a
greatest ‘element 1 and if, for- any ee ., there exists an e'e ., such that
ehe'=0,eve =1.

One says that & is upper (resp., lower) continuous if: f e 2, {e}ie1< & increas-

ingly (resp., decreasingly) directed and V eje & (resp., A\ e,e &) = e A
: 1 ier ier

=V e)A S (resp. AoV )= (A egV 1).
le? et iel

. One says that % is a continuous geometry if & is an upper and lower continuous,
complemented, modular lattice.

) From Corollary 3.7, Theorem 7.1 and Cotollary 7.6, the following theorem
obtains ) . CoL . : :

y

Theorem. Let .# be a finite von Neumann algebra. Then the lattice P4 is @ conti-
nuous geometry. - .
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7.8. We shall now construct the central trace on a finite von Neumann algebra.

Let # be a von Neumann algebra and ¢ a w-continuous form on ./,
We shall consider the sets '

3, = {T,p; ueM, unitary} < A,
A, = the norm closed convex hull of 2, in 4,.

Since .# is the dual of the Banach space .#,, from the Mackey theorem we now
infer that the convex set X', is o(#y; #)-closed.

Lemma. Let # be a finite von Neumann algebra and ¢ a w-continuous form.
Then the set A, is o(Me; M)-compact.

Proof. We must show that the set X', is a(#,; )-relatively compact.
From the Akemann theorem (5.14), it is sufficient to show that, for any sequence
{e,} of orthogonal projections in .#, we have

lim y(e,) = 0, uniformly for € X ,,.

n—oo

1t is sufficient to prove the uniformity of this convergence with respect to ¢ € 2,.
In order to prove this property, we shall assume that it is not true. Then

there exists a & > 0, a subsequence {f,} of the sequence {e,} and a sequence {u,}
of unitary operators in .#, such that, by denoting y, = T, @, we should have

[ (f)| = 6, forany n=1,2,...
We denote g, = u}fu, € Z.«. Then we have
O gn ~ /o and |@(g)| > &, for any n=1,2,...
We shall define

m
hpn=\8&; lsn<m,

kmn

[ -] (-]
hn=vgl=vhm,n; n=1,2-..

k=n men
h= R h,.

We shail show that "

Q) h,.< kim fi, for any m>n> 1.

kan
We proceed by induction on m> n. For m = n, we have h, , =g, ~ f,.
If relation (2) is true for m = r, then, since :

gV hr.u - hr.u ~ Zr+1 — 8rt1 Ahr.u <G ™ fr+ll
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it follows that

k=r k=r+1 - x
hrf-l,n = 8rt1 VII,.,l < Zf;( +.f;+1 = z .fk'
k=n k=n

For any n, the sequence {#,, ,}, is increasing and, from relation (2), we infer that

h,n <Y foe

k=n

According to Lemma 7.3, we now infer that

’11,, < f Jre

kw=n

By taking into account exercise E.4.9, we get

1-YfAi<1—h,<1—h

kz=n

and, by applying again Lemma 7.3, it follows that -

| = G(l—if.)<1—h.

nel kmn

Consequently, h = 0, since 4 is finite.

Since the sequence {h,} is decreasing, /o\oh,, =h=0 and g, < h,, it follows
ne=1

that the scquence {g,} is wo-convergent to 0. On the other hand, on the closed
unit ball of .# the wo-topology coincides with the w-topology, and, therefore,
the sequence {g,} is w-convergent to 0.
Consequently, we have that lim ¢(g,) = 0, which contradicts relation (1).
n

Q.E.D.

1.9. Onccallsa central formon an algebra &/ any form @, such that o(xy) = o(yx),
for any x, ye &,

A form @ on a C*-algebra «f 31 is central iff it is unitarily invariant, i.e.,
T.p = o, for any unitary u e «.

.

Lemma. Let @ be a w-continuous central Jorm on the von Neumann algebra 4,
whose center is 2. Then |o|| = lo|ZI. In particular, @ > 0 iff |2 > 0.

l.Prooj‘. Let ¢ = R, |p| be the polar decomposition (5.16) of ¢. From the
equality

Q= Ruu'Tul(pl»

whi.cl.l is true for any unitary u e .#, and from the uniqueness of the polar decom-
position, it follows that v and |@| are unitarily invariant. It follows that ve 2
and || is central,
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Consequently, we have-

lol = llell = lel(1) = o(*) < lo|Z]-lv*] < lel,
hence ol = llelZl. .
The second assertion follows from the first, by taking into account Propo-
sition 5.4.

Q.E.D.

7.10. Lemma. Let .# be a finite von Neumann algebra, Z its center. Then any

w-continuous form w on & uniquely extends to a bounded central form ¢, on M.

Moreover, ¢, is w-continuous, |¢,| = ol and @ >0 implies ¢, > 0.

~ Proof. The uniqueness part of the lemma, as well as the two last assertions
of the Lemma, follow from Lemma 7.9.

In order to prove the existence and the w-continuity of the form ¢,,, we first
consider a w-continuous form ¢ on .#, such that ¢ |2 = o (see Theorem 1.10).
We now apply the Ryll-Nardzewski fixed point theorem (see Theorem A.3 in the
Appendix) for the following particular case

& = M, in the uniform (norm) topology is a separated locally convex vector
space, whose dual is ..

A =, is a weakly compact, convex, non-empty subset of 2 (in accor-
dance with Lemma 7.8).

8 = {T,|"; ue#, unitary} is a non-contracting semi-group of weakly con-
tinuous affine mappings of X into X, since any T, is a linear isometry
of A, onto #,. .

It follows that there exists a @, €X', = #,, such that T,0, = ¢, for any
unitary u € #. Consequently, @, is a w-continuous central form on /.

On the other hand, since ¢| 2 = o, it follows that ¥ |2 = w, for any ¥ € X3
in particular, we have ¢,|Z = o.

Q.E.D.
7.11. Theorem. Let A be a von Neumann algebra, Z its center. Then M is finite
iff there exists a mapping '
h:ttox—>xbe 2,
having the following properties:
@) & is linear and bounded;
Gii) (x»)4 = (x)4, for any x,yeM;
(iii) z4 =z, for any ze Z;
The mapping b having properties (i) —(iii) is unique.
Moreover, the mapping b also has the following properties:
@) 14l=1
(V) G is w-continuous;
(vi) (zx)4 = zxh, for any xe M, z€ Z;
(vii) xed, x> 0= x1>0;
(viii) xeH, x>0, x1=0=>x=0.
(ix) x4e co"{uxu*; ue M, unitary} for every x M.
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Proof. It is casy to see that the existence of the mapping 4 implies the finiteness
of the von Neumann algebra /.

Let us now assume that the von Neumann algebra . is finite.

We shall first prove the uniqueness of the mapping ty In order to do this,
it is sufficient to prove that for any w-continuous form w on %, we have ‘

o(xh) = ¢,(x), '
where ¢, is the unique bounded central form on .#, such that ¢ | Z = (7.10).
But this fact is obvious, since from conditions (i), (i), (iif) we infer that the mapping
x> o(xh), xed,
is a bounded central form on .#, which extends w.
We now prove the existence of a mapping b, having properties (i) —(ix).
In accordance with Lemma. 7.10, the mapping E: Zy > M, defined by

Ew =9, weZ,,

is linear and isometric. By taking into account the canonical identifications 4 =
= (M4)*, 2 = (2Z,)*, we now define the mapping b as being the transpose of the
mapping E, § ='E : . - Z. In other words, the mapping 4 is determined by
the relations: .

Co(xh) =@, (%), we,, xedd.

Properties (i), (ii), (iii), (iv), (vii) are easily verified. Since ‘E is weakly con-
tinuous, g is w-continuous, hence property (v) is established. . :

It is now sufficient to prove property (vi) only for the unitary elements
2€ Z. Let we 2 be unitary and let us define the mapping W: . — 2 by W(x) =
= w*(wx)¥, xe.#. Then W satisfies conditions (i)—(iii), hence, in view of the
uniql}cness, we have W = h. Hence w*(wx)h = xb, i.e., (wx)4 = wxh, for any
A=/ ’

Let us now prove property (viii). Let xe.#, x> 0, x # 0. There then exists
a non-zero positive normal form o on 2, such that P = s(w) < z(x). Since ¢,
is a normal positive central form (7.10), it is easy to see that s(p,) is unitarily
invariant, hence it is a central projection, whence s(¢,) = p. The relation ¢ (x) = 0
implics xp = 0, and this is not possible, because 0 # p < z(x). Consequently,
we have @, (x) # 0, whence x4 # 0. . . '

The last assertion (ix) follows using the fact that ¢(x) = @(x4) for every
b‘:)undcd central form ¢ on .#, the proof of Lemma 7.10 and the Hahn-Banach
theorem.

Q.E.D.

7.12. If .4 is a finite von Neumann algebra, the mapping &, introduced by Theo- -
rém 7.11, is also called the canonical central trace on M. »
Let e, fe P 4. Then e < f (resp., e ~ S) ff eb < f4 (resp., e = f4). Indeed,
let us assume that e% < f%. From the comparison theorem (4.6), there exists a
projection p € 2, such thatep < fp, e(l — p) > J(1 — p). By taking into account
the properties of the mapping § and, especially, property (viii), it follows that
el —-p)~f(l —p), hence e < f.
_In particular, if .# is a finite factor, the mapping § has scalar values. The
restriction of the mapping b to P 4 is also denoted by dand itis called the norma-
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" lized dimension function on P x. Two projections e, fe M are equivalent iff they
have the same dimension: d(e) = d(f)!

' 7.13. Let # bea von Neumann algebra and /* = {xe.4; x > 0}. One calls a
. trace on #* any function p: M+ = [0, +00), having the properties

u(x + y) = p(x) + p0y), x,yeM*,
p(Ax) = Ap(x), xedt, A= 0,

u(x*x) = p(xx*), xeh.

Then p obviously is unitarily invariant.
One says that a trace p on & is faithful if

xedt, p(x)=0=>x=0.

One says that a trace p on.#* is normal if for any family {x;};e; =#*, which
is increasingly directed and bounded, one has that

pu(sup x;) = sup pu(x).
ierl el

One says that a trace p on /47 is finite if u(x) < +oo, for any xe.#. The
restriction to .#* of any positive central form on ./ is a finite trace on A *. Conver-
sely, any finite trace on J#* uniquely extends to a positive central form on /.

One says that a trace yt on /¥ is semifinite if for any 0 # x e.#* there exists
a yedt, y#0, y<x, such that u(y) < +oco. If p is a normal semifinite
trace on .#*, then, for any xe.#*, we have

p(x) = sup {u(); ¥ < x, u(y) < +oo}.

Indeed, if u(x) < + oo, the assertion if obvious. If u(x) = +oo, one con-
siders a maximal totally ordered family {y;};e; =-#*, such that 0 # y, < x and
u(y;) < + o0, and then one easily proves that u(s’up y) =+ oo.

i

€

One says thata family of traces {1 }iex ON M+ is sufficientif for any xe M*,
x # 0, there exists a k € K, such that p(x) # 0.

One defines the support s(i) of a normal trace y on.#* as being the projection
complementary to the greatest projection in .4, which is annihilated by yu. Since p
is unitarily invariant, s(u) is a central projection. The normal trace g is faithful
iff s(u) = 1. A family {#,}sex of normal traces is sufficient ifkax s(u) = 1. ’

€
If a von Neumann algebra possesses a sufficient family of semifinite normal
traces, then it possesses a faithful semifinite normal trace.

7.14. Corollary. A von Neumann algebra is finite iff it possesses a sufficient family
of finite normal traces.

7.15. Corollary. A von Neumann algebra is semifinite iff it possesses a faithful .
semifinite normal trace.
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Proof. Let .# be a von Neumann algebra and let ¢ be a faithful semi-
finite normal trace on .#*. For any central projection 0 # p €.# there exists an
clement xe#*, x # 0, x < p, such that u(x) < + oco. There then exists a pro-
jection ee.#, e # 0, and an ¢ > 0, such that e commutes with x and ex = ee

(see Corollary 2.22). Then p(e) < —1— ulxe) < —l— u(x) < +oco. Thus ple) < +oo0,
&€ e .

and this implies that the projection e is finite. Hence, .# is semifinite.

Conversely, let .# bs a semifinite von Neumann algebra. In order to show
that .# possesses a faithful semifinite normal trace it is sufficient to show that .#
possesses a sufficient family of semifinite normal traces. We can assume that
is a uniform von Neumann algebra, i.e., there exists a family {e;},¢; of equivalent
finite. mutually orthogonal projections, such that Y e; =1 (see exercise E.4.14).

iel
Lctheo be one of these projections and, foranyie I, let v; € 4/ be a partial isometry
such that

Vv, = ey, U = e,
We now define, for any xe.#,

Xu = vfxv € eptle,, i, kel

Then we have

X = 2 exe, = Y, OXy0p = (xix)s

Lker Lker

where thc_: last equality is a notation. One says that x;, is the (i, k)-component in
the matrix representation with respect to the basis {v;vf}; xer. It is easy to see
that

(M= xB and () = ¥ xyyu.

ter

The von Neumann algebra e,#e, is finite. For any finite normal trace g,
on (eo.#e,)* we define a function on 4+ by

u(x) = Z Ho(xy), x €M™,
iet

Itis casily verified that u is a semifinite normal trace on 4+ and that the set of
all semifinite normal traces on #*, obtained in this manner, is sufficient.

Q.E.D.

'7."16. A von Neumann algebra .# is said to be homogeneous of type I, if there
exists a family {e,},e; of equivalent abelian mutually orthogonal projections, such

- that fVE',l €, =1, and card I = n. In this case ./ is of type I and # is finite iff n

is finite. Conversely, for any finite von Neumann algebra, of type I, there exists
a family {p,}, 14... of mutually orthogonal central projections, such that Y =1,
1

uniquely determined by the condition that Mp, be of type I,, n=ni‘, 2,...
(sce exercise E.4.14), ’
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Proposition. Let # be a von Neumann algebra of type I,, n finite. Then (2 .4)4
coincides with the set of all elements of the form

k
2 — i
kel 11
where qy, ...,q, are mutually orthogonal central projections.

Proof. Let e, € .# be an abelian projection, such that z(e;) = 1 (see Propo-
sition 4.19). Since . is homogeneous, of type I,, there exists a family of n abelian,
mutually orthogonal projections, equivalent to e, whose sum equals 1. Conse-
quently, we have

1
(e9)? = — 9,
n

for any central projection 4.

Therefore, it is obvious that any operator of the form given in the statement
of the theorem belongs to (2.4

Let now e€ 2.4 and let {e,, ..., e} be a maximal family of subprojections
of e, which are mutually orthogonal and equivalent to e,z(e). There then exists
a non-zero central projection g < z(e), such that ‘

k
ge =Y, qe
=1
(see Proposition - 4.10). It follows that
k
(ge)r = —4q
n

Consequently, there exists a family {g:}1e1 of mutually orthogonal central
projections, such that Y] ¢; = z(e), and, for any iel, there exists a natural
iet
1 € k; < n, such that:

(gi0)h = ﬁ‘qn iel
n

We define

a=Y q k=12 ...,n
lel.k‘-k

Then we have

el

f

I
ey
=

Q.E.D.
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7.17. In the case of a von Neumann algebra of type II;, we have the following
“Darboux property” for the restriction of the mapping § to P.4.

Proposition. Let 4 be a von Neumann algebra of type II,. For any e, fe P.x, and
any z€ Z, such that e% < z < f4, there exists a g€ P 4, such that e < g < fand
gh=2 :

Corollafy. Let # be a von Neumann algebra of type 11,. Then (2.4)4 coincides with’
the set of all elements: ) .

zeZ, 0<z<1.

Proof. We shall first show that for any e€ P4, e # 0,and any ¢ > 0, there
existsan e, € 2 4, 0 #e, < e, such that e < ez(e,). Indeed, by taking into account
Proposition 4.11, for any n=1,2,... we can find a family {e1,.. ., ein} of equivalent,
mutually orthogonal, non-zero subprojections of e, whose sum is e. Then (eDh =

= > eb and so, it is sufficient to choose n, such that 1/2" < ¢.

Let now & be a maximal totally ordered family of projections 4 in .#, such
that

es<h<f, W<z,

We denote by g the Lu.b of the family &. It is obvious that e < g <fandgh <z,

If 2 — g% 3 0, then there exists an ¢ > 0 and a central projection p # 0,
such that :

(z—ghp = ep.

It follows that (f— g)p s 0, since, if this is not true, then g% = f4p > zp,
and this relation contradicts the preceding one. In accordance with the first part
of the proof, there exists an e, €Pq, 0+ e <(f—g)p, such that e < gp. On

the other hand, the existence of the element & + e, contradicts the maximality of
the family &.

Consequently, we have z = gh,
: Q.E.D.
7.18. If .# is a finite von Neumann algebra whose commutant .#" is finite, then
there exists a remarkable connection between the canonical central traces on .#
and .#’. In order to establish the connection, the following lemma is necessary.

Lemma. Let .4 < B(H) be a von Neumann algebra of countable type. Then there
exist p, ge P*, pg=0,p+q =1, and §, ned, such that

P=py q=p,.

. Proof. Let {{,},e; =¥, [&] =1, be a maximal family such that the
projections p,_, ne I, are mutually orthogonal and the projections Pe» n€l, are
also mutually orthogonal. Since .# is of countable type, it follows that 7 is at

most countable. We denote ¢ = Yorne= Y p:.. If we define &, = Y —;; &, it
n n n

follows that ¢ = Pe and € = p; .




FINITE VON NEUMANN ALGEBRAS 161

On the other hand, from the maximality of the family {{,}, we infer that

(1—e(l —¢)=0.
By taking into account Corollary 3.9, we obtain
\ 2(1 — e)z(l — &) = 0.

Let us denote p =1 —z(1 —¢), g = z(1 — ¢). Then, from the relations
p=1—z1—e)<e

g=21—¢e) <1 —z(1—-¢€)<¢
"t follows that there exist £, n €, such that

p=py 9="rn
Q.E.D.

7.19. Theorem (of coupling). Let M < B(H) be a finite von Neumann algebra,
whose commutant M’ < B(3¥) is also finite. Let b, Eq’ be the canonical central
traces on M, M', respectively. Then, for any §, n €, we have

(P)(pn)’ = (P)H(PRY.
Proof. 1f {q;}er is a family of mutually orthogonal central projections, such
that ¥,¢, = 1, then it is sufficient to prove the result in the statement of the theorem

1er
for each of the von Neumann algebras g, < B(q.¢¥).

In accordance with Theorem 4.17, and with exercise E.4.14, we can assume
that # and 4’ are either of type II,, or of homogeneous type Ifin.

By Lemma 7.2. we may assume that . is of countable type.

Since . is of countable type, Lemma 7.18 can be applied. Consequently,
without any loss of generality, we can assume that there exists a vector {,€,
such that

p:. = 1.
In this case, we shall show that, for any éeN, we have
PY = (pe)" (P4

and the theorem will be proved.
Since s((pe)¥) = z(pz,) = z(p,) = 1, from Corollary 2.22 we infer that

there exists a sequence {g,} of central projections, g, T 1, such that (Pe)¥ay 2= 1 Gns
n

for any n. Without any loss of generality, we can assume that there exists an ¢ > 0,
such that
(7L X
We denote by € (resp. by €’) the set of all elements z€ 2, such that there
exists a & €, for which z = (p,)4(resp., z = (py)¥'). Since any projection which is
dominated by a cyclic projection is cyclic and since any cyclic projection in 4’

11 —c. 1540
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is dominated by p;,(since p;, = 1 and as a result of Lemma 6.1), from 7.12 we
infer that

€= (2. and €' = {ze(P.u)¥; z < (p})¥}.
By taking into account Propositions 7.16 and 7.17, the structure of the sets ¢
and ¥’ becomes evident in the case of the type II,, as well as in the case of the

homogeneous type Ipi,.
We now define a mapping ¥,: € — ¢’ by the relations

Po((p)?) = (p)%', (et

By virtue of Lemma 6.1 and of Section 7.12, this mapping is correctly defined.
injective, surjective and both it, as well as its inverse, preserve the order relation,
Since z(p;) = z(p,), it follows that s(¥Y4(2)) = s(2), ze ¥.

In what follows we shall need to note: if ecPy, € ePy, and Pyleh) =
(¢')%, then there exists a & e, such that e = Pe € = pp. Indeed, there exists
an n € X, such thate = p,; hence, (p))4" = Po((py)¥) = Po(e¥) = (e')4". According
to 7.12, we infer that ¢ ~ p;, and now the desired result can be obtained by
applying exercise E.6.1.

f 2,2, 2,4+2,e€¥%, and Yo(z1) + Wo(z,) € ¥, then
Yo(zy + 2z5) = ¥o(z1) + Po(z). -
Indced, there exist ‘el, e €EPy4, e, 66 Py., such that
€e; =0, ele;=0,
i =(e)b, WYo(z) = (e))?’,
23 =(e))%, Wo(z) = (e2)¥".
In view of the preceding remark, there exist &1 &€, such that
€ =P, € =py,
€ =pg, € =pp.
It is now easy to see that, if we denote ¢ = ¢, + &, we have
A e+ ey = p,, e;'*‘ez':Pé-
Consequently, we have .

) Yo(z1 + 20) = Po((e))¥ + (eg)4) = Yol(ey + e)%)
= Fol(p)*) = (P¥ = (¢] + e’
= ()8 + (e2)% = Po(z)) + Po(zo).

Ifiz>0 2%, 22¢ ¢ and A¥y(2) e €', then
¥o(42) = AP(2).
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Indeed, for rational 4, the result can be obtained from the additivity property we
have just proved. Then, for an arbitrary 4 > 0, the desired result can be obtained
by taking into account the monotony property of the mapping ¥,.

Let 2 (resp., ') be the vector space generated in 2’ by ¥ (resp. by ¥’). In
view of 'the additivity and homogeneity properties of the mapping P,, it follows that
there exists a unique linear mapping

» ' S
which extends ¥,. We note that s(¥(2)) < s(z), ze &£.

Since ¥(1) = (ps,)¥ = ¢, it follows that ¥(1) is invertible. We now define
the mapping

P: 2
by the relations

1
cb(z) = W 5"(2), ze &.

In the case of the homogeneous type I, the set & consists of all linear
combinations with rational coefficients, which have the same denominator, of
central projections, and @ is a linear mapping such that ¢(1) = 1. In the case of
the type II,, we have #=2, and & is positive linear mapping of 2 into &, such
that @(1)= 1; it is easily verified that ¢ is bounded (0 <z <1 =0< P(2) <1,
whence |®|| < 4). In each case, we have s(®(2)) < s(2). ‘

Let ¢ be a central projection. Since 1 = g + (1 — g), it follows that

1= o(q) + o1 — 9).
If we multiply this relation by g we get '
®(q) = q.
Consequently, @ is the identity mapping. Then, for any vector { e#, we have
(P = P((p)%) = PMP((p)") = (Pe)* (P
Q.E.D.
7.20. Let S be the set of all families {(z;, g,)};e;, Where g, are mutually orthogonal
central projections, such that Y,¢,=1, z,€ 2, ands(jz,]) < g, iel. We shall

fe1
say that the elements {(z;, 9)}ier and {(zi, gk)}rex are equivalent if for any ie’
and k € K we have z,q; = z{q, (they “coincide on intersections’). We shall denote

by Z the quotient set of $ by the preceding equivalence relation; and by {(z;, 9)}rer
the equivalence class of {(z;, g)}ier- _ .
We shall define the following operations on Z':

{Gzs, aler + {(zx, a}kex = {(ziqi + 9, ‘h‘h:)}(.f.k)eux
Mz 9)ier = {(Az;; q)}ier

{1, g)Yier {Ghr ) }kex = {2k, 9:90)a, merxx

({2, 90}ien* = { ad}ier-
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It is casily verified that &, endowed with the operations already defined, is an
involutive algebra with the unit element. Thus, the notions of a positive element
and of an invertible element make sense. _

The mapping z+{(z, 1)}~ is an injective *-homomorphism of Z into Z, hence
Z is an extension of Z. ,

From the coupling theorem (7.19), the following corollary easily follows.

Corollary. Let # < B(#) be a finite von Neumann algebra, whose commutant
M'< B(H) is also finite. Then there exists an element cu, 4» € &, which is positive and
invertible, such that for any & et we have

(pé)h' = C./(..a'(Pc)"-
The element c.u .« is uniquely determined by this condition.
If # = B(#) is a finite factor, whose commutant 4’ = B(#) is also finite,

then 2 and Z coincide with the field C of the scalars, hence c 4, 4 is a non-zero

positive number,
The element ¢4, .« is called the coupling element or the coupling function;

in the case of factors, it is called the coupling constant.
Obviously, we have

cw, = (Cu )L,

If p is a central projection, then the center of ./p obviously identifies with
Zp. If we assume that this identification is already performed, we have

Cupnrp = (Cu.a’) P

7.21. Let.# be a finite von Neumann algebra, whose commutant .’ is also finite,
and let 2 be their center. Let e’ € .4’ be a projection whose central support z(e') = 1.
) In accordance with Proposition 3.14, the canonical induction -4,
is a e-isomorphism, and this fact allows for the canonical identification of the
common center of the algebras /#,., and .#%., with 2. This identification induces
a canonical identiﬁcation of the extension of the common center of the algebras
Mo, Mo, with 2 (see 7.20). We shall assume that these identifications have
been performed.

Let now b, b, b,., ki. be the canonical central traces on J, ', M ,.M"..
Then for any xe.#, we have

(xe)h" = xh
and, for any x’ e.«",
()7 = ()) 1 exew.
The first relation is obvious. For the second, we first remark that, since 2(e') =1,

e')"t; is an invertible element in 2 (see 2.22). Then, one sees that, for any x’ € 4’,
we have

(&))" Ne'x'e) e 2.
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Finally, the mapping
M3 X0 - (()) Ne'xe Ve
satisfies the conditions (i), (ii), (iii) from Theorem 7.11, and therefore, it coincides

with the canonical central trace on ./,..
With these preparations, we can now state the following

Proposition. Let # < B(H#) be a finite von Neumann algebra, whose commutant
M < B(H) is finite. If &' € M' is a projection whose central support 2(e') = 1, then
gty =) e
Proof. Let e e’ < o and let us consider the projections
pe=IM'Eed | py=[HEled
g, =[M.lledly, q.=[MA]eA,.
Then
g = (pg)er and gz = (py)e-
Consequently, we have

@)™ = (D) = (@) G = (€)Y, alp"
= (@) e () = (€)F) e, (@)™

The uniqueness of the coupling element now implies the formula in the statement
of the proposition.
Q.E.D.

7.22. Let 4 = B() be a finite von Neumann algebra whose commutant .4’ < #(X’)
is also finite, and let n be a natural number. Let J, be a Hilbert space of
dimension n. We now consider the von Neumann algebras

M, =MREH,)c BHONX,), Miy=MQR(KH,)c BHRN,).
Then .17,, and ., are finite and ~thcre Sxists a projection ele ., 2(e;) = 1, such
that the canonical induction /#,— (4,) . be the inverse of the canonical ampli-

fication 4 — .4, (see 3.18 and E.4.20).
From Proposition 7.12 we deduce the following

Corollary. ¢.. ..=nc "
ry -‘u.-‘; A, A

7.23, Finally we present a tdpological criterion of finiteness:

Proposition. A von Neumann algebra 4 is finite iff the s-operation is s-continuous
on the closed unit ball of A.
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Proof. Let us first assume that .# is finite. We shall show that the set
{L.¢; ¢ a finite normal trace on .#, ac./}

is total in #,. Indeed, if x e #, and ¢(ax) = O for any finite normal trace ¢ on
4, and any ae ./, then ¢(x*x) = 0, for any finite normal trace ¢ on .#; hence,
in view of Corollary 7.14, we have x = 0. Since (.#,)* = .#, the assertion is now
obvious.

Let {x;} be a net in the closed unit ball of #, which is s-convergent to 0.
Then, for any normal trace ¢ on .#, and any ae.#, we have

lplaxixP)| = |p(xtax)| < o(xfaa*x,)' 2p(x*x)'2 < |la|| ¢(x¥x;) — 0. .

By taking into account the first part of the proof, it follows that the net {x:}
is s-convergent to 0.

Consequently, the s-operation is s-continuous on the closed unit ball of /.

Conversely, let us assume that .# is not finite. According to Proposition 4.12,
there exists a sequence {e,} of equivalent mutually orthogonal, non-zero projec-
tions in 4. Let {v,} be a sequence of partial isometries in ., such that

i, =e, vt =e, n=1,2, ...

Then it is easy to see that
v, = 0, but ¥ -0

and this shows that the s-operation is not s-continuous on the closed unit ball of /.
Q.E.D.

Exercises

E.7.1. A von Neumann algebra is finite iff
XN YEM, xp=1=>ypx=1.

'1'3.7..2. Let .# be a von Neumann algebra and x, ye . If n(xy) is a finite pro-
Jection, then

n(xy) — n(y) ~ n(x) A I(y).

E.7.3. Let .# be a von Neumann algebra, & its center, and let d: Pu— 2t be
‘2 mapping having the properties

() d(e +f)=d(e) + d(f), for any e,fePy, ef=0;

(i) d(e) = d(f), for any e.fePy e~ f;

(iii) d(1) = 1;

(iv) d(pe) = p d(e), for any e€P 4, pePy;

(v) d(e)=0=e=0, for any eeP.,.
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Show that .# is finite and, for any e € # 4 we have
d(e) = eh.

E.7.4. Let 4 be a finite von Neumann algebra and 2 its center. The following
assertions are equivalent

(i) # is of countable type,
(ii) 2 is of countable type,
(i) there exists a faithful finite normal trace on ./4*.

E.7.5. Let {£;};e; be an orthonormal basis in . For any x€ BF), x 20, the
number .

tr(x) =Y, (x¢;1€) =Y Ix"78*
el iel

does not depend on the chosen basis in ), and the mapping x > tr (x) is a faithful
semifinite normal trace on #(J¢)*; it is called the canonical trace on BF)*.

E.7.6. Let us denote
THH) = {ac B(F); tr(la]) < +oo},
lall, = tr(la]), ae T +X).

Then J#(o¢) is a Banach space for the norm {I-1,,, and tr extends by linearity to
a bounded linear form on the Banach space 3 #(5¢), which is also denoted by 1r.

*E.7.7. The set () is a two-sided ideal in 2(5#’), contained in the closed
two-sided ideal o' (o) of all the compact operators on . Thus, any element
ae T ) determines a form ¢, on B(X), given by the formula

@ (x) = tr(ax) = tr(xa), x € B(F).

Show that the mapping
avrr @, |xue)

is an isometric isomorphism of the Banach space J #(¥) onto the Banach space
A (J)*, whereas the mapping
avrr @,
is an isometric isomorphism of the Banach space J#(¢) onto the Banach space
B(H)s.
In particular, #(o) identifies canonically with X'(5F)**.
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E.7.8. With the help of E.7.7, show that for any normal form ¢ on #(#), there
exists an orthogonal scquence"{f,,} c X, Y 1€, < 400, such that

n=l

o) = ¥, (LalE), xe B().

A=l

With the help of a polar decomposition theorem, infer then that, for any w-con-
tinuous form ¢ on #(#), there exist orthogonal sequences {¢,}, {n.} < o,

T, 160 < +00, It < +oo0, such that

A=l Rl

o() = 3 (x&ln), xeB@H),

n=1

loll = 3 1E0 Il

nml

E.7.9. Let .# be a semifinite von Neumann algebra. Then .# is continuous iff
there exists a decreasing sequence {e,} of finite projections in A, such that, for
any n, :

z(ell) = 1’
€n ™ Eyy1 ~ Cpyy.

E.7.10. Show that a von Neumann algebra ./ is properly infinite (resp., of type III)
iff any finite (resp., semifinite) normal trace on A+ is identically zero. ,

Infer from this result that if 4 is a von Neumann algebra of type III, and if u
is a non-zero normal trace on J*, then p(x) = + oo, for any x e+, x#0.

E.7.11. Let .# be a von Neumann algebra and # a normal trace on 4*. For any

family {e},e; < .# of mutually orthogonal projections, such that Ye=1, we
lel
have

nx) =Y plexe), xeut.
i€r

Infer from this result that for any semifinite normal trace u on .#*, there

exists a family {,};e,; of normal forms on #, whose supports s(p,) are mutually
orthogonal, and such that

Hx) =Y o(x), xeu*.
iet .

E.7.12. Let.# be a finite von Neumann algebra with center 2 and p a normal semi-
finite trace on .#*. Then

nxb) < p(x), xed+.
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Infer .that ulZ+ is a normal semifinite trace on Z+, there exists a family {u,
of finite normal traces on.# with mutually orthogonal supports, such that

ux) = ¥ plx), xed+,
iel

}lEI

and hence
H(xh)y = p(x), xed+.

E.7.13. Let.# be a semifinite von Neumann algebra of a countable type with center
Z, 1 a normal semifinite faithful trace on.#+* and e, fe # 4. Show that:

(1) e < f<> plep) < u(fp) for all p e Po;

(2) e is finite <> for every 0 # pe Py there exists 0 # ge Py, q < p,
such that p(ge) < + o0 <> there exists a sufficient family {i,},¢; of normal semifinite
traces on .+ such that u,e) < 4co, i€l

E.7.14. Show that any two normal traces p, v on a factor.# are proportional. Extend
this result for two normal semifinite faithful traces on a von Neumann algebra. (Hint:
if A is a finite factor, then u(x) = ax#, x e, for some « € [0, + 00). The required
statement for the general case is given as a consequence of Corollary 1 in C.10.4;
for the proof here use 5.21 and 7.11.)

!E.7.15. One says that a von Neumann algebra /# < @(#) is standard if there
exists a conjugation J: & — 5, such that the mapping x - Jx*J be a s-anti-
isomorphism of # onto .#’, which acts identically on the center.

Show that any standard von Neumann algebra of countable type has a sepa-
rating cyclic vector.

E.7.16. Any maximal abelian von Neumann algebra is standard. Consequently,
any abelian von Neumann algebra is s-isomorphic to a standard von Neumann
algebra.

IE.7.17. Let # < B(#) be a finite von Neumann algebra of countable type. The
following assertions are equivalent:

(i) # is standard,

(ii) # has a separating cyclic trace vector,

(iii) A’ is finite and ca .a = 1.

!E.7.18. Any finite von Neumann algebra is s-isomorphic to a standard von Neu-
mann algebra. (Hint: If .# is of countable type, apply the construction given in
Section 5.18, to a faithful w-continuous central positive form).

E.7.19. Any semifinite von Neumann algebra is n-isomorpixic to a standard von
Neumann algebra.

E.7.20. With the help of E.7.17, give a simpler proof to Lemma 6.3.

E.7.21, Let .# be a homogeneous von Neumann algebra of type /,,, whose com-
mutant is homogeneous, and of type /,, where m and n are natural numbers.
Show that

Ca, = m/n.
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E.7.22. Let # be a von Neumann algebra and e € 2 4. The following assertions
are cquivalent:
(i) e is the Lu.b. of a finite family of minimal projections in ./,
(ii) the mapping
M a3xexecelle

is continuous for the w-topology in 4 and the uniform (norm) topology im e.#e. -

*E.7.23. Let.# be afinite von Neumann algebra and 4 < .# a multiplicative group
of invertible elements such that sup{lgll; g€ ¥} < +oco. With the help of the
Ryll-Nardzewski fixed point theorem, show that there exists an invertible element
ae./*, such that for any ge @ the element aga™! be unitary.

Comments

C.7.1. Let .# be a finite von Neumann algebra and x e 4. With the notations from

C.4.4, it is easy to see that
ze €(x) =z = xh,

According to Theorem 1 from C.4.4 (or by Theorem 7.11. (1x)) it follows that
(s) H(x) = (x) = {xh}.

The first proof of Theorem 7.11 was given by J. Dixmier [12] who extended
the arguments of F. J. Murray and J. von Neumann, used by them for the case
of factors. The culminating point of J. Dixmier’s proof consists in showing that
the set o#°(x) reduces to a single element. Although this proof is much longer than
that given above, we consider it to be very illuminating (see J. Dixmier [26], Ch. IHI,
§ 8).

The shortening of the classical proof of Theorem 7.11 has been an open pro-
blem for a long time (see, for example, R. V. Kadison [7], [20]). The proof given
above has recently been obtained by F. J. Yeadon [1].

A description of the sets #'(x) and ¥(x), analogous to that given by the
relation (s), for properly infinite von Neumann algebras, has been obtained by
H. Halpern [13) and §. Strdtild and L. Zsid6 (see also §. Stritild [2]).

C.7.2. Some phenomena which take place in the lattice of all the projections in a
von Neumann algebra also appear in the abstract frame of lattice theory (see, for
example, J. von Neuann [8], S. Maeda [3], F. Maeda and S. Maeda (1), L. H. Loo-
mis [2], L. A. Skorniakov {l]). We also mention the remarkable rcsult contamed
in the title of 1. Kaplansky's paper [21].

C.7.3. Let .« be a von Neumann algebra and p a trace on .#*+. Then the set
{xe*; u(x) < + o0}

is the positive part of a two-sided ideal M, of .4 and there exists a unique linear
form on M,, which coincides with u on 93!* This linear form will be denoted also

by .
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One can show that for any ae I, one has
ulax) = p(xa), xe.h,
and, if p is normal, then the linear form

M 3 x v p(ax)
is w-continuous.
Obviously, g is finite iff M, = 4. If p is normal, then y is semifinite iff M,
is w-dense in /.
The proofs of these results can easily be obtained by using the results in
Section 3.21 (see also 10.14 and J. Dixmier [26), Ch.I, §6).

C.7.4. Let # and # be von Neumann algebras. According to the types of the

algebras . and ., the type of the tensor product .4 ® 4 is completely described
by the following table

- e Aow
type I, type 1, type Lnn
type I type I type I
finite finite finite
semifinite semifinite semifinite
continudus . arbitrary continuous
properly infinite arbitrary . properly infinite
type 111 arbitrary type 111

For the proofs we refer the reader to J. Dixmier [26], Ch. III, §8.7, and S.
Sakai [32], 2.6. We mention the fact that only the last implication in this table
offers some difficulties. This implication has been proved by S. Sakai [6], who,
to this end, also obtained the topological criterion of finiteness (7.23).

C.7.5. Bibliographical comments. The results in this section are essentially due to
F. J. Murray and J. von Neumann, who proved them in the case of factors.
The globalization of these results to arbitrary von Neumann algebras was begun
by J. Dixmier [12] and I. Kaplansky [10], and continued by H. A. Dye, E. L.
Griffin, R. V. Kadison, R. Pallu de la Barriére, and others. We mention the fact
that Lemma 7.18 is due to E. L. Griffin [2].

In writing this chapter we referred to I. Kaplansky [22], J. R. Ringrose [5],
R. V. Kadison [14] and J. Dixmier [26]. _






8

Spatial isomorphisms and relations
between topologies

In this chapter we consider the cases in whicha «-isomorphism between von Neumann
algebras is implemented by a unitary operator, as well as the cases in which the
w-topology coincides with the wo-topology. ' :

8.1. Let #, = B(H,), #Ms = B(F>) be von Neumann algebras. One says that
a s-isomorphism 7 :., = .#, is a spatial isomorphism (or that it is wnitarily
implemented) if there exists a unitary operator u 1, — Hs, such that

n(xl) = uOXxou‘, Xy 6-/11-

While any s-isomorphism is w-continuous (5.13), but it is not necessarily
wo-continuous, it is obvious that any spatial isomorphism is wo-continuous, This is
one of the main properties which distinguish the two kinds of isomorphisms.

The problem which we consider in this chapter is to find some sufficiently
simple and general conditions under which a given s-isomorphism is spatial.

For example, according to Corollary 5.25, any s-isomorphism between two
von Neumann algebras with vectors which are both cyclic and separating, is spatial.

8.2. In what follows we shall essentially use the following simple proposition, which
establishes a “canonical form” for the s-homomorphisms of a von Neumann al-
gebra onto another one, and makes more precise the problem of the unitary im-
plementation of a s-isomorphism.

Proposition. Let M, c B(H)), M= B(H,) be von Neumann algebras and
T : My~ My a w-continuous s-homomorphism, such that n(My)=Ms. Then there exist

a von Neumann algebra M < B(X)
two projections 3, exe M’ < B(K) and
two spatial isomorphisms

Ty s My .II,; < A(eiX)
e :u”’ "’.”'; c Q(e,')f’)

such that
2(e;) = 1 and

(ngomoni?) (x,;) = X xeH.
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Moreover
nt is a s-isomorphism <> z(ez) = 1, ;
n is a spatial isomorphism <> e; ~ e} in M.
Proof. Let 3¢ = o, @ ;. The mapping
7?1 :.ﬂlaxl - xl @ n(xl)eg(-#)

is an injective w-continuous s-homomorphism; hence, in accordance with Corollary
3.12, we have

H = T) = {11 © 7(x); 3, €M1} < BOF)

. A . . .
is a von Neumann algebra, whereas 7, : #; — ./ is a »-isomorphism.
We now consider the canonical isometries

uy L Hy -, (&) =& D0, § e,

Uy 1 Hy =K, ufs) =0 @ &, Les,
the projections
e1=uouy, & = woul e M < B(H)
and the spatial isomorphisms

Ry P My 3 X) > thyox 0ul e.l(,:‘ < B(e1 ),

Tty My 3 Xg 1> UgoXz0ul eyl(,; < RB(exP).
Since the canonical induction .# — ./I,; coincides with the s-isomorphism
myoni !, from Proposition 3.14 we infer that z(e}) = 1. Consequently, the mapping

A
Ry 3x, VX, € M
‘"7 2 2

is correctly dcfined. It is immediately verified that 7 = Tgomomy L.
The other assertions in the statement of the proposition easily follow,
The proof can be sketched by the following commutative diagram

Q.E.D.
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8.3. Let now M, = B(Hy), My = B(H,) be finite von Neumann algebras, whose
commutants M1 < B(Hy), My < B(H,) are also finite.

According to Section 7.20, let 2, 2, Ec the extensions of the centers 2, 2,
of the algebras .#,, #,, and let ¢ a, &€ Zn 4, X, €22 be the corresponding
coupling elements.

Any s-isomorphism =z :.#; —.#, induces a s-isomorphism % (T - Ty,

uniquely determined by the condition that the restriction of ¥ to 2, coincide with
the restriction of n to 2.

Theorem. Let .#,, A, be finite von Neumann algebras, whose commutants are also
Sfinite. A t-fsomarphism My - My is spatial iff T(c -, .‘;)=c A

Proof. If m is spatial, then obviously, #(c ” J;) =Cy i Conversely, let
us assume that this condition is satisfied. '

According to Proposition 8.2, we can assume that there exists a von Neumann
algebra # < B(3#), and two projections ej, ez€.A’, such that:

| 2(e}) = 2(ed) = 1,
niM = ./{,;3 x,;b-»x,;e J/,: = Ms.

On one hand, .# is finite since it is s-isomorphic to .#; and to .#,. On the

other hand, since JlL; =M1, ,/I;; = ./} are finite, it follows that e, e;e.#" are

finite projections. In accordance with Proposition 4.15, e;Veye.#' is a finite
projection. Therefore, we can assume that .’ is finite.
The centers of the algebras .4,., .Il,; canonically identify with the center

of the algebra .#, and these identifications induce canonical identifications of the
corresponding extensions. Assuming that these identifications have been performed,
the condition 7(c, 4:) = Ca,, ] becomes

=¢

Cupt, = Sy’

Let now &’ be the canonical central trace on A'. According to Proposition
7.21, we have

-
PPl ULV L

Cunr = ("5)""1,..4; .
It follows that
: (D) = (e2)¥;
hence, according to 7.12,
e} ~ e,
and this implies that the e-isomorphism = is spatial.
Q.E.D.
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8.4. In order to define the spatial invariants which will be used in the other
theorems of unitary implementation, we need the following

Lemma. Let # be a properly infinite von Neumann algebra, and let, for any j=
=1,2,{e;,,}i,e1, be a family of equivalent, mutually orthogonal projections in #, which
are plecewise of countable type, such that Y, e, = 1. Then card I, = card I,
1er
Proof. Without any loss of generality, Jwé' can assume that e; , are of count-
able type, i,el_,,j=l,2. '
For each i, e I, we denote

L, = {iel; e, €, 01y, # 0}
Obviously, we have
(‘) L= 12,1;-
hern

Since e,,, is of countable type, according to exercise E.5.6, we infer that
there exists a normal form @1, on #, such that s(¢,,) = e,,;,. Then, we have

+00 > gyer,,) = @yler, (Y ea) €1r)

hel,

=Y, Pulen,, ez, €1,1,)
l.el.

= 2 oilens, e, e,
hel.

hence 1, ,, is at most countable. Since I, is an infinite set, from relation (») it
follows that ‘

card I, < card I,.

The reversed inequality can be obtained analogously.
.E.D.
8.5. Let .# be a properly infinite von Neumann algebra and let y be an %ﬁnite
cardinal. One says that .« is uniform of type v if there exists a family {e;};e; of
equivalent, mutually orthogonal projections in ., piecewise of countable type,
such that ¥, e, =1 and card I=y.
iet

According to Lemma 7.2, any finite projection is piecewise of countable
gypc..Consequently. a semifinite properly infinite von Neumann algebra, which
18 uniform of type S, (see exercise E.4.14) is also uniform of type 7.

. By taking into account exercise E.4.14, Lemma 8.4 shows that for any semi-
finite von Neumann algebra .# there exist a family I' of distinct infinite cardinals,
and a family {P1sP,}yer Of mutually orthogonal central projections, uniquely de-
termined by the conditions

pl+zp7=l’

Yer
Ap, is finite,

#p, is uniform, of type S,
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On the other hand, since any abelian projection is finite (4.8), any properly
infinite von Neumann algebra, which is homogeneous of type I, (see exercise E.4.14)
is also uniform of type y.

By taking into account exercise E.4.14, Lemma 8.4 and exercise E.4.15 show
that for any discrete von Neumann algebra .# there exists a family I' of distinct
cardinals, and a family {p,},er of mutually orthogonal, central, non-zero pro-
jections, uniquely determined by the conditions

Z =1
ver
p, is homogeneous, of type I,.

In the general case of a properly infinite von Neumann algebra we have the
following result:

Proposition. Let # be a properly infinite von Neumann algebra. Then there exist a
family T of distinct cardinals and a family {p,},er of non-zero, mutually orthogonal,
central projections, uniquely determined by the conditions

Yr=1

YEr
AMp, is uniform, of type ¥.

Proof. The existence part of the proposition easily follows with the help of

a usual argument based on the Zorn lemma and on the comparison theorem (4.6),
whereas the uniqueness part of the proposition follows from Lemma 8.4.

Q. E. D.

8.6. Let .4/ = #B(5#) be a von Neumann algebra whose commutant M' = B(K)
is properly infinite. Let I'' and {py}rer  #' NA be the families canonically
associated to 4’ in accordance with Proposition 8.5. One can then define the symbol

ue = (I", {P;"}r'e r)

which can be called the uniformity of 4.
If n: 4, .#, is a s-isomorphism between two von Neumann algebras,
whose commutants are properly infinite, and if

u.a,' = (I}, {p;.r'}r'er;')’ i=12,
then we shall write that
ﬁ(u.‘;) = u‘;)
if '{=Trj; and n(p;,,;)=ps s, for any y' el =T;.
The following theorem of spatial isomorphism contains the case of the semi-
finite algebras whose commutants are properly infinite, as well as the case of the

algebras of type III (see Theorem 6.4).

12 - ¢, 1540
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Theorem. Let My, My be von Neumann algebras whose commutants are properly -

infinite. A s-isomorphism 1w : Ay — M,y is spatial iff T(u, )— u,

Proof. If = is spatial, then, obviously 7(u, )— u,. Converse]y, let us .

assume that this condition is satisfied.
Then we can assume that #7, as well as .3, are uniform, of the same type y.
According to Proposition 8.2, we can assume that there exist a von Neumann
algebra .# < #(H#) and two projections e;, e;€ .#’, such that

2(e) = 2(ed) = 1,
niMy =M, 33X, > xe'e.,//‘, = M.
1 1 2 2

Since, by assumption, #; and 7 are uniform, of the same type, it follows that,

for each j= 1,2, there exists an infinite family
{ef, ther = M) = v//;' ;

of equivalent, mutually orthogonal projections, piecewise of countable type, and
such that

Ze]’"-':ej, j=l,2

el ,
(i.c., the unit element of the corresponding algebra).

By performing a partition by countable subsets of the set I, and by consi-
dering the corresponding sums of those projections ¢ ; whose indices i belong to
the same subset of the partition, it is easy to see that we can assume that the
projections ¢, , are properly infinite.

For any i€/, e;,, and e; , are then properly infinite projections, piecewise
of countable type, in .#’, and z(e;,;) = z(ez, ;) = 1. According to Proposition
4.13, it follows that

e;.l ~ eé.h iel
Therefore, we have
E{ ~ e;’

and, hence, m is a spatial isomorphism.
Q.E.D.
8.7. Let.# < B(X) be a discrete von Neumann algebra. Its commutant #' < 2(F)
-is again a discrete von Neumann algebra (according to Theorem 6.4). By taking
into account Section 8.5, we obtain a family I’ of distinct cardinals, and a family
{p,,} ‘e of mutually orthogonal central projections, uniquely determined by the
condmons
Z p;' =1,

Yer
AM'py is homogeneous, of type Iy.
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We can then define the symbol

o = (I, {P;'}y'e rh
which can be called the homogeneity of A'.

If @ : My — M, is a s-isomorphism between two discrete von Neumann al-
gebras and if

DJ(J’ = (r],» {P;',v},/e,.})» j= 1, 2;

then we shall write that
#i(o .‘;) =0,

if I'i="r; and n(py,y) = P2,y for any yel="r,
Theorem. Let ,, 4y be discrete von Neumann algebras. Then a s-isomorphisnt
7 My, — M, is spatial iff 7:(0_‘;) =0

Proof. The proof is similar to that of Theorem 8.6. Instead of Proposition

4.13, one uses Proposition 4.10.
Q.E.D.

8.8. Let 7 : .4 — 4 be a s-automorphism of the von Neumann algebra .#, whose
center is &. Obviously, we have n(2) = 2. We shall say that = acts identically on
the center if n(z) = z, for any ze 2. It is obvious that if 4 is a factor, then any’
s-automorphism of M acts identically on the center.

If n acts identically on the center, then n conserves theinvariants ¢ PIL P
already introduced, and according to the case.

In the following sections we state some obvious consequences of Theorems
8.3, 8.6, 8.7.

8.9. Corollary. Any s-automorphism of a von Neumann algebra, whose commutant
is properly infinite, which acts identically on the center, is spatial.

8.10. Corollary. 'Any s-automorphism of a finite von Neumann algebra, which
acts identically on the center, is spatial. :

8.11. Corollary. Any s-gutomorphism of a discrete von Neumann algebra, whiclr
acts identically on the center, is inner.
Proof.. 1t follows from 8.11 and 6.5.

8.12. Corollary. Any s-isomorphism between von Neuman algebras, whose com-
mutants are properly infinite and of countable type, is spatial.

8.13. Corollary. Any s-isomorphism between von Neumann algebras of type. lll,
which operate.in separable Hilbert spaces, is spatial. .

8.14. In what follows we shall study the relations existing between the various.
topologies already defined in a von Neumann algebra.

‘ We recall that, besides the norm (uniform) topology and the topologies wo,.
so and w, which were defined in Section 1.3, we have also considered the topology
s, which has been defined in exercise E.5.5. Between these topologies we have
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the following relations of strength

wo < S0
AN AN
W<S<n,

where by n we have denoted the norm (uniform) topology.

We are now concerned with the precise relations existing between the topolo-
gies w and wo, and between the topologies s and so. On the closed unit ball of .#
the restrictions of the topologies w and wo (resp., s and so) coincide (see 1.2, 1.10
and E.5.8). ' :

The)s-continuous (resp., the so-continuous) linear forms coincide with the
w-continuous (resp., the wo-continuous) linear forms (see 1.4 and E.5.8). It fol-
lows that the w-topology (resp., the wo-topology) is the weakened topology asso-
ciated to the s-topology (resp., the so-topology). On the other hand, a net {x;} in
J is s-convergent to O (resp., so-convergent to 0) iff the net {x}x;} is w-con-
vergent to O (resp., wo-convergent to 0) (see E.5.8). -

Consequently, the s-topology coincides with the so-topology iff the w-topology
coincides with the wo-topology. Obviously, these conditions are equivalent to
the condition that any w-continuous linear form be wo-continuous; hence (see
5.16), to the condition that any normal form be wo-continuous. -

The fundamental result of the problem we are concerned with is contained in
Corollary 5.24: if the von Neumann algebra M <« %B(3¥) has a separating vector,
then any normal form on M is an w,, &€ ; in particular, in this case, the w-to-
pology coincides with the wo-topology. ‘

It is thercfore only natural to begin our investigations with the study of the
conditions under which a von Neumann algebra has separating vectors.

8.15. Lemma. Let ./ < B(¥) be a von Neumann algebra whose commutant
M = B(H) is properly infinite. Then M has a separating vector iff M is of countable
ype. :

Proof. If .4 < B(#) has a separating vector e, then s(w;) =ps =1
and, according to exercise E.5.6, 4 is of countable type. Conversely, let # be of
countable type and .« properly infinite. In order to show that .# has a separating
vector, we can assume that, in accordance with Lemma 7.18, there exists an n € ¢,
such that p; = 1. Then the projections p,and 1 in 4 are of countable type, pro-
perly infinite (sce Lemma 6.3) and they have the same central support. Proposi-
tion 4.13 now implies that p, ~ 1. Let ve.#, such that v*v = p,, vv* =1 and
{ = vn. Then we get p, = 1; hence ¢ is a separating vector for 4.

Q.E.D.

8.16. Theorem. Let .# < @(#) be a von Newnann algebra whose commutant M' ©
< B(¥) is properly infinite. For any w-continuous linear form ¢ on M there exist
&, neXX, such that

Q= wg. "

In particular, the w-topology coincides with the wo-topology, and the s-topology
coincides with the so-topology.
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Proof. Let first  be a normal form on 4 and e = s(§). Then .4, is a von
Neumann algebra of countable type, whose commutant is properly infinite. Accord-
ing to Lemma 8.15, there exists a { € #, such that e = p;. Since s(y) = p;, from
Theorem 5.23 we infer that there exists an n € 5, such that ¥ = w,.

Let now ¢@ be a w-continuous linear form on .#, and let ¢ = R,y be its
polar decomposition (5.16). Since ¥ is a normal form, there exists an y €, such
that ¥ = w,. Then ¢ = w,,, ,.

Q.E.D.
8.17. Corollary. Let M < B(#) be an arbitrary von Neumann algebra. For any
w-continuous linear form ¢ on 4 there exist two sequences {{,}, {f.} © # w0, such that

=Y 0g.mmr X l|l¢..l|z < +o0, Si .l < +o00.
n=1 n= Noem

Proof. Let us éonsider the separable Hilbert _gpace {* and the von Neumann
algebra M=MQ (D) < B(H ®I%. Then ) @ I? identifies with the Hilbert
space :

& = {{c.} ca#; ¥ It < +oo}
n=1
and, for any ¥ = x® 1 e.# and any & = {£.} € o, we have
XE = {x¢.}.
According to Section 3.18, the amplification
MIxrReM

is a s-isomorphism, whereas, according to Proposition 3.17. and to exercise E.4.20,
A =M@ B2 = B ® 1) is a properly infinite von Neumann algebra.

Let ¢ be a w-continuous linear form on .# and let us define the w-continuous
linear form $ on ./ by the relation

PF=0kx), T=x@led.
According to Theorem 8.16, there exist E={&) 71={n} €, such that

-

b =z

1t follows that -

a
? ='§‘w¢lo n®

Q.E.D.
8.18. Lemma. Let 4 < R(F) be a finite von Neumann algebra of countable type,
whose commutant M' < B(H) is finite. Then M has a separating vector iff
ca.as< 1.
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Proof. Let £ € # be a separating vector for #. Then we have p, =1, p; < 1,
hence .
| (PE)"' = CH M (Pg)q = CH, M+ . } ‘

Conversely, let us assume that ¢« .« <1 and then we shall prove that 4 has
a separating vector. According to Lemma 7.18, we can assume that there exists

a &es, such that p;= 1. Then
1= (p)¥ = cuw (P < (PP < 1,

hence p, = 1. Thus, { is a separating vector for .. QED

8.19. Theorem. Let .# < B() be a finite von Neumann algebra, whose commutant

M' < B(H) is finite. Then the w-topology (resp., the s-topology) coincides with the

wo-topology (resp., the so-topology) iff cu.n € Z. :
Moreover, if n is a natural number, then the following conditions are equivalent
(i) for any normal form  on M there exist n vectors My, ..« Mu such that

‘I’ = f‘-l Dy
kw1l

(i) for any w-continuous linear form ¢ on 4 there exist n pairs of vectors
(Elv 'll)’ ceey (Cm 'I.), such that

n
¢ = Z Dey,me
ena k-l
(iil) caa <.

Proof. It is casy to sce that assertion (i) (resp., (ii); resp., (iii)) for the al-
gebra 4 and n=n, is equivalent to assertion (i) (resp., (ii); resp., (iii)) for the
algebra A ,, = .4 ® €(o¢,) and n = 1, where #,, is a Hilbert space of dimension
n, (see Corollary 7.22 and the proof of Corollary 8.17).

Consequently, in order to prove the equivalence of the assertions (i), (ii),
(iii), we can assume that n = 1. Then (i) = (ii), according to the polar decompo-
sition theorem (5.16); (ii) = (i), according to exercise E.5.2, whereas the equiva-
lence (i) <= (iii) follows by taking into account Lemma 8.18 and Proposition 7.21.
We remark that the equivalence (i) <> (ii) holds in any von Neumann algebra.

If cu.a € 2, then there exists a natural number n such that c.a, & < 7; from
what we have already proved it clearly follows that the w-topology coincides with
the wo-topology. ]

If 5 2, £ 0 (see 7.20) and if there exists a z € &, such that Z < z, then
le?.

Consequently, if cu.a ¢ 2, then there exists a sequence {g,} of non-zero cen-
tral projections of countable type, which are mutually orthogonal, and such that,

©0
for any n, we have ca .« g, > nq, Then g= Y g, is of countable type and

canq¢2Zq.
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Thus, we can assume that .# is of countable type. Let ¢ bea faithful normal
form on .#. If the w-topology coincides with the wo-topology, then there exist a
natural number n and vectors &, ..., &, €, such that

¢ = Z Dy
kw1

Then &= {&, ..., &} e.;f’,, is a separating vector for the von Neumann algebra

.I?,,. According to Corollary 5.24, any normal form on .#, is an wz, e, In
particular (see the proof of Corollary 8.17), any normal form on J is equal to

a sum Y w,. From the first part of the proof we infer that ca.a < n, hence
k=1

cun€Z.
Q.E.D.

8.20. Corollary. Let # < B(X) be a finite factor. Then the w-topology (resp., the
s-topology) coincides with the wo-topology (resp.,the so-topology).

8.21. Our study of the relationship existing between the topologies w and wo
(resp., s and so) is completed by the following:

Theorem. Let # < B(H#) be a properly infinite von Neumann algebra, whose
commutant #' = B() is finite. Then, for any wo-continuous positive form ¢ on M,
its support () is a finite projection in M.

In particular, the w-topology (resp., the s-topology) is strictly stronger than the
wo-topology (resp., the so-topology).

Proof. Since ' is finite, for any § € #, p is a finite projection in .4, hence
(see 6.3), p; is a finite projection in 4.

If ¢ is a wo-continuous positive form on .#, then there exist &, ..., , €,
such that :

@ =Y Wg,
k=1
whence
() =lee.-

By taking into account Proposition 4.15, it follows that s(@) is finite.

The final part of the theorem follows from the obvious remark that, on a
properly infinite von Neumann algebra, there exist normal forms whose .supports
are infinite.

Q.E.D.
8.22. Corollary. Let . = R(#) be an infinite factor. Then the w-1opology (resp., the
s-topology) coincides with the wo-topology (resp., the so-topology) iff the commutant
M BOP) is infinite.
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Exercises

*E.8.1. Let .# be a von Neumann algebra, whose commutant is .#’ and whose
center is 2. One says that e € 2 4 is a maximally cyclic projection in 4 if it is cyclic
and if :

JePu cyclic, e < f=e ~ f.

If ee? 4 is a maximally cyclic projection in /# and if p e P4, then epEP 4, is
maximally cyclic in #p. With the help of the comparison theorem, one infers that
the maximally cyclic projections in .# are mutually equivalent. :

Show that if Z is of countable type, then any cyclic projection in .# is con-
tained in a maximally cyclic projection.

If, moreover, .# and .#’ are properly infinite, then the set of all maximally
cyclic projections in .4 coincides with the set of all properly infinite projections
of countable type, whose central support is equal to 1.

E.8.2. Let ./ = #B(5#) be a von Neumann algebra with the cyclic vector (e
and eeP 4. The following assertions are equivalent

(i) e is maximally cyclic,

(") e~ pg ,

(iii) e ~ py=pp =1, nest.
E8.3. Let .4, c B(#)), M, = B(H;) be von Neumann algebras with the cyclic
vectors §; €, {3 €, respectively. A s-isomorphism = : .4, - ., is spatial
iff it conserves the maximal cyclicity of the projections (i.e., e, € # 4, maximally
cyclic = n(e,) € #.«, maximally cyclic).
E.8.4. Let.#,, .4, be properly infinite von Neumann algebras, whose commutants
are finite and whose centers are of countable type. A s-isomorphism n : .4, — M,
is spatial iff it conserves the maximal cyclicity of the projections.
!E.8.5. Any s-isomorphism between two standard von Neumann algebras is
spatial.
E.8.6. Prove the assertion from E.7.18 with the help of Theorem 8.16.

E8.7. Let .# < #(¢) be a von Neumann algebra. Then the w-topology on 4
is determined by the family of seminorms:

Y (<Gl

na=|l

[- -]
where {.}, {n} <o, ¥ (15,12 + In.l®) < +oo, whereas the s-topology on .«
1 .

is determined by the far.;lily of seminorms

x»(ﬁnﬁwjm.

X > ,

where {{,} = o, E 1£.02 < 400,
A=l
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In particular, the s-topology coincides with the ultrastrong topology.

IE.8.8. Let ./#,, #, be von Neumann algebras and = :.#, — ., a w-continuous
«-homomorphism, such that n(4,) = .#,. Then there exist

an amplification 7y My ./7,,
an induction g s My - (A, €€ Y
a spatial isomorphism Ty S (M) = My

such that

T = NMgoMyo My,

" Hint: if 4, has a cyclic vector &, then~,~with a suitable amplification, we have
(wgom)” = wg and one defines ¢’ = [.#,&,]).

E.8.9. Let # = B(#) be a finite factor and y a finite normal trace on .4+, From
Corollary 8.20, one obviously infers that there exists a finite family {&;, ..., &} © ¥,
such that

u= (é‘lw“‘) W

With the help of E.5.9 show that the preceding reprcsentatioh can be chosen in
such a manner, that the projections pg, - .., P, be mutually orthogonal.

E.8.10. Let # c #(#) be a von Neumann algebra and let u be a normal trace
on #+. Then there exists a family {&};er =9, such that

H= (Z w{t)l‘”+'
el

whereas if p is, moreover, semifinite, then this representation can be obtained in
such a manner, that the projections pg,, i€ l, be mutually orthogonal.

In particular, if 4 is a von Neumann algebra of countable type, then for any
semifinite normal trace p on .4+, there exists a sequence {{,} =, such that
{p;.} be mutually orthogonal and such that '

i = (3 0g) [+,
Kml

E.8.11. Show that, on a von Neumann algebra .#, the s-topology ‘coincidcs with
the so-topology iff any projection, which is the Lu.b. of a countable family of cyclic
projections in . is equal to the Lu.b. of a finite family of cyclic projections in .#.

E.8.12. Let .# be a von Neumann algebra. Show that if any w-continuous form on
4 is a finite sum of forms @y, ,, &, 7€, then there exists a natural number #,
such that any w-continuous form on .# is the sum of 1 forms ay,,.
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Infer from this result that if any projection of countable type in .# is the Lu.b.
of a finite family of cyclic projections in .#, then there exists a natural number »
such that any projection of countable type in ./ is the l.u.b. of # cyclic projections.
in M.

E.8.13. Prove the assertion from E.3.8, fwi;h the help of Lemma 7.18.

E.8.14. Let m; (resp., m,) bea w-continuoixs »-homomorphism of the von Neumann
algebra .#, (resp., #;) onto the von Neumann algebra A", (resp., 4";). Show that:
there exists a unique w-continuous s-homomorphism n of-the von Neumann.

algebra .#; ® #; onto the von Neumann algebra #"; ® 4, such that
n(x, é x3) = my(xy) ® %), X1 €My, Xp ‘_5-/{2-

If n, and n; are s-isomorphisms, then = is a s-isomorphism (Hint: use exercise:
E.8.8).

E.8.15. Let ¢, (resp., ¢;) be a w-continuous linear form on the von Neumann.
algebra .#, (resp., .#,). Show that there exists a unique w-continuous linear form ¢-

on the von Neumann algebra ., ® #,, such that

o(x, @ X3) = @y(x1)Px2), Xy € My, X3€Ms.

if @, and ¢, are positive, then ¢ is positive. If @, and ¢, are faithful, then ¢ is.
faithful (Hint: use Corollary 8.17). ‘

Comments

C.8.1. We have not yet discussed the unitary implementation of the -isomorphisms.
between von Neumann algebras of type Ile, whose commutants are of type II,
(sec the table 4.21). ’

In the cases dealt with by Theorems 8.3, 8.6, 8.7, the invariants ¢.«, .4, W.a'».
o, Which decide on the unitary implementability of the s-isomorphisms, are
expressed in terms of cardinal numbers and central elements. In particular, in
these cases, any s-automorphism of a factor is spatial. '

In contrast to these cases, R. V. Kadison [10] showed that there exist factors
of type llw, whose commutants are of type 1I,, which possess =-automorphisms, whick
are not spatial. It follows that the conceivable invariants which would decide on
the unitary implementability of the s-isomorphisms between von Neumann algebras.
of type 1, whose commutants are of type II,, are not of the same type as those
for the cases already studied. R. V. Kadison [14] indicated such a system of invariants.

Independently of the type of the von Neumann algebras, we have the fun-
damental result given by Corollary 5.25, and recalled in Section 8.1. Extensions of
this result are contained in exercises E.8.3. (R. V. Kadison) and E.8.5 (J. Dixmier
and I. E. Segal) (see also E.8.4).
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C.8.2. Let M < B(#) be a von Neumann algebra, G a locally compact group and
g+ m, a wo-measurable representation (with respect to the Haar measure) of G,
by s-automorphisms of .

The problem arises whether there exists a so-continuous unitary representation
gy, of G, in # such that we have

n(x) = uxu¥, xeM,geG.

In general, the answer to this problem is negative, even if each s-automorphism
7, is spatial. The following theorem gives a positive result in this direction.

“Theorem 1. Let A = &(#) be a von Neumann algebra, G a locally compact group,
and g v nty a wo-measurable representation of G by s-automorphisms of M. If

(i) o is separable and G is separable,
(i) the commutant M' < R(X) is properly infinite,
2hen there exists a So-continuous unitary representation g V> uy of G in X, such that

ng(x) = upxuy, xe M, ge G.

R. R. Kallman [13] proved this theorem by additionally assuming that .4
is semifinite and that the representation g — 7, is wo-continuous. Under the above
stated, more general, conditions the theorem has been formulated and proved
by M. Henle {1]. The simple and elegant proof of M. Henle reduces the problem to
the result contained in Corollary 8.12.

A s-automorphism of . is said to be inner if it is implemented by a uni-
tary operator in .. Another positive result in connection with the above stated
problem has been obtained by R. R. Kallman [14] and C. C. Moore (4, III, IV]:

‘Theorem 2. Let {n,},cr be a wo-continuous one-parameter group of inner s-auto-
morphisms of the von Neumann algebra M < B(X). If K is separable, then there
exists a so-continuous one-parameter group {u,}cem of unitary operators in M, such
that

n(x) =u,xut, xeHh, teR.

A particular case of this theorem was previously proved by R.V. Kadison [22}.
A simple proof, in the case of factors, has recently been given by F. Hansen [1].

An assertion, equivalent to the fact that any derivation of a von Neumann
algebra is inner, is that for any one-parameter group {n,},er Of s-automorphisms
of the von Neumann algebra .#, which, morcover, is norm-continuous, there exists
an invertible operator ae.#, 0 < a < 1 such that

nfx) = a'xa¥, xed, teR.

H. J. Borchers [4] gave a condition for the inner implementability of wo-
continuous groups, with several real parameters, of spatial automorphisms. We
state his result only in the case of a single parameter.
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Theorem 3. Let {r,},ep be a wo-continuous one-parameter group of =-automorphisms
of the von Neumann algebra A. Then the following conditions are equivalent:

(i) there exists a be B(o¢), b > 0, such that
n,(x) = bixb-Y, xed, telR;
(i) there exists an aeM,a > 0,a < i, such that
n(x) =a"xa™, xed, telR.

Variants of the proof of H. J. Borchers appear in G. Dell’Antonio [1}, R. V.Ka-
dison [27], and S. Sakai [32). Another proof has been given by W. B. Arveson [10]
(see also L. Zsido [8)).

In connection with the conditions under which a s-automorphism of a von
Neumann algebra is inner, we mention the following remarkable result due to
R. V. Kadison and J. R. Ringrose [3]:

Theorem 4. Any s-automorphism =, of a von Neumann algebra, such that lm—1| <
< 2, is inner.

A simple proof of this theorem, in which the bound 2 is replaced by V3—,
can be found in J. Dixmier’s book [26]. For other criteria we refer the reader to
S. Sakai ([32], p. 167—168).

C.8.3. Bibliographical comments. Theorem 8.3 is due to F. J. Murray and J. von
Neumann [2), (3], for the case of factors, and to H. A. Dye [2], E. L. Griffin [2],
and R. Pallu de la Barriére {4], [S], for the general case.

Theorem 8.6 is due to E. L. Griffin [2], whereas Theorem 8.7 to 1. Kaplansky[17],

The results on the comparison of the topologies wo and w are due to J. Dixmier
(23], J. A. Dye [1), L. Kaplansky [10], R. Pallu de la Barriére [5], and others.

The decomposition given in exercise E.8.8 is due to J. Dixmier [24]. The
result given in exercise E.8.14 is due to F. J. Murray and J. von Neumann [3], Y. Miso-
nou[4) and T. Turumaru {2).

In‘our exposition of these results we used: J. Dixmier [26], R. V. Kadison [14],
J. R. Ringrose [3] and S. Sakai [32).
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Unbounded linear operators
in Hilbert spaces

This chapter contains the fundamental results from the theory of (unbounded)
linear operators in Hilbert spaces, results which will be used in the next chapter.

9.1, Let &, o be Hilbert spaces. One says that T is a linear operator from ¥
into o if T is a linear mapping of a vector subspace Zr of J¢ into the vector
space J; in this case, Dris called the domain of definition of T. if # = X, one also
says that T is a linear operator in . When no danger of confusion could arise,
we shall not indicate the spaces between which the linear operators act.

Let S, T be linear operators. One says that they are equal and one denotes
by T = S this relation, if 9y = @5 and T{ = S¢, for any ¢ € @1 = Ds. One says
that T is an extension of S (or, that S is a restriction of T), and one denotes by
T > S (or S < T) this relation, if 2r > Ps and T¢ = S¢, for any { € Ds.

For the linear operators T, S one defines
the multiplication by scalars Ae €, AT:

Dar = 27
ANE=NT3), {e€Zar;

the addition T+ S
Dres = grn Ds,

T+ SE=TE+ S§  §€Pr4si
the composition So T = ST:
Dsr = {E€Dr; T Ds),
(STE = STD),  £€Dsri
the inverse 71 (if the mapping T: @1 -+ X is injective):
@yer = TP,

T =¢(eT=1n nNePr-
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It is easy to verify the associativity of the addition and of the composition,
as well as the following distributivity relations

(Sx + 8)T= ST+ S.T,
S(Tl + Tz) o ST]_ + STz!

We recall that by the Hilbert sum of the Hilbert spaces 5#, o the following
vector space is meant . ‘
HOH={¢n);eH, nex},

in which the scalar product is given by

(Giom) Gaon)) = &) + (| ne), & E2€, mumed..
Let T be a linear operator from o into . The set '

Gr={¢T0: {eDr}cX @ X

is a vector subspace, called the graph of T. A vector subspace & of # @ X is the
graph of a linear operator from J# into X iff

O.mMeg=n=0.

Obviously, we have T = S (resp., T > S) iff ¥, = % (resp., Y+ o Ys).
One says that T is densely defined if 9 is dense in .
One says that T is preclosed if it is densely defined and if the closure of Yr

in # @ X is the graph of a linear operator, denoted by T and called the closure
of T. Thus, T is preclosed iff it is densely defined and

{§a} © 21, &, -0, {TE,} converges = T¢, — 0.

One says that T.is closed if it is preclosed and T=T, i.e., if T is densely defined
and ¥ is closed in # @ X Thus, T is closed iff it is densely defined and

{5.} < 91" f. hnd 60» Tfn =N = 60691" Tfo = No.
One says that T is bounded if

sup {IT¢ll; E€ Dy, €] < 1} < +oo.

If this condition is not satisfied, one says that T is unbounded and then T
is continuous at no point of its domain of definition.

If T is densely defined and bounded, then T is preclosed and T is everywhere
defined (27 = o). Conversely, if T is closed and everywhere defined, then T is
bounded, in accordance with the closed graph theorem.

If T is closed and T-! exists, then T-! is closed.

For any closed operator T, from  into X, the kernel of T is a closed vector
subspace of ). We dsnote the projection of # onto this subspace by n(7T) and
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1(T) = 1 — n(T). We shall also'denote by T) the projection of X" onto the closure
of the vector subspace T@r. One says that ¥(T) (resp., I(T)) is the right (resp., lef1)
support of T. If T is bounded, these notations are in accordance with those already
introduced in Section 2.13.

9.2. Let T be a densely defined linear operator from J into X". The set
P = {nex; the form D3¢ (T n) is bounded}

is a vector subspace of . Since Dy is dense in o, from the Riesz theorem one
infers that, for any n € @ there exists a unique element n* € X, such that

TEIm=¢In*), §€Pr.

We now define a linear operator T* from X into J, called the adjoint of T, by

the relations
: 91-0 = g,

T*n=n* nePy. '
Thus, T* is determined by the relations-
(TE|n) = €| T*n), €Dy, nE€Dre

It is easily verified that if the operators T,S, T+ S, ST are densely defined
and e €, then
(AT)* = iT*,

To>S=T*cS*
(T+ S)*> T*+ 5%
(ST)* o T*S*,
and, if T-! exists and is densely defined, then
(T-Y)* = (T

Proposition. If T is a densely defined linear operator and if x is a bounded, every-
where defined linear operator, then

(T+ x)*=T*+ x*
(xT)* = T*x*.

Proof. Since x is everywhere defined, Dysy = D71 Hence, from the fact that x
is bounded and from the relation

T+ x)&In) = (TE|n) + (xZ|n)
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it follows thatgp = Dir4xp. Thus, the first relation from the statement of the
-proposition follows by observing that, for any ¢ € D, =D 14y, 1 €D =DT4 30

we have
1T+ x)*n) = (T + x)&|n) = (TE|n) + (x| n)
= T*n) + €| x*n) = €[ (T* 4+ x*)n).

Since x is everywhere defined, we have 9., = 9, and as a result of a remark
made just above the proposition, we have (xT)* o T*x*, Let ne D1y and E€ D .
From the relation

CI&Ty*n) = (xTE | n) = (T¢ | x*n)

it follows that x*n e 2, hence n € 2., and
T*x*n = (xT)*n.

Thus, we have (xT)* < T*x*. Consequently, (xT)* = T*x*.
Q.E.D.

9.3. In order to study more thoroughly the adjoint operator, we consider the uni-
tary operator

Vet : @ A 3> (n, =8 e @ H.
Obviously, we have
Ve =—Vex

If # = X", we shall denote Ve =Ver.

It is casily verified that for any densely defined linear operator 7, from ¢
into X", we have

T = Vex9 )
In particular, G. is closed.

Proposition. If T is a preclosed linear operator from 3 into ', then' T* is closed

and T** =T.
Proof. Let ne X", n 1 2. Then

O.me(@r)t=(( Vex9r) ) = Ver($ D)) = Vex9s

hence (0, n) € ¥3, whence = 0. Thus, D1+ is dense in X", Since Fr. is closed,
T* is closed.
Finally, we have

Grve = (VeI = Vese(Viex I ) ) = 97

hence, T** =T,
Q.E.D.
It is easy to verify that

KT)* = IT).
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9.4. A linear operator T in 5 is said to be symmetric if it is densely defined and
T < T*. In other words, T is symmetric iff it is densely defined and

TE\m=¢ITn), &ne2r.
Obviously, any symmetric operator is preclosed. If T is symmetric, then, for any
& € Dr, the number (T¢|¢) is real.

A symmetric operator T is said to be lower (resp., upper) semibounded if
it is densely defined and there exists a real number «, such that

(TE1O) = a(§18), {€Pr,
(resp'9 (Tf I 6) < a(f lf)» f € gl‘)'

In this case, the greatest (resp., the smallest) x € R with this property is called the
g.lb. (resp., Lu.b.) of T.
A linear operator T in 2 is said to be positive if it is densely defined and

(€15 =0, {€r

It is easy to see that any positive operator is symmetric and lower semibounded,
with g.Lb. = 0.

A linear operator T in o is said to be self-adjoint if it is densely defined
and T = T*. Obviously, any self-adjoint operator is closed and symmetric. It is
easily verified that any symmetric operator everywhere defined is self-adjoint.

If T is a self-adjoint operator in 5, then one denotes
S(T) = x(T) = NT),
and the projection s(7) is called the support of T.
9.5. Let A be 5 positive linear operator in 5. Then, for any & € 2 ,, we have
I + AEI® = €02 + 2(4E18) + 14E0* > 1E1%

hence the mapping 1 + A4 is injective. T herefore, (1 + A)~! is a linear operator
in o, whose domain of definition is (1 + A)2 4. Moreover, (1 + A)-* is bounded,
of norm < 1, and, obviously, positive. '
Lemma. Let A be a positive linear operator in . Then A is self-adjoint iff
M+ AH2,=5X. )

Proof. Letus first assume that A is self-adjoint. Then 4 is closed. If {£,} = 24
and (1 + A) &, = 1, then, from the inequality

16, —&all < I + A) (G0 — &I = 10 + A) G — (1 + Al

we infer that the sequence g&,} converges to a vector & €. Since &, — o, AL, —
—n,— & and A is closed, we get that & €2, and ny — & = Ao, i, o =
= (1 4 A)&. Consequently, (1 + A) D, is a closcd vector subspace of J.

13~c. 1540
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Let now nes#t, n L (1 + A)2,. Then
O,me @1+ = Gas )t = Ve %1+ a

hence (7,0)€ 9,44, i€.,ne D, and (1 + A)n =0.But 1+ 4 is an injective map-
ping, hence n = 0. Thus, (1 4+ A) 2 , is dense in . o ‘
Consequently, we have (1 + 4) 2, = #. - i .
Conversely, let us assume that (1 4+ A) 9 4 =% and let us consider an element,
(n19s $0) € ¥ 4.. For any & € 2, we have ' N S o

. (A€ no) = (&) &),
(A +A&ino) =& +m0);
hence, for any 5 es#, we have

(1 m;) = ((I + X)“n | Eo + 7).

Since (I 4 A)™! is everywhere defined and ‘symmetric, it is self-adjoirit. Thus
for any nex#, we have ’

Mne) = (11 + A& + no)),
whence we infer that c

o = (1 + A) (& + ny).
Conscqucnu)'v no€2, and (1 + Ao =&+ Nos Ao = &, i.c.,

(o, &o) € 9,

Therefore, A is self-adjoint.
Q.E.D.

9.6. If a linear operator A in & has a symmetric extension, then A is symmetric
and any symmetric extension of A is a restriction of A*. These assertions immediately
follow, if we take into account the implication '

To> S=T*c S

An interesting problem in the theory of symmetric operators is that of the existence
and the classification of the self-adjoint extensions. The semibounded symmetric
operators have a canonical self-adjoint extension, with the conservation of the
bound (lower, or upper, as the case may be). In the following theorem we describe
the corresponding construction for positive operators. :

Theorem. Let B be a positive operator in #. We define a linear operator A in X
by the relations ‘ '

2, ={ $ € Dye; there exists a {£,} < Dy such that:}
o = ¢ and (B(§, — &) | &0 — E4) = 0,
AE=B%, te9,. '
Then A is a positive self-adjoint extension of B.
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Proof. We consider, on 9,, the scalar product

(éln)s=((l + B)¢|n),

and we define

. 9 {5 €5; there exists a {{,} = 2;, such lhat:}
6 - 6 and (fn Emléu ém)B -0

Then 2 is a vector subspace of ), @ 5 24 and 2 4= 2N 2y..

If (€2 and {&,} < Dp, &, — &, (Ey — Eml &y — Emds — O, then the sequence
(&,1&,)s} converges and its limit does not depend on the choice of the sequence
&,}. We denote this limit by

and for any ¢,ne 2 we define

(fl,n)n,=.%(6+nlf+n)af—l-(f—nlf—n)a+7i(f+iﬂlf+in)n

—'— & —in]&—ing.

We easily verify that (¢|n)p is a scalar product on 9 and that 2, endowed with
this scalar product, is a. Hilbert space. By definition, @, is dense in the Hilbert
space 9 We can now easily prove the following relations

» €15)s = 1Y, e, |
Elms= 1+ B)In), {€Ds n€9.
Let (€D, = 2N Dy and let {&,} = Dy be a sequence, such that

(f"'f.lf—fu)n"o-

Then we have

4519 =(B*%10) = hm (B'Elf.) = lim (£ BC,)
= lim ((€1(1 + B) &) — (flf.)) = lim ((C [&)s — (E1 &)

A-400

= (£18)s — KI* >

Consequcntly, A is positive.

Let 5, € be arbitrary. The mappmg g (6|n.,) is a bounded form on the
Hilbert space 2; hence there exists a §o € 2, such that

&170) = io)as {e2.
In particular, for any ¢ € @5, we have '
€E1ne) = (€1&0)s = (1 + B)E[ &),
& 1no — o) = (BS140)s
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hence _
o€ Ds., Mo — &o = B*¢,,

o€ 2y, o= (1 4 A)&,.

Consequently, we have (I + 4) 2, = o and, according to lemma 9.5, 4 is self-
adjoint.

Obviously, 4 is an extension of B.
Q.E.D.

The positive self-adjoint extension of the positive operators, which has just
been constructed, is called the Friedrichs extension. : o

9.7. Let # < B(#) be a von Neumann algebra and T a ]inear‘operator'in x.
One says that T is affiliated to 4 if, for any unitary operator 4’ e#’, one has

u*Tu' =T.

From Corollary 3.4 we infer that if T is everywhere defined and bounded, then T
is affiliated to # iff T'e.

If T is densely defined and affiliated to 4, then T* is affiliated to /.

If T is preclosed and affiliated to #, then T is affiliated to ..

In what follows we shall use the notations Mat,(#) = #(¢ @ ) and (A'); =
< B(# @ ), already introduced in Section 2.32. In accordance with Lemma 3.16,

the commutant of Mat,(#) is (A"),. :

‘ Let T be a closed linear operator in . Then the graph %y is a closed linear
subspace of # @ o and, in order not to complicate the notations, the orthogonal
projection on ¥, will be denoted again by 9;. Thus, we have 9, c ¥ @ ¥
and, at the same time, 4, e B(F @ ).

Lemma, Let M < R() be a von Neumann algebra and T a closed linear operator
in . Then T is affiliated to M iff 9 ¢ Maty(.#).

Proof. It is easy to verify the following equivalences: T is affiliated to M <>
for any x’e.#' and (§, n)e ¥, we have (x'€, x'n) € F1 <> for any ¥’ € ('), we

have X' (%) © 9« 9 e((4'))) = Mat,(A).
QE.D.

9.8. We recall (E.4.20) that if .# is finite, then Maty(#) is also finite. In this case
we shall denote by § the canonical central trace (7.12) on Mat,(.#).

Lemma. Let .4 < B(oF) be a finite von Neumann algebra and T a closed linear
. operator in X, affiliated to M. Then ‘

(@)% = 1)2.

Proof. We consider the projections

1 0 0 0
P, = , Py =
‘(oo) ! (o 1)
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in Mat,(#). It is easy to sée that Py, P, are equivalent orthogonal projections,
whose sum is 1. Consequently,

PP = P§ =1/2.
On the other hand, it is easy to verify that
n(P,%7) = (g% n(4P) = Py,
whence

r(P%r) =91, I(P\% 1) = P

Consequently, in accordance with Theorem 4.3, we have
gr ~ P 1
As a conclusion, we have
‘ @) =Pf =12
Q.E.D.
Theorem. Let 4 = B(¥) be a finite von Neumann algebra. If T and S are closed
linear operators, affiliated to .#, and if
TcS,
then
T=S_.
Proof. The theorem follows from the preceding lemma and from the propertics
of the mapping § (7.11).
Q.E.D.

For a symmetric operator, affiliated to a finite von Neumann algebra, the above
theorem completely solves the problem of the existence and the classification of

self-adjoint extensions:

Corollary. Let T be a symmetric operator in ), affiliated to a finite von Neumann
algebra. Then T is self-adjoint, and it is the unique self-adjoint extension of T.
Proof. Since the operator T is symmetric, we have T < T*. The theorem
implies that T = T*, hence T is self-adjoint.
On the other hand, if Sis a self-adjoint extension of 7, then
TcSeTr* =T,
whence
S=T.
- Q.E.D.
9.9, In this section we describe the operational calculus for positive self-adjoint

operators, with the help of Lemma 9.5, of the operational calculus for bounded
self-adjoint operators (2.20) and of a natural passage to the limit process.
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Let 4 be a positive self-adjoint linear operator in the Hilbert space o#. From
Lemma 9.5 we infer that L A :

a= (1 + Ay le B(¥),
0<a<l, s(@=1.

For any natural number n, let x, be the characteristic function of the set
((n + 1)7%, +00). Let us define '

e, = Xx(a) € R({a}).
There exists a unique a, € #({a,}), such that
e, <a, S(’l’f— l)en

e, = aa,.

Since
aX¥ = (1 4 A)y# = 2,

it follows that, for any n, we have
e =aa¥ < 9,
Hence, the operator Ae, is everywhere. defined. Moreover, we have.
Ae, = A(l + A)ta,=(1 -~ (1 + A Va,=(l —a)a,=a, —e,.

In particular,
Ae, e R({a}) = B(¥),

0 < Ae, < ne,,.
It is easy to verify that
e, A c Ae,.

We shall denote by #({0, +00)) the *-algebra of all Borel measurable complex
functions, which are defined on [0, +00) and bounded on compact sets. For any
J€ #([0, +00)) we have '

Sio(4e) € Blo(Ae)),
hence we can consider the operator .
f(4e,) € 2(F).
For any fe 2([0, +00)), we define a linear operator f(4) in ¥, by the relations
20 = {{ €#; the sequence {f(de,) &}, converges}
SAE = lim f(4e)s,  EeDpn-

It is easy to see that . o ‘
f(O) a - e) + f(A) Ca =f(A e
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On the other hand, if fe 2({0, +00)), f(0) = 0, then for any § € 2, and
any natural number », ‘
euf(A)E = lim e, f(de) ¢ =[(Ae) ¢,

hence ’ o
e.f(4) = f(4e,).
We now introduce the notation
yA = G e,,#.
Rl
Then it is easy to verify that, for any f'€ ([0, 40)), we have
L4 S Dyars
fAL =L
If A is an everywhere defined, positive and bounded linear operator, then

e, = 1, for n sufficiently great. Hence, for any fe 2({0, +00)), the operator f(4),
we have just defined, coincides with that introduced by Theorem 2.20.

If A is a positive self-adjoint linear operator in X, and if fe 2([0, +090)),
then the linear operator f(4), we have just defined, is affiliated to the von Neumann

algebra #({a}) generated by a = (1 + A)~*. Thus, if A is affiliated to a von Neumann
algebra #, then, for any fe 2([0, +00)), f(4) is affiliated to .#.

9.10. Let A, a and e, be as in the preceding section. For any bounded
f€ &([0, +00)) we consider the function F, e #((0, 1]), defined by

F,(/I)={0 ?f).=0,
Q=272 if Ae(O,1]

Let n be a fixed natural number. We recall that Ade, e 2(¢). It is casy to

verify that the mapping
@(o(Ae.)) 3 f > F/lae,) € A(H)

has the properties (i) and (ii) from Theorem 2.20, relatively to x = Ae,. From
Theorem 2.20 it then follows that for any bounded f'e #([0, +00)) we have

f(de,) = Fae,) = F/(a)e,.

By using the definition of f(A) and the fact that e, T s(a) = 1, we infer that
for any bounded fe 2([0, +00)) we have the relation

f(A) = Fyla).
In particular, we found that if f .is bounded, then f(A) € #(¢), and we have
1A = IFfa)l < sup{|FA)|; 4€(0, 1]}
= sup {|f(A)|; 1€[0, +00)}.
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9.11. The following theorem states the main rules of the operational calculus for '\

positive self-adjoint operators.

Theorem. Let A be a positive self-adjoint linear operator in the Hilbert space ). Then
(i) for fi(A)=ce C, A€[0, +c0), we have

So(d)=c;
Jor fi(2) = 1, A€[0, +c0), we have
Si(d) = 4;

(ii) for any fe B([0, +00)), we have ‘
Dyy = {S €#; sup, |If(4e,) &l < +o0},
the linear operator f(A) is closed and
S| & 4 =1fl4);
(iii) for any fe B((0, +o0)), we have
f(4y* = f(4);
(iv) for any f,g e ([0, + o0)), we have
the linear operator f(A) + g(A) is preclosed and
7 S(A) + g(4) = (f + &) (4);
(V) for any f,g € B((0, + o)) we have
the linear operator f(A) g(A) is preclosed,
Dy gty = Digy ) N Dy and
J(4) g(4) = (fg) (4);

(vi) for any sequence {f,}, = R([0, +00)), which is uniformly bounded on com-
pact sets and pointwise convergent to f, € 2([0, -+00)) we have

Jo(4) ¢ =klil'{.:ﬁ(A)é, {ed
Proof. (i) For any n, we have fy(de,) = c; hence, indeed, fy(4) = c.
For any n, we have f(4e,) = Ae,. If { €D, then ‘
S(de)) ¢ = e, 4 — AE;
hence €2, and fi(A)E = AE. If $ €2, (0, then
es =4,
Ael = fi(de,) { = fi(A) &,
hence, since A is closed, & € 9, and AZ = £;(4)&. Thus. we have Si(4) = A.
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If fe (0, +c0)) and fi(1) = f(0), Ae{0, +00), it is easy to verify that
fA) = (=) (4) + f0).

Since (f — f) (0) = 0, this remark will enable us to assume, without any essential
loss of generality, that the considered functions vanish at 0.

(ii) We can assume that f(0) = 0. Let
a = sup, [[f(4de,) ¢l < +oo.

Since f(0) = 0, for any n we have

If(de,) Ell = llenf(Aens 1) §ll < || f(den ) Sl

Consequently, we have

If(Ae)SI* 1 o,

On the other hand, for any n, k, we have

1f(Aens)E — f(Ae)EN? = ll(ensx — € S(Aesa)S 1
= llensnS(4en S — lle, f(Ae, 1S = If(Ae, SN — [f(Ae )N

Consequently, the sequence {f(A4e,)¢} is fundamental, hence convergent.
Therefore we have

Dy = {E€H; sup, [f(Ae) ¢l < +oo}.

Since e, 1 s(@) = 1, ¥4 = Dy is a dense subset of H#; hence f(A) is densely
defined. If {£,} < D0, & = o and f(4)&, = o, then, for any n we have

flAe)oo = 2&1[(“.)5. =kl_if: e, J(A), = euto.

It follows that f(Ae,)&, — no; hence {o€ Py and f(A)o = no.
Consequently, f(A) is closed.

If (£,/(A)E) € 9,4 and is orthogonal to the graph of the operator f(4)] 5,
then, for any n, we have

(€168 = () E1fe) ) = 0.
By tending to the limit for n — + o0, we find that
IS0 + IfCEIT = 0;
hence { =f(A){ = 0.
Therefore, we have f(A4)| & 4 = f(A).

(iii) By taking into account the remark we made in (i) and Proposition 9.2,
we can assume that f{0) = 0. It is then easy to verify that

fA) 4 = f(4)",
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whence, in accordance with (ii),

f(4) < f(4)*.

Let now ne 2, .. For any { €5 and any n, we have

GIfde) n) = (f(de)EIn) = () eg|m = €l efA)*n);

f(de) n = ef(4)*n.
It follows that f(de,) n — f(A)*n, i.e., n € Dy and f(A)n = f(A)*n.
Consequently, we have f(4)* = f(A).
(iv) It is easy to verify that
JA) +g(4) = T+ 8)(4),
hence f(A) + g(A) is preclosed. Since on &, the operators S (A) + g(A) and (f + g) (A)
coincide, from (ii) we infer that
S(A) + g(4) = (f+ g) )
(v) We can assume that f(0) = 0. It is easy to verify that

f(4) g(4) = (fB) (4);

hence f(A)g(A) is preclosed. Since on .9’ 4 the operators f(A4) g(A) and (fg) (A)
coincide, from (ii) we infer that

S g(4) = (o) (4).

In accordance with the preceding results, we have '

hence

Draga © Digpa N Dy |
In order to prove the reversed inclusion, we must prove the implication ';
$€D i N Dy =>g(A) € 9;(.4) ' '
Indeed, since f(0) = 0, for any n we have

fAe) g(A)E = f(Ae,) glAe) & = (fg) (e)&;

hence the sequence {f(de,)g(A4)¢} is convergent.

(vi) We can assume that £,(0)==0, for any k > 0. Let £ & ’ thcn there
exists an n, such that ¢ € e, o#. Then, for any 'k > 0, we have

M) ¢ = fi(A) e = fi(de) .

From Theorem 2.20 we infer that

filde) § - fi(4e) ¢,
S~ S &

i.e.,

Q.E.D.
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9,12, Corollary. Let A be a positive self-adjoint linear operator in ). If f, g€
€ B((0, +00)), and |f| <|gl, then

Do) © Dyan
, N <ilgA) ], §eDyn
In particular, if f is bounded, then
S(4) e 2(F)
IfA)I < sup {|f(D)]; 4€[0, +o0)}.
Proof. If |f] < |g|, then, for any { € D, and any natural number n, we

If(4e) &1 = (1f1M4e) §[ §) < (Ig]*(de) 1 4) = lg(de) El%

have

hence .
sup [|f(4e,) ¢l < sup llg(4e,) &l = lg(4) &l < +o0.

In accordance with Theorem 9.11 (ii), we infer that { € 2,,); obviously, we have

If(4) ¢l <1l g(4)¢ll, for any §€ Dyq.
If f is bounded, we have

Ift < ¢ =sup {IfAD; A€l0, +o0)};
then D, > 9, =H and

If(A)ll = sup {If(4) &N Il < 1} < sup {liefll; I8N < 1} = e.

S Q.E.D.
If £, g € #((0, +00)) and at least one of the functions f, g is bounded, then it
is easy to show that we have

(f+ &) (4) =f(4) + g(4),
(2) (4) = f(A) g(4).

If the sequence {f;} = 2([0, 4+ c0)) converges uniformly to f, € 2([0, +o0)),
then, for a sufficiently great k, we have 9, (1 =27,4)» So(A) —fi(4) = (fo— £i)(4)
is bounded and :

1/6(A) — fi(A)]l - O.

9.13. Corollary. Let A be a positive self-adjoint linear operator in X¥. Then
(i) for any real fe 2([0, +0)), f(A) is self-adjoint;

(i) for any positive fe #([0, 4+ o0)), f(A) is self-adjoint and positive;

(iii) for any characteristic function f€ #([0, + 00)), f(A) € () is a projection;
moreover, S(A) = X, 4+c0f(4);

(iv) for any fe @([0, +0)), such that |f| =1, f(A) e B(H) is unitary.

A linear operator T in o is said to be normal if T is closed and TT* = T*T
It is easy to see that T is normal iff Dy = Dy and [T = | T*¢]l, { € 2.
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For any positive self-adjoint linear operator A in o and any fe ([0, +0c0)),
the linear operator f(4) is normal.

9.14. Corollary. For any positive self-adjoint linear operator A in 3, there exists
a unique positive self-adjoint linear operator B in X, such that B* = A.

Proof. We consider the continuous: functions f, g, dcﬁned on [0, +o0) by 4

the formulas
fQy = v,
gA) =1+ A

According to Corollary 9.13, f(4) is self-adjoint and: positive. Since 0 < f < g,
from Corollary 9.12 we infer that

) 9A=93(A)CQI(A)'
By taking into account Theorem 9.11 (v), we get

gﬂ}i)‘ = 9" ﬂ@,u) = 94
and :

f(4y =4

Let now B be a positive self-adjoint operator in J#, such that B* = 4. We
denote

b=(1+ By,
i = Xaem-1,+00(0)-
We consider the continuous functions 4, k, defined on [0, 1] by the formulas
hQ) = 2422 + (1 —4)Y),
k() = AV3](AV2 4 (1 — 2)V3),
It is easy to verify that, for any n, we have

h®) f = hbf) = (1 + BY ' fy = (1 + A,

h(b) = (1 + AL
§ince (koh)(A) = 2, A€[0, 1], by taking into account Corollary 2.7, we get
k((t + A = k(h(b)) = (ko h) (b)) = b= (1 + B)™L.

From this equality we infer that B is determined by A4 in a unique manner.
Q.E.D.

This unique positive self-adjoint linear operator B in 5, such that B* = A4
will be denoted

whence

B = A3,
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9.15, Let ae €, Rea > 0. We now consider the mapping
£::10, +00)3i > 2 C

as in Section 2.30. Then f, e ([0, +00)). For any positive self-adjoint linear
operator A in ) we define the operator

A® = f(A).

Corollary. Let A be a positive self-adjoint linear operator in ¥, § € ¥ and e > 0.
The following assertions are equivalent:

@ (e g,(a; )
(i) ¢€€ D4 for any ae €, 0 < Rea < ¢, and the mapping

ar A%
is continuous on {xe C; 0 <Rea<x ¢} and analytic in {xe €; 0 <Rea < e};
(iii) the mapping
it = A%,
defined on the imaginary axis, has a continuous extension 1o the set
{ae €; 0 < Rea < &}, which is analytic in {xe €©; 0 <Rea<e}

Proof. (i) = (ii). We define the continuous functions /. and g on [0, +-00)
by the relations

FAGERA
gH=1+2
Then, for any « € C, such that 0 < Rea < ¢, we have | f.] < g. In accordance with
Corollary 9.12;, we have ,
Do = Dyty < Dsyay = D pa-

For any natural number n, we consider the projection e, defined in Section
9.9. If .£ € e, then, in accordance with Corollary 2.30, the mapping .

ar A% = (de)*d

is continuous on {xe C; 0 < Rea < ¢} and analytic in {ae €;0 < Rea < e}.

Let ¢e9D,, be arbitrarily chosen. We denote ¢, = ¢,{. By taking into
account Corollary 9.12, for any ae €, 0 < Rea <¢, and any natural number n,
we get

A — A% = 14%E — N < 1A + 4% € — S < I —&ull + [4°6 — A1

‘Thus, the mappings
a - A%,
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are uniformly convergent on {a€ €; 0 < Rea < ¢} to the mapping
o - A%,

It follows that the mapping «+» A% is continuous on {xe C;0 < Rea < g}
and analytic in {xe €; 0 < Rea < ¢}. . .
(ii) = (iii). Obvious.
(iii) = (i). We shall denote by F a continuous extension on {xe C;
0 < Rea < g}, which is analytic in {xe €C; 0 < Rea < e}, of the mapping

iR 3 it > A"E,
In accordance with the implication (i) = (ii), for any ¢, € % 4 the mapping
@ (A% n) = (| 4%)

is continuous on {x€ C; Rea > 0}, and analytic in {xe €; Rea > 0}.
Let {{,} = £, & — & For any ae €, 0 < Rea <, in accordance with
Corollary 9.12, we have . ‘

|Gl An) — (€12 < & — &l [ARe o2 < & — &2 (1 + A% |,
It follows that the mappings |

& > (&4 | A°n)

converge uniformly on {a'€ €; 0 < Rea < &} to the mapping

| a > (§] A%).
Thus, the mapping « ~ (&] 4%) is continuous on {xe €;0 <Rea<e} and ana-
Iytic in {xe €C; 0 < Rea <e¢g}. : = :
For any ne &, the mappings

o > (F(a) | n),
a > (& A%),

which are continuous on {« e €; 0<Rex<e} and analytic in {xe €; 0<Re a<e},
coincide on the imaginary axis ilR. From the symmetry principle we infer
that they coincide on {xe €; 0 < Rea < &}. In particular,

(Fe) ) = (§| A"n), nesa,
_whence, in accordance with Theorem 9.11 (ii), we get
‘ (FE)Im =41, ne2,.
Consequently, we have '

c € 9(4.)0 = QA"
Q.ED.
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9.16. One calls a (one-parameter) group of unitary operators in a Hilbert space X#
a family {u,;teR} < #(5#) of unitary operators, such that

Uy = l’
Upp, =Uult,, 1,5€R.

One says that the group {u,} is so-continuous (resp. wo-continuous) if the
mapping ‘
‘ " Ratru,eB(H)

is so-continuous (wo-continuous).

Let A be a positive self-adjoint linear operator in 5, such that s(4) = 1.
Then, by taking into account Theorem 9.11 and Corollary 9.13, it follows that

- ('Zlf)‘A" = AU = o+ emfA) = SCA) = 1,

hence the operators 4", te [R, are unitary. By taking into account Theorem 9.11
and Corollary 9.15, it follows that {4"} is a so-continuous group of unitary oper-
ators.

_ Conversely, we shall proye in what follows that any wo-continuous' group
of unitary operators is of the preceding form (the representation theorem of M. H.
$ton’c). In particular, we shall infer that any wo-continuous group of unitary: opera-
tors is so-continuous.

9.17. A mapping in'io x’ i§':said ‘tvo: be :weakly‘contvinuou: (resp., weakly' analytic;
resp., weakly entire) if it is_copﬁnuous (resp., at‘mlytic;‘_resp., entire) for the weak
topology in . T o ' ) : ‘ -

Lemma. Let {u,} be a wo-continuous group of unftarj bpérators in o¥. Then
the set -

{EeX; the mapping it++uf has a weakly entire extension} =
is a dense vector subspace of .

Proof. Let e and let n be a natural number. For any ae €, the
mapping - - , ‘ .

#an e iy exp (onts + i) @dIm s .

-0
is a bounded antilinear form on x',“‘hencc, there exists an F,,(a) €, such that
+ ° -

" exp (—nls + ia)?) (¢ n) .

(Fe 0 1 = (s

It is obvious that the mapping &~ F, (x) is weakly entire.
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Let {, = F; ,(0). For any nes# and any te[R we have

(Feai) | n) = (ojn* (" exp (—nls — 7)1 m) di

-0

= (nfay S“" exp (—ns?) (u,.£| n) ds

= (n/m) ’Sw exp (—ns?) (u,€ |un) ds = (&, |u*n) = (u,&, lvn),
hence .
Fm(it) = u,,.

Consequently, the mapping it + u,{, has a weakly entire extension.
It is easy to verify that &, — ¢ weakly.
Q.E.D.

9.18. Let {u,} be a wo-continuous group of unitary operators in #. For anye= 0
we denote

{xe ©: 0 < Rea < g}, which is weakly analytic in {xe C;

2 { €¢; the mapping it +» u,f has a weakly continuous extension to
N =
0<Rea<eg} -

.

For any {e€9,, the weakly continuous extension to the set {ee C;
0 < Rea e}, which is weakly analytic in {ee €C;0<Rea<e}, of the mapping
it > u, is determined in a unique manner and will be denoted by Fy.

It is easy to verify that, for any ¢&,, &, € 2, we have
F€l+€| = FC: + F(n
and that, for any { € 9, and any A e € we have
AFAC = AFC'

Lemma. Let {u,} be a wo-continuous group of unitary operators in X¥, and ¢ 2 0.
Then .
(i) for any (€2, and any Be C, 0 < Rep <&, we have

Fg(ﬂ)egc—nep, )
FF{(‘)(1)=F((a+ﬂ)o aECv 0€Red<8—Reﬂ;
(ii) for any {,ne 2, and any ae €, 0 < Rea < ¢, we have

(F@) | n) = (] F&))..
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Proof. (i) Let te [R. The mappings
o ¥ = u F(Y),
Y > F(it +v),

are both weakly continuous extensions, to the set {ye €C; 0 < Rey < e}, of
the mapping
is > up 0,

and they are weakly analytic on {ye €; 0 <Rey < e}; hence, they coincide.
Thus, fgr any te[R, we have

u,F(B) = Fit + ).
It follows that the mapping
v a+> Fx 4 )
is a weakly continuous extension to {x € C; 0 < Rea < & — Re 8} of the mapping.
it = u, FAB),

and it is weakly analytic in {a € €; 0 <Rea < & — Re f}. Consequently, Fi(f) e
€ Do_gep and, for ae €, 0 < Rea <& — Re B, we have

Fp‘w(a) = Fa + B).
(ii) The mappings
a > (Fe(a) [n),
a > (¢] Fy(@) = (F® 1),
are continuous extensions to {ae€ €; 0 < Rea < ¢} of the mapping

it e (ud|n)

and they are analytic in {xe €; 0 < Rex < ¢}; hence they coincide.
Q.E.D.

9.19. Let {u,} bea wo-continuous group of unitary operators in . For any 20
we define a linear operator A, in 5 by the relations

D, =9,
AE=Ffe), (€9,

Lemma. For any e3> 0, the operator A, is self-adjoint and positive. For any &,, &;> 0,.
the relation

Ao = Ay + 4,
holds.

14 =c. 1540
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Proof. Let ¢ > 0. In accordance with Lemma 9.17,‘the operator 4, is densely
defined. By taking into account Lemma 9.18 (ii) for any ¢, ne 2 4, We get

(AL |n) = (F@)|n) = C| Fe) = ¢ 4.m),

hence the linear operator A, is symmetric.
Let n €2, and {€9D,,. The mapping

o > (Fi(e) )

is continuous on {ae €; 0 < Rea <.&} and analyticin {xe €; 0 < Rea < &}.
With the help of Lemma 9.18 (i), it is easy to see. that F, is bounded on all lines
parallel to the imaginary axis; hence it is bounded. For any e [R we have

(GO m)| = [ @& |m)] < IEN-Inl
and, by applying Lemma 9.18 (i), we get -
|(Fele + iy Im)| = |(Fran(@)| m)| = | (4 E(it) | m)|
= @A) )| < lel-Id)ym).

In accordance with Phragmen-Lindelsf principle (see N. Dunford and J. Schwartz
{1), 111.14), for any e €, 0 < Rea < ¢, we have . .. :

[(Fe) | m)| < €1 max {linll, I(4,)*1}-
From the preceding results we infer that, for any ce C, 0 < Rea < ¢, the
mapping _
‘ D4, 3¢ (F@)|n)

is a bounded form on o, whose norm is' < max {Iinll, 1(4,)*nl}. Thus, there exists
a G,(x)e#, such that L

G, @1 < max {linl], I(4)*nl}, .
CIG@) = (F@In, ¢e9,, .
It is easy to verify that the mapping
l o G ()
is a weakly continuous extension to {xe €C; 0 < Rea < ¢} of the mapping
. it >y, o ‘ ’
and it is weakly analytic in {xe C; 0 < Rex < ¢&}; hence neg,...
Consequently, A4, is self-adjoint.
Let now &, & > 0. By taking into account Lemma9.18 (i), it follows that if
éeDh‘”‘. then ’ ’
Az,f = Fg(ez) € 9(:.4-;,)-:, = 9:,.
A A (0) = Frua)(e:) = Fi(ey + £0) = Au10, ().
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Hence
' Aeive, © A Ae,
Let now (€D, 4, For any ned,,,, we have
C AeAEIn = ElAgAnn) = A ),

hence

$e2u = Dy

o+ t.).

Aq+n,e = (Aq-n,)‘f = Ar,A:,fo

oyt

Thus, we have
Agie,= A
Finally, for any ¢ > 0 and any {e€ 2,, we have

(4L518) = (4,428 18) = [ 4all* 2 0,
hence A, is positive.
Q.E.D.

9.20. We now prove the representation theorem of M. H. Stone:
Theorem. Let {u,; te[R} = B(H#). The following assertions are equivalent

(i) {u,} is a wo-continuous group of unitary operators;

(ii) {u,} is a so-continuous group of unitary operators;

(iii) there exists a positive self-adjoint linear operator A in ¥, such that 8(4) = I
and

u,= A%, telR;
A is given by the equivalence

the mapping itw»u, has a weakly continuous extension to|
(¢ me%.+| {xe €; 0<Re a1}, which isweakly analytic in{a € €; 0<Rea<l},
and has the value n at 1.

Moreover, the relation ,
u,=A", telR

establishes a one-to-one correspondence between the so-continuous groups {u} of
unitary operators on X and the positive self-adjoint linear operators in X, such that
s(4) =1. .

Proof. The implication (iii) = (ii) follows from Corollary 9.15, whereas
the implication (ii) = (i) is obvious.

Let us now assume that {u,} is a wo-continuous group of unitary operators.
on ). '
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By using the notations from Section 9.19, we define
A=A,
In accordance with Lemma 9.19, 4 is a positive self-adjoint linear operator. If
(e 9, =92, and Fyl) = A{ =0, then, by taking into account Lemma 9.18 (i)
v F(l +it) = Frait) = u,F(1) =0, te R.
Consequently, we have F, = 0, whence '
¢ = F(0)=0.

Therefore, we have n(4) =0, ie., s(A)=1.
In accordance with Lemma 9.19, and from the uniqueness part of Corollary

9.14, we obtain successively _
Al/z = Al/’:
Alu J— Al/d’

Aau = A1/4A1/2 = AII4A1/2 = A3/4, etc.

Thus for any natural number n and any integer k, 0 < k < 2", we have
Agpa=A*2",
hence
Fi(k|2")= Axpri = AXPE, LD,
By taking into account Corollary 9.15, we infer that for any e 2,, the

mappings
a > Fe(a),

o+ A%,
coincide on {ae €; 0 < Rea < 1}. In particular, we have
ul = F(it)y=A"¢, telR.
The implication (i) = (iii) is thus established.

The second part of the theorem immediately follows from the first part and
-from Corollary 9.15.
Q.E.D.

9.21. Let A4 be a positive self-adjoint operator in ), such that s(4) = 1. As we have
seen in the preceding section, AY is a unitary operator, and

(A'1)~1 = A~4,

On the other hand, A-1 is also a positive self-adjoint operator, such that s(4) = 1.
Stone's theorem leads to the following
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Proposition. For any positive self-adjoint operator A, such that s(A) =1, we have
Ay =4" telR.

Proof. Since {4} is a wo-continuous group of unitary operators, from
Theorem 9.20 we infer that there exists a positive self-adjoint operator B, such
that s(B) =1 and

Bt =AY telR.
In order to prove the proposition, it is sufficient to show that
B=A"
Let e 2 and n = B§. In accordance with Corollary 9.15, the mapping
— Fi{ae C;0 < Rea < 1}sa+ B e

is continuous on {xe C; 0 < Rea < 1} and analytic in {xe C; 0<Rea <1}
Since
B“F(ify = B*B\-"¢ = B¢ =1, telR,

it follows that
F(it) = B~'n = A"y, teR.

Obviously, we have
F)=¢&
If we use again Corollary 9.15, we infer that

ne?,and An =4,

e 9(,4-1) and A"lf =1.

Consequently, we have
Bec AL

Conversely, let &€ 24~y and n = A-1E. Then ne @, and § = An. In ac-
cordance with Corollary 9.15, the mapping

G:{ae C;0 < Rea < 1}samr At*qeX

is continuous on {a € C; 0 < Rea <1} and analytic in {xe €; O<Rea< 1}.
Since we have :

AVG(it) = AvA My = An =¢, teRR,
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it follows that
G(ir) = A™%¢ = B%, telR.
Since
v G(1) = n,
by using again Corollary 9.15, we infer that
e Py and BE =
Consequently, we have _
) A'c B
and we infer that
B=A"1,
Q.E.D.
Thus far we have defined (9.15) the operator A* for any positive self-adjoint

Aand ae €, Rea > 0. If s(4)=1, then it is natural to define As, for any xe C.
The preceding proposition allows the formulation of the following definition
4o = A= if Reaz0,
(AH== jif Re a <0.
Indeed, if Rea = 0, then from this proposition we infer that
A* = (A7),

It is clear that this relation holds for any xe C. . .

With this definition, Corollary 9.15 can be extended in the following manner
Corollary. Let A be a positive self-adjoint linear operator in X, such that s(4) =1,
{eXande, <0,e4 2 0. The JSollowing assertions are equivalent SR

(i) éeg(dl')ng‘,‘q); .

(i) (e, foranyae €, 5 <Re a < &;, and the mapping

o> AL

is continuous on {xe €C; ¢; < Rea < &} and analptic in {xe C; es<Rea < &)};
(iti) the mapping
it > AYE,
defined on the imaginary axis, has a continuous extension to the set {axe C;
& < Rex < &}, analytic in {ae C; § < Rea < g). S
Proof. The implication (ii) = (iii) is trivial, whereas the implication (iii) = (i)
directly follows from Corollary 9.15.
Let us now assume that 669( An) n.@( Aty From Corollary 9.15, we infer
that {e 2 4 for any x€ €, such that g, < Rea < &y, whereas the mapping

x> A%
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is continuous on {a€ €C; & <Re a<e,} and analytic in {ae €;&,<Rea<ey;Rea #0}.
With the help of a classical argument, based on the Cauchy integral, we can infer
that the preceding mapping is analytic in the set {ae C; e < Rea<e}

: Q.E.D.

9.22. Proposition 9.21 indicated a connection between the operational calculus
for 4 and that for A~1, a connection which we shall now explain:

| Proposition. Let A be a positive self-adjoint operator, such that s(4) =1, and let
f, g€ B([0, +00)) be bounded functions. If

) = gAY, 1e(0,+00),
then -
f(4) =g(4™Y).
Proof. We denote f

L a=0+T, b=0+4H
It is easy to see that :
a+b=1
Since s(a) = 1 = s(b), we infer that .
F o ) Xo, 1@ =1=Xo,1 ).
'With the notations from Section 9.10, we denote
‘ F=F, G=F,
Then, for any A€(0, 1) we have C
FQ) = £(Q — /2 = g/ — A) = G(1 — 2)..
By taking into account Section 9.10, we infer that
J(4) = Fla) = (FX.1)(@) = (GX(o,x))(l —a)

= (Gxo,1)) (b) = G(b) = g(4™Y).
Q.E.D.

In accordance with the preceding proposition, if 4 is a positive self-adjoint
operator, such that s(4) =1 and if 0 € 4, < 43 € +00, then

X(l.. l.’) (A) = x(,;l. 1‘-1,) (A_x)’
. In particular, for any 4, l < A € 400, we have
 Xa-, o{d) = Xa-s, p(47Y).

9.23. In this section we present an integral formula which will be one of the main
instruments for the development of Tomita’s theory, in Chapter 10.
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If F:R-» () is a wo-continuous mapping, and if the function ¢~ || F(1)|
is dominated by a Lebesgue integrable function, then ’ '

@ ) > S"" (F@O)E ) dt

is a bounded sesquilinear form on 5 X J#. With the Riesz theorem we infer that
there exists a (unique) operator xpe (), such that

+ 0o
(xpfln)=s (F(EIndt, &nedt.
-
In what follows we shall denote
+00
xp = S (F(t) dt.
-00

Let now A4 and B be positive self-adjoint operators in 2, such that s(4) =
= §(B)=1, and 4 > 0. For any x € #(3#) we shall denote
1
+eo " 2 ir 1 d
= ———— AY'xB-1 ds,

Proposition. Let A and B be positive self-adjoint operators in o, such that s(A) =
= $(B)=1and A > 0. For any x € () there exists a unique y € R() such that

([ &) = MyB~¥n | AY2) + (yBY2q | A-V2g),
$€DomNDy-1ny, ne Dy N Dyg-1a),
and it is given by '
y = @,(x).
Proof. Let us define, for any natural number n,
€0 = Xat/n,m (A) = Xasn, ) (47Y),
Su= Xiayn,n) (B) = Xrm, n) (B-Y),

where by x;/a, ) We denoted the characteristic function of the interval (1/n, n).

We now consider the mapping
: — jAle e i
prpmpery Alse xB-laf, |

@ Fy () = —
[

which is analytic in the set {x e @©; a#ik, k € Z} for the norm topology. At the
point a = 0, the function F,,, has a first order pole, with the residue

limaF, () = —— ef. -
a0 27:
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From the Cauchy residue theorem we infer that

+o0 i teo i),
SR
o 2 = 2
Thus
1
S+oo Fhbs AVe (AMxB-') B-V2f, dt
—o€™ e ’ i
-1
»+00 A 2
+§ AVe (A¥xB~") BVY, dt = exfm,
. -wenl_*_c—ﬂt
whence

LAV2e,®,(x) BV, 4 A V2e,®)(x) BV = exXfm:

Let &€ D am N D(4-ws) and 1 € Diguyy N Dg-us). From the above equality
we infer that, for any n and m,

A@,(x) B-V2fn | AV%e,E) 4 (P4(x) BV | A7V 2e,0) = (xfunt | €,0)-
Tending to the limit for n and m —oco, we get
A(@,(x) B~V | AV2E) + (®5(x) B'q| A~V%) = (xm|{)-

Let now ye @(o) be an arbitrary operator which satisfies the relations
in the statement of the proposition. By denoting

z=@,(x) —»
for any n and m we have
AAV2e zB-V2f, 4 A~Vie 2BV, = 0.
If we multiply this equality by f,2*A4'/2e, to the left and by BV2f, to the right, we get
Moz*Aezfo + frz*eazBfa =0,

ie.,

: (fuz*eufu) (Bfn) = — Mu2*Ae,2fn < 0.
Thus, the operators f,z%,zf,, = 0 and Bf, 2> 0 commute, hence

(f2*e2fa) (Bfa) = 0.

Consequently,
f2te2Bf, =0,
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whence we successively infer that
Jrz*entfn = (fnz*e2Bfu)(B~f) = 0,
e.2f, = 0.
By tending to the limit for n and m — oo, we infer that z = 0, i.e.,

y = P;(x).
' Q.E.D.
With the help of Lemma 9.5, it is easy to see that if A is a positive self-
adjoint operator and 4> 0, then (A + A)~! e B(:#). .
Corollary. Let A be a positive self-adjoint operator in #, such that s(4) =1 and
A > 0. Then ' S
it -

ATV 4 411 = S“” AT gegr
- 00 e?"*'e—""

Proojﬁ Let
y=A"1 + A"Y) e B(#).

It is easy to verify that y satisfies the relation from the statement of the preceding
proposition, with B=1 and x =1, je., - . : .

(11 8) = 2om| 4Y28) + (| A-11%),
C€EDpm N Diy-uny, neX.

Thus the assertion in the corollary obviously follows from the preceding proposition.
Q.E.D.

9.24. In this section we shall prove an analogue of Corollary 9.21, which we shall
use in Chapter 10. We shall first state the following

Lemma. Let Q< € an open set and F: Q — B(¥). Then the following assertions
are equivalent:

(i) F is analytic for the norm topology:;

(ii) for any &, n e, the function 23 a > (F(@)¢ 1 n) is analytic. -

Proof. Obviously, (i) = (ii).

Let us now assume that assertion (ii) is true. Let ae R and V=« V< Q be
a 'rcénlﬁivcly compact neighbourhood of a. For any g, y€ ¥V, B # «, Y£ o, B #7,
we define

Gla: ) = —— [ L (Fp) - Fay - - (Fty) - r@)].
B—vlB—« Y—«a
According to the hypothesis, for any ¢,y e we have
sup {{(G(z; B, ¥)¢IMI; BoYeV,B#a, v £ a, B # 7} <+oco.
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From the Banach-Steinhauss theorem we infer that
¢ = sup{l|G(@; B, I; BoyeV. B#a, vy #a,B # 7} < + 0.
Consequently, for any B, 7€V, B # o, ¥ # o, B # 7, we have

} L (F) — F@) — —— (F&y) — F@)
— Yy —

'SCIIJ—YI-

With the help of the Cauchy criterion, it follows that F is differentiable with respect
to the norm topology.

Consequently, assertion (i) follows from assertion (ii).
Q.E.D.

- A mapping F, which satisfies the equivalent assertions of this lemma will be
called, briefly, an analytic mapping. '

Proposition. Let A, B be positive self-adjoint operators in X, such that s(A) =
=s(B)=1, xeB(¥)ande <0 < &. T hen the following -assertions are equivalent

(i) there exist vector subspaces 9,:9( A0 xB )’ Dy Dy pp-up such that
.. B-u|@, =8, B2, =B
and the operators
AuxB-4|2,, A"xB-"|2,
are bounded,;

(ii) for ar‘xy ve @, & < Rea <&, wehave D a,p-3)= Lp-s the operator

A*xB-tis bounded and the mapping : ‘
- a+> A*xB~*

is so-continuous on {a € €; e;<Rea < &)} and analytic in {ae €; &, < Rea < €}

(iii) the mapping

it = A¥xB-Y, 1R,

has a wo-continuous extension to the set {a€ €; & < Rea < e,‘}, which is analytic
in {ae C; g < Rea < &}. :

Proof. 1t is obvious that we can consider only the case in which ¢ =0,
£, = & (see the proof of Corollary 9.21).

Let us assume that assertion (i) is true. We denote @ = 9, and ¢ = jA*xB~*2].
For any ¢ € 2 and any n€ 9, we have

_ \(xB~*E| A*m)| = [(A'xB~*¢|m)] < cll Inl-
Since B~*|2 = B-*, we infer that, for any € Dy—es N €D 4, WE have

[(xB~¢| A'm)| < cl€] Ind.
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If we replace { by B~ and 5 by A~"n, we obtain that for any ¢ e Dp-. and any
n€e,, wehave
iGeB= A )] < cfléll Inll, teRR.

On the other hand, for any £ and n we trivially have
[(xB-"¢ 1A~ n)| < x| ] Anll, telR.
Let {€eD,_, and ne 2 ... Then v
@ > (xB%¢| A)

is a bounded continuous function on fxe ©; 0 < Rea < e}, which is analytic in
{x € €; 0 < Re a < ¢}. By taking into account the results we have already obtained,
with the help of the Phragmen-Lindelf principle (see N. Dunford and J. Schwartz
(1], Ch. 111, 14), we get that, for any a € C, such that 0 < Re « < &, we have

|(xB-2¢|A*n) | < max {c, xIl} I}l .

Obviously, this inequality extends for any ¢ e Dp-a and any ne D ;.
Let now ae €, 0 < Rea < & From the preceding relation it follows that
for any {€2,_. we have

xB-*¢e 9(,45)- =D,
and
|(A°xB=¢|n)| < max {c, x|}, €] lnl, ne2 .

In other words, we have
9(.4’.::8") = QE""

the operator A°xB-* is bounded, and its norm is uniformly bounded with respect
to «a:

4B~ < max {c, |Ix[}.
With the help of the equality ‘
((AXB™) &|n) = (xB-*{| A*), O <Rea<e, €Dy nED,
it.is casy to infer that the mapping
a > AxB-*

is wo-continuous on {xe €; 0 < Rea< ¢} and analytic in {xe €C; O<Rea<e}.
It is easy to verify that for any natural number n, any vector ¢ € Xaare,n) (B) ¥
and any «, such that 0 < Rea < ¢, we have

xB*eQ

At?
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whence, for any B, such that 0 < Re B < g, we have

I(APxB ) & — (A*xB*) &|l < |A°xB~# § — APxB~{| + || 4PxB2¢ — A*xB~*¢||
= 4PxB=(§ — B*E)|| + |A4°xB~{ — A*xB~¢]|
< max {c, |xI}I¢ — BP~*¢|l + 14°(xB~¢) — A*(xB=*)l.
With the help of Corollary 9.21, we infer from here that
lim i(4°xB®) & — (4*xB=)¢|l = 0.

Since U X/, n(B)¥ is dense in # and since

sup {|47xB7]; 0<Rey< g} < +o0,
the preceding equality extends for any & e #. Consequently, the mapping
o AxB™
is so-continuous on {x e €C; 0 < Rea < e}
We have thus proved that (i) => (ii).
The implication (i) = (iii) is trivial.
Finally, let us assume that assertion (jii) is true. We denote by F the wo-
continuous extension to {xe €C; 0 < Rea < ¢} of the mapping
) it > AuxBY, telR,
which is analytic in {xe €; 0 <Rea < &}.
For any {€ Dy, and ne 2, the functions
& > (F@)&1n),
a > (xB= &| A*),

are continuous on {xe C; OsRc& < £} and analytic in {x€ C; 0 < Rea < e};
moreover, they coincide on the imaginary axis. Hence they coincide on
{xe €; 0 < Rea < ¢}. In particular, we have

(xB-*E| A'n) =(F(e)§|n), $€Dp-o» NED
whence, for any e 2,_, we have

XB™ €D 00 =D pe and A'xB-*¢ = F(e)¢.
Hence

Q(A'xﬁ-') = 93—!
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and the operator A*xB~* is bounded.

Consequently, (iii) = (i). .

‘ ~ "Q.E.D.

9.25. The following proposition shows that the operational calculus is invariant

with respect to s-isomorphisms and provides a natural method of transfer by *-iso-

morphism of the positive self-adjoint operators, which are affiliated to a von Neumann
algebra,

Proposition. Let = be a s-isomorphism ‘bf the von Neumann algebra M < Q(.#")
onto the von Neumann algebra & < B(). Obviously, n establishes a one-to-one
correspondence .

Mr3ab="n(a)e /.
This correspondence extends to a one-to-one correspondence
A+ B = n(4)

between the positive self-adjoint operators A in X, affiliated to M, and the positive
self-adjoint operators B in X » affiliated to A", which is unique, subject to the condition

A+ A )=0+BL
Moreover, for any positive J€ 2B([0, + o0)), we have
n(f(A) = fn(A)). -

Proof. Let ae.l, a > 0. By taking into account Corollary 5.13 it is easy
to verify that the mapping

R(o(@) 3+ n(f(a))

satisfies conditions (i) and (ii) from Theorem 2.20, for x = n(a). According to
Theorem 2.20, it follows that for any fe #(a(a)) we have

n(f(a)) = f(n(a)).

Let A be a positive self-adjoint operator in ), which is affiliated to .#. We write
a= (1 4+ A)-L. Then .

aeM,0<a<1,s@=1
Conscquently. if we define b = n(a), we have
beN,0<b<g ), sd)y=1.

The operator B = b-1— | is a positive self-adjoint operator in o, affiliated
to A, and b = (1 4 B)-1, ‘

From the preceding results, it follows that the correspondence
4 — B = n(A),
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we have thus defined, is a one-to-one correspondence between the positive self-
adjoint operators A in ), which are affiliated to .#, and the positive self-adjoint
operators B in X, which are affiliated to .4, and, moreover,

a((1 + 4™ =0+ B)™

Let now fe #([0, +o<)) be positive and g = (1 + f)~* € Z([0, + o)), which
obviously is positive and bounded. By taking into account Section 9.10 and by
using the notations we have introduced there, we have

(1 + f(4))) = n(g(4)) = n(F(a)) = Fn(a)) = Fi(b)
=g(B) = (1 + f(B)* = (1 + fn(A))~,
hence e
n(f(4)) = f(n(4)).
With the preceding notations, if we also write
e, = X0, m(4), Jo = Tio.n(B)s
from the preceding proposition we also obtain, in particular, that
: n(Ade,) = Bf,.
9.26. Let T be a linear operator in ). Its resolvent set is dcﬁncd‘ by
p(N)={AeC;(A—T)'e B(H) exists}

and its spectrum, by

Q.E.D.

o(T)= C\ (7).

As in the case in which T € #(o¢), it is easy to prove that p(T)is an open set, whereas
the function B
p(T)a 2 (4 — T)-' e B(oF)

is analytic for the norm topology in #(o¢). In contrast to the case in which T e 2(5¢),
in general o(7T") can be either the empty set, or it can coincide with C.

Proposition. Let A be a self-adjoint linear operator in #. Then o(d) =« R and,
for any A€ C\\IR, we have

12— A1 < 1/|Imi|.
_Proof. Let e ©\[R. For any { € 2, we have
1A — Al = (A — A = A)) .
= |Im 112 §&02 + ((Re 4 — A)E|(Re A — A))
> |Im 2] j€1% "

hence 1 — A is injective, its range is closed and (4 — A)~' is bounded, of norm
< 1/iIm Al
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Let nes# be orthogonal to (A — 4)2,. Then

O.me@u-)t = FG-0:) = V%m0
hence

(”r 0) € g(i-A)’
ie.,

n€eD, (I—Apy=0.
Since Im1 = — Im A # 0, from the first part of the proof we infer that the operator
A — A is injective, hence
n=0.
Consequently, (A — A4)-! is everywhere defined and bounded, i.e., 1€ p(4) and
1A — A < 1/|Im 4.
Q.E.D.
For any e €, we define
dA, R*) =inf{|A —u|; n e R+}.
Corollary. Let A be a positive self-adjoint linear operator in 3. Then a(4) = R+,
and, for any e C\IR*, we have '
12 — 4)-1) < 1/d(, R+).

Proof. From the preceding proposition and from Lemma 9.5 we infer that
a(A4) = R+, '
~Let 2e ©\R*. For any ¢ e 2, we have

1A = A = (A — A ](2 — 4)8)

= {Im AP S + (Re A — A)E| (Re A — A)¢)
[Im 2j2) &2, if Re A >0
[Im 2131E]1* + |Re 4[], if Red < 0
= d(4, R*)*¢|1%;
hence
I — A1l < 1/d@, RH).
‘ Q.E.D.
9.27. Proposition. Let A be a positive self-adjoint linear operator in #, f a bounded
analytic function, defined on an open convex neighbourhood of the interval [0, +00)
and I': R — € a locally rectifiable Jordan curve, contained in the domain of defini-

tion of f, which contains in its “interior" the interval [0, +00) with respect to which
it is positively oriented. We assume that

| 170140, R9)" @2 < +oo.
r
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Then, for any &e¥, we have
JA)¢ = (2ni)‘ls fA) (2 — A dL®

r
Proof. Let e, = Xjo,n (4) (sce 9.9). It is easy to verify that for any 1e C\[R+
and any n we have
(A — A)te, = (A — Ae,) e,
Since I' contains the interval [0, +-o00) in its “interior” with respect to which
it is positively oriented, there exist real numbers
— 00 = eee Uy < ee < t,<h<... <t < oo - -4-00

such that the curve I',, obtained by composing the restriction of I' to [t_,, f,] with
the segment [I'(t,), I'(t-»)] = C, should “contain” the interval [0, n] in its interior.

By taking into account Theorem 2.29 and Cauchy’s integral theorem, we infer
that, for any ¢ e e, we have

F(A)E = f(Ae)E = (2mi)™ S ) (A — Ae)¢ dA

Ta

= (2ni)™? S D)@ — Ae)rEda®
r .

= (2mi)~! S fG) (R — A~ dA,

. r
Let now &€ be arbitrary. We denote §, = e,t. Then

1€ — &l —0;

A — A — (@4 — A1 -+0.
Since, for any n, we have

FA)E, = Qri)™ S FO) (L — A) g, d2,
r

~ with the help of the Lebesgue dominated convergence theorem we obtain

f(A)E = (zni)-ls FH) G — A dA.
r

hence

Q.E.D.

9.28. Proposition. If T is a closed linear operator from ¥ into X', then T*T is
self-adjoint and positive. Moreover,

Tig-pr = T.

*) Some extra-conditions are necessary in order to insure that the integral over the
segment {I"(¢,), I(f-,)} converges 10 z¢ro for n -+ co. This is automatically satisfied for
the specific aplication of Proposition 9.27 in the proof of Lemma 1 from Section 10.19
[Translator's Note].

1S=c. 1540
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Proof. Let { e #. Since 9y is closed in o @ o, we can write
0=, n + o, m0)s (&, megr, (&, M) € (gr)l-

Then . o
§€Dr, i =1 and noe Dre, Ty = — &,
hence } ;
{=¢—T*, O=TE41,
whence . . , .
T{=—nmeDr, {=¢+T*T¢ =1+ T*)¢. o
Thus ) )

(l + T'ngror = c#-
Let now { €, { L 9., In accordance with what we have already proved,
there exists a ¢ € @.1, such that { = (14 T*T)¢.
Then : , , .
0=(13) =+ T*T¢| &) = &It + | TE,

Whence { =0 and { = 0. It follows that D is dense in . For any ¢e Dy,
~we have : '
o (T*T¢18) = | TE|* > 0.
‘ Thus, T*T is positive. ;
o Since (1 + T*T)P 1oy = S, from Lemma 9.5 we infer that T*T is self-adjoint.

Finally, let ({, T{) e ¥, be orthogonal to the graph of the operator T|Drer.
Then, for any ¢ € D1y,

€A+ T =IO+ (T T =0
and, since (1 + T*T)D ;= 2, it follows that {=0.

Consequently, we have T|Dyep=T.
Q.E.D.

For any closed linear operator T its absolute value (or modulus) |T| is defined by
I T] =(T*T)'~

9.29. The notion of partial isometry extends to the case of two different Hilbert spaces:
it is a bounded linear operator

0N =
such that .
154l = 1&l, € er(o)or.



A A A R S5 5 i i S

1
]
|
|
i
i

UNBOUNDED LINEAR OPERATORS 27

If v is a partial isometry, then v* is also a partial isometry, v*v = r(v),
pv* = I(v). A bounded linear operator v : 3 — X" is a partial isometry iff v*v

is a projection.
The following theorem extends Theorem 2.14.

Theorem (of polar decomposi tion). Let T be a closed linear operator from X into x.
Then there exists a positive self-adjoint linear operator A in ¥, and a partial iso-

metry v:X¥ — X', such that
T = vAd,
v*v = s(A).
These conditions determine in a unique manner the operators A and v.
Moreover,
4=|T|,
v*v = r(T), ov* =KT).
Proof. In accordance with Corollary 9.14, we have | T[t = T*T. Hence, for

any { € Drers
I TIEN? = (| T &) = (T*TE(8) = 1 TE™

Consequently, the relations
W(TIE)=T¢ $€Prom
o) =0, ne(TDr.)4

determine a partial isometry v :f — X'
Let ¢ € 9,7, By taking into account Proposition 9.28, we infer that there exists

a sequence {6,3 < Dr.1, such that

&% TR ITR.

Since T is closed and

TE = o(| TIZ) = o( TI0),

it follows that
teQq, TE=u(T[).

Moreover, since [ o(|T|&)] = 8| T|¢1, it follows that
| T|E e vool.
Thus,

v*0f = |T|Dpr < | T|D < v*0H,
v*o = |T|D1p -
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ie.,
v*o =s(| T)).

Let now { € 2. In accordance with Proposition 9.28, there exists a sequence
{én} < QT‘T’ such that

g, —¢& TE - TE.
Since

T, — | T|Enll = I TE, — TEnll,
the sequence {|T|¢,} is convergent. Since |T| is closed, (e Dy
We have thus already proved that
@m =95,
TE = o T)E), EeDr.
Consequently, we have
T=10|T|.

Let A’ be a positive self-adjoint operator in & and v' :0F = X" a partial
isometry, such that '

T=10v'4,
v'*v = s(A').
Then v'*v'A’ = A’, and therefore,
IT|?=T*T= A'v*VA' = (4"
From Corollary 9.14 we infer that ‘
A'=|T].
On the other hand, the relations
V(TR) = vAl=T¢, (€D,
v’ =0, ne(l Tlgm)"' = (A'D )4,

show that v’ is determined by T in a unique manner.
Q.E.D.

Let T be a closed linear operator in o and let
T=1y|T|, v*v=s(T)|),

be its polar decomposition. If T is affiliated to a von Neumann algebra 4 < 2(oP),
then ve./# and | T is affiliated to . In particular, r(T), I(T) e 4.

9.30. Let T be a closed linear operator from 2 into X" and let
T=1v|T|, v*v=s(|T|)
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be its polar decomposition. Since the operator v| T |v* is self-adjoint and positive,
from
T* = v*(v| T|v*),
vv* = s(v| T|v%),
we infer that these two relations yield the polar decomposition of T*.
In particular, .
| T*] = vi T|v*,
and
T=|T*|v, vv*=s(T*]).

9.31. Corollary. Let A be a self-adjoint linear operator in . Then there exist two
positive, self-adjoint linear operators A+, A~ in ¥, such that

A=A+ — A",

s(A*)s(A~) =0,

Moreover, these conditions determine the operators A+, A~ in a unique manner.

Proof. Let A= v|A]| the polar decomposition of A. In accordance with
Section 9.30, the polar decomposition of A* is A* = v*(v] A|v*). Since A = 4%,
from the uniqueness of the polar decomposition we infer that

p = v*,
|A| = vlA4]|v*.
Consequently, v = e — f, where ¢,f€ B(X) are projections, ef = 0 and
A=(—)4]=|4]—])
Since e + f = v*v = s(4), it follows that
|4l =(e+Ni4]=14](+])

Consequently,

1
?(IAI+A)=¢!AI =|A|e| 2,4

%GAP~0=fMl=hﬂﬂ9m

In particular
e2,c Dy, P4 Dy
We define
At =|Ale, A= =4[

It is easy to see that A+, A~ are positive operators.
For any n e, there existsa{ € 94, such that

n=¢+141E



230 LECTURES ON VON NEUMANN ALGEBRAS

Then { =ef + (1 —e)ne2,. and
(+a=el+(l—e)n+|A|et=e¢+ 4|+ (1 —e)n=n.

Then, in accordance with Lemma 9.5, 4+ is self-adjoint. In an analogous manner
one shows that A~ is self-adjoint. :

Obviously,
Ac A+ — 4-,
On the other hand,
Diar-a-y={e¥; el D,, fE€D,}
c{led#;(e—fieca,)

= Dyaite-rn = D a-
Thus
A=A*—4-,
Finally, since s(4+) < e and s(4~) < f, we have
s(A+)s(4-) = 0.

The uniqueness part of the corollary can be easily obtained from the uniqueness
of the polar decomposition of 4.
Q.E.D.

If A is a self-adjoint linear operator in 5, which is affiliated to a von Neu-
mann algebra .# < #(#), then A+ and A~ are affiliated to M.

9.32. In this section we indicate a method for extending the operational calculus,
defined for positive self-adjoint operators (9.9), to arbitrary self-adjoint operators.

We shall denote by #((—oo, +00)) the »-algebra of all Borel measurable
complex functions, defined on (— oo, +00), which are bounded on compact subsets.

For any fe#((—oo, +00)), we define the function fe B((—oo, +0o0)) by the
relation

Let A be a self-adjoint linear operator in #. For any fe #((—o0, +00))
we define

S(A) = 0.+ o) (4%) + (0, +ocp) (A7) + £(0) (1 — 5(A)).

For the operational calculus with self-adjoint operators, defined in this manner,
it is easy to verify that properties, analogous to those already established for the
case of the positive self-adjoint operators, hold, too (see 9.11—9.13).

9.33. In the final sections of this chapter we shall study the tensor product of linear
operators.
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Let T; be a linear operator from 5, into X, j=1,2. We definc a linear
operator 73 @ T, from ¢, ® X into A", ® 2, by the following relations
21,01, = the vector subspace of #, ® ), generated by

(& ® 25 &€ 21, $2€ 91'.}’
(I ®T) (¢ ®E) = (T&) ® (Tel), 61€ 21y $2€P1,
If the operator Ty ® T, is preclosed, then one denotes
T15T2=T1® T,

and the operator T, ® T is called the tensor product of the operators Ty and Ts.
For example, let us assume that the operators T, and T, are closed. Then the
operators Ty, Ty, Tt T.* are densely defined and, for any ¢{,€ 27, $2€ D1y

n,e@r;, n,e@,-‘ we have

(T, ® Ty ¢ ® &)m® ) =& ® ¢l (T¥r® T me® 1)),

whence we immediately infer that the operator 7, ® T, is preclosed and, there-
fore, it makes sense to consider the closed operator T, ® Ts.

Obviously, if Ty and T, are bounded operators, then Ty ® T, is bounded,
whereas if T, #(3#,) and Tye Z(F,), then Ty ® T, coincides with the tensor
product already defined in Section 2.33.

Proposition. Let T, be a closed linear operator from X ; into X ;, j=1,2. Then
MO =T ST

Proof.-From the preceding argument, which allowed the definition of T; Q@ Ts
we also infer the relation

QT c (T ® T
Let
(0. D€ 7 ary (0, )L g(r;ir;)

Then, for any & € Dy, $1€ Py, WE have
(M6 ® T, 1 o) = ¢ ® 5:] 1),
and, for any 11,691.;, n,sQr;.
Mm®n]o)+(T*m® T2 lv)=0.
Consequently, for any flegr;rl, ftegr;r,v we have
M+ (MM TLTN @ )| 7)
= ® ¢ l 1)+ (M4 @ T#T,s | 1) ’
= (Ty&, ® Tids ] 0) + (TH(Th&) © THTSs) [ 1) = 0.
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Consequently, we have
Tt L (l 4 (Tfrl 5 T;Tz))grirlarérz .

In accordance with Proposition 9.28, the operators T#T, and T¥T, are
positive and self-adjoint. If we write, for any natural number n,

en = Yoyt +m, +oo) (1 + T¥T)7Y),
€ = Xos1+n), +ooy (1 + T3Ty)™Y,
then the operators
(TITy @ T2Ty) (63 © &) = (e} ® &) (THT, @ T3Ty) (e ® €2)
= (T{*Tye}) ® (THTel)
are defined everywhere, bounded and positive. Hence

U (e ® &) (o, © )

n=1

= U@ B + (T 8 T*T) (& ® &) (o, B )

= 0 + (T, @ T21) (& B &) 0o, B #,)

< (1 + (T}, @ TTY)) 2

TTy8T,Ty
Consequently,
(U + (T} @ 1) Doy 5rer,
is a dense vector subspace of .
From the preceding argument we infer that t = 0.
Since, for any nlegr;, ns€ 9,;.

('h—é’hla’)-—-‘—(rx"h@ T!’l:lf)= 0,
it follows that ¢ = 0.
Consequently, we have Frorge = Q(,;;T;), hence
(M®T)*=TrQ T
Q.E.D.

9.34. By taking into account Proposition 9.33 and Corollary 9.14, one obtains
the following
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Corollary. If Ty, T, are self-adjoint (resp. positive self-adjoint) linear operators,
then T, ® T, is a self-adjoint (resp., positive self-adjoint) linear operator.
9.35. Let o and X be Hilbert spaces. One says that S is an antilinear operator

from J# into o if S is a mapping from a vector subspace 25 < J into X", such
that

S(é+'l)=sf+s’1, 69"6931

S(AE) = 1S¢, e, (e Ds.
The notions and the results from Sections 9.1, 9.2, 9.3, 9.28, 9.30, and 9.33 ob-
viously extend to the antilinear operators.

The antilinear operators will be used often in Chapter 10. For this reason
we formulate below some statements about antilinear operators, which we have
proved for linear operators.

The product of two antilinear operators is linear. The product of an antilinear
operator by a linear operator is antilinear.

The adjoint S* of a densely defined antilinear operator S is an antilinear
operator and it is defined by the relations

(S¢im =(S*nld), (ePs, neDs..

If S is preclosed, then S* is closed and S** = S. If S is closed, then S*S is a
positive self-adjoint linear operator.

If S is a closed antilinear operator from > into X", then there exist a positive
self-adjoint linear operator 4, in ), and an antilinear partial isometry v: ¢ — X',
such that

S =14,
v*v = s(A).
These conditions determine in a unique manner the operators 4 and v, and the
above relations give the polar decomposition of S.

An antilinear operator J : ¢ — X is called a conjugation if J = J* = J-1,
Conjugations are the antilinear analogues of the self-adjoint unitary operators.

Exercises

In the exercises in which the symbols X, X are not explained they will denote
Hilbert spaces.

E.9.1. Let T be a closed linear operator. in ), and @ a vector subspace of 2.
The following assertions are equivalent

O T12="T;

(i) (14 TP is dense in ..
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E.9.2. Let T,, T, be linear operators from 5 into X1, o,, respectively. Show that
if T,is closed, T, is preclosed and 2, < 9,, then there exists a constant
¢ > 0, such that

1781 < (I8N + 161%),  $e Do,

E.9.3. Let T be a closed linear operator from 5 into . With the help of the
Hahn-Banach and Banach- Stemhauss theorems, show that the following assertions

are equivalent
() T(2,) =
(ii) there exists a constant ¢ > 0, such that
Inl < clT*nll, nePr..

By assuming that condition (ii) is satisfied, show that for any e, 1 n(T),
here exists an ne€ 2q., such that

T*n=2¢ and [in] < cl<l.

E.9.4. Let T be a linear operator in 5. Show that if 2, =¢, and 2. = ¢,
then T e #(¢).

E.9.5. Let 7", S be normal linear operators in 3. Show thatif T < S, then T = S.
Infer from this result that any normal symmetric operator is self-adjoint.

E.9.6. Let A be a symmetric linear operator in 3. Then A4 is self-adjomt iff
i+ A)9,=X.

E.9.7. Let A be a linear operator in J¥. Show that the following assertions are
equivalent

(1) A is self-adjoint;

(2) for any non-zero te [R, we have it e p(4) and

16t + Ay < —
1]

(Hint: by assuming that (2) is satisfied, show that
I451* = 2t Im (48 1$),  teRR,

whence (418 eR; if {e€ D, and § = (i + A)7), then |{|* = [AL]* + i(4L £),
whence { = 0).

"E.9.8. Let A be a symmetric linear operator in 5. Then the linear operator (4 + i)
is injective, hence one can define a linear operator ¥(A4) in & by

VA E=(A—i)A+D)Y%, SeDyy=UA+)D,.
Show that V(A) is an isometric linear operator, i.e.,
WAL= 181, $ €Dy
and that (1 — V(A4)) 2y, is a dense vector subspace of .
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Let V be an isometric linear operator in o, such that the vector subspace
(1 — V)Dy is dense in 5. Then the linear operator (1 — V) is mjcctwc, hence
one can define a linear operator A(V) in J# by

AN E=il+NNA—=V)YY%, (eDiun=1—V)Dy.
Show that A(V) is a symmetric linear operator.
With the foregoing notations, we have
(1) A(V(4)= 4
V(A(V)) =V,
(2) A is closed iff V(A) is closed,
V is closed iff A(V) is closed,
(3) A is self-adjoint iff V(A) is unitary,
V is unitary iff A(V) is sclf-adjoint,
4) A, c A, iff V(A)) = V(4y),
V, c V3 iff A(V) < A(Vs).
The operator V(A4) is called the Cayley transform of the symmetric linear
operator A.
E.9.9. Let S be a closed symmetric operator in J#.
Show that there exist an isometry v of ) into a Hilbert space &, and a self-
adjoint operator A in X, such that
Ds = {EeH; i€ D,},
S =40, {eD;.

E.9.10. Let A be a positive self-adjoint operator in JP.
For any A€ (0, +00) we define the spectral projection

€= Jio, 2(A4)-
Show that

() exe 2{(1 + A)“}).

(ll) )'l < j,: = €,, < e“,
Gii) L, 1A =>e, 1€

(iv) e, l1—s(4), etl;

A0 A-c0
) de;, < Je;, Al —e) = M1 —ey);
i) 2,= {{ eXN; Swi.’d(elt 19 <+ool. and, for any {e2,, we have
o - .

|
A= S”z de,é,
0

with norm convergent vector Stieltjes integral.. .
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These assertions make up the contents of the so-called spectral theorem for
the positive self-adjoint operator 4, and the family of projections {e;}, o, +°°, is
called the spectral scale of A.

E.9.11. Let 4 be a positive self-adjoint operator in 5, and fe w([o +00)). Show
that ,

Dy = {ée-#; (" D] < +oo}

and that, for any e 9,
.}
fE={ s deg,
o .
with a norm convergent vector Stieltjes integral.
E.9.12. Let 4 be a self-adjoint operator in &, and 4 = A* — A~ the decomposi-
tion given by Corollary 9.31. We define the spectral scale of 4 by
Yo n(dY),  if >0,
s(4-), . ifA=0,
Xi-2,+00(47), if A < 0.
Extend to this case the assertions.from. exercises E.9.10, E.9.11.

In this manner one obtains the spectral theorem and the integral formula of
the operational calculus for self-adjoint operators.

E.9.13. Let A be a positive self-adjoint operator in o#. For any Borel measurable
subset D of the spectrum of A we define the spectral projection of A, which cor-
responds to D, by the formula

(D) = X5(A).
Then e(a(4)) = 1. Show that for any fe ([0, +00)) we have
1A = inf sup [f(D)]
DcCa(A) AeD

e(D)=1
and

o) = M {f(); AeD} < {fld); Aeo(A)}.
0(%)’11)
E.9.14. Let A bea positive self-adjoint operator in o and fe 2([0, + o)), real and
positive. Then, for any ge #({0, +o0]), we have
g(f(4)) = (g o f) (A).
Infer from this result a new proof for the uniqueness of the positive square
root of A4 (cf. Corollary 9.14).
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E9.15. Let A be a positive self-adjoint operator in J# and ), the range of the
projection Yo, 1(4), 4 €10, +00). Show that, for any Ae[0, +o0),

#,= {c e D Tm 4% < A}.
n=l n-»00

Infer from this result a new proof for the uniqueness of the positive square
root of A. -

E.9.16. Let A be a positive self-adjoint operator in o, such that s(4) =1, and
- -]
let0 # &€ (D 4o Then

R =m0

fim A= fim |A-"E)Ym> 1,

n—»00
and the equality holds iff
A% = (ilim [ 4"]")¢.
n-00

(Hint: one can use Corollary 9.15 and the “theorem of the three lines”, from
N. Dunford and J. Schwartz, {1], VI, 10.3.)

E.9.17. For any function f € ZY([R) we denote by f the “inverse Fourier transform

of f:
A 4+ o0 ‘ '
1) = S f@) e dt, selR.

With the same hypotheses and notations as in E.9.15, show that, for any 1 €[0, +09),

>, ={.§.ex’; for fe ZY(R), such that support f < (In 4, 4+00),

we have S+wf(t)A“ dt = 0}-

—co

E.9.18. For any linear operator T in o and any ¢ € 21 we denote
E{T) = (T¢18), odT)= T — ELDXI.
Let A and B be self-adjoint operators in JF, such that the intersection
‘ D= D450 Ppa
be dense in . Show that

o (d) 0dB)> -'2- |E{AB — BA)|, e9.
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This inequality is a variant of Heisenberg’s “uncertainty principle”.

E9.19. Let A be a self-adjoint operator in 5. Show that the following assertions
are equivalent

(i) A4 is positive;
(ii) o(4) = [0, +o0).

E.9.20. One says that a linear operator T in # commutes with an operator
x € BOF¥) if

xT < Tx.

Show that if T'is closed, then the set {T'}’ of all operators x € £(s#) which commute
with T is a wo-closed subalgebra of #(o¢) and

({T}Y)* = {T*}.
In particular, if T is self-adjoint, then {T'}' is a von Neumann algebra (we mention

the fact that {T}’ is a von Neumann algebra even if T is normal, this being an
extension of Fuglede’s theorem 2.31).

E.9.21. Let T be a closed linear operator in o and x e #(#) an operator which
commutes with 7. Show that ‘ : ,

xT = Tx.

E.9.22. Let T be a closed linear operator and T = v|T|its polar decomposition.
Show that if T is normal, then I(T) = r(T) and

v|T|=|T|v.
Conversely, if I(T) = r(T) and if | T| commutes with v, then T is hormal.

E.9.23. Let 4 be a positive self-adjoint operator in 2 and x € R(). Then the
following assertions are equivalent

(i) A commutes with x;

(i) (1 + A)~! commutes with x;
(iii) e, commutes with x, A e (0, 4 o0);
(iv) A" commutes with x, t e [R.

Show that if A commutes with x, then, for any f'e 2([0, + 00)), the operator
xf(A) is preclosed and : » . ,
xf(4) = f(4)x.

Show thatif eis a projection which commutes with 4 and if fe ([0, +00)),
J(0) = 0, then

J(4e) = f(A)e.
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E.9.24. Let A and B be positive self-adjoint operators in o, and {e,} (resp., {/,})
the spectral scale of A (resp., B). Show that the following assertions are equivalent
(i) (1 + A)~! commutes with (1 + B)~%;
(i) e, commutes with f,, 4,1 € (0, +o0);
(iii) A* commutes with B¥, t,s€[R.
In this case one says that A and B commute.

1E.9.25. Let .# < #(o¢) be a von Neumann algebra and A a positive self-adjoint
operator in . Show that the following assertions are equivalent

(i) A is affiliated to .#;

(i) (1 + ) ted;

(iii) e, €4, A€ (0, +00);

(iv) A"ed, teR;

(v) A commutes with any x’ €.#’;

(vi) for any x’ e.#’ we have x'(2,) = 2, and

(Ax’§| An) = (An| Ax*n), §,ne Dy

E.9.26. Let .4 < B(#) be a finite von Neumann algebra and €() the set of
all closed linear operators in o, which are affiliated to 4.

Let 7, S € 0(4). With the help of the polar decomposition (9.28, 9.29) and
of Corollary 7.6, show that T + S and TS are densely defined. Then, with the help
of the inclusions

T+ Sc(T*+ 5%, TSc(S*T*)*,

show that T+ S and TS are preclosed.
Infer from these results and from Theorem 9.8, that 0(.#) is a s-algebra for
the operations

(T,)=>(T+ S), (4 T)—AT,
(T, )~ TS,
T T*.

1E.9.27. Let A < () be a von Neumann algebra and B a positive operator
in o, which is affiliated to .#. Show that the Friedrichs extension of B is affiliated
to 4.

E.9.28. Let A be a positive operator in X#. Then the following assertions are equi-
valent

(i) A is self-adjoint; .

(ii) B is a positive linear operator In X, BoA=>B=A.

E.9.29. Let T be a closed linear operator in . Then, with the scalar product
Elmr =€) + (X1 Tn),
@y becomes a Hilbert space. Show that @, = 9w+:rpps and that
Emr =+ T+ [TF ), Snedr
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E.9.30. Let B be a positive operator in &, A its Friedrichs extension and
9= { {est; there exists {£,} = D, such that}
¢a = $and (B, — &) [ &y — &) 0
Show that
D = Dy,

(Hint: D 0n = D14 4nm is a Hilbert space for the scalar product (¢, ) >
((1 + A)Y"Z|(1 + A) ™), and D is a closed vector subspace of the latter).

E.9.31. Let B be a positive operator in # and A its Friedrichs extension. Show
that any self-adjoint extension of B, whose domain of definition is included in 9 41),
coincides with A. '

E.9.32. Let # = B(o#) be a von Neumann algebra and ¢, nes#. The following
assertions are equivalent ‘

(i) there exists a closed linear operator 7" in o, which is affiliated to M,
such that

n="1T14.

(ii) there exists a positive self-adjoint operator A’ in 5, which is affiliated
to .#', such that .

w” = G)A". A

Moreover, the operator 4’ from condition (ii) can be chosen in such a
manner that

s(4’) < p;.

E.9.33, Let .# be a von Neumann algebra and @, ¥ normal forms on /4. We
denote by n,: .M > B(H#,) (resp., Ty M — B(H,)) the »-representation associated
to the form ¢ (resp., to the form ), whose corresponding cyclic vector is 1 o (resp., 1,)
(sce 5.18).

(1) The correspondence

Hy D ny(M)]y, 3 7y(x)1, > n,(x)1, €5¢,
is a correctly defined linear operator iff
(@) < s(y).
(2) The correspondence
Hy > (M), 3 1y () = 1 (¥)1, exX,
is a preclosed linear operator iff the implication

Xel, Y(IxD=0, o(x,—x,/)=0=o(x,[)~0
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holds. In this case one says that ¢ is almost dominated by ,
(3) The correspondence

Hy D (M)l 3 T (X)]y = T (x)], €,
is a bounded linear operator iff there exists a 4 > 0, such that
o <M. »
In this case one says that ¢ is dominated by .

E.9.34. Let {¢}x be a sequence of normal forms on the von Neumann algebra .4,

oo
which are almost dominated by the normal form ¢ on .4, and such that 2 o)<
kml

0
< +400. Show that ¢ = ; @y is a normal form on ., which is almost dominated
. -l

by .

E.9.35. Let 4/ = #B(#) be a von Neumann algebra, ¢ a normal form on .4, and
& e . Then the following assertions are equivalent:

(i) there exists a positive self-adjoint operator A’ in J, which is affiliated
to ', such that

@ =Wy
(ii) ¢ is almost dominated by w,. ,
(Hint for the implication (ii) = (i): one can assume £ to be cyclic and separating
and, in this case, #q, identifies with [.#&] = J¥; onc denotes by T the closure of

the operator which one obtains from E9.33(2) for ¢ = w,; if T' = v'A’ is the
polar decomposition of T, show that A’ is affiliated to .#’, with the help of exercise
E.9.25 (vi)). . ,
E.9.36. Let A, B be positive self-adjoint operators in 5, such that s(A) =s(B)=1.
For any & > 0 we consider the set 2, of all operators x € #()¥), such that
the mapping it — A*xB~* has a w-continuous extension to {xe €;0 < Rea<e},
which is analytic in {xe €; 0 < Rea <¢}. If xe2,, the preceding extension is.
unique, and we denote it by Fi. S
We define the operator T in #() by

T(x) = F(l), xeDy =9,

Show that, for any 1 > 0, the opcfator A + Tis injective. Show that, for any xe @
and any 4> 0, Tx€ Zu+n- and

1 + oo ). -a ’
A+ I)"Tx=— ————F@dx, 0<c<l
2i J—ioo SIN X
By making in this formula ¢ = 1/2, infer Proposition 9.23.

16~c. 1540
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Prove that, for xe @, and a € €, 0 < Re « <1, the following inversion for-
mula holds

sin mox

F) =

szﬂ-l(a + T)-'Tx di.
n o

E.9.37. Let 4 be a positive self-adjoint operator in 5, such that s(4) = 1. Show

that for any (€ 2, and ae €, 0 < Rea < 1, we have

. sinna
A% =

+ 00 i
S YA 4+ A)AE dA.
n (]

Comments

C.9.1. In our presentation of the theory we have developed the operational calculus
only for positive self-adjoint operators, since this is the essential tool in Chapter 10,
and in most of operator algebras theory.

In the case of arbitrary self-adjoint operators, one can make an analogous
construction, by replacing the transform a = (1 -+ 4A)~* (9.9) by the Cayley transform
{E.9.8) and by using the operational calculus for unitary operators. Another method
is that which was indicated in Section 9.32 (see, also, exercise E.9.12).

As in the case of bounded operators, one can develop an operational calculus
for normal operators, for which we refer the reader to: C. Ionescu Tulcea {2],
F. Riesz and B. Sz.-Nagy [I], N. Dunford and J. Schwartz [1], R. P. Halmos {1},
B. Sz.-Nagy [1], M. A, Naimark [6]. )

An analytic operational calculus for closed operators-in-Banach spaces was
also-developed (see N. Dunford and J. Schwartz {1}, Ch. VII, § 9).

From the theory of self-adjoint extensions of symmetric operators we presen-
ted only the theorem of Friedrichs. This theory has important applications in the
theory of differential operators, and its basic results are exposed in F. Riesz and
B. Sz.-Nagy [1], N. Dunford and J. Schwartz [1], M. G. Krein [2}, as well as in
M. A. Naimark’s book on linear differential operators.

C.9.2. The aim of the theory of generators of one-parameter groups of operators
is to characterize these groups with the help of a single mathematical object, which
is usually an unbounded operator. The theory of generators uses differential and
integral calculus techniques, Fourier analysis and complex analysis and is usually
developed for operators in Banach spaces.
. Let {u,}rer be a strongly continuous one-parameter group of operators in
a Banach space . The classical infinitesimal generator G of {u,} is defined in the
following manner

2q = {{eH#; lim l(u,(E - f)exists}v
80 £

£

GE=limL (uE -8, fedg
80 &
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One proves that G is a closed linear operator and, in a certain sense, u, is
the exponential of (G, te R.

If o# is a Hilbert space and if u, are unitary operators, then B = —iG
is a self-adjoint operator and

u, = exp (itB), telR,

where the exponential is meant in the sense of the operational calculus. This is
the form in which Stone’s representation theorem is usually stated.

For details regarding the theory of the infinitesimal generator, which also-
applies to the one-parameter semigroups, sce E. Hille and R. Phillips [1] and
N. Dunford and J. Schwartz {1].

Another type of generator, which is more suitable for the applications
we have in mind in Chapter 10, can be defined with the help of the analytic contin-
uation. More precisely, we define the analytic generator A of u, by

D, = { Fe o the mapping it = u,£ has an extension Fy, which is cominuous}

A=

on {x eC; 0<Re a<1} and analytic in {xe C;0<Rea<l}.
A= F(l), €9,

One shows that A is a closed linear operator and that u, is the (if)th power of A,
in the sense of V. Balakrishnan’s “fractional powers™.

If # is a Hilbert space and if u, are unitary operators, then Theorem 9.20-
shows that A is self-adjoint and positive and

u, = A", teR.

: For details regarding the theory of the analytic generator see 1. Ciordnescu
and L. Zsidé [1), and L. Zsidé [8].

We note that Propositions 9.23, 9.24 and exercises E.9.36, E.9.37 are parti-
cular cases of some results of the theory of the analytic generator.

C.9.3. Bibliographical comments. Corollary 9.15 was first mentioned by G. K. Peder-
sen and M. Takesaki ([2], Lemma 3.2), and it lies at the basis of the methods of
analytic continuation which we use in Chapters 9 and 10. Proposition 9.23 is
due to A. van Daele [4] and it is the principal argument in the proof given by
him to the fundamental theorem of M. Tomita (10.12). The other material, con~
cerning the theory of operators, is classic.

Theorem 9.8 and exercise E.9.26 are due to F. J. Murray and J. von Neu-

mann [1].
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The theory of standard
von Neuman algebras

In the preceding chapters we have presented that part of the theory of operator
algebras which is based on the original ideas of F. J. Murray and J. von Neumann.
A turning point in the development of ‘the theory of von Neumann algebras was
produced in 1967 by M. Tomita.

In this chapter we present Tomita's theory, which enables us to obtain cano-
nical forms for the von Neumann algebras, forms which are called standard von

Neumann algebras.
The logical dependence of the sections of Chapter 10
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10.1. Let A be a complex algebra with involution, which is also endowed with a

scalar product (-|-). We denote by &~ &* the involution in U and by % the
Hilbert space obtained by the completion of 2. We denote by 2 the vector space
generated by the elements of the form ¢n, &, 7 € 2. One says that U is a left Hilbert
algebra if :

(i) Asn+¢neU is continuous, for any & e UA;
(ii) Gm|na) = (m1&*ny), for any ¢, my, ny e A;
(iii) A? is dense in A; '
(V) sUsE el isa preclosed antilinear operator.
In accordance with (i), for any ¢ € U one defines a L, € #(5¢) by the formula
Lm=4¢n, ned.
With the help of (ii) it is easy to see that the mapping
L: Aslwr L, e 2(X)
is a s-representation of 4, i.e.,
Leg, = Le Ly, §,8€9,
(L)* = Ly, e
We define
LA) = R({Ly; ¢eUY) = {L,; EcA}".
With the help of (iii) it is easy to see that
W = {L; TeW™

Conditions (iii) and (iv) allow the definition of the closed antilinear operator S,
as being the closure of the operator

H# DU, &y (X En) T er.
We recall that the adjoint antilinca; operator .'s'* is defined by
($*nl&) = (S¢Im), ¢e Ds, n€Dse.
Since f is an involution, we have
{€ 2= Ste D, SSE=¢, hence S2c 1,

n€Ds= S*neDs., S*S*n=1n, hence (S*)*cl.
" In other words, ;
S=5"1, S*=(5*)-2
We consider the positive self-adjoint linear operator
4= 8*S,

which is called the modular operator associated to the left Hilbert algebra 9. Then
s(d) = 1 and

471 = SS*,
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We also consider the polar decomposition of S
S = JA'3,

Since S = S~1, we get successively
Jan = g-1ay-t,

4-12 = JAJ = J¥J*4'2)),
whence, with the help of the polar decomposition, we obtain
=1, J=J*=J"L

Consequently, J is a conjugation in 2, which is called the canonical conju-

gation associated to the left Hilbert algebra .
We have thus obtained the following relations

S=JA= A7, Ds=2D anp
S* = JA-12 = AR, Dse =D -1y
The data concerning J are synthetized in the following relations
Jr=1,
@n18) = &I, & neX.
t that for any f€ 2([0, +00)) we have
Jf(a)J =f47,
of the relations
JaJ = 47,
J(A) = XJAT = R4~

Finally, we mention the fac

this equality being a consequence

We also mention the following equivalent forms of the preceding formula

S8y = Jf(47),
Jf(4) = fa-).

In particular,
Jak = 4vJ, telR.
The so-continuous group {4¥} of unitary operators is called the modular
group associated to the left Hilbert algebra .
10.2. In this section we consider some opcrators which are naturally associated
to a left Hilbert algebra A < .
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Let n € #. We define the linear operator R by the relations
RO =Ln, £ , = A

(R
If R is preclosed, we denote its closure by R,

Lemma 1. Let nes#. If R} is preclosed, then R, is affiliated to the von Neumann
algebra £(AY'. '

Proof . For any {e U we have , ‘
LR} = RIL,,
L;R, = R,L,,
whence, for any x e £(%),

xR, = R,x.
. Q.E.D.
Lemma 2. If ne 2s+, then R} is preclosed and
N D g
(R)* =L,S*n, fe.
Proof. Since
RS < (RS,
the operator R} is preclosed. A trivial argument now completcé the proof. QED

10.3. In this section we consider the “multiplications to the right”’, which are asso-
ciated to a left Hilbert algebra oA < o7,
We define

A' = {ne Ds+; R, is bounded}.
Lemma 1 from 10.2 now implies that
neW = R, e £A).

Proposition. Let ne ¥, (€ and x' € B(H#). Then the following assertions are
equivalent :
@) neW and S*(n) =, R,=x';
(ii) for any €U we have Ly(n) = x'¢, L) = x'*&.
Proof. Assuming (i) to be true, for any ¢ e % we have
L{(',) = Rq(é) = X'C

and, from Lemma 2, Section 10.2, we get

L0) = L;S*n = (R)*¢ = x'*¢.
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Let us now assume that (ii) is true. For any &, §; € 2 we have
(1l SEa) = (1EF e = (I Leg G = (11(L)*D)

= (LeMEF) = (v&alel) = Elx'*Ei)
=(¢s| L‘.f:(()) = (Le(§2)[0) = (6:&:10),
whence 1€ 2s. and S*(n) = {. Obviously, R, = x' is bounded; hence ne .

Q.E.D.
Let n€ 25+ and let

R, =u A, = By,
be the polar decompositions of R,. For any fe 2([0, +o<)) we have the relation

u,f(4,) = f(Byu,.
We observe that

neR@r, = s(B)K,
5*e (R)*Diry+ = S(A)¥.
Indeed, in accordance with Section 10.1, there exists a net {¢;} = U, such that
Lh—’—O>I, hence, from Lemma 2, Section 10.2, we get
RDr, 2 R{(E) = Le(m) = .
C(RY*Dirye 2 (R)*(E) = Le(S*n) — S*n.

With the help of the preceding proposition it is easy to prove the following
assertions:

Corollary 1. If ne W', then
S*ne ', and
SHS*M) =1, Rsn=(R)".

Corollary 2. If n,,n.€ ', then

' R, (n:) e’ and

S*R,(ns) = Rs*o(S*M)s  Rr,(m) = RoRny:
More generally, we hﬁve the
Corollary 3. If 1y, n.€ %' and x" € LAY, then
R, x'(n:) e W and
S*Rx' (1) = Rsn(x)*S*Ms,  Re,xm = RoXRoy
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The following two corollaries enable us to obtain elements in 2U'.

Corollary 4. If ne Ds- and fe &([0, +00)), sup {A2|f(A)]; A€[0, +0o0)} < 400,
then :
R,f(A)S*neW and
S*(R,f(A,)S*1) = R,f(A4)S*n, Rr siapsen=Bif(B,).
Corollary 5. If n€ @s- and fe B([0, +00)), sup {1]f(A)}; 1€[0, +o0)} <+o0,
then
S(ByneW and

S*(f(Bn)= f(4,)S*1, Rpspn = B,f(Buy
Finally, the last corollary in this series shows that 91’ contains enough elements.

Corollary 6. If n € Dse, then there exists sequences {n,}, {{,} = W', such that
Ru(&n) = n,
S*Ry(Ca) = S*n.
Proof. Let us consider the functions £, € 2([0, -Foo)), ne [N, defined by
L) = 2, ().
We define
N = Ry f(A)S*n, & = f(B)n.

With the help of Corollaries 2,4 and 5 it is easy to see that, for any natural
number n, we have

Nws Sms Rq.((,.) e and
R"u(cl) = B?IJ-E(BQ)'I’ S‘R,,”(C,,) = A:f;"i(A,,)S‘t].
Since n € s(B,)F and S*n € s(4,)o, by taking into account Theorem 9.11 (vi) and
Corollary 9.13 (iii), it follows that
R, (L) =,
S*R, () = S*n.

) Q.E.D.

10.4. Let B be a complex algebra with involution, endowed also with a scalar pro-

duct (+]-). We denote by n ~» nb the involution in 8 and by J the Hilbert space
obtained by the completion of B. One says that B is a right Hilbert algebra if

() Ba¢ > {neB is continuous for any ne B;
@) (€l &s) = (&1 1Smd), for any n, §;, &€ B;
(1ij) B* is dense in B;
(jw) " > Boanrendb € is a preclosed antilinear operator.
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Let Acs be a left Hilbert algebra. Then UA’, endowed with the
operations

MmfMe= Ro(m), M,n:€W,

nb = S*y, neW,
and with the scalar product of », is a right Hilbert algebra (see
Corollaries 1, 2, 6 from Section 10.3).

If B < o is a right Hilbert algebra, then the closed antilinear operator

F is defined to be the closure of the operator

X’ o %’32 & ""(Z )b e X,
{ {
Let 9 < 2 be a left Hilbert algebra and 8 = '. Then, in accordance
with Corollary 6 from Section 10.3, we have
) S* = 5%y,
ie.,

F=S*
For aright Hilbertalgebra 8 < J the operators R,e B(¥), ne B, arc defined

by the formula
R =% (e€B.

If 8 = S, then, for any neB, R,is just the operator defined in
Sections 10.2 and 10.3.
If Be o is a right Hilbert algebra, then the mapping
R:B3nw R, e 2(F)
is a s-antirepresentation of B, i.e.,
Royny = RoRoyy M M2 € B,
(R)* = va. neB.

One defines
8(B) = R(Ry; neBY) = (R ne B = Ry neB)™
If 8 = A, then
@ A() = LY.

Indeed, the inclusion &(A’) = £(A)' is obvious. Conversely, let x" € £y

and {n,} = U’ be a net, such that IR, I €1 and R,,-':b 1. Then, in
accordance with Corollary 3 from Section 10.3, we have

RxX()eW and Rp xip = R, X'R,,.
Thus, we have
K(2A')3 R, X Ry —> X',
and relation (2) is proved.
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Let B < o be a right Hilbert algebra. For any & € 2+ one defines the closed
linear operator L, in # by analogy with Section 10.2, as being the closure of the

operator
H >BanrR(EeH.

Then L, is affiliated to &(B), B < Dy and

(L)*n = R,F*, neB.
One also defines '
B' = {{€ Dp+; L, is bounded}
and a proposition analogous to Proposition 10.3 holds. By a dualization of the

preceding discussion B’ canonically becomes a left Hilbert algebra and the following
relation holds

£®) = &(B)'.
If B = A, we have F* = S. Thus, for any ¢ € D, we defined a closed

{linear operator L,, which is affiliated to &(U’)’ = £(A), as being the
closure of the operator *

! H o> Wanw R(E)eH.

| We mention that 9’ © 2z,» and we have the relation
He) (L)*(n) = R,S¢.

| We denote

_ A’ = B' = {{ € Ds; L, is bounded}.

Then A"’ becomes a left Hilbert algebra, with the operations
&iée = Lg,(fz)’ $1, §ae U,
| =8¢ Cewu .

I (We shall see later that these notations are compatible with those already
jintroduced for the operations in A).

The right Hilbert algebras were only introduced in order to systematize the
" discussions about 9, ', A", Thus, if A « o is a left Hilbert algebra, then the
proposition analogous to Proposition 10.3 is the following:

Proposition. Let (e, (e and xe B(¥). Then the following assertions are
equivalent

() {eA’ and S(§)=(, Ly = x;

(ii) for any ne A’ we have R,({) = xn, R,({) = x*n.

With the help of the preceding proposition it is easy to obtain the following
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Corollary 1. If £€ U, then”
EeU" and

S = &%, L, = the operator defined in Section 10.1.

In particular, A €« P5 and S§ = E¥® for any ¢e . Thus, S is the closure of
the operator

H# oAU EFeor.

Let 9, < 5 be aleft Hilbert algebra. One calls a left Hilbert subalgebra of I,
any involutive subalgebra o, of 2, which, endowed with the scalar product of X,

becomes a left Hilbert algebra, which is dense in 5.
It is easy to verify the following

Corollary 2. U is a left Hilbert subalgebra of A" and the following relations hold
Yy =,
@y =,
LAY = £(A).
We conclude this section with a “dominated convergence” result:

Corollary 3. Let x € £() and {§;} = A" be a net having the following properties
Ly, = x,50p IG,l < +oo, sup ISEl < +oo.
Then there exists a &€ W', such that
x = Ly, & — § weakly, S&, - S& weakly.
Proof. We consider the linear form ¢ defined on (2U')? by the formula
@(Rso,(©)) = (] xn) = lim ClL ) = li;n (Rs>y(D)18), n, Le .

Since sup [|&,]] < 400, @ is bounded; hcn'cc, there exists a ¢ € 2, such that
i

Clxn) = Rse D18 = CIRE), n, (e,

whence
R() = x(n), ned’
Since
(Rs+y(D1&) = (Ryef(D18), m e,
from the facts that (')? is dense in ) and that sv;lp 1&] < 400, it follows that

&, — &, weakly.
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By using the fact that Ls¢,=(L¢‘)‘-'2>x‘, one can analogously show that there
exists a { €, such that

R = x*1), ned,
S¢, = {, weakly.
By applying the preceding proposition, it follows that
few’, SE={ L,=x
’ Q.E.D.

10.5. Let 2 = o be a left Hilbert algebra. By taking into account the definition
of the Hilbert algebras, %* is dense in 2. More precisely, for any ¢ e 9 we have

¢ € ¢, Indeed, if {¢,} = A is a net, such that L, —> 1, then
AL (04

Actually, for any ¢ e 9 we have & e €9, asa consequence of the following
lemma.

Lemma 1. If €€, & £ 0, then L“# # 0, and

Pai Lyl ~1EE)E ~ ¢,
where p, is the polynomial defined by
) =1—(~2"
Proof. Let {n} = A be a net, such that R,,::» 1. Then

Lc('h) = Rq.(f) - &,
hence

&€ LOF) = (LYo = s(L,.4)¢.

In particular, L, #0.
On the other hand, according to a remark we made in Section 2.22, we have

P Lyl L) = S(IL 2l ~L ) = S(Ly);
hence
PAIL el 2 8EF) =PIyl ~ L)€ = S(L 2 )E = &.
Q.E.D.

In particular, from what we have just proved, it follows that the s-represen-
tation L: %A - B(X’) is injective.
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In order to avoid any confusion, in what follows we shall mark the symbols
L,S,...,which correspond to ¥, in the following manner: Ly, S%,...

Lemma 2. Let 9, = ) be a left Hilbert algebra and U, an involutive subalgebra
of Uy, which is dense in . Then U, is a left Hilbert subalgebra of ;.

Proof. If is sufficient to prove that (2,)? is dense in Us. In accordance with
Lemma 1, for any &€ Az, & # 0, we have

(W) 3 p (ULl 2 EEE S &,

where p, is the polynomial from the statement of Lemma 1.
Q.E.D.

Lemma 3. Let U, be a left Hilbert subalgebra of a left Hilbert algebra A, c K.
Then the following assertions are equivalent .

@) s™=s™

(i) () = (Wa)';

(iii) (A" = (As)".

Proof. The proofs of the implications (i) = (ii) = (iii) are immediate, on the
basis of the corresponding definitions; the implication (iii) = (i) follows from the
considerations we have just made in Section 10.4. : QED

In particular, if 9 is a left Hilbert algebra, then 92 is a left Hilbert sub-
algebra of A, and (A" = A".

10.6. In this section we consider an important example of a left Hilbert algebra.
Let 4 < () be a von Neumann algebra and &, e ¥ a scparating cyclic
vector for .# (see 3.8). Then

U = ME = {xE; xEM),
endowed with the operations
(x5)(¥E0) = x¥%0s
(xE)™ = x*¢a,

and with the scalar product of o, becomes a left Hilbert algebra. Indeed, the
first two conditions are immediate, the third one is trivially satisfied because 1 €.4,
whereas the fourth one follows from the relation

M (Eal ¥E) = (W5l (x0)), xed, X ed’,

and by taking into account the fact that 4’y = K.
For & = xf € 9 we obviously have L, = x, hence

£(%) = {Ly; Se U} = 4.
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H ne, then R, e &AY = A, and
‘ Rq(fo) = L) = n.
Thus,
W e M= {xE; x e’}
With the help of relation (1) it is easy to see that, for any x’e.#’, we have
x'§oe W, and S*(x'Ey) = x'*&,, Reg = x'.
Consequently, we have
W =M,
and the operations of a right Hilbert algebra in %’ are the following ones
(x"€)07&0) = Ry, (x'60) = y'x'&,,
(x'%0)b = S*(x'¢o) = x*¢,.
By analogy with the preceding argument, it follows that
' =M"E = MEy =W

Because of their relevance to the following sections, we restate the following
facts, which have already been proved:
The closure S of the antilinear operator

H o MEdxEy -+ x*Ege N
has as its adjoint S* the closure of the antilinear operator
H o> ME3xXEy > X" EgeH.
Also, if ne 2, then the operator
H > M xEy > XN €N,
is preclosed and its closure is affiliated to ./".

10.7. This section contains an important application of the theory already developed,
to the commutation theorem for tensor products.

Lemma 1. Let M, < B(H#,) and My = B(H;) be von Neumann algebras with
Separating cyclic vectors §, € ¥, and &y € H,, respectively, Then

M, ® My = M, D ML
Proof. Let o
f=51®f16x1§3f’3=)?’.
Then { is a cyclic and separating vector for J; @ ;.

T AT P T30 S N T A
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We now consider the operators
S, = the closure of [#,&, 3 x,&; = xT& €],
S, = the closure of [l D Xs&y 1+ x2E €],
S = the closure of [(#, ® #3)¢ 3 xE — x*E € X].
By using the fact that #; ® ., is w-dense in 4, ® 4 it is easy to verify that
S$=58 S,
In accordance with Proposition 9.33, we now infer that
‘ S* = S*® St
According to the last statement made in the preceding section, we get
S* = the closure of [(#; ® #3)'E3x'E > x'*eH],
S* = the closure of [#1¢, 3 xi&, — x{*S €],
S¥ = the closure of [#3s 3 x28y = x2*e eXs),

S* ® SF = the closure of [(# ® MNE3YE eyt eX]
Therefore, we have

S _ gr _ S* QR ST = Sla@ A2
From the inclusion
(My B M)E > (M@ ML,
with the help of Lemma 3 from Section 10.5, we obtain
| (M B M) = (M B M,
and this equality implies that

(M@ M) =M ® M.
Q.E.D.

Lemma 2. Let My, My, Ny, N2 be von Neumann algebras, M, being e-isomorphic
to &', and My being s-isomorphic 10 Na. If

(l,@d’,)’=.4’;§./f’§,
then
‘ (.Ill ®.”1)'=./{; ®Jl;.

Proof. According to exercise E.8.8, we can separately consider the cases of
the spatial isomorphism, of the induction and of the amplification.

(1) The case of- the spatial isomorphism is trivial,
(1) The case of the induction: if

,ﬂl.—:(_yl)‘i, e;E?Ji. J(,=(./V:)¢§’ eseyl;o

17~c. 1540
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then, by taking into account exercise E.3.15 and Theorem 3.13, we have
(B = (W) BUHD) = (W1 B HD)3g)
= (S 5#:);;;;2; = (A3 §A’é).;3¢é '
= WD ® (VD) = (W)l @ (N = M B A
(I) The case of the amplification: let
N1 € BHY), Ny B(H)
My =N @ C(AH D), My= N3 @ C(KH),
where 3, #,, Ay, X' are ﬁilben spaces. Wé define a unitary operator
WHLQH1QH @ N3 »H, @ H, @ N1 ® N
by the formula ' : '
UG ®MmO&L®M)=6LB&L® M ® 1,
Then, with the help of Proposition 3.17, we infer that
M@ My) =(H1® 6D ® N2 ® €(Hy)
L =W B 4B ) B Gy
= U1 B A3 @A) B G )
=u{((#1 @ N ®@ B(H) ® B(A D)
=N ® i ® B(H)) ® (KA
=Hi@BA) ® N ® B(oAy) :

=(/1® €A ® (Vs @ C(HY) =M B ML
‘ Q.E.D.

We now prove the commutation theorem for tensor products:

" Theorem. For any pair of von Neumann algebras My c B(NH)), M, = 2Py
the following relation holds: :

(J{x 6-/11)' =-/(;§J(§

Proof. In accordance with Lemma 1, the assertion is true if JH, and .4,
have separating cyclic vectors.

With the help of exercise E.5.6, Proposition 5.18, and Lemma 2, the assertion
of the theorem extends to the case in which -#, and 4, are of countable type.
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Then the assertion of the theorem trivially extends to the case in which the unit
projections in .#, and .#, are piecewise of countable type (7.2).

By taking into account Lemma 7.2, Proposition 3.17 and Theorem 4.22,
the assertion of the theorem easily obtains for the case in which .4, is finite, or
uniform (8.4), and .4, is finite, or uniform, too.

Finally, with the help of Theorem 4.17 and of Proposition 8.4, the assertion
of the theorem obtains in the general case.

Q.E.D.

Corollary. Let #y, . #, bevon Neumann algebras, 2y, &4 their centers, re:pecmcly
Then the center of M, ® A, is Z, ® 2,

Proof. We denote by 2 the center of 4, ® #,. Obviously,
' 2,® 2Z;c 2.
On the other hand, the inclusions
M, @My 2,
M QM (M, @My < 2
imply that
21Q 2y =R( My, H}) @ R(My, M) € 2.
With the help of the preceding theorem, we obtain
Zc(Zi®2) =2,8 2,
Q.E.D.
10.8. In this section we exhibit a class of *“‘positive” elements in 2¢ (respectively,
" gsl..)ét A < ¥ be a left Hilbert algebra. For any vector ¢ € # we define the linear
operator L? by
LYm) = R, ne 9(,_2, =,
We observe that
e LYAW).
Indeed, if {n,} ' and R,,—»1, then
LyW)aLen = RS~ &,

If LY is preclosed, we denote its closure by L.. By analogy with Lemma 1
from Section 10.2, one can show that if L is precioscd then L, is affiliated to
&(QI ) = &A). In Section 10.4 we saw that |f { e Dg, then LY is prcclosed Also,
if LY is symmetric, then L? is preclosed (9.4).



260 LECTURES ON VON NEUMANN ALGEBRAS

We write
Ps = {{e’; LY is positive}.

Let ¢ e Ps and let 4 be the Friedrichs extension of L% (9.6). In accordance
with exercise E.9.27, 4 is affiliated to £(2). With the help of Proposition 10.4,
it immediately follows that, for any function f e-#([0, -+ 00)), such that sup {22 f(A)|;
2€[0, +00)} < 400, we have

Af(A)E e A’ and
SASA)E) = Af(A)E,  Lysiaye = A(4).
Analogously, we denote ' -
Pse = {ne#’; R is positive}.

Proposition. Let A = 3¢ be a left Hilbert algebra.
The following assertions regarding a vector &y €S are equivalent
(i) {o € Bs;
(i1) $o€ Ds, 8¢y =& and L, is positive;
(iii) §o belongs to the norm closure of the set {LS¢; EeN"Y;

(i) (%olm) = 0, for any ne Pse.
The following assertions regarding a vector No €¥ are equivalent
S 0) moe Pses - '
(i) nmo€ 2s+, S*no=n, and R, is positive;
(i) no belongs to the norm closure of the set {R,S*n; ne W};

Gw) (Glne) = O, for any & e Ps.
Proof. We first observe that, for any ne A’ we have

) (SolRsenm) = (RySo|m) = (LY 7).

We prove that (i) = (ii). From condition (i) and relation (1) we get, for
any ne ',

(So[Rseqn) > 0.

Hence, for any n,, n,e W, we have

3 .
Z ik(‘fol RS‘('}.-O- lk'h)('h.+ ik"!))
k=0

e

(SolRseq,ny) =

B

3 ,
711-,‘2 ik(RS'(mq.ik.,,)('lx + i*n9) <o)
-0

= (Rs*a,m[{0) = (S*Rsn(12) | o). .
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since S*[(A)? = S* (see 10.4), it follows that
¢o€e 25 and S¢o = o,

thereby proving assertion (ii).
We now show that (ji) = (iii). Let A be the Friedrichs extension of L., For

any natural number n we consider the function £, € #([0, + 00)), defined by
) = 27 O).

Since
lim 22 £302) = X, o O
n-00

from Theorem 9.11 (vi) and Corollary 9.13 (iii) it follows that
" AP[HA) > ().
On the other hand, we have
&, = Af(A)é e A"’ and
SE, = AfA)éo, L, = AY(4) > 0.
Since
&€ L Q) = s(A)F,

we have
Lg,.sf. = A’fz(f‘)fo ~ o,

and assertion (iii) is thus proved.
The implications (j) = (jj) = (iij) can be proved similary.
Let £eUA”’, neW'. Then
(LeSE|R,S*n) = (Rs~yLSE|S*n) = (L¢Rs+,SE| S*)
= (LL3S*n| S*n) = IL$S*nl* > 0.
The implication (iii) = (iv) now follows by tending to the limit, and by taking
into account the implication (j) = (iij)-
Since {Rg-; ne W'} = Pse, the implication (iv) = (i) obviously follows
from relation (1).
The implications (jjj) = (Gw) = (j) can be proved similarly.
Q.E.D.

Corollary. Let 9 be a left Hilbert algebra. Then
(1) PBs is a closed convex cone, included in Dg; s is the linear hull of Ps.
(2) Py is a closed convex cone, included in Doy Do is the lincar hull of Pse.
Proof. The fact that s is a closed convex cone, included in 25, obviously
follows from the preceding proposition.
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Let { € 25. We must prove that ¢ is a linear combination of elements in'P;.

We can assume that S¢ = &. Then, by taking into account the fact that S|A'=S,
it follows that for any n there exists

f,,EQ[”, an =_.6us ”fn" < 1/2”:
such that :

The operators
a, = L, e £(A)
are self-adjoint. In accordance with Corollary 2.10, we consider the decompositions
ay=af —ay;
then
af, a5 € &), a}, ay >0,
|au| = af + a7, s(a,) = s(aF) + s(a7), s(aP)s(as) = O.
We define .
e & =s@) & =07 )
; We obviously have
o IEH < U2 1gel < 12
o = s(@)dy = s(af)e, + s(ar)s, = &F — &5
It is easy to verify that '
Ly < s(af)a, = s(ai)|a,| > 0,
L < —s(as)a, = s(a;)la,| > O;
hence

v ePs, S ePs.
We denote

F=Y & =Y

A=l LY

Since P is closed, we have

f* € $Sv ‘-‘ € “BSQ
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and, obviously,
E=gr— g
We have thus proved assertion (1). Assertion (2) can be proved analogously.
Q.E.D.

The assertions (iv) and (jw) from the statement of the proposition show that
Ps and Pso are cones “polar” to one another.

10.9. Let 4 = #(¢) be a von Neumann algebra and &, a separating cyclic vector

for A.
In accordance with Section 10.6,

A= M N
is canonically endowed with a structure of a left Hilbert algebra and
W=M'E A =1U
For ¢, n e we consider the forms wg, , €44, w;, € (#')y given by
g, o(x) = (x{|n), xeH,
0 (X) = (¥EIn), ¥ €A,
In particular, we have (see 5.22)
Wp = @ We=ap (EX.
It is obvious that, for any &, n €, we have
Row, ,=w,, a€Hh,
Ry} g = Whr. g @' €M,
For any ¢ e, the operator L} is given by

LYxE) = x'§, XCo€D o =M

«wd
This operator is positive iff
(02.& = 0.
Consequently, with the notations from Section 10.8, we have
Ps = {SeH; 0 > 0.

If £ € Ps and if we denote by A the Friedrichs extension of L}, then 4 is a

positive self-adjoint operator in o, affiliated to .4, and
" E€Dy Ab={.

Conversely, if A is a positive self-adjoint operator in o, affiliated to 4,
and if {,e 2, then
. A€'E$s, L“. c A.
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Thus,
Ps = {Afy; A positive self-adjoint, affiliated to M, EE D)

Lemma, Let M < B(#) be a von Neumann algebra, with the separating cyclic
vector {o€X. For any normal form @ on M there exists a unique vector ¢ € PBs,
such that

¢=(D€.

In particular, there exists a positive self-adjoint operator A in 3¢, affiliated
to M, such that

foeg,{a (P =w4g..

Proof. In order to prove the uniqueness of the vector &, let &, &, € Py,
be such that w,, = w,,. Then :

%6l = xfall, xe;

hence, there exists a partial isometry v’ € .4 ’, such that
v'x$; = x&;, xed,
v (g} = {0).

_ In particular,
_ T V=8, v*=¢,
* and therefore '
Ot &0 = Oy 00 = Ry 0, o,
Wg,, gy = Wyoeg, oy = Ryretdl,, .

Since &, &3 € P, we have ¢ =0, oy, ¢ =0, and, by taking into account the
uniqueness of the polar decomposition (5.16), it follows that

wéh &= wél- [}
Since &, =, we infer that
fx = {,.

We now prove the existence of the vector €. In accordance with Theorem 5.23,
there exists a vector { eJ, such that

¢ = w‘.
Let now, in accordance with Theorem 5.16,

@, ¢ = R Y’
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be the polar decomposition of the form w}, € (M')y. We define

="
Then
Wp gy = Wpoeg, gy, = Ryee} gy =Y’ 20
and, consequently, we have
{ePs.
On the other hand,
W4 g0 = Re’ = Ryl ¢ = Wiog, ¢4
whence
{=v'¢.
Thus, for any xe.#, we have
P(x) = wx) = (x{I) = (x{]v'{) = (v"*x{|{)
= (xv"*{|§) = (x{I) = w(x).
Consequently, we have
Q= w,

Q.E.D.

.10.10. Another important application of the theory developed so faris a general
Radon-Nikodym type theorem, which we shall present in this section.

Let # < #(o¢) be a von Neumann algebra and ¢ a normal form on /4.

Let A be a positive self-adjoint operator in o, affiliated to 4. We write (cf, 9.9):

e, = rpn(d)ed.
One says that A is of summable square with respect to ¢ if
c = sup ¢(A?%,) < +o0;
then )
o(A%,) 1 c.
In this case, for any xe.# and any m > n, we have
lp(de,xAe,) — p(dexAe,)| < |p(AenxAle, — &) + |p(A(e,, — e,) xAe,)|
< o(de xx*Ae, ' Pp(AXe, — e,))'? + p(A¥(e, — €,)) 2p(Ae,x*xAe,) 12
< 2ixicV¥p(4%,) — @(A%e)] 2.
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Consequently, the sequence {@(Ae,xAe,)} is fundamental. We write
LARA(P(x) = lim (p(AenXAen)’ X Eﬁ.

n— 00

Therefore, we get a linear form L, R, on .#. Tending to the limit for
m - co, in the preceding inequality, we get

(LR 49) (%) — (L s, R 4e,®)(3)| < 2¢¥%c — (A%, )]/2]|x]].
Since L,, R, @ €(#,)*, it follows that |
LR, pe(M,)*.
By taking into account Theorem 9.11 (ii), it is obvious that if
=0, §ei,
then the operator 4 is of summable square with respect to ¢ iff £ € 2. In this case
LR,p = w .

Theorem. Let ¢ and  be normal forms on the von Neumann algebra M < B(H)
such that

s(p) < s(¥).
Then there exists a positive self-adjoint operator A in ¥, affiliated to M, such that
o _ s(4) < s(¥), .
¢ =LRy.

Moreover, if the projection s(y) is finite in #, then the operator A is uniquely

determined by the required properties.

Proof. Without any loss of generality, we can assume that s() =1. From
- Proposition 5.18, we infer that there exists a s-isomorphism 7 of . onto a von
Neumann algebra 4" < #(X'), (1) =1, and a separating cyclic vector {,e
for &, such that

V=apom

Then
‘P=0°ﬂ,

where 0 is a normal form on the von Neumann algebra 4 = (o), uniquely

determined by this relation.
From Lemma 10.9 we infer that there exists a positive self-adjoint operator B

in o, affiliated to 4, such that
‘ 0 = a),;..

zemmane
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Let A = n~%(B) be the positive self-adjoint operator in o, affiliated to 4,
which is obtained by transporting the operator B by the s-isomorphism zn~! (see
Section 9.25). If we denote

€x = Xiom ), fi= Xlo.-)(B)'
then we have

Y(A%,) = Y(n~3(B*) = o, (B) = 1£oBLI* < [BLl*,
hence A is of summable square with respect to . Then
(LR W)(x) = lim (Ae,xAe,) = lim Y(n~(Be,)xn~'(Be,))

= lim w,(Be,n(x)Be,) = ag;,(n(x)) = 0(n(x)) = o(x), xe.k,

hence
LRy =¢9.

We have proved the first part of the theorem.

Let us now assume that s(y) is finite. We can assume again that s(y) = 1,
hence 4 is finite. Moreover, by considering the s-isomorphism = and the possi-
_bility of transporting by = the positive self-adjoint operators which are affiliated
to 4 (see 9.25), we can assume that 4 has a separating cyclic vector {oeN°
and ¥ = a,,.

Thcrci‘orc let A be a positive self-adjoint operator in o, which is affiliated
to # and such that

@ = LRy = 0y
Then the vector A&, is uniquely determined by @ (see 10.9). On the other

hand, A is an extension of the positive operator L, (see 10.9). Since 4 is finite,
Corollary 9.8 implies that A4 is, indeed, determined in a unique manner by o.

Q.E.D.

Another case in which the uniqueness of the operator A holds is thatin which
the normal form @ is dominated (see E.9.33) by the normal form . Indeed, in
this case it is easy to verify that the operator 4 is bounded and one applies
Theorem 5.21.

10.11. This section contains the main technical result for the subsequent
development of the theory; with its help a bridge between A’ and A’ is established.

Proposition. Let W< X be a left Hilbert algebra and A€ C\\R*. Then, for any
EeU”, we have (A — 4~y ¥ e ¥’ and

R(3-4-1)-12] € 27V([A] — Re 1)~V L,].
Similarly, for any ne ', we have (A — 4y'ne¥” and
1L(a—n-10 < 27V1Al — Re )~VHR,].
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" Proof. We shall prove only the first assertion, the proof of the second one

being similar.
We denote

n=(@1— 41
Then T
ne g(d—'l) [t @(4—'111) = gsn

We consider the polar decompositions ,
R, = ud = Bu.

With Lemma 1 from 10.2, we infer that A -and- B are affiliated to £()".

By taking into account Corollary 5 from 10.3, we infer that, for any function
fe€ B([0, +00)), assumed only to be positive and with compact support, we have
the following sequence of relations

ILENfA)S*I® > ILf(DS*I® = IfALS* 0] = IfFAR)*EI?
— [f(A)AwE| = | Af(Ap*( — 4D
= |32 Af (Ayu*n]* + | Af(Ayw* 4|22 Re[l(Af(A)u*nlAf(A)u*A“n)]
> 2021 [ Aftd)ua*nl) |Af(Ayu* A=) —2 Re[A(Af(AYu*n| Af(A)u*4-n)]
> 214 [(AfCAYu*nl Af(A)u* A=)} — 2 RelA(AS(Ayu*nl Af(Au*4-"n)]
= 2|2] [(BH(B)n|SS*n)| — 2 RelA(BY*(B)y| SS*n)]
= 21A] |(42(4)S*n|S*)| — 2 Re [MAY(A)S*nIS*n)]
= 2|] | Af(A)S*nl| — 2 Re [A] Af(4)S*n]1?]
= 2| — Re ) [l 4f(4)S*n]2.
.Consequently,
' 2-12(|J] — Re A~V L]l | f(4)S*nll > | 4f(4)S*n].

We denote ¢ = 2-V2(JA] — Re A)~Y3|L,| and f, = Yesn, - From the
above inequality we obtain successwely

el fy()S*n]l > I4fA)S*n] > (c + nHIfAS*nl,

f{)S*n =0,
Af,.(A)u*E S(A4) (RY*E = Lf,(A)S*n = O, 6 e,
- Af (A =0,
Af(A) =0, -

f{d) = 0.
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Thus
X(c. + 00)(4) = s0-lim f,(4) = 0;
. n—co
hence A is bounded and 4] <ec¢
It follows that R, is bounded; hence ne ', and |R,| <c.
: Q.E.D.
10.12. In this section we present the fundamental theorem of Tomita.

Lemma 1. Let N < # be a left Hilbert algebra, {eU”, A>0 and n=
= A+ 47, Then neW and the relation
LeCDIL) = ATRY*TA 2| AV 4 (J(R)*TAPL|A7VEL)

holds for any (i, (o€ Dqpm N Dy, o :
Proof. Proposition 10.11 obviously implies that e ',
“We shall first assume that

, {y Coe (1 4+ 471U,
Since A"’ = D5 = D(am, We have
. cl’ CzEAm(A + l)"‘l(Al’ZQI") c g(a‘l‘)-
On the other hand, from Proposition 10.11 we infer that
4o {eW c Do = 9(4—"‘)-

With the help of Corollary 2 from 10.3 we infer that the following sequence of equa-
lities holds: : .

(LIt = (Re(OIE) = IR = (O + 4~II(R)*E)
— AI(R)*CD) + (SS*nIRse () = ANI(Re)*Ca) + (S*Rseci(E2)|S*n)
=AI(R)*Ca) + (Rsp(C)IS*n) = AR, (ME2) + (GilR,,S*n)

= AR, ()1SSL,) + (SSLIR,S*n) = A(SS*Re,(n)) + (S*Re,S*ni ST
— A(SLa|RsegS*0) + (RyS*Lal ST) = MSLIR)*S*E) + (S| (R))* S0
— AJAV2L,|(RY*TA20).+ ( TA-V2L,|(R,)*TAV2L)

= AJ(R,)*TA-Y20,| AY205) + (J(R)*JAVH|A7VEL).

If we can prove that, for any (€D an) N 9; ,-1n) there exists a sequence

{¢} e (1 + 4-)~'A”, such that ' :
Cn - c, Al/:{n — AIIZC’ A—l/2cn — A-I/SC,

then the assertion immédiately follows from the preceding equalities.

Let then (€D un) N D4-1m. Since the set AV = JSA' = JU" is dense
in o, there exists a sequence {{,} = ", such that : ‘

AVEE, & AV 4 A=V,
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If we write '
L=0+4"), e(l + 419",

we have . )

o= A7Y2(1 4 A-Y)-YAV2E ) AV(1 A7) AV, 4 A2 =,
A2, = (1 4 A~Y~Y(AV2E ) - (1 + A~YYALRL 4 A-VaD) — Al

A7, = AL+ A7) 7HAYE) > AL+ AN AV - 47020) = 4oV,

Q.E.D.

Lemma 2. Let A < o be a left Hilbert algebra and & € A", Then, for any te R,
we have :

JA¥E e W and
S*JAitE = JA*SE, RJA": = A"L;A‘i’.f.

Proof. By taking into account Lemma 1 and Proposition 9.23, in which
we make A = B = 4, we infer that, for any A > 0, we have

(A4 4y ¥ ed and
+ 00 ;_il—% )

e em +e—nt'

IR+ g=sy-16)*T =S AL A~ dt,
ie.,

. +00 j‘_i’_%

(R(1+A—x )—xg) = S-oo ?—_Fe—_m

On the other hand, from Corollary 9.23, we infer that for any A > 0 and
any { €U, we have the equalities

(Ri+ 4~1~10)* = L S*(A 4+ 4-1)1¢
+00 A—i'—"l'
oo € ™

Let { € A. From the preceding formulas we infer that the equality

JA*LA~it] dt.

= LJA V() + A-1)1¢ = S LiJ 4% dt.

+oo 1 (
(=4 s~ rgavg g
- ,

e+ e-
holds for any 4 > 0, i.e., the Fourier transform of the mapping
1 .
t> ———— (JAML, AV I, — L, JAY
oo VAL — L4

vanishes identically. Since the Fourier transform is injective, it follows that
' LJa"¢ = JAUL A", teR.
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Thus, for any te[R and any {e€ ¥, we have |
L(JA"E) = (A" LA~ I);
substituting S¢ for &, we find that '
L(JASE) = (JA*LAT)*L.

If we now apply Proposition 10.3, we infer that, for any t € [R, the following rela-
tions hold: ’
JAE e A’ and

S*JAME = JA*SE, Ry, = JAL.4-".
Q.E.D.
We now prove the fundamental theorem of Tomita:

‘Theorem; Let 9 < 3¢ be a left Hilbert algebra. Then
Q1) JA' = W and, for any Ee W', we have

S*JE = JSE, Ry, =JLJ;
(2) A =A", teR, and for any e U, we have
SAVE =AvSE, Ly, =4"LedA™".
Similarly, _
1) JU' = A" and, for any n€ A’', we have
| - SJp=JS*n, Ly, =JRJ;
@) A =, teR, and, for any ne W, we have
S*Aty = A¥S*n, R, = A"RA7.

Proof. If we apply Lemma 2 for t = 0, it follows that JUA" = A’ and, for
any & e A", we have

S*JE = JSE, Ryp=JLg.
Let 7 € U’. Then, for any {eW and Ee A", we have
(RIn|&) = (Un| Rs(§)) = (|LeS*D) = (LseIn| S*0)
= (JR;5:(m)] S*0) = (JRses; )| S*0) = (JS*Rse, JEIJA™VE)
=4 -u2g| gV2J(R,)*E) = (I (RY*VE) = RJILK)-
Thus, for any { e ', we have '
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and, substituting S*;j for n, we get
| R(IS*1) = (JRJ)*.
If we now apply Proposition 10.4, we infer that Jy e U’ and
' SJy = JS*n, Ly, =JRJ.
Consequently,
JU' = A =JJA) = JUA",
ie., :
JU' =AW
Now let {e A" and te R. From Lemma 2 we infer that n=J4"¢ € %’ and

S*JAUE = JA"SE, R.mifc = JAYL,A-"J.

From the first part of the proof we now infer that A¥¢ = Jye A" and
SAYE = SJn = JS*n = ASE,
L gtg = Ly =JR,J = AVL A",
Obviously, - _
A = AN = A"(A""QI-") c AitQIH,
ie.,
A"QI” — Q[”.

We have thus proved assertions (1) and (2). Assertions (1') and (2') readily
follow from these. On the other hand, it is clear that assertions (1°) and (2') have
direct proofs, analogous to those given for assertions (1) and ).

Q.E.D.

According to the theorem, J is the natural bridge linking %"’ to 9U'. Another
such bridge is AY2:

42U = JIAVY = JSU' = JA" = 9.
The following corollary allows the constructioﬁ of useful elemenfs in Y and A",
Corollary. Let % = 5 be a left Hilbert algebra and fe %*(IR). Then, for any & € A,
we have &, = S+°° FOAE dt e A" and

—fo +00 __ +0o0 .
s¢,=S f)AsE dt, Le,= S AL A=,

—Q0

' ) +o00 )
Similarly, for any ne ' we have n, =S JW Aty dte W and

—c0

+00 _ (-]
S, = S Foyarsqd, R, = S; F(O)A"R, 4 dt.

—00
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Proof. Let
(= Sm F() 4" SE dt.

From the preceding theorem we infe_rt:hat, for any 0 € ', we have
Ry(&) = Si:f(t)R, Avgdt = S: FOL 1 0) dt = [S: F)A LAY d:] ©)

and \

R(0) = S: FOR,SAE dt = S: FO) (L@t =[S+°° fAnL s dt] *©).

—00

If we now apply Proposition 10.4, the first assertion follows.

The second assertion can be proved similarly.
Q.E.D.

10.13. We now consider a left Hilbert'algebra A H#.
Let ze &) n £A) and & e Ds. With the help of Corollary 3 from 10.3,
we infer that, for any 7y, n,€ U’, we have

(2€| Ry, (1)) = (€|R,,2*(n2)) = (SSEIR,,2*(12))
= (§*R,,2*(1)|SE) = (Rsey, 2511 %)
= (zRs+,,S*M | S¢) = (S*Ry,(n5)|2* SC)-
If we now take into account relation 10.4 (1), we infer that
(z&ln) = (S*nlz*SE), neDse;

consequently, we have .
2t e Ds and Sz& = z*S§.

Let ue £(20) n £Q1) be a unitary element and { € D4 © Dam = 2. From:
the preceding results we infer that u e Ds = D pan and

AV2uE = JSul = Ju*S¢ = Ju*JAVEL.
Thus, for any { € D um) = D(pm, We have
(4EI0D) = (AV2E|AVEL) = (Ju*JAY2E|Ju* JAV2) = (4'2ug| 4V 2ul);

hence
AVE € D ppuy = D pn and u*duf = AE.

Consequently, the modular operator 4 is affiliated to the von Neumann:
algebra (S(A) N LAYY = R(E(A), £(A)).

18—c. 1540
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Corollary 1. Let A < # be a left Hilbért algebra. Then
£ 3 x > Jx*J € B(H)

is a »-antiisomorphism of &(A) onto E(N)', which acts identically on the center.
Proof. From Theorem 10.12 we infer that, for any £ e A", we have JS{e W’
and ) ' '
J(Lc)*J = JLS€J = RJSC € &(QI’).

‘On the other hand, from the same theorem we infer that for any n € %', we have

SJneW' and
J(Lss)*J = JL;,J = R,.

‘Thus, the mapping in the statement of the corollary is a *-antiisomorphism of
() = £A”) onto K(A') = LN)".

From the discussion at the beginining of this section we infer that, for any
z€ £ n &A)Y and any ¢ e D, we have ' :

JZ*JE = Jz*AVRSE = JAV2Z* SE = Sz*S¢ = Z¢,

and this shows that the considered mapping acts identically on the center.
. Q.ED. .

Corollary 2. Let %A < # be a left Hilbert algebra. Then the formula
o (x) = A¥x4~

yields a so-continuous group of *-automorphisms {0,}:er of &) ,which acts identically
.on the center.

Proof. According to Theorem 10.12, for any {e A" and anyte R, we have
A& e A’ and

ofLy) = A¥L A = L 4, e £N).

Alty
Thus, {6,};er is a so-continuous group of s-automorphisms of £(). .
At the beginning of this section we saw that 4 is affiliated to the commutant
of the center of £(A), whence it obviously follows that any s-automorphism o,
acts identically on the center. :
Q.E.D,

The so-continuous group {o};er of *-automorphisms of £(20) is called the
group of the modular automorphisms of £(),associated to the left Hilbert algebra .

10.14. In Section 10.6 to any von Neumann algebra .#, with a separating cyclic
vector, we associated a left Hilbert algebra, such that ./# = £(21). By taking into
account Section 5.18, this association can be described in the following equivalent
manner: to any von Neumann algebra .#, of countable type, and to any faithful
normal form ¢ on .#, we associated a left Hilbert algebra %, = o, such that
T (M) = £(U,). o _

In this section we extend the above association to the case of arbitrary von
Neumann algebras, and to some “unbounded forms”, called weights.
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Let # be a von Neumann algebra. A mapping
@ 1Mt - [0, +00] = R* y {+ o0}
is called a weight if
1) ¢a+ b) = ¢(a) + o), a,be,
)] o(Aa) = Ap(a), aeMft, 120.%)
From condition (1) it follows that ,
a,bed*, a<b= ¢(a) < o).
For any weight ¢ on 4#* one defines
&, = {aed*; o(a) < +o0}.

It is obvious that &, is a face (see 3.21) and, therefore, by taking into account
Proposition 3.21, it follows that

N, = {xeM; ¢(x*x) < +o0}
is a left ideal of 4, and
M, = NIN, <R, NN
is a s-subalgebra of .#, such that
' By = T |
M, = the linear hull of &,.

From the latter property it easily follows that ¢ uniquely extends to a posi-
tive linear form on M, which is also denoted by ¢.
The weight ¢ is said to be semifinite if

3) M, is w-dense in .
The weight ¢ is said to be faithful if
4 } aelt, pla)=0=>a=0.
We shall say that the weight ¢ is normal if
5) there exists a family {¢;} of normal forms on .#, such that

o(a) = g ¢ia), ae.M*.

It is easy to see that if ¢ is norma], tl'xeq @ is lower w-semicontinuous. In
particular, for any family {a,} = .#*, which is increasingly directed and bounded,
we have )

® (sgp a) = sup o(a,).

*) With the convention that 0-(+40) = 0.
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The construction by which to any positive linear form one can associate a

=-representation (see 5.18) can be extended to weights.
Let @ be a faithful semifinite normal weight on #*. Since ¢ is faithful,

the positive sesquilinear form
(x] y)(p = ¢o(y*x), x,ye€ m¢’

is a scalar product on 9t,. We shall denote by 5#, the Hilbert space obtained by
the completion of 9, and for any xe N, we shall denote by x, €, the image
of x through the canomcal embeddmg of M|, in #,. Any element xe./// deter-
mines an operator 7,(x) € #(#,), given by the relatrons

n,,(x)yq, = (xy)w JE mq)-

It is easy to verify that m,:.# — %B(#,) is a -representation.
Since ¢ is normal, the same argument as that used in the proof of Proposi-
tion 5.18 shows that the *-representation n,, is w-continuous. It is clear that n¢(l)=1 ;

hence n,(4) is a von Neumann algebra
From the faithfulness and the semifiniteness of the weight- @it follows that =,
is injective, hence 7, is a *- -isomorphism of the von Neumann algebra .# onto the

von Neumann algebra T (M).
Since ¢ is semifinite, Proposition 3.21 shows that there exists a famrly {u,} =M,

such that u, t 1. Then, for any x& N, we have
"xq: q’(uu) xq:"w "x (uax)cpui =<p((x - uax)*(x - u,bc))

*
< 2p(x*x) — P - 0.

We hence infer that my(u,) 1 1.

On the other hand, since xe R, and u, eM; 1mply that u,x € NN —SIR,,,
from relation (+) we infer that ¢, 1s densely embedded in . Srmllarly, since
xe M, and u, € M, imply that u,x A M2, from the same relation we infer that me
is dense in M, thh respect to the topology corresponding to the scalar product
we have just defined. Consequently

m s densely embedded in .

Theorem. Let A be a von Neumann algebra and ¢ a faithful, semtﬁmte, normal
weight on M*. Then N, N RN¥, endowed with the structure of »-algebra induced
by A, and with the scalar product induced by that of #,, is a Ieft Hilbert algebra
A, < H#,, and the following relations " hold
A, = A,
n (M) = £(U,),
&2, if there exists a &€ U, such that
¢(a@) = 1. n,(a)V? = L,. ;aedt
-+ 00, in the contrary case. .
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Proof. Conditions (i) and (ii) from 10.1 are easy to verify.
Since M, = N, N NE, and since W, is densely embedded in ', it follows
that condition (iii) from 10.1 is also satisfied. - ~

In order to verify condition (iv) from 10.1, we must prove that for any net
{x,} = R, NN the following implication holds:

P (x3x) —>0 :
= (x,x3) —>0.
@((xs — xp) (xa — Xg)*) rid 0 *

From Sections 5.18 and 10.6 we infer that such an implication is true for faithful
normal forms. Since ¢ is normal, there exists an increasingly directed family {¢,}
of normal forms on .#, such that

.@(@) = sup ¢,(a), aeM*.

If we denote by e, e the support of ¢,, the restriction of o, to e.fe, is
faithful. From the hypotheses of the implication we must prove, it follows that

oo Eexe)) - > 0,

(pv((evxaev - evxﬂev)(evx;ev - evxﬂev)*) —309
and, therefore, ,
(P\;(xaevx: ) = @y ((evxzev)(evxaev)*) 'T> 0.
Since ¢ is faithful, we have |
e, 11

v

For any a, f and v < p we have
P(xe X < @ x.e XD
< @ ((x: — xg)eu(x, — xﬁ)*)ll 24 ‘Pp(xpeuxiﬁ)lfz
< o((x, — xg)(xa — x,,)"‘)”’+ P (xgexiV2
Lete > 0. Then. there exists an a,, suéh that for any a, > a, we have
. ‘P((xa - Xp) -(x:; - x,)‘)1/§< €.
Then ‘ ' o ‘
P XS £ + Quxpe I, @, B Sy VS b
By tending to the limit with respect }g B, from this relation we get

P (X xti<e, aZ 0, VS,
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and, by tending to the limit with respect to H, we obtain
;p,(x,x’g)l’zs &, o>da, any v,
Finally, if we now compute the Lu.b., from this inequality we get
Plex)2<e, a > a,

Consequently, condition (iv) from 10.1 is verified.

Since N, N NF oM, is w-dense in A, m, (R, N = {L.,; x,€U,}is w-dense

in m,(A). Therefore,
n?(ull) = £(U,).
By considering on 9, the positive sesquilinear form
| (Xos o) > 0,(7*x)

and by observing that it is bounded from above by the scalar product in Ko,
follows that there exists an a, e #(#,), 0 < a, < 1, such that

(@%[V0)e = 0,0*%), x,yeM,.
It is easy to verify that a) e (n (A))". ,
Let {u,} = M, be such that u, —»1 and [u,] < 1. Then
@) 24y — @) 2(ug)elly = (s — up)*(u, — up)) =7 0;
hence, there exists a vector 5, € 3%, such that

(a;)llz(ua)¢ =y

For any x, ye %, we have

(@I} (@) 2y,), = lim (z,(x) (@))*(uo)g| (a1)29,,),
= ]im (a;((xua.)w)ly cp) = lim q’v(y*xuc)
= ¢,(*x) = ((0 Y2x, l(av)llsy¢)¢

Since n,(x)r], = hm (@)V3((xu,),) € (a))17252, »> We infer that

(X, = (a)V¥(x,), xe RN,.

With the lhelp of Proposition 10.3, one shows that 7, e (X o) S*n,=n, and
R, = (@},
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Let £e(WU,)". Since Lye £A,) = n (), there exists an x e, such that
L, = m,(x). For any v we have

@y(x*x) = (I |12 = ILe(n N2 = IR, (OI* < 1€1%

hence,
, o(x*x) < [€lE< +oo.
Similarly, one can prove that
o(xx*) < || SE? < +o0.

Consequently, x € R, N NZ, and, therefore, x, € U,. Since L; = my(x) = L,wwe
infer that ¢ = x,€¥U,.

The proof of the formula, given in the statement of the theorem, for ¢, offers
no difficulties.

Q.E.D.

We remark that any von Neumann algebra # has a faithful, semifinite normal

weight. Indeed, if {¢} is a maximal family of normal forms on ./, whose supports
are mutually orthogonal, then the formula

o(a) = 2‘} ofa), acH*,

yields a faithful, semifinite normal weight on /.
Thus, any von Neumann algebra is s-isomorphic to a von Neumann algebra

of the form £(W), where A is a left Hilbert algebra.

10.15. A von Neumann algebra # < B(H) is said to be standard if there exists
a conjugation J : #° — i, such that the mapping x +> Jx*J be a s-antiisomorphism
of 4 onto ', which acts identically on the center.

For particular cases of standard von Neumann algebras, the reader is referred
to exercises E.7.15, E.7.16, E.7.17, E.7.18, E.7.19 and E.8.5. To the same end,
exercises E.3.9, E.3.10, E.6.9 are also useful.

In accordance with Section 10.6 and Corollary 1 from Section 10.13, any
von Neumann algebra with a separating cyclic vector is standard. Conversely,
let # < %(#) be a standard von Neumann algebra of countable type and J the
corresponding conjugation. In accordance with Lemma 7.18, there exist &, n €,
such that the projections p; and p, be central, and p; + p, = 1. From exercise
E. 6.9 we infer that.

pye=Jpd =Py Pm=JIpd = P

hence J& 4+ 1 is a cyclic vector, whereas & + Jn is a separating vector for ..
In accordance with exercise E.6.3, it follows that .# has a separating cyclic vector.

Thus, the standard von Neumann algebras of countable type are precisely
the von Neumann algebras with a separating cyclic vector. In accordance with Pro-
position 5.18, any von Neumann algebra of countable type is s-isomorphic to a
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standard von Neumann algebra, whereas, in accordance with Corollary 5.25, any
*-isomorphism between two standard von Neumann algebras of countable type
is spatial.

The following result extends these statements to the general case:

Corollary. Any von Neumann algebra is *-isomorphic to a standard von Neumann
algebra, and any *-isomorphism between two standard von Neumann algebras is spatial.

Proof. In accordance with the remark at the end of section 10.14, and with
Corollary 1 from Section 10.13, any von Neumann algebra is *-isomorphic to
a standard von Neumann algebra.

By taking into account Theorem 4.17 and Proposition 8.5, the second assertion
of the statement can be considered separately, for the finite, respectively the uniform,
von Neumann algebras. In the first case, by using Lemma 7.2, the assertion is
reduced to the case of the von Neumann algebras of countable type, whereas in
the second case one applies Theorem 8.6, and one uses the fact that the uniformity
(8.6) of a standard von Neumann algebra is equal to the uniformity of its commutant.

Q.E.D.
10.16. In this section we begin a construction inverse to that developed in Section
10.14. More precisely, to any left Hilbert algebra A we associate a function
9y EA)* - R* U {+ oo}, which measures the “weight” of U in the operators -

belonging to £(A):

I€N|2 if there exists a & e A’’, such that

Py (@) = a2 =L, ; ae LA+
+ ooin the contrary case

We first prove that ¢, is increasing:
0] l[a,be £QRA)*, a < b= 94(a) < pu(d)].

If @y (b) = +o0, then the implication is trivially true. We now assume that
bV = L,, {eU". It is easy to see that the relations '

Cx(bV%n) = a'y, ne,
x() =0, Oe[b2#]*,

determine an operator x € £(A), | x| < 1, such that a'/2 = xbV/2, We denote E=x{.
Since, for any ne W', we have

R(€) = Rpx(0) = xR,({) = xLi(n) = xb () = aV(y),
Propo§ition 10.4 implies that £ = A" and"L, = a2, Thus
Pol@) = SN2 < D=l 112 < NI = @g(B).

We now prove that ¢, is additive

2 [og(a + b) =0y(a) + 04(®), a,be W] -
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~ Since @y is increasing, if @g(a) = +o0 or @g(b) = +00, then relation (2)
is obviously satisfied. Thus we can assume that

é1/2= L, bit=L,; v,6eU".
The equalities
' x((a + b)%n) = a'*n, nek,
x(0) =0, Oel(a+ b2l
W(a + b)) = bl'*, nedt,
¥0) =0, Oel(a+ by2H#],

determine the operators x, y € £(), [|x[, (] yll < 1, such that a'/2= x(a + b)'/* and
b'2= y(a + b)"2. Since

(@ + b2(xx + y*y) @@+ b)P=a + b,

the positive operator (x*x -4 y*y)/2is isometric on [(a + b)2.#] and, obviously,
vanishes on [(a + b)“z.;’f]l Thus

x*x + y*y = s(a + b).
We denote
&= x*y + y*o.
For any 7€ A’ we have
R,(8) = x*R,(¥) + y*R,(8) = (x*L, + y*Ls) (n)
= (x*al2+ y*b%) (1) = (x*x + y*y)(a + bY'"*(m)

, = (a + b)'*(n)-
With the help of Proposition 10.4 we infer that
3 Eeq’, S¢=¢ Lg=(a+b

For any ne A’ we have
R,(x&) = xR,(&) = xLy(n) = x(a + b)3(n) = a'*(n) = L,(n) = R,(¥);
hence, making R, —> 1, it follows that '
‘ x=7.

Similarly,
y§=24.
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Since e Lg—.# = s(a + b)# (see 10.5), we have
Pyla + b) = |IEI* = ((x*x + y*»)E &) = |x&]* =+ [¥E?
= [l72 + I0]12 = @g(a) + @y ().
It is obvious that
3) [pg(4a) = Apy(a), ae £(2I)+, A>0]

From relations (2) and (3) we infer that ¢, is a weight on £(QI)+ which

is called the weight associated to the left Hilbert algebra .

With the help of Theorem 10.14 it is easy to verify that if # is a von Neu-
mann algebra and ¢ is a faithful, semifinite, normal weight on %, and if we
consider the weight P,y associated to the left Hilbert algebra 2, then

P = Py, °T,

For the von Neumann algebra £(QI) and the weight ¢y we shall denote
briefly (see Section 10.14):

8y = &m’ _mu= mm’ mtﬁ=mt¢u

We now show that ¢y measures indeed the “weight” of A"’ in the operators
belonging to £(A). More precisely:

Jor any operator x € £N) we have the equzvalence there exists a Ee A"’
4 such that x =L, <>xe®N N N*; moreover, if & L e W', then
@ | (@)L,e My and

Pa(L)*Le) = (10)-

Indeed, let x = v|x], x* = v*|x*| be the polar decompositions. Assuming
that x = L,, (€ A", for any ne W we have

R,(v*8) = v*R,() = v*Ly(n) = | x| (m),
R,(vSE) = vR,(SE) = v(L)*(m) = |x*| (),
and, with the help of Proposition 10.4, we infer that
*eU’, S@*)=10v*, L.;,=][x|,

vS¢eW’, S@OSE) = 0vSE, L= |x*]
Thus
Pu(x*x) = @] x|?) = [[v*¢]2 = [§]I* < +o00,
Pu(xx*) = @u(|x* ) = [[vS¢]]2 = [ SE||* < +o0,
ie.,

xeRNg NNT.




STANDARD VON NEUMANN ALGEBRAS 283

Conversely, if x €9, N Ny, then there exist ¢, { € A", such that [x|=Lg, |x*|= L.
For any ne A’ we have .

R,(v8) = vR,(§) = v| x| () = x(n),
R,(0*]) = v*R,(§) = v*|x*| () = x*(0),
and, with the help of Proposition 10.4, we infer that
EU”, SpE)=v*, Ly=

Let & { e A”. From the first part of the proof it follows that L, and L; belong
to Ty N RNy, hence (L)*L; € By With the help of the polarization identity

3
L)*L, =471 ,Eo P (Lpawd* Legiegs

ohe easily obtains the equality

Pa((L)*Le) = (£ 10)-

From assertion (4) one easily infers that @y is semifinite, i.e.,

® [ = {ae LQ)*; pyla) < +00} is w-dense in L(A)*].
It is immediately verified that @y is faithful, i.e.,
® [a € 20+, py(a) =0 = a = 0].

The normality of @ is a more difficult problem and it will be proved later
(see 10.18). Here we shall prove only that @y is lower w-semicontinuous. To this
end it is sufficient to prove that the set

{ae £Q)*; lal < ¢, pgla) < 4}

is so-closed, where ¢ and 1 are arbitrary positive constants (one uses the Krein-

Smulian theorem, see C.1.1, and Corollary 1.5). Let {a,}‘be a net in the above
set, which is so-convergent to a € £)*. For any i there exists a &, e A", such that
a}? = L, and [|&]® < A. Since Ls;, = (L¢)* = L, and, since the representation L

is injective (10.5), it follows that S¢; = &;. The set
{fe €(0, cD; fla) —f(a)}

is closed in the norm topology and contains all polynomials; hence, it coincides
with %([0, c]). Consequently,

30
L, = a}? —>a'
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With the help of Corollary 3 from Section 10.4, it follows that there ex1sts ale QI”
such that

a'?2 = L, and &; = £, weakly.
Thus,

pg(a) = €)% < 11+n &2 < 4

In particular, we have proved that ‘

Jor any bounded, increasingly directed famtly {a;} = EZ(QI)+
) one has
%(s?p a;) = sup som(a:)._

With the help of Theorem 10.12 one easily infers that ¢y is invariant with
respect to the modular automorphisms o¢,(.) = 4% . A%, te R:

@® [pxn(0:(@)) = oy(@), ae LW*, teR]

At the end of this section we shall prove two other useful properties of the
pair (£(), @y), which are important for their own sake. In accordance with a re-
mark we have made above, these will be properties shared by any pair (A, @),
consisting of a von Neumann algebra .#, and a faithful, semxﬁmte, normal weight
¢ on A%,

We denote by -3‘3(%[)0o the set of all elements x € £(2A), such that the mapping
it = o (x) = A¥xA~* has an entire analytic continuation. It is easy to see that
this continuation takes values in £(U). Obviously, any fixed element for the group
of modular automorphisms belongs to £(W).. In particular, £(A),, contains the center
of £(A). It is easy to verify that £(A),, is a subalgebra of LA). If F is the entire
analytic continuation of it - 6 ,(x), then « + F(—&)* is an entire analytic contin-
uation of it~ o,(x*). It follows that £(2). is self-adjoint. On the other hand,
if xe &A) and if we define

+00 ’
x, = |n/n S e~"o(x) dt, nelN,
then the mapping ' ‘

+ .
a+> |n/n S ety (x) dt, =nelN,

— 00

is an entire analytic continuation of the mapping is — o (x,); hence
Xy € £(Woos ne[N.

By taking into account the so-continuity of the mapping t = o,(x) and by applying
the Lebesgue dominated convergence theorem, one easily infers that

so
X, —> X.
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Consequently,
" €W is a so-dense w-subalgebra .of £(N).

We observe that the s}rugture of the entire analytic continuation of the mapping
it = 6,(x), x € &AW, is given by Proposition 9.24. We now prove that

Ee U, xe®W),=xEeW’, Lyg=xL.

Indeed, since the mapping it —> AtxA=Y has an entire analytic continuation, whereas
the mapping it — 4% has a continuous extension to the set {ue €; 0<Rea< 1/2},
which is analytic in {ae €;0 < Rea < 1/2} (in accordance with Corollary 9.21,
because &€ D am), it follows that the mapping g

it 1> AYxE = (4¥x47") 4"

has a continuous extension to {ae €;0 < Rea < 1/2}, which is analytic in
fae ©;0<Rea <1 [2}. With the help of Corollary 9.21, we infer that
xE € D pm = Ds. On the other hand, for any ne %’ we have

ILo) = IRxE] = [XRy(OI = lxLell < XLl linlls
and, therefore, x¢e A", Obviously, L. = xL,;. We are now able to prove that
® (SN By £(A)co = Diyg]-

To this end, it is sufficient to verify the inclusion £(A)eoFo =My Let then x e £(We
and a € §,. There exists a £ € A", such that al2=L,. From the implication we have

- proved above, we infer that x¢ e &A'' and
xa!’? = xLy = L,y € N%.
Since
01/2 = L‘ € gta,
it follows that ' ‘
xa = (xaV?) a2 e NgRy = Dy

The invariance property expressed by relation (9) allows the coné‘truction
of an increasingly directed family of elements in Wi, whose supremum is 1, of

a very particular nature:

" there exists a family {e}ier=HY) of mutually -orthogonal projections ]
of countable type, such that ofe)) =e,iel,1eR, and such that, for
any iel, -

(ﬂl 0)

there exists a sequence {a;, }n>1 © VS, such that .a; , 1 ¢
(*) and, for any n>1 and any rational r, there exists an integer
m(n,r) > 1, such that c.{a;,,) < Qi min, n) -
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Indeed, let {e;},c; = £(A) be a maximal family with the above property.
We assume that e =1 — Y] ¢; # 0. From assertion (5) we infer that there exists

i
a be My, such that @ = ebe #0. Since o,(e) = e, te R, we have ee £(A),, and,
from assertion (9), we infer that a e M. Let {r,},»; be an enumeration of the set
of rational numbers. We define )

n -1 n ‘
ay,p = (n'1+ p) a',j(a)) Yo, @ n>xl
J=1 J=1
It is easy to verify that the sequence {ao,,} is increasing and so-convergent to the
T (-]
projection €, = \/ s(a, (@). If n > 1 and r is rational, then we choose m(n, r) > 1,
J=1
such that
{rih<iammn 2 {r'+ rhcicn-
Then, for any rational r and any # > 1 we have
ar(ao, n) < ao,m(n,r) .
It follows that for any rational r we have

o(e) < €.
Consequently, for any te R,

o (eo) = éo .
Let {f;}ae r be a family of mutually orthogonal projections in £(2), such that ¥, £, <e,.

For any n > 1 we have, in accordance with assertion @), _
Y. @a(a0, )2 fao, )2) = 0o Y, (20, )2 £ a0, V%) = Pya0, n) < +o0.

With the help of assertion (6) we infer that there exists an at most countable subset
I', = I, such that ’ '

a ¢ rn = (ao, n)llzfl(ao,n)l/2 = 0.
If a ¢ \J I, then
= .

Jo = wo - 1im (o, )2 f,(a5, )2 = 0.

We have thus broved that

‘ e, is a projection of countable type.
Consequently, Oste, < 1 — Y, e, has property (+), thus contradicting the maxi-
mality of the family {e;},¢;. 'It follows that

Ze‘=l.

iel
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In the last part of this section we shall prove the following assertion

there exists a faithful, semifinite normal weight @ on £()*, such that '

an (.i) Q< Py

(i) @(a) = oy(a), for any aeMg;

(iii) ¢(c(a)) = ¢(a), for any ae £W*, teR.
The proof of the fact that @y is normal will consist in showing that conditions
(i)—(iii) from (11) imply that ¢ = @y.

In order to prove assertion (11) we shall first observe that to 20 one can also

associate a weight @y on &(A)*, namely

. Inl2, if there exists an neA’, such that
oy(a)= (@)V: =R, ; d e AU
' 4 o0, in the contrary case, ‘

It is easy to verify that @y has properties analogous to properties (l):—(lO), already
proved for @y . In what follows we shall actually prove that the pair (R, o)

has the property analogous to property (11).
We shall denote by {o}} the group of the modular automorphisms of &(A'):

oi(x)) = 4-x' A", x' e (W), telR.

Let {a;, ,} <M be the elements from (10). For any i and n there exists a &, € W’s
such that ;

(al,].)l/2 = L{"‘; . (ai.)l - a'."_l)llz = LC,,,. y N ? 2'

Obviously,

‘ 2' Y &, )p=1

We define a weight ¢’ on &(')* by the formula
@)=Y Y o @) de KEQA)*.
i n

If o e.&(Q.I’)" and @g(a’)<-+oco, then there exists an n € 2, such that (@')2 = R,;
hence

g, (@) = IRE,NE = ILe, I = o((Le, )Y
and therefore

o'(d) = Z Y we,, (@)= o,(1) = Inl*= Py(a')-
{i n

Consequently, @' is a semifinite, normal weight on &(')*, which coincides with @y
on {a’ € 8Q)*; pyla) < +00}.
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Let n1, r be rational and m(n, r)>=1, as in (10). For any ne W, such
that R, > 0, we have

Y, 0p, GRIN= 3, 0 (R,-1)) = 3, 0,1 (L))
j=1 j=1 . j=1 ‘

’ m(n,r
= wd‘"q(ai,n) = wq(ar(al. n)) < wr,(ai,m(n, r)) = j§1) w:;.,((Rq)z)'

Consequently, for any a’ € R(W)* we have
m{n,r)

,ﬁl 0, (@) < S o (@) < 9@).

Hence we infer that ¢'(0,(a)) < ¢'(a'), for any a’ € &(A')* and any rational r. With
the help of the lower w-semicontinuity of ¢’, it is easy to infer that

¢'(or (@) =¢'(@), ae&A)*, teR.

We have still to prove that ¢’ is faithful. As for normal forms (see 5.15), by
a similar argument one easily shows that the set : :

{g eq(W); 0<a <1, ¢'(a)=0}

has a greatest element ¢’, which is a projection. Since ¢’ is invariant with respect
to the group of modular automorphisms {s;},, it follows that

ole)=¢, teR.:

Let a’ € &(A')* be such that gg(a’) < +oo. With the help of the assertion similar
to assertion (9), it follows that @y(e'a’e’) < +oco. Thus

ogle'ae’) = ¢'(ea’e) < |a']lp'(e’) = 0;
hence e'a’e’ = 0. Since the set v
, {a' e &U)*; @yla) < +oo}
is w-dense in &(QI")*, we infer that e’ = 0.

10.17. In this section we show that the weight ¢y determines the group of the
modular automorphisms {s,} only in terms of the von Neumann algebra £(2A).

Let # be a von Neumann algebra, ¢ a weight on #* and {x,},cg a group
of #-automorphisms of ./#. We assume that the group {n,} leaves invariant the weight
o, ie.,

o(n(a)) = ¢(a), ac M, teR.
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One says that ¢ satisfies the Kubo-Martin-Schwinger condition (briefly, the KMS-
condition) for the elements x,y e R, NNE, with respect to {m,}, if there exists
a bounded continuous function »

{eeC;0<Re a < 1}aaf, (e C,
which is analytic in {xe €; 0 < Rea < 1}, and such that
£y = o(xn (), telR,
L1+ it) = @(m,()x), te R.

Theorem. Let 9 — 3 be a left Hilbert algebra, M = £(%), {6:}cer the group of
modular automorphisms and @ = Qq. :

T hen*qo satisfies the KM S-condition with respect to {a,} for any pair of elements
in |, NN,

¢Convgrsely, if {n}ier is a group o s-automorphisms of A, which leaves in-
variant the weight @ and with respect to which ¢ satisfies the KM S-condition, for any
pair of elements in (M,)?, then

n, =0, telR.

Proof. Let x,yeN, N 9. In accordance with assertion (4) from Section
10.16, there exist &, {eU”, such that

x=L{, y=Lc.

Then the function
o+ (4% | S€)

is bounded and continuous on {x€ C; 0 < Rea < 1/2} and it is analytic in
{ae €; 0 < Rea < 1/2}; also, the function

1
(€174 )

is bounded and continuous on {xe C; 1/2< Rea < 1}, and analytic in
{xe C;12<Reax< 1}. Since, for any te R, we have

L 1 1
(A—E—HIC | SE) — (A?H’C | A—z.lf) = (A“C | Jé)
1

1..n-1
=(¢|JA"0=(5|JA(“ 7p),

the two functions coincide on the line a = —;— 4 it, teR.
Thus, we can deﬁng
4°c| 8¢, if 0<Rea<l)2
f;:.y(a = ’_l
@1Ja 2, if 12< Rea < 1.

19—c. 1540
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The function f;, , thus defined is bounded and continuous on {ee C;0<Reax <1} |
and analytic in {a € C; 0 < Rea < 1}. With the help of assertion (4) from Sectlon ‘
10.16, we infer that for any te[R we have :

ool = (4101 S0) = 9lLL ) = 970,

fop(1 + i) = (£] 742 T = @ | Sap) = Oy L) = 9(o.(7) ).

We have thus proved the first partv of the theorem.

Let now {rn,} be a group of *-automorphisms of .#, which leaves invariant
the weight ¢ and with respect to which ¢ satisfies the KMS-condmon, for any
pair of elements in (M,)% We denote ;

Ay = {EcWA"; L¢ e (M,)3}.

Then A, is a »-subalgebra of A", With the help of assertion (4) from Section 10.16
it is easy to see that A, o (A'')? and, therefore, in accordance with the last remark
in Section 10.5, 2, is a left Hilbert subalgebra of '’ and'(2,)"’ = A". In particular,
£(Ay) = . From the invariance of ¢ with respect to {r,} it is easy to infer tha
for any ¢ € U, and any t € [R there exists a unique element in ,, denoted by u,é
such that

Lu.{ = nl(L{);

also, for any telR, the mappmg Wy & > u,f extends to a unitary operator
u,e.@(#) Obviously, {u,} is a one-parameter group. From the KMS-condition .
we infer that, for any &, { € %,, the mapping

t—> ‘P(Lscnx(Lc)) = (1%

is continuous. From this result it is easy to infer that the group {u,} is wo-con-
tinuous.
For any ée U, we have

LSu:C = (nx(L{))* = 7"-|(L .,tsg, te R;
hence
Su,é = u,Sé, telR.

Since S | 2, = S, the preceding equality is true for any & € 9. Thus, for any
§ € D pn = D5, we have :

14%2u ] = || Su gl = |u,SE) = Ilséll llA”’Ell. teR;
hence, for any (e D,, { € Dyn, we have: ‘
(AY2u,f | AV2,0) = (4725 | ABY) = (4E|0), telR.
From these equalities it is easy to see that, for any {e D, te R, we have

Allzll,f € Q(Am)o = guxu),
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i.e.,
uled,,
and
Au,t =udL.

From the KMS-condition we infer that, for any &, { € U, there exists a boun-
ded and continuous function f;, on {xe €C;0 < Rea < 1}, which is analytic
in {#e €;0 < Rea <1}, such that, for any teR,

Se i) = o(Lgm(Ly)) = (| %),
f::,;(l +it) = (p(n,(L¢) Ls:) = (S¢| Su,l) = (St “zSC)-

From the equality S |2, = S, and with the help of the Phragmen-Lindel6f prin-
ciple, it is easy to see that the preceding assertion extends for any &, { € Zs.
If €D, then, for any £ € D5 and any t€[R, we have

fo 1 + if) = AV | T4 2, 0) = (4V2u,( | AM%) = (u AL 1 0.

From the fact that @5 = 2, and with the help of the Phragmen-Lindelof principle,
it is easy to see that, for any { € 9, and any £ €, there exists a bounded continuous
function f; ;on {ae €;0<Rea< 1}, which is analytic in {xe C;0<Rea< 1},
and such that, for any telR,

S i) = @19,
f::,((l + it) = (@, 4{ | {).
Moreover, for any xe €, 0 < Rea <1, we have

| fe,d@)! < max {I0, 140} 181

From this inequality it is easy to infer that, for any { € 24, the mapping
Citeud

has a weakly continuous extension to {ee €; 0 < Rea < 1} which is weakly
analytic in {ae €C; 0 < Rea < 1}. Moreover, the value of this extension at 1 is

AC. As a result of the Stone representation theorem (9.20), there exists a positive
self-adjoint operator 4 in 5, such that

u,=A", telR.
From the preceding results we infer that, for any { e D4 we have
: 4; = AL
Consequently; we have the following relations
Ac A
A=A*c4* =4,
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which imply that:
A=A

Therefore, for any ¢ e W, and any 7 e [R, we have

nt(L{) = Lu,: = LA"C = A“L:A_h = O'x(L{)y

whence we infer that, for any x e £(%,) =.# we have

n(x) =o(x), telR.
Q.E.D.

Let ¢ be a faithful, semifinite, normal weight on a von Neumann algebra
#, and let A, be the left Hilbert algebra we have constructed in Section 10.15.
If {o,} is the group of the modular automorphism of £(2(,), which is associated
to A, we shall denote

of =n;loc,0m, telR,

and we shall say that {6f} is the group of the modular automorphisms of M, which
is associated to o.

Obviously, the assertions made in the preceding theorem are true for .#, ¢
and {¢7}.
10.18. Let 2 < 52 be a left Hilbert algebra, and @, the associated weight on £(2)*.
In this section we shall prove that ¢ is normal.

In accordance with assertion (11) from Section 10.16, there exists a faithful,
semifinite, normal weight @ < @y on £(A)*, which is invariant with respect to
the group {¢,} and which coincides with @y on My .

Let aeM}. We define

+ 00
a, = WS e~"'o(a)dt, nelN.

From Proposition 3.21 and Corollary 3.20, we infer that there exists a net
{u,} = M, such that u, 1 1. From assertion (9) from Section 10.16, and the
discussion preceding it, we have a,u,a, € 3 ; hence

Pala,ua,) = plau,a,) < ¢(a)?) < la,l ¢(a,).

By taking into account the normality of ¢ and the fact that {o,} leaves invariant
the weight ¢, we have ‘

+ 00
#a) =V | _eolo @) dt = 9@, nelN;
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hence, for any v, we have oglau,a,) < ¢(a), ne IN; hence
oe(@)) < ¢(@), nelN.

Since (a,)? % a?, with the help of the lower w-semicontinuity of the weight @g,
we infer that

Pya®) < ¢(a) + o,
ie., a®eMy.
From what we have just proved, it follows that

@) = Dy,

In accordance with Theorem 10.17, ¢y satisfies the KMS-condition with
respect to {a,}, for any pair of elements in (m,)? = MV, Since on (D,)2 = My
the weights ¢ and @y coincide, it follows that ¢ satisfies the KMS-condition, for
any pair of elements in (It,)% If we now apply the uniqueness part of Theorem 10.17,
we infer that : ‘

of =0, telR.

We also consider the left Hilbert algebra A, and we denote by S,, 4,, Jos
the corresponding operators. Let
_pt®
v, =1/J=n S e~ "o (u,)dt.

Since the mapping is > ¢,(v,) has an entire analytic continuation, from Propo-
sition 9.24 we infer that, for any a e €, we have

@ 2

(2 mplo) 1g) ™) T = Ug)

and the operator (4,)* 7,(v,) (4,)* is bounded. We denote

Fo @) = @y mgo) Gy = 17 Sme-('“ﬂ'c.(uv)dt.

-0

It is easy to verify that, for any a € @,
F, (@) — 1,
IF, @]l < e®esr.
For any aeM} and any v we have
‘Py(v,a9,) < 9y((1,))) < +00;

hence
Pg(v,av,) = ¢(v,av,).
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With the help of the lower w-semicontinuity of ¢y, we get

¢a(a) < sup gy(v,av,) = sup p(v,av,) = sup [[(a'/20,), 3
= sup || Spmy(vy) (@23
= su:p Wo(de)2me(v,) (45) V2T ((aV2),)I|2
= sup (B, /) T, (@)1

< e85 < e*e(a) < +o0;

hence, ae M.
Consequently, we have

whence
P = g

From the results in Section 10.16 and from those we have just obtained we
infer the following

Theorem. Let U o be a left Hilbert algebra. We define the mapping
Oy s EAY > R U {+o00} by the formula

€12, if there exists a €N, such that

oya) = { al? = L,, 5 ae £,
o0, in the contrary case, :

Then @y us a faithful, semifinite, normal weight on £(N)* and the mapping & L,
is a »-isomorphism of W' onto ﬂt% n m:ﬂ, such that

(€10 = og(L)*Ly), & e,

Two pairs (A, ¢;), j = 1, 2, where ¢, is a faithful, semifinite, normal weight
on the von Neumann algebra .#;, are said to be equivalent if there exists a -iso-
morphism 7: 4, - #, such that ¢, = @,0 7. Two left Hilbert algebras A; =y,
J=1, 2, are said to be equivalent if there exists a unitary operator u: 3¢; — 5#,,
such that the restriction of & to A, be a s-isomorphism of U, onto A,.

From the above theorem and from Theorem 10.14 we infer that the asso-
ciations '

(A, ) > U,

A > (£(A), oy,

establish bijections, inverse to one another, between the classes of equivalence of
pairs (M, @), where @ is a faithful, semifinite normal weight on the von Neumann
algebra M, and the classes of equivalence of left Hilbert algebras %, such that W =9A"".
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10.19. The aim of the following sections is to exhibit some “suitable” elements in
9" N A’ and to prove their “abundance”. .
Let 9 < 2 be a left Hilbert algebra. We consider the vector space T,, gene-
rated by the set ‘
{4" exp(— rd)exp(— s4™)&; S e A, r,s >0, neZ}.

Lemma 1. I, is contained in W' N A"
Proof. Let €W, r,s >0 and neZ. We consider the curve I': R-C,
given by the formula

—t—1+i, ift<—1,

r={_ %', if—1<t<],
t—1—1i, iftz L
We shall assume that n > 0. From Proposition 9.27 we infer that
exp (— sd=)¢ = (2ni)"1S exp (— s)(A — 491 € dA.
r .
With the help of Proposition 10.11, it is easy to verify that

exp (— s4-)¢eW.
A similar argument now shows that
A" exp(— rd)exp(— s4~)§ e A",

Assuming that n < 0 and by repeating the preceding argument, one obtains

successively
A exp(— s4~H¢ = (4"H™" exp(— sd-)¢e W,

A" exp(— rd) exp(— s4-1) § = exp(— rd) (4" exp(— s4-1) &) e A",
Hence, I, <« A".
Let Ee€ A, r,s >0, ne Z again. From the preceding argument we infer that
A" exp(— rd) exp(— -;- A"l) e’
The argument used in the first part of the proof shows that
A" exp(— rd)exp(— s4~1) § = exp(— -';- A‘l)(d” exp(— rd) exp(— % A’l) .f) cW.

Consequently, T, = 2.
Q.E.D.

It is obvious that 4T, = I, and 47T ,= . With the help of Lemma 1 we get
EeI, = SE = S(SS*) 4 = S*Afe S* <« W, :
EeTy=> S = S*(S*S)4"¢ = SA-1Ee SA' <« A",
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Lemma 2. X, is contained in (MY 9 @ and, for any ae C,
aeC

A%y = 4°
Proof. Since T, = (M D4, with Corollary 9.21 we infer that
neZ :
T M2 .-
2e€

Let «e € and assume that (¢, 4%¢)e @ e is orthogonal to the graph of the
operator 4*|I,. Then, for any { € A"’ we have

(&) exp(— A)exp(— 4-1)) + (4%¢| 4% exp(— A)exp(— A-H) =0,
(€1( + 42Rev)exp(— d)exp(— A1) = 0.

Since the operator (1 + 4%Re%)exp(— A)exp(— 4~ e A(#) is positive and injective,
its range is dense in 5. Since A" is dense in 7, it follows that

(1 4 A*Rexyexp(— ) exp(— A-H)A”

is dense in 5. Consequently, & = 0,
We have thus proved that

1T, = 4%

: Q.E.D.
Lemma 3. For any (e I, and any ne 7ZZ, we have

Q(A"Lgd_") = g(d"‘) and AHL¢A i LA":’
Disrrea=n = Dig-m and A"ReA™" < Ryps.

Proof. 1t is obvious that it is sufficient to prove the assertions in the lemma
only forn=1and n= — 1.

We consider the case n = 1. From Lemma 2 and Proposition 9.24, it is suf-
ficient to prove that, for any { € I,, we have

{e 9(41.44-1) and AL, A7) = L 4,(0),
{ € Diarya-r and AR;A7() = Rye(0).
Indeed, by taking into account the remark made just after Lemma 1, we have
L(47%(¢) = SLs4-1;SE = SL5., St = SRy S*( = SS*R.S*SE = AL ,(0);

hence

L:A_l(c) € 94 and AL{A_I(C) - LA{(C)'
Similarly

Rd™Y () = L-1(§) = SL5;SA™ = SLs;S*{ = SRy SE
= SS*Rse5:(0) = 47R,4(0);

it it i 20 n,
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hence .
R.A -1\ e 2, and AR A () = R (0).

The case n= — 1 can be treated similarly.

Q.E.D.
We have not as yet used the fundamental theorem of Tomita (10.12). In what
follows we shall use it, in order to extend Lemma 3, by replacing, in its statement,

neZ, by ae C.
Lemma 4. For any £€ X, and any a € € we have
AEeW n W,

2 =9 and A'LA* < L s

UOLza=) (4=

2 =9, and A'Rd™ < R,

(4"Rza™%) (4™7)

Proof. Let & € T,. In accordance with Lemma 2 and Corollary 9.21, for any
a'e € we have £ €9 ., Whereas the mapping

o > AE
is entire analytic.
On the other hand, in accordance with Lemma 2 and Proposition 9.24, for

any a€ C we have Q(Aaz.; . 9( 4ty the operator 4°L,4-" is bounded and

the mapping
o> F(a) = A°L, 4% ¢ 4% € B(H)
is entire analytic.
For any a€ €, we have 4°¢ € D am = Ds; hence the closed operator L,

is defined. Theorem 10.12 shows that, for any t € [R, we have
AtEe W and LA,, = AYL, A" = F(it).
Thus, for any n € 2’ the entire analytic functions
o => R(4%¢) = L 4o, (),
o = F(@)(n)

coincide on the imaginary axis and, therefore, they coincide on the entire complex

plane C.
Therefore, for any xe €, we have

L, c('l)ll = | F@ml < IF(a)II Inll, ne?W;
hence
4% e W’ and _LA = F(a) > AL A7

Similarly one can show that for any « € €, we have 4°¢ e ', and

Dpyngamny = Doy 20d S'RA™ € Ry,

Q.E.D.
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10.20. Let Ao be a left Hilbert algebra. We observe that, for {,ne A"’ n A,

we have
L) = R,($).

We can, therefore, use the notation &n both in the sense of the product in A" and
in the sense of the product in 2’. Obviously, 2’ N A" is an algebra.
We now consider the vector space

for any a € € we have

A!é e QIII n Q«[,,
T= _ a
fe!;l@da D g = s and 4°Led™" = L g,
Q(A“R‘:A") = g(d_a) and AuRcA—a ey RA“C.

The following theorem of “calculus in T is the culminating point of To-
mita’s theory. ‘

Theorem. Let A = 3 be a left Hilbert algebra. Then X is a left Hilbert sub-

algebra of W' and
zl J— QII’ zll = QII’.

Moreover, ,
)} TcD, AT =T and A*|T = 4 «ecC;
® JT=3;

€)) MJE=JA, EeZ, aeC;

@ L) =4 n), & nel, aeC;
) JEm) =Jm J©), & ned.

Proof. We first prove assertion (1). Let a € C. From the definition of T we
have T =9 ,. ‘
Let £ T and Be €. It is easy to see that if ne () D ,,, then n belongs to
' C

. €
the domains of definition of the operators 4°+#L,A4 ~«8 and 4°L 447 and the
following equality holds
AL, A~P(n) = A*+PLA=*=8(1) = L o1z ().
Since
from the preceding equality and from Proposition 9.24, we infer that

2 D, and ML, AP <L,

UPL 5 a=F) =% Blasgy

Similarly

(7 L)) = g(d-‘) and Adeacd—p c RA’(A’C).

(A’RAGCA-
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Consequently,
4T=2T

In accordance with Lemma 4 from Section 10.19, the vector space I, is
contained in T. Thus, Lemma 2 from Section 10.19 shows that

AT = 4%

We now prove assertion (3). With the help of the formula f(4)J= Jf(4-Y)
from Section 10.1 we infer that, for any ¢ € T and any € €, we have J{ e@d,

and
AT = JA%E.
We now prove assertion (2). Let { €. Then, as we have seen, J{ € !’;}: D
and, from Theorem 10.12, we infer that
| AJE = JAFEH e A N W) c A N, aeC.

By using again Theorem 10.12, we infer that for any a € C, we have the relations

AL, 4~ = AJRJA™ = JARAT < IR, s = L, -5y = L oy
and ‘
Dyargan = Dys-irgin = Diin = D148 = Ds-ey
Similarly, one can show that, for any « € €, we have
Q(AaRjgd-a) = QM_,) and A’RRA"‘ < Rd"lC’

We now prove assertion (4). Let §,neX and « € €. Then

Aaﬂ Elgu_‘,) = g(A“L{A");

hence :
tn = Ln) = LA~ (') € D
and
L) = HLAAN) = Lo () = (& (d).

We also have

2

WoLgga= " 2

BLa= N Lya™ 2

=)
and

43L, A% = (4"Ld™) (4°L,47) CLA'€L s = Lyaoy



300 LECTURES ON VON NEUMANN ALGEBRAS

Similarly, one proves the following relations

P -] -
Dsergga=n = Dig=o) and A°Ryd™" < R oq,)-

We have thus proved that, if &, 7 € T, then
{neX,
whereas from assertions (1) and (2) we infer that, if £ € T, then
SE=JAV e X,

Since > I, we infer that T is dense in 5. From what we have already
proved and from Lemma 2, Section 10.5, it follows that T is a left Hilbert sub-
algebra of A"”.

From assertion (1) we infer that AY/2 12:=A1/2 and, therefore,

S|T=S.
With the help of Lemma 3, from Section 10.5, we deduce the equalities
zl _— QII’ zll p— QIII.
Q.E.D.
We shall call Tthe Tomita algebra associated to the left Hilbert algebra .

10.21. We shall now prove a criterion with the help of which we can establish that
an element belongs to X.

Corollary 1. Let A =¥ be a left Hilbert algebra, T the associated Tomita
algebra, {€(\ 2, and {es}nez = R a family of real numbers, such that
aeC

lim g = —oco, lim g, = 4o00.
n—»—00 n—+co

Then the following assertions are equivalent:
(i) e,
(ii) for any ne ZZ we have 4*"( e W',
(iii) for any ne ZZ we have 4*( e W;
(iv) for any ne ZZ we have X < 9
is bounded ;
(v) for any ne ZZ we have I

(onLea =) and the operator 4°"L;A-*|%

FRea=*) and the operator 4*"R,4~*"| T is

" bounded.

Proof. We shall prove the implications
(@) = (i) = Gv) = (i);

the proofs of the implications

@) = (iii) = (v) = (i)
are completely similar.
The implication (i) = (ii) is obvious.
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We now assume that A& e A", for any ne Z. Then, forany n € Tand any
ne 7ZZ, we have

LeA=(1) = R0, p (&) = AR d*E = 4L 10, (01);

hence

Ld-*(n)€ D, ., and AtLeA=(r) = L 0., ().

(4%
Thus,
T @(A"'L‘A-‘») and A’nng‘l - T LA,,.C € B(F).

Finally, let us assume that T = 9 tnLg 4= o) and also that the operator
A= L, A= | is bounded, for any n€ Z. We denote

xo = A“’L{A_ l“l z € 1%(&#)0

Then, foranyne Z,wehave TCD e - ex 40— en) and the operator 4%~ ‘ex 4%~ |T=
—=Aen LA~ | Tis bounded. With the help of Theorem 10.20(1), from Proposition 9.24
we infer that, for any « € €, we have 9( Soxaa=T) = D4 and the operator 4%x,4~*

is bounded. In particular, the operator A—cx,A% is bounded.
On the other hand, if n € X, then A*meT < 9( ALga= e’ hence
Ly(n) = A~(4%L A= %)4%(n) = A=*oxod*(n).

Thus, Le| T4~ %xd% is bounded. It follows that the closed operator L is bounded,
hence (e U".

If we now again apply Proposition 9.24, we.infer that, for any o € €, we have
2, Les) = 9( 4 and the operator 4°L,4~" is bounded, vghereas the mapping

a > Fo) = A°L;A~* € B(K)

is entire analytic.

Theorem 10.12 now shows that, for any te R, we have

A¥E e ' and LA,,C = A"L,A™" = F(i1).

Thus, for any n e 2, the entire analytic functions
arr R4 = L (),
o = F@)n),

coincide on the imaginary axis; hence, everywhere.
Consequently, for any a€ €, we have

“Ldag('l)“ = |F)I < IF@I i, neW;
therefore
At eW' and L = F(x) :‘A‘L‘,A".
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For any e € € we have 4*~{1/2)¢ e A’’; hence
A = AV2(A2-1AE) e AU < W'
Finally, for any « € € and any { € T we have
RA™(Q) =L, ;&) = 4L &t = 4R, () €D,
and .
AR A()= R Aug(C).
If we now apply Proposition 9.24, it follows that, for any « € €, we have
Q(A,Rcd_,) = D yma and A°R,4° < RA‘,:.
Q.E.D.

Let us now consider a vector & € 3. For any ¢ > 0 we shall define
— ptoo
£, = Vs/ns e~ A dte sF.

Then the mapping

—_— +oo' ' )
a+ Je/n S e-ertiigit £ dy

- 00
is an entire analytic continuation of the mapping
is > AYE,;

hence, in accordance with Corollary 9.21, we have -

én € n @AG’
«eC
+ 00
8¢ =Veln S e-ewtirgig d,  ae €.
-0

Therefore, by taking into account Corollary 10.12 and the above corollary, it follows
that if & belongs to A", or to A’, then, for any > 0, the element {, belongs to T,
We observe that :

cz‘——'){’ 65#,

&+ o0

a fact which is easy to establish, by taking into account the continuity of the map-
ping ¢+~ A¥¢ at 0 and by using the Lebesgue dominated convergence theorem.
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One can similarly prove that

——e so
L:B = V&/TCS e—u.A“Ltd_“ dt :—:;-o) L{ ’ f € QI”,
—00 .

+00 ‘
R{g = |’ E/ﬂS e—"’A“Rcd_“ dtf;:: Rc, é € QI,.

-0
From the preceding arguments we retain the following

Corollary 2. Let W = # be a left Hilbert algebra and T the associated Tomita
algebra. Then, for any &€ U", there exists a sequence {&.} = T, such that

S (1) & & S~ SE
@) L, —> Ly, (L) > (LY*;
(3) LIl < ILgl, for any neN.
Similarly, for any 1€ there exists a sequence {n.} = X, such that
') n,—»>n, S*n,— S*n;
@) Ry, >R,y (By)*—>(R)*;
(3" IR, < IR,l, for any nelN.

10.22. In this section we show that T contains sufficiently many elements £, such
that [|4%¢]l, Ll and [|R .l have exponential upper bounds depending on Rea.

Let 9o be a left Hilbert algebra and T the associated Tomita algebra.

We define the set S, consisting of all elements {eX, such that there exist
Ay, Az € (0, +00), A; < Ay, such that :
14°E] < ARes, L oell < ARe*[Lells (Rl < A3°%IR;ll, if Rea >0,

14°€] < ARee, [|Lgoll < ARILells IRl < AP Rell, if Reax <0

We recall that if fe £X[R) and if its inverse Fourier transform f; defined by
YN + o0
flo)= S f@erd:, seRR,
-0
belongs to #*(IR), then the following inversion formula holds :

l TN _its
F0) =-278_mf(s)e ds, telR.

A A
If fe ZYR), fe ¢¥R) and suppf < [cy, ¢;], then f has an entire analytic
continuation :

o - (2m)-1 y. f (s) et ds,
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which is also denoted by f, and the following equality holds -

(@) = — @uy {6y e s

€1

Consequently, if Ima > 0, we have

@)l < 2! (sup L) + sup , f"(S)l) M e lme,
whereas if Im o < 0, we have
fo)l < =22 = (up 176 + sup| f”(s)|) gonlma

||2‘

Corollary. Let U < ¥ be a left Hilbert algebra and I the associated Tomita
algebra. Then © is a left Hilbert subalgebra of W' and

— QII’ SII —_— Q[ll'
Moreover,
) SE=INL4N Py

= {S+°°f(t) 44¢de; (e, fe PYR), suppf is compact};

Q) A4S =G and A*|S = 4°, for any e C;
?3) J& =6.
Proof. Let £ €S. Then there exist Al, lge(O +00), 4; < 4;, such that

14%¢] < AZe=|¢[l, Rea > 0; IIA"fll ARe|&]l, Rea < 0.
Then, for any ¢ > 0, we have

(2 + )" Xy re. + (e < [147) < 22)EN,  n

A
L

whence
X(2g+e, +oo)(A) é = Q.

Since ¢ > 0 is arbitrary, it follows that
¢ €y, 15A) H# = & 4
One can similarly prové that
€ Xz, +ool(d) H# = Xjo, 277 A NH =Fyr.
Consequently, we have proved that
(+) S cINS4NF g1
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Let £€ T NS 4N L -1. There exist A, 4, € (0, +00), 4; < 4y, such that
e X[A,,A,](A) x.

We now consider a function fe £ (IR), such that f e ¢*(R), f(s) =1, for any
s€[In 44, In A,], and such that supp f be compact. Then

+ oo
S FO 205, 29 8t = Az, 1Ay A€ 0, +00).
— o0
With the help of Theorem 9.11 (vi), it is easy to prove that

S+°°f(t) A"y, w(4) dt = xa,, 1(4);

hence
+00 +oo
S fG) A5E dt = S 1) A2, 10 4) E At = g 3(D) E = &.
Consequently,

+00 A
(%) INFL4NL g {S f@) A& dt; Ee X, fe LYR), suppf is compact} -
Finally, let us consic-i_er an element

[ = S+°°f(t) 4 dt,

- where &€ T and fe LYR), suppfc [c1, 5), €1, c2€ R, ¢ < ¢;. Then
o> S+°° (1) A*(4%8) dt
is an entire analytic continuation of the mapping
is > S+°° ) A4(45E) dt = A2
If we now apply Corollary 9.21, we get
(e Py and 47= S+°° 1) A4y di, e €.

In accordance with Corollary 10.12 and Corollary 1 from Section 10.21, we infer-
that
{ed.

Let ge #Y[R), be such that ge ¢(R), g(s) =1 for any selc,c,], and.
supp g < [c, — &, €2+ €], £> 0. Then, if we denote by “#” the convolution product.

20—c. 1540
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in £Y(R), we have

S”’g(t) 4 dt = S“”(g +f) () A€ dt.

~~00

Since (g*f)" = éfA = ﬁ we infer that g * f = f and, therefore,

(a0 =" arear =1,

—o )

" 'With the help of Corollary 9.21, as above we can prove that

A‘C = Smg(t) 444y dt, «eC.
‘We denote o

Co — C 2e A Are
=27 AT 2 Gup 1£(5)] + sup 1§ (s)l).
In s€R s€ER

With the help of the Cauchy integral formula and the remarks at the beginning
of the present section, we infer that, for any n > 0,

+0co 1 400 :

147¢) = S g(f) 4+ dt {=”S gt + in) A dt
< +e0 ] d . ”
el ——gdt - e = mel{] e

If we now apply the “three lines’ theorem (see N. Dunford and J. Schwartz [1],
VI1.10.3), we obtain, for any ae €, Rea > 0, and any n > Re«,

Rea Rea Rex Rea

1-== = 1< Rea
la=gh <le = <4 ™ < W~ * «(rellll]) » -ecsRes,
Tending to the limit for n - 400, we get ‘
4%l < ¢l esRe%,  Rea > 0.

Similarly, one can prove that
4%¢]| < () esRe®, Rea <0.

On the other hand, in accordance with Corollary 10.12,

+00
L = S gL 4ltg dt.

-0

With the help of Proposition 9.24, it is easy to verify that

+0o
Ldac = S g(t) LA“(A‘C) dt’ ae C'
~co

T,
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If we argue as above, we first obtain

ILgmll < mel|Lell e, n 20,
and then,
L a0l < ILgll e2Re,  Rea > 0;

similarly, one obtains
ILsocll < L]l €2 Re?, Rea <O.

If we now repeat the above arguments for R, instead of L, we obtain

IR gecll < | Rel e2Re%,  Rea.>0,

IRsell < IR esRe®,  Rea <0.
Thus, {e€C.
Consequently, we have just proved the inclusion

(x%x) {S+°°f(t) AvEde; Ee T, fe LY(R), suppfis compact} c S.

From relations (#), (##), (s#+) we infer that assertion (1) is true.

If £ X and fe ZYR) is such that supp f is compact, then, by taking into
account Theorem 10.20, we get

4 S+°° 1) AvE dt = S+°° 1) AoE) dteS, e,

JS+°°f(t) AvE dt = S+°°f(z) ANJE) dt e G.

Thus, we have proved that ,
4S5=6, acC; JS=6C.

We consider a function f, € £XR), such that f;,(s) =1 for any se[—1, 1],
and such that supp fo be compact. We write

f.() = nfnt), n=1
Then f,,(s) = f},(s/n), selR; hence
(77 203 6) stemn. r® = temn kB
With the help of Theorem 9.11 (vi), it is easy to prove that

(S_wf (1) 4" dt) Xie=". e»,(A) = Yje-n, eri(d)-
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Since, for any n, we have

I S+°°f;,(t) Avdt ‘

—co
from the preceding equality we infer that

+ oo

S £ 4% dt 251,

"ol dt,

< Si:If,.(t)I ar=(

Thus, for any £ € T and any a € €, we get
+0oo + 00
o po avca=( L0 aae i a2
With the help of assertion (1) and of Theorem 10.20(1), it follows that
A4S = Zal—‘l =4* ae .
Thus, assertions (2) and (3) are also true.
Finally, if we now use the definition of &, it is easy to see that
(1,6:€C = Lgl(éz) €. ’

With the help of assertions (2) and (3) we get
EeC = SE=JAV¥eC.

From assertion (2) we infer that 42| = AY2; hence
S| = S.
If we apply Lemmas 2 and 3 from Section 10.5, we infer -that © is a left

Hilbert subalgebra of A", and

6' — QII’ Gll J— QIII.
Q.E.D.

10.23. Let % c 3 be a left Hilbert algebra and T the Tomita algebra associated
to U (see Section 10.20). In Section 10.8 we introduced two cones, polar to one

another:
PBs < Ds =D pn), Pse © Dge = Dy-1n).
‘With the help of Proposition 10.8 and of Theorem 10.12, it is easy to verify that
IPs = Pse.
Since S& = & for any & e Ps, we infer that
AP = Po.

Consequently,
A1/4<»Bs = A_1/4‘Bso .
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In the present section we shall study the set

P = AP = 475,

Since P and Ps. are convex cones, it follows that P is a closed convex cone.

In order to make the notations as simple and as expressive as possible,
we shall use the following abbreviations, already introduced above (see Section 10.4):

&n = L), for &,neW’; &n =R, for & ne '

We recall that, if & ne nUA”, then L{n)=R,(£). With these notations, we have
the equalities

Ps = {&(SE); EeUA”},  Psr={n(S*n); ne A’}

Let £c A"’ and let {{,} = T be a sequence having the properties from
Corollary 2, Section 10.21. Then it is easy to prove that

£(SE,) = Ly, (&) — L{(S¢) = £(S0)-

Consequently,

M Ps = P2, where P = {(58); eI}
Similarly,

a9 ' Ps. = ﬁ, where P = {n(S*n); neI}.

By taking info account Theorem 10.20, it follows that for any € T we have
AVA(E(SE)) = AVA(E) AMA(SE) = (4V4(8)) (J(4V4(Q)))-
Since AV4X = T, we hence infer that, if we denote
Po = {LU0); (e},
then we have
. A”“?Bg = P°.

Similarly,
A"”“B%- = CBO.

If &ePs, then there exists a sequence {&.} =P, such that &, — &. Since
8¢, = &,, SE = ¢ and 4V2 = JS, it follows that 412§, — AY2E. Therefore,

|4MEE — 418,12 = (4¥2(E — E)IE — &) = O,

whence AY4Z e 2732 = 9, Consequently, B<P°. On the other hand, it is obvious
that P° = 414P} = 4V4P; < PB. Therefore,

() P =P° = {{(/));{eT}.
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With the help of relation (2) and of Corollary 2 from Section 10.21, it is
easy to verify that

3) P = {EUE); Ee U} = {Unn; neW}.
From relation (2) it obviously follows that
@ {eP=>J=1_

For any te[R and any (e X, in accordance with Theorem 10.20, we have

A4 = 4%() 44(JE) = (4*(0)) J(4*(©))).
Thus, 4¥P° < P°. By taking into account relation (2), we get

5) A"Pp=9P, telR.
Since P is a closed convex cone, from (5) we infer that
) (e fe '), 20 "f) s Taen.

If (e W’ and { €T, then, by taking into account Corollary 1 from Section
10.13, we get

[LLNICUD) = LeJL(JLJT) () = LJULJ) L(§) = L LJLAL) = (&) V(ED);

hence [L(JLJ)]P° < P, and, therefore, [L(JLJ)]P < P. With the help of
Kaplansky’s density theorem (3.10), we now infer that

€ x€ &) = [x(Ux)] P = P.
For any & e Bs and any n € PBs. we have

(44%]4=Y4y) = () = 0,

because the cones P and Ps. are polar to one another (10.8). From this result
and from the definition of P, it follows that

{,0eP=(6) >0.

On the other hand, let { € # be such that ({|0)=0, for any 8 € B. For any ne N,
we denote g

(o= Vn/n S“o e~ A¥l dt, 0,=|n/n S+°°e-"”A"0 de.

—-00 )

If 6 € P, then, in accordance with relation (6), we have 0, € P ahd, therefore,

0 = (£16,) =0, nelN.
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In particular, if &€ P, then 444 eP and
(AIMCnlé) = (Cn'dlué) = 01 ne [N;
hence, in accordance with Proposition 10.8, we infer that AY4(, € Bs.. Thus,

¢, e 4-ViPs. = P.

Since {, — { and since P is closed, it follows that { e P,

Consequently, the cone P is selfpolar, i.e., for any ¢ e we have the equi-
valence

(8) {eP<>(16) 20, for any 0eP.

“If £ e P n(—P), then, from relation 8), we infer that ({|—{) =0, whence
{ = 0. Consequently, -
@ P n (—P) = {0}.

Since P is a ‘convex cone, having property (*), we infer that P determines
an order relation “<” in the set {{ e#; J{ =(}:

({<0<=0—LeDP.

We shall now prove that for any { €, such that J{=U{, there exist {*,{~ €},
such that

(x#) {=(r—C= Ll
and these elements are uniquely determined by these conditions.

Indeed, let { e 3# be such that J{ = {. Since P is a closed convex subset of
- the Hilbert space 5, there exists a unique element {* e %P, such that

g+ — ¢l = inf {10 — CII; 0 € B}.
We denote {~ = {+ — {. For any 6 € P and any t > 0 we have
0<(Cr+10)—Cr—Ir=1l*= 12]0]2 + 2t Re ({~16),

whence we infer that Re ({~16) > 0. Since J{~={~ and J0=0, we have ({~10) =
=Re ({~]6) = 0. From relation (8) we infer that {~€9P. On the other hand, for
any t€(0,1) we have

0 < i1 — )+ — LIt — g+ — CIF = e*) — 2t Re (CFI07),

whence we infer that Re ({*|{~)<0. Since {*, {-eP, from relation (8) we infer
that ({*]{~) > 0. Consequently, we have {* L {~.

Let us now assume that {=&—n, &,neB, &L n. Then (f—E¢={"—n
and, therefore, )

I+ — &= = &L= —m = — ¢*m) — ¢IE7) <0,

whence ¢ ={*, n=1{".
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In particular, from the proved assertion, we infer that # coincides with

the linear hull of P: .
H =P —P)+i(P—P).

We observe that any selfpolar convex cone P in a Hilbert space S determines
a unique conjugation J in 5, such that J{ = ¢, for any { €. Indeed, if { e
and {_L P, then { &P, because P is selfpolar and, therefore, ({|{) = 0, whence
{=0. Thus P is a total subset of #; hence (P — PB) +i(P —P) is a dense
subset of . Consequently, the conjugation -J is uniquely determined by the
formula '

JE+in=¢—in, &neP—P.

The decomposition () is valid in this more general situation, with the same proof.
In particular, in this general situation # coincides with the linear hull of P, too.

We shall say that a von Neumann algebra 4 < B(3#) is hyperstandard if
there exists a conjugation J: 3 — 3 and a selfpolar convex cone P co#, such that

1) the mapping x — Jx*J is a *-antiisomorphism of .# onto .#’, which
acts identically on the center; :

2) {eP=>I={(;

3) xedl = [x(Jx))]P < P.

From the above results we infer that, Sor any left Hilbert algebra A < 3¢,
the von Neumann algebra £(N) < B(H) is a hyperstandard von Neumann algebra.

10.24. We now consider a hyperstandard von Neumann algebra A < B(o#), with
the conjugation J and the selfpolar cone 8. We denote by & the center of .,

Let e be a projection in .#. Then JeJ is a projection in .4’ land z(JeJ) = z(e).
From Corollary 3.9, we easily infer that '

e # 0« e(feJ) # 0.

We denote by g the projection e(JeJ) = (JeJ) e € B(5#). By taking into account
Sections 3.13, 3.14 and 3.15, we infer that .//qc %(got) is a von Neumann algebra,
whose commutant is (#’), and whose center 1s Z,; also, the mapping
X, X,

is a *-isomorphism of the reduced von Neumann algebra A, onto the von Neumann
algebra «/,. Since Jg=gqJ, and ¢P = [e(Je])]P = P, it is easy to prove that
M, = B(q#) is a hyperstandard von Neumann algebra, whose conjugation is gJg
and whose selfpolar cone is ¢.

This remark will enable us to reduce some of the problems to the case of the
hyperstandard von Neumann algebras of countable type. : -

Lemma 1. For any projection e € M there exists a family {E3ne1= B, such that
the projections p,. be non-zero, mutually orthogonal and such that

e=3, p,.

nel
If e is of countable type, then there exists a &ye P, such that e = D¢,
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In particular, if # is of countable type, then A has a separating cyclic
vector £y € P.

Proof. If e # 0, then e(JeJ)s£0 and, since 5 is the linear hull of P, there
exists a non-zero vector ¢ € [e(JeJ)] P P. Obviously, p, < e. Thus, the first assertion
follows with a familiar argument based on the Zorn lemma.

If e is of countable type, then the set I is at most countable and we can

assume that ||&,]| = 1. If we define {, = Y, 2—1"- &,, it follows that & € and e= p,,.

The last assertion of the lemma follows from the remark that J&, = &, for
any &, € P, and from the fact that Jp, J = py,(see E.6.9).
‘ Q.E.D.
If the von Neumann algebra . is of countable type and if {oe P is a sepa-
rating cyclic vector, then we can consider the left Hilbert algebra U = H#E, = F
and we have # = £() (see Section 10.6). On the one hand, by hypothesis, ./ is
a hyperstandard von Neumann algebra. On the other hand, as we have seen in
Section 10.23, £(2A) is endowed with a natural structure of a hyperstandard von
Neumann algebra. We shall denote by S¥, J* the operators which are associated
to the left Hilbert algebra A= #¢&,, and by P* the selfpolar convex cone, which
is associated to the left Hilbert algebra A = #¢,; it is easy to verify that

PX =[x &y; xE€M}.
Under these assumptions, we have the following

Lemma 2. J¥=J and P2 =P.
Proof. For any xe.# we have JxJ e /'. Consequently,
[J(S)* J] xEy = J(S®)* (JxJ) & = JUxT)*Eo = X*Co-

From these equalities it is easy to infer that S¥< J(S¥)*J, whereas a similar argu-
ment shows that (S%)* < JS¥J. Thus, J§%= (S¥)*J. By taking account Proposi-
tion 9.2, we infer that

(JSM)* = (SN* J = JSY,
hence the linear operator JS¥ is self-adjoint. For any x €./ we have
((IS¥) (x&o) | x&o) = (Ix*&EolxEo)= (xJx&olEo) = ([x(IxJ)] folfo) =0,

because &, and [x(JxJ)] &, belong to §P. Since JS¥= JSH| Mo, it follows that the
operator JS* is positive. Since S* = J(JS¥), by taking into account Section 10.1
and the uniqueness of the polar decomposition, we get

J=J%
‘Then

Pt =TT D) &gy x €M} = {X(Ux])o; xeM}c P,
and, since P and P are, both, selfpolar, we infer that

Pr="P.
Q.E.D.
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Thus, if the hyperstandard von Neumann algebra # is of countable type,
then J and P are naturally derived from a left Hilbert algebra A = A&y, where
&, € P is a separating cyclic vector for .#. Consequently, in this case, we can avall
ourselves of the powerful instrument of the left Hilbert algebras.

We shall continue to assume that . is of countable type and we choose
a separating cyclic vector &, &€ PB. We shall denote by 4 the modular operator corres-
ponding to A = .#¢,.

We obviously have 4&, = S*SEy = &, whence (14 4) )= — éo It is

easy to verify, first for polynomials and then, by tending to the limit, that for any
function Fe %([0,1]) we have

F((Q1 + 4y &y =F(1/2) &,

By taking into account Section 9.10, we infer that, for any bounded fe .43([0 -++00)),
we have

() &y = F (1 + )™ & = F(1/2)¢ = f(1) &
In particular,
AYEy = &, te'[R,

and, by analytic continuation, we obtain
A% =&, aeC.

Lemma 3. The mapping ®: a—> AY4%a&, is an order isomorphism of the set of all
self-adjoint operators ae M/ onto the set of all vectors e, such that JE =
and having the property that there exists a A > 0, for which — Af, < & < 4&,.

Proof. Since A4 is injective, and since &, is separating for .#, the mapping &
is injective. In accordance with Section 10.9, and with the definition of P (Section
10.23) we infer that for ae #, a = a*, we have

az>0walyePsg<> 4V4 alyeB.
Thus, the mapping ¢ is an order isomorphism and we have still to show that ¢
is surjective.
For ae#, a = a*, we have (1 + A”z) (ay) = a&, + Jaé,, whence .
AV4(ag;) = (4V8 + AV (a + Jako).
Since the operator (4¥44- A-14)-1 js bounded, it follows that
a, Sa= ®(a;) » P(a) weakly.

Since the set {ae.#; 0 < a < 1} is w-compact, it follows that the set P({ae.#;
0 < a < 1}) is weakly compact in 5.
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Let now &€, JE=E, 0 < & < &. With the help of relation (6) from
Section 10.23, we obtain

0 < £"= V;,F S+me—""d"§dt SVn/_7t.S+°°e—np'Altfo dt — co.

[+<] -0

For any ne€Ps. we have 4~V e P; hence

(-1, |n) = (€. |474) 2 0.

Thus, A~14¢, € Ps (see Section 10.8). Similarly, Eo— A7 E, = A-14(—¢,) € Vs
From Proposition 10.8, we infer that the operators LY-wusg, and 1 — L3-wg, =
= LY, _4-14¢, are positive. Consequently, the operator a, = Lj-1ug, is bounded
and 0 < a, < 1. Obviously, &, = ®(a,). Since ¥(a,) = ¢, — ¢ and since the set
d({aeM;0<a<1})is closed, it follows that there exists an ae,0<a <1,
such that & = ®(a).
Hence we easily infer that @ is surjective.
Q.E.D.

We now return to the general situation in which# < #(#)is a hyperstandard
von Neumann algebra, with the conjugation J and the selfpolar convex cone P.
The remarks we made so far enable us to prove the following important result.

Proposition. For any &,n€P we have
IE — 7l < oy — ol < 1€ — 1l 1E+nl.

Proof. The second inequalityvfollows from the relation
1
(0 — 0))(x) = 0 [ +m | E—m+E—n)|E+n)], xeA,

and holds for any E,nedt.

Let e = s(w,) V s(w,) and g=e(JeJ). Then e is of countable type and &, n € ¢%P.
In accordance with the remark we made at the beginning of the present section,
#, is hyperstandard and s-isomorphic with .. Consequently, in order to prove
.the first inequality, we can assume that J/ is of countable type.

We shall first consider the case in which the vector £ + 1 is separating. Since
J(& + n) = & + 1, it follows that § + 7 is also cyclic (see. E.6.9). We shall denote
by 4 the modular operator associated to the left Hilbert algebra U = (£ + n).
In accordance with Lemma 2, P is the selfpolar convex cone associated to . Since

—CE+m<E—n<i+n,
from Lemma 3 we infer that there exists an ae#, —1 <a < 1, such that

& —n=d4"a§ + n).
Then

lwg — @)l = (0 — @,)(@) = Re(@ + n|{—n) = A~ —n¢—n)-
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Since JAY4 = A-14], it follows that
(A7Y3E — )| & — ) = (4VE — )& —m);
hence ‘ “ '

lo; — o, > (% Y 4 4-9(E — )] £— '1) = [E—nl.

If the vector ¢ + n is not separating, then 1 — Pi+n # 0. In accordance
with Lemma 1, there exists a { € P, such that , .

p;=1—pieiy.

We now consider the vectors
' 1 1
6,.=§+—n—C€‘B, =1+ —n—CG‘B, ne N.

In accordance with the remark just made after the Corollary 3.8, it follows that

’ ’
= =1
p(cn‘*’)n) p({+ n+ .;2'. c) ’

because pi;+,y and p2 , are orthogonal. Consequently, we have Pepiny =1
In accordance ﬂwith the first case, just considered, we have
log, — o, Il = 1§, — % neN.
If we tend to the limit, in this inequality, for n — o<, we obtain

lw; — w,ll = 1€ — nl2
Q.E.D.
Corollary 1. For £,ne€ P we have

() {Ln<pelp,;
(i) if (P and {1 n imply that {1, then p, < p,;
(iii) £ <n =p; < p,
Proof. (i) If &1 n, then
. lowg — @,ll = 1€ —nl2 = 1% + 9l = logl + loy,l;

hence, in accordance with exercise E.5.15, p; = s(w;) _L s(w,) = p,. The converse
is obvious.

(ii) In accordance with Lemma 1, there exists a family {{,},e;= P, such that
11— pl" = Z p;n'
nel

Now the assertion (ii) is easy to prove, by using assertion (i).
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(iii) if 0 < & <1, then, for any{ e P we have
0 < D) < (19,

and assertion (iii) follows from assertion (ii).
Q.E.D.
Corollary 2. The mapping &> wg is a homeomorphism of P onto a closed subset
of (My)t = {9 eMy; @ =0}, with respect to the norm topologies.
Proof. From the preceding proposition it obviously follows that the mapping
in the statement of the proposition is a homeomorphism of Ponto {w,; € P} e
c (M) If {0}, £,€B, is a Cauchy sequence, then the same proposition shows
that {£,} is a Cauchy sequence in §B; hence, there exists a § € P such that w,,—0,.
Q.E.D.
10.25. In this section we shall present a Radon-Nikodym type theorem, which is
similar to Theorem 5.23, for normal forms on hyperstandard von Neumann
algebras.
We consider a hyperstandard von Neumann algebra M = B(H), whose
conjugation is J and whose selfpolar cone is B.

Lemma 1. Let £,€B. For any normal form ¢ on A, such that ¢ < @, there
exists an ne'P, such that

' 1
Q= wh’,, + (D,,'go and n < E— fo-
Proof. Let e = s(wg,) and g = e(JeJ). Then &, € q'B is a separating cyclic

vector for the hyperstandard von Neumann algebra < B(g’), which is x-iso-
morphic to .#, (see Section 10.24). Consequently, we can assume that &, is a separ-

" ating cyclic vector for .#. In this case we shall denote by S and 4 the operators

which are associated to the left Hilbert algebra A= .#&,. In accordance with Lemma 2
from Section 10.24, J and P are also associated to A.

By taking into account Lemma 5.19, it follows that there exists an operator
aed',0<a <1, such that

o(x) = (x&o] a'$o), xed.
From Section 10.9, we infer that a'€o, (1 — a')é,€ Ps.. Thus,
[ = A VA(@E)eP, E—L=4"V1A —a)o)eP
We define
n=(1+ 41 aG = (1 + 4¥5 414,
If we denote by f the function > 2/(e*" + e~?"), then, by applying Corollary
9.23, for A = A~1/2, we infer that :

n= Smf(t)A" {dt.
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10.26. From Sections 10.14 and 10.23 we infer that any von Neumann algebra is
#-isomorphic to a hyperstandard von Neumann algebra.

It is obvious that any hyperstandard von Neumann algebra is standard.
Consequently, in accordance with Corollary 10.15, any *-isomorphism between
two hyperstandard von Neumann algebras is spatial. Theorem 10.25 implies the
following much more precise result. ‘

Corollary. Let #, < B(#,) be a hyperstandard von Neumann algebra, Jy its conju-
gation and P, its selfpolar cone, k = 1,2. If

e -/” 1= -/” 2
is a *-isomorphism, then there exists a unitary operator
uHy > H,

uniquely determined by the conditions

(1) 7(xy) = o x; 0 u*, for any x, € M,;

(2) J2 = u°J1 Ou*;

(3) P = u(Py).

Proof. If the unitary operator u has the required properties, then, for any
vector §; € Py, we have w,;, = w,, o 7~ and u¢, € P,. From Theorem 10.25 we infer
that u¢, is uniquely determined. Since 5#; is the linear hull of B,, we infer that
the unitary operator u is uniquely determined by the stated properties.

In order to prove the existence of u, we first consider the case in which My
is of countable type. Then .#, has a separating cyclic vector &, € P, (see Lemma 1
from Section 10.24). In accordance with Theorem 10.25, there exists a vector &€ Ps,
such that w,, = w,, o 7. It follows that &, is separating for /,; since J,&, = &,,
we infer that &, is also cyclic. '

As in the proof of Corollary 5.25, it is possible to prove that the relations
u(x,$y) = n(xy) &, x, €4,

one determines a unitary operator u: 3, — 3#,, which satisfies condition (1) from
the statement of the theorem.

If S, is the operator associated to the left Hilbert algebra o, = M &y, k= 1,2,
then it is easy to prove that

Se = uo S; o u*.

By taking into account Lemma 2 from Section 10.24, we infer that u satisfies
condition (2) from the statement of the theorem.

Finally, if we now use again Lemma 2 from Section 10.24, we obtain
P = {aUaxal0)] &2 3 4 €M}
= {[(ux,u*) (uJ,u*) (ux,u*) (W u®)]Es; X1 € M1}
= u({[x,(ix) /)] 15 X1 € M1} = u(P,).




STANDARD VON NEUMANN ALGEBRAS 321

o In the gpne;al case, there exists an increasingly directed family {e1,i}ie1, con-
sisting of projections of countable type in .4, whose Lu.b. is equal to 1. For any
ie I we denote

€3, = ﬂ(em)a dy,1 = el.i(Jlel,(J1)9 qQe,1 = ez.t(Jzez,th)-

By taking into account the remark made at the beginning of Section 10.24, it follows
that, for any i € I, there exists a uniquely determined *-isomorphism

Tyl ("/ll)ql'.l i ("”2)11.(’
such that

(%1 ,.) = @(xX1))gy,0 Xy €My,

In accordance with the first part of the proof, for any i€ ], there existsa unitary
operator

U L %,s(-#l) - %,t(”z):

which is uniquely determined by the properties similar to M), (2), (3), from the
statement of the theorem, but applied to the hyperstandard von Neumann algebras
(M), (Mo, and to the s-isomorphism 7,.

It follows that if i < k, then u; = u,. Consequently, there exists a uniquely
determined unitary operator u : 3¢, — #;, which is an extension of all the opera-
tors u;, i€ l, and it is easy to verify that it satisfies conditions (1), (2), (3)in the
statement of the theorem.

Q.E.D.

Let # < %B(a#) be a hyperstandard von Neumann algebra, J its conjugation
and P its selfpolar cone. By taking into account Sections 10.14 and 10.23, from the
above corollary we infer that there exists a left Hilbert algebra A< 5, such that
J=J% and P = P¥%. Consequently, in any hyperstandard von Neumann algebra
we have at our disposal the tool of the left Hilbert algebras.

We remark that there exist standard von Neumann algebras, which are not
hyperstandard (see, e.g., U. Haagerup, preprint of [2], Proposition 5.3).

10.27. We now return to the study of the faithful semifinite, normal weights on

von Neumann algebras. . .
Let # be a von Neumann algebra, Z its center and ¢ a faithful, semifinite,

normal weight on .#*. We write
M2 = {x €M; it = o7(x) has an entire analytic continuation}.
In Section 10.16, we showed that % is a so-dense s-subalgebra and
MW, ME =M,
We now write
My ={xeM; of(x)=x, L€ R}.

Obviously, P
c < M

The set ¢ is a von Neumann algebra and it is called the centralizer of ¢.

21 — c. 1540
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Theorem Let M be a von Neumann algebra, ¢ a faithful, semifinite normal wezght
on MY and x € M. Then the following. assertions are equivalent

(@) xe.#3;

(i) xM, = M,, Mx = M, and o(xy) = ¢(yx), yeM,.

Proof. In accordance with Theorems 10.15 and 10.18, we can assume that
M = £(N), where A is a left Hilbert algebra and ¢ = @y.

Let xe . #§, By taking into account the remarks made at the beginning of
the section, we have

xM, = W,, Vx < M,.
Thus, if aeM; and a/% = L;, £ A", then
xteW', L, =xL; and x*, e W', L,.; = x*L,.
By taking into account Proposition 9.24, we have

@(xa) = @(Ly;Lsg) = (S&| SxE) = (JAY2L | JAY?xE)
= ((4V2xA-12) AN2E| AV2E) = (xAV2E | AV2¢)
= (AV2E | (AV2x*A-12) AV3E) = (JAV2X*E | TAVZE)
= (Sx*¢| S¢) = @(Le(Lxed)*) = @(Ly(x*Lp)*) = ¢(ax).

Thus, we have shown that (i) = (ii).

Conversely, let us now assume that x satisfies condition (ii). Then, obviously,
the elements o,(x), t € R, satisfy condition (ii), too.

Forany ¢, n € T let us consider the function f; ,, which is bounded and contin-
uous on {xe @C; 0 <Rea <1}, and analytic in {xe €; 0 <Rea<1}, and
given by the formula

Seal@) = (xA==+1m] 4%).
If we use the first part of condition (ii), then, for any t e [R, we obtain
o (x)ne W, Lyixyy = 0(x) L, and 0 (x*) e A", Lo oz = 0(x*) Ly
With the help of the second part of condition (ii), we obtain
Jeo(l +it) = (x4~ | A1 S*SE) = (o (x)n | S*SE)
= (S¢| So,(x)1) = @(odx) LyLsy) = p(LyLsg o4(x))
= @(L,(0,(x*) L)*) = (So (x*)¢ | Sn) = (S*Sn|4¥x*4~1{)

(xA -u+1n I 4 -itf) f&’,,(it)

Thus, f;,, can be extended, by periodicity, to a bounded entire analytic function.
Liouville’s theorem now implies that f;, is a constant. In particular,

@ x)n] 4) = fea(i) = feol) = (] 40),  teR.
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Since the vectors &, n € T are arbitrary, we hence infer that
og(x)=x, telR.

We have thus proved the implication (ii) = (i).
Q.E.D.

Corollary. Let # be a von Neumann algebra, ¢ a faithful, semifinite, normal
Welight on M* and ue M a unitary element. Then the following assertions are equi-
valent

() uedy; ‘
(ii) o(u*au) = @(uau*) = @(a), acM;}.
Proof. According to the theorem, we have the implication (i) = (ii).

Let us now assume that u satisfies condition (ii). For any a € M} we have
u*au € M, hence a2 u € N, Since we obviously have "2 e NP, it follows that

au = a'*(a**u) € NEN, = V.

Consequently, we have M u = M,,. Similarly, one can show that M, c M,,. Now
one can easily prove that u satisfies condition (ii) in the statement oi? the theorem,

hence u e #3.
Q.E.D.

In particular, it follows that ¢ is a trace iff the centralizer of ¢ coincides
with ., i.e., iff the group {of} acts identically on ..

10.28. We now prove a remarkable Radon-Nikodym type property, due to
A. Connes, which establishes a link between the groups of modular automor-
phisms, associated to any. pair of faithful, semifinite, normal weights on a von
Neumann algebra. :

Theorem. Let 4 be a von Neumann algebra and @, Y two faithful, semifinite,
normal weights on #M*. Then, there exists a so-continuous mapping

Rat—u,cH,
such that :
(1) u, is unitary, teR;
(2) Upty = uto'tw(u:)’ 5, t€ R;
3) o¥(x) = u,of(x)uf, xeHM, teR. .
Proof. We denote 4" = Maty(#) (see 2.32 and 3.16). For any

a= (au)e./‘,, a ? 0,
we define

0(a) = @(an) + Y(am)e R* U {+ o0}

It is easy to see that 6 is a faithful, normal weight on 4. If x5y, Xsy € N, and
Xy, X0 € Ny, then (xyy) € Ny, We hence infer that N, is so-dense in 4. Conse-
quently, 0 is also semifinite.
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We denote by e, i =1,2; j=1,2, the “matrix units” of 4:

e11=(l 0)’ e12=(0 l)-

00 00

921=(0 0): ezz=(0 0)-
1 0 01

U= €3 — €,

If we denote

then u is a self-adjoint unitary operator and

u( an Gy ) "= ( an —alz)’ (ai])e?/V+

Gz Qye —an Qg
It follows that, for any ae 4%, we have
O(uau) = 0(a).

If we now apply Corollary 10.27, we infer that u e A3, Since we obvxously have
1e 4%, it follows that

eu=—;—(l+u)e.4f3,
1 9
€99 == —2~(l —u)e./Vo.

Since e;; € A5, for any x e A4 and any te R, we have

eu"x(( g g))eu = 0?("11( 0 g )eu) = ‘7:((lx 0 ))

hence of (( )) is of the form

(5 o )= o 3)

It is easy to verify that the above relation determines a group {=,} of *-automorphisms
of 4, which leaves ¢ invariant. Since, for any x, ye 0, and any ¢t €[R, we have

G o (& o)

0((3‘ g) a?(('; g)))=¢(xn.(v)),

e(af((g g)) ((’)‘ g))=¢(n,(y)x),
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from Theorem 10.17 we infer that ¢ satisfies the KMS-condition, with respect
to {r,}, for any pair of elements in M. From the uniqueness part of Theorem 10.17,
we infer that

r,=0a?, teR.
Consequently, we have
0 P,
0?((x )) = (a, =) 0 , x€M.
0 O 0 0/ .

One can similarly prove that

of0 0\ (0 O
0’1((0 }’))_(0 a}"(y))’ ye.ll.

By taking into account the fact that en, e e, it is easy to see that for
any te[R, we have

enaf (e21) = of(ex)es = 0;

hence, 6f(ez) is of the form
ol(en) = (0 0), u,cH.
u 0

Since the group {af} is so-continuous, the mapping

R> t—>u el
is so-continuous. Then, since

ol(en)* ol(en) = al(eren) = oi(en) = e,
0?(921) o} (ea)* = of(eners) = ol(ess) = €,

it follows that the operators u, are unitary. For any x €. and any t€[R, we have

(2 )~ a(y 2p= otea(] o) —oteel((; o Poties

0 of(x)
*
"‘(3 3)(3:@ g)(g g‘)=(gu,ar(x)gr)‘

o¥(x) = u,of(Xuf. -

hence

Finally, for any t,se€[R, we have

(:‘ﬂ g )= o1 4s(en) = ”?(( 3‘ :)) - G‘O(em(;’ g))

“ (o (76 o) e o)
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hence - e .
TR Ups = UOF(Us).
.Q.E.D,
The preceding theorem enables us to define the notion of “commutation”,
relatively to weights.

Corollary. Let .# be a von Neumann algebra and ¢, fatthfuI semtﬁmte, normal
weights on M*, Then the following assertions are equivalent

() {o7}ccr leaves invariant the weight @;
(ii) {o7}:ecr leaves invariant the weight ;
(iii) there exists a so-continuous group {u.},cr of unitary operators in .//l ¥ nAg,
such that
a"(x) = u,of(x)u¥, xed, telR.
Proof. The implication (iii) = (i) obviously follows from Corollary 10.27.
Let us now assume that {o¥},cg leaves invariant the weight ¢ and let us

consider a so-continuous mapping t > u,, as in the statement of Theorem 10.28.
For any te[R, we have

9(@) = ¢(6?.(a)) = @(c%(0% (@) = p(u,aif), aeM*;
hence, in accordance with Corollary 10.27,

u,e M.
Then, for any ¢, se R, we have
Upts = u,o’:’(u,) = U5
hence, {u,} is a one-parameter group. Finally, for any te [R, we have
o¥(u,) = uof(uuy = uuu¥ =u,, selR;
hence
u,eM§.
Consequently, (i) < (iii).

Slmllarly, one proves that (ii) < (m)
Q.E.D.

If the faithful, semifinite, normal weights ¢ and y satisfy the equivalent
conditions from the statement of the preceding corollary, we shall say that ¢ and ¥
commute.

10.29. At the end of this chapter we present a criterion of semifiniteness for the
von Neumann algebras, expressed in terms of the group of modular automorphisms.

Theorem. For any von Neumann algebra # < B(3¢) the following assertions are '
equivalent

() A is semzﬁmte,

(i) there exists a faithful, semifinite, normal weight ¢ on #*, and a so-contin-
uous group {u,},cr of unitary operators in M, such that

of(x) =uxu¥, xeM, telR;
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(iii) for any faithful, semifinite, normal weight ¢ on A there exists a so-
continuous group {u},er of unitary operators in M, such that

o?(x) = uxu¥, xed, telR.

Proof. If A is semifinite, then, in accordance with Corollary 7.15, there
exists a faithful, semifinite, normal trace p on*. With the help of Corollary 10.27,
we have

oi(x)=x, xeM, teR.

If @ is any faithful, semifinite, normal weight on A+, then {a}} leaves the weight @
invariant. Thus, if we now apply Corollary 10.28, it follows that there exists a
so-continuous group {u,},er of unitary operators in ., such that

o%(x) = u,ot(x)uf = uxu, xeM, te R.

Since on.#* there exists a faithul, semifinite, normal weight (see Section 10.14),
the implication (iii) = (ii) is trivial.

Finally, let us assume that assertion (ii) is true. According to the Stone repre-
sentation theorem (9.20), there exists a positive self-adjoint operator 4 in, such
that s(4) = 1, which is affiliated to ./, and such that

u, = A, telR.
For any natural n we denote
e, =1 (Aed.
")
Then
e,eMy, nelN,
and

e, 1s(d)=1

In order to prove the semifiniteness of J/, it is sufficient to show that the reduced

von Neumann algebras ., are semifinite.
Let us choose a natural number n. According to Theorem 10.27 we have

T e, Mye, = M3
hence, the weight ¢,, defined on (/)" by the formula
o.eal e, ) = plesae,), aed?,

is semifinite. It is easy to see that @, is normal and faithful. If we denote a,=
= Ae,e ., we have
o9(x) = a'xa;¥, xe (#.), teR.

Thus, our problem reduced to the following one: to show that, if A =
is a left Hilbert algebra and if there exists an invertible a € &A)*, such that

o (x) = ad'xa¥, xeL), te R,
then £() is semifinite.
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Indeed, let us define on 'Q(QI)‘“ the weight
u(b) = pola='7ba='), be L(AY*.

It is easy to see that p is normal and faithful. Since a € £(A)F¥, it follows that p

is semifinite and A, = A o,

For any &, { e A" and any ¢ € [R, with the help of Proposition 9.24, we infer

that

1

Loy Low B
(a—(2+)A2+ 6'-’(1( 2+ )AZO

1 —_—

11 (L, ERNE NP N
— @0 %0 O e gaat a7 ) ey

1 _c1., JE S G S
=(A2a (2+')AitéIA 2Ja( 2+')C)
1 R 1 .
= (a_ (-2_ ¥ “)Ai‘élJa(—? T
Thus, by the formula

).

’ 1
(a-4¢|Ja*"24%,), if 0 < Rea <
Je o) = .

@<4""Fe|Ta1), i % <Rex <1,

’

1
2

we define a bounded and continuous function f;, ; on {x € €; 0<Re a < 1}, which

is analytic in {xe €; 0 < Rea < 1}. For any te R, we have
1 1 1

fodit)= (@~ 4vE|JA*[4 ® a*-'47])
= (a—itAitél Sait-—lo — q,ﬂ(a— ‘ai‘L;a‘ i‘LAitC)
= ‘P!((a-lo' ,(Lc)a t(L{)) = I‘(L;Lt,')’

1
Fodl + i) =(@1- 4% " "¢\ 1av)
1
iy

L R
= (4%[4 * a-'-"4*]4i*&|Ta"])
= (ait“Sa-—l—itAir 6) - (p“(a— la—irLAiteaith)
= gu(a~to_ (o (L)L) = p(L Ly

Consequently, f“ is constant on the imaginary axis; hence, everywhere.
We hence infer that

u(LLy) = p(LeLy), &, {ed”.
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In particular, we have.
I‘(xy) = p(yx), X, Y€ mt” = ﬂn¢’l;

consequently, u satisfies the KMS-condition with respect to the identity group
for any pair of elements in M,,. With the help of Theorem 10.17, we infer that

o(x)=x, xe&A), teR;
hence, according to Corollary 10.27, p is a trace. Thus, with the help of Corollary

7.15, we infer that £() is semifinite.
Q.E.D.

Exercises
E.10.1. Let % be a complex algebra endowed with an involution # and a scalar
product (-]-). We suppose that 2 satisfies conditions (i), (ii), (iii) from 10.1, and that
H o> Wb &L)Fex
is a preclosed antilinear operator. Show that the operator
#oUsEm e
is preclosed, hence U is a left Hilbert algebra.

E.10.2. Let # < 2(#) be a von Neumann algebra with a separating cyclic vector
& e . Give direct proofs to the following assertions (see Section 10.6):
(1) The adjoint S* of the closure -S of. the antilinear operator

X o> MEgd xEy g x*éeX
is the closure of the antilinear operator
H oM EDXEgr+ X" ev.#.
(2) If n € Dse, then the operator
H o MEyD xEg > X EN
is preclosed and its closure is affiliated to 4.

E.10.3. Let G be a locally compact topological group, dg a left invariant Haar
measure on G and 8: G —» [RY, the modular function. Show that the set U; of
all continuous complex functions, which are defined on G and whose supports are
compact, is a left Hilbert algebra with respect to the operations:

@) = S Ekyn(h~g)dh,
&#(g) = 9(g) 2™,
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and the scalar product
¢ln) = {eem)ds.

Determine, in this case, the objects .#,A,'J, S.

E.10.4. Let o# be a Hilbert space. Show that the set % = & (»#) of all operators
in %#(s#), whose ranges are finitely dimensional, is a left Hilbert algebra with respect
to the =-algebra operations induced by those of #Z(s#’) and with the scalar product

 (x]y) = tr(y*x).
Determine, in this case, the objects 5,4, J, A",
E.10.5. A left Hilbert algebra U < o is said to be unimodular if 4 = 1.

Show that for a left Hilbert algebra W < 5#, the following assertions are
equivalent
(i) A is unimodular;
(ii) S is isometric;
(iii) ¢y is a trace. . ‘
Show that if G is a locally compact topological group, then the left Hilbert
algebra A (E.10.3) is unimodular iff the group G is unimodular.

E.10.6. Prove that any von Neumann algebra is s-isomorphic to a standard von
Neumann algebra along the lines of the proof for Theorem 10.7.

E.10.7. Let .# be a standard von Neumann algebra and J its conjugation. Show
that R(#,.#') is the w-closed linear hull of the set _

{x(UxJ); xed}.

(Hint: use a polarization relation). :

In the following three exercises, # < B(#) is a von Neumann algebra with
the separating cyclic vector &, € 3¢, whereas J¢, is the canonical conjugation associated
to A= ME,. ‘ .

E.10.8. For nes# the following assertions are equivalent:

(@) ne;

(ii) R} is bounded;

(iii) the form w, is dominated (E.9.33) by the form w,,.

E.10.9. For xe, the following assertions are equivalent:

(i) @y, < @3 ,

(i) |412x4-'2| < 1. ‘
E.10.10. Show that if J is a conjugation in 5#, with the properties

(1) the mapping x +> Jx*J is a =-antiisomorphism of . onto .#’, which
acts identically on the center; ,

(2) JEo = &o3
(3) ol [x(IxN))Eo) = O, for any xe.#;
then J = J & )
(Hint: prove that JS = JJ, 42 is a positive self-adjoint operator).
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In the following two exercises, # < B(3t) is a von Neumann algebra, Z is its
center; &, {o € are separating cyclic vectors, J,,, J;, are the corresponding canonical
conjugations and PBg,, B, are the selfpolar convex cones associated respectively
to the left Hilbert algebras #MEq, M{,. '

E.10.11. Show that the following assertions are equivalent:
(@ Coe Pes :

(i) e ‘—Bc'.;

(iii) Js, = J¢, and (z&,12L0) = 0, for any ze 2, z 2 0.
(Hint for the proof of the implication (jii) = (i): in accordance with Section 10.23,
{, can be written {o = & —10, P Lp,- with respect to P,,; show that’

' G XT3 )5) =0, xed;

from exercise E.10.7 we infer that {5 L [##4'(7], whence

| 0 < (Gl MM T L) = — (Gl 85) < 05
hence, (&1¢5) =0, & =0.)
E.10.12. Show that there exists a unitary u’e./’, such that
Joo =t oJg o t'®
Infer that the s-automorphism
M3 x> T xJ; Jy, €M
is inner,

In the following six exercises, A < o is a left Hilbert algebra, the other nota-
tions corresponding to those introduced in the main text.

E.10.13. We define the set
for any ne Z we have
+oo AEeW' n W
Ti=18€ N 0l 9, -n= 9n and SLASL oy
gu"xy"') =9(A-—n) and A”Red-"CRdnc

With the help of Lemmas 1, 2, and 3 from 10.19, show that T, is a left Hilbert
subalgebra of %" and Iy = A", ‘ )

We now consider the operator T on Z(X), defined as in E.9.36, with 4 = B =
= A. Show that for any & €, and any 4 > 0, we have '

A+4)1EeT; and Lprg-rg =@+ T)~Y(Ly.
With the help of exercises E.9.36 and E.9.37, infer from this result that
T=I; i
Show that the preceding assertions imply Theorem 10.12.
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E.10.14, For any £eJ#, the following assertions are equivalent:
() ¢eG;
(ii) Ee W' NF NS 45
(iii) £ €A and the mapping it — A¥ L,A~i* has an entire analytic conti-
nuation F, such that .
lim [| F@n)[[" < +o00, lim | F(—n)|*" < +oo.
n—»oo ne0o
E.10.15. Show that for any & e " there exists a sequence {£,} = &, such that
) &~ & SE,— SE;
@) Ly, » Ly, (LEY* > (L)%
(3) sup [[Lg, |l < to0.
E.10.16. Show that if £e¥U'n @(A—,,) and neWn 9(4“)’ then
R A€ D, and A°R,47%¢ = L.A"n.
E.10.17. Show that the set
{£eWng,; AfeW}

is a left Hilbert subalgebra of U’ and that, for any &,, £,, belonging to this set,
the following relation holds o

A(g,8,) = 4(€)A(Ey).
E.10.18. For any 1¢€0,1/2], one defines the set
- Py = 4P
Show that
(1) 4P, =P
2) JP, =P ;
( ) “BA (_;__;')

(3) P, is a convex cone, polar to P @ );
?—2

(z-29)
@ B, = (02T 0; EeT)
In the following four exercises, # < () is a hyperstandard von Neumann
algebra, whose conjugation is J and whose selfpolar convex cone is P. : ‘

E.10.19. Let Aut (.#) be the group of the »-automorphisms of .# and U(#) the
group of all unitary elements in . Show that there exists a group homomorphism

Aut (./l) s x> u, € U(HA),
which is uniquely determined by the following conditions
(1) n(x) = uxu¥, neAut(H), xeH;
2) u(P) =B, neAut ().
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E.10.20. Show that the von Neumann algebra #' = #(#) is also hyperstandard,
with the same conjugation J and the same self polar convex cone B.

With the help of Theorem 10.25, infer from this result that for any vector
{ e # there exists a vector € P and a partial isometry v e #, which are uniquely
determined by the properties

=&, v*v=p,
The vector & is denoted by || and it is called the modulus of {, whereas the
equalities { = v|{], v*v =p 4 yield the polar decomposition of {.

E.10.21. Let { = v|{| be the polar decomposition of a vector { €. Show that
the polar decomposition of J¢ is

JC = v*([(Jo))IED.
With the help of Corollary 1 from Section 10.24, infer from this result that if J{ = ¢,
then
’ lCI =C++C_’ v=pc+ —pc—’

where { = {+ —{~ is the decomposition (+#) from Section 10.23.
E.10.22. Let @, § be normal forms on .. Show that
P <Y = oV <Y

E.10.23. Let ¢ be a faithful, semifinite weight on the von Neumann algebra /.
Show that if there exists an increasingly directed family {p,} of normal forms on .#,
such that '

¢(a) = Sup (Pv(a)- a E‘/I+1

then ¢ is normal.

E.10.24. Let .# be a von Neumann algebra, ¢ a faithful, semifinite normal weight
on #* and n a s-automorphism of .#. Show that

oot = n-loofon, teRR.

In particular, if = leaves invariant the weight @, then n.commutes with of for any
te[R. The case of a trace shows that the converse is not true.

E£.10.25. Let # be a von Neumann algebra and ¢ a faithful, semifinite, normal
weight on 4, such that the restriction of ¢ to (#§)* be semifinite. Then the von
Neumann algebra 4§ is semifinite.

E.10.26. Let # be a von Neumann algebra, Aut(#) the group of all the s-auto-
morphisms of # and Int(#) the group of all the inner s-automorphisms of .
Show that Int(.#) is an invariant subgroup of Aut(.#). One denotes by Out(.#)
the quotient group Aut(/)/Int(#) and by ¢ the canonical homomorphism

¢ : Aut(.#) = Out(A).
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Show that if ¢ and Y are faithful, semifinite, normal weights on .#*, then
(o) = cto?¥), telR.

Show that-the mapi)ing :
R3t (o)

is a homomorphism of the additive group R into the center of the group Out ),
which does not depend on the faithful, semifinite, normal weight ¢ on .+

The kernel of the mapping ¢~ c¢(o?) is denoted by T(.#). Show that if .#
is semifinite, then 7(#) = [R. - : L

Comments

C.10.1. The theory of the left Hilbert algebras was devised by M. Tomita [10],
[11] and it became known through M. Takesaki’s lessons [18]. In M. Takesaki’s
book [I8], the left Hilbert algebras appear as generalized Hilbert algebras whe-
reas Tomita’s algebra is introduced axiomatically as modular Hilbert algebra (see
C.10.7). Although this terminology is still in use, the terminology we have intro-
duced in our text is becoming more common in the literature. On the other hand,
M. Takesaki’s notations from [18], which differ from those used in our text,
are currently used in the literature and, therefore, we indicate their correspon-
dence with those introduced by us: ‘

Our notations M.Takes:el;i[';six)otations
A W, A uq Aq, A
£, (A) £(W), /A

Qs o

St i

Dse 2°

Sty b .

L; LG

Lg® &

Ry ='(n)

Ry() $n

S* F .
Bs PB# (or_2¥)
Pse 28 (or &%)
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We give two examples of formulas which correspond to one another under these
different notations

Le(n) = SLsySE \ & = (¥ E¥

Pse = {RyS*n; ne W} ] 2 = nPn; new
The left Hilbert algebras U < 3¢, such that A = A", are called maximal
(or “achieved”, “full”; “achevée”, in French).
For a left Hilbert algebras % < 52, F. Perdrizet [4] also introduced the sets
FH¥={¢ed; L}is preclosed},
B ={Ceot; L}is bounded},

and showed by examples that the inclusions, indicated in the following diagram

by arrows
a%_
m.,/ Tt
are, in general, strict inclusions. If, nevertheless, A is of the form U = A&, (see

Section 10.6), then we obviously have U =A%, F. Perdrizet (4] also introduced
the sets

P = (£ eP*;L; is self-adjoint},
o+ = {EeA’; Ly >0},
Ft={&¥; ¢ W),
and has shown, by examples, that the inclusions
| gt o G P

are, in general, strict. If A = .#E&,, then it is obvious that 3+ = AT,
Similar considerations can be made for ', endowed with the involution b.

C.10.2. The unimodular Hilbert algebras (E.10.5) have been known for a long
time as Hilbert algebras, or unitary algebras and were the basis for obtaining the
standard forms of the semifinite von Neumann algebras. Important contributions
to this theory have been obtained by W. Ambrose [2], [3], J. Dixmier [19}, H. A.
Dye (1], R. Godement [6], (8], [11), F. J. Murray and J. von Neumann [1], [3],
H. Nakano [2], R. Pallu de la Barriére [3], L. Pukénszky [3], V. Rokhlin (11,
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L E. Segal [1], [6], [11], O. Takenouchi [1], [2], [6], [7], M. Tomita [2], H. Ume-
gaki [3], and others. We mention the fact that J. Dixmier - [19] extended the
notion of a (unimodular) Hilbert algebra to that of a quasi-Hilbert algebra (or
quasi-unitary algebra) and showed that the set of all continuous complex functions
with compact supports, defined on a locally compact topological group, can be
canonically endowed with a quasi-Hilbert algebra structure (cf. E.10.3). The results
concerning the (quasi-)Hilbert algebras and the standard forms for semifinite
von Neumann algebras are set out in the book by J. Dixmier [26] (see also L. H.
Loomis [1] and M. A. Rieffel [2]). ,

Let A = 3 be a unimodular Hilbert algebra. We shall use some notatjons
from C.10.1. ; ;

From exercise E.10.5, we infer that S = J; hence

% = 9% = o
and, for any {es?, we have
=00 =t

For any ées#(=9%), the operator L§ is preclosed and we have (Lp* o L;,.
In fact, in this particular case, we have the equality

(LY* = Ly,

Indeed, let ne 9( Lo+ Since nesf = b » the closed operator R, makes sense.

With the help of Corollary 5 from Section 10.3, we infer the existence of a sequence
{e.}. = £(A)' of projections, such that e, 1 1,and e € W, k=1,2, ... Then e,g;e@LR
and since (L,)* is affiliated to £(2), we have

Lyen = (Ly*em = ef(L)*n; k=1,2, ...

For k — oo we obtain en — n and Ljemn — (L;)*n; hence n e@m
= (Lg)*n, thereby proving the asserted equality.
It is now easy to verify that

P =P = pF=p° = .

On the other hand, from the equality J = S, and from Theorem 10.12, we
infer that

QII — JQIII — SQIII —_ QIII;

thus, by taking into account relation 10.4.2, we obtain the “commutation theorem”:
£’ = &(A)
(fora Simpler direct proof of this equality, see J. Dixmier [26] or M. A. Rieffel [2]).
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Since 9% = o it is easy to see that
(e, xe &A) = x{e A", Ly = xL,

The weight @, associated with the unimodular Hilbert algebra %, is a trace
(E.10.5), which is called the natural trace associated to U and it is usually denoted
by py. Conversely, if p is a faithful semifinite normal trace on the von Neumann
algebra ., then the left Hilbert algebra U, = 9N, = 9% (see Section 10.14) is
unimodular.

If # = B(#) and p = tr (see E.10.4) then the operators in U, = N,, are
called the Hilbert-Schmidt operators in the Hilbert space #’. We mention that the:
unimodular Hilbert algebra 2, is complete with respect to the scalar product,
More precisely, we have the following result, from T. Ogasawara and K. Yoshinaga
[4], whose proof can be found in J. Dixmier [26], Prop. 6, Ch. I, §8.5:

Proposition. Let U be a maximal unimodular Hilbert algebra such that &) is a factor.
Then the following assertions are equivalent:
() U is complete;

(i) &) is of type I;

(iii) up to a multiplication of the norm in U by a suitable constant, A is iso-~
_ morphic to the unimodular Hilbert algebra of all Hilbert-Schmidt operators on &
* Hilbert space. '

In accordance with Theorem 10.25, the mapping & — w; is a bijection of P-
onto (£(A),)* (this result also has a simpler direct proof;; see F. Perdrizet [4}, Prop.
3.3). Consequently, given a normal form ¢ on £(A), there exists a uniquely
determined element & € P="P¥, such that p=w,. Then A=L; is a positive self-
adjoint operator in J#, which is affiliated to £(Qf). If we denote e, = -1, nf(4),
it is easy to infer that e,é € A, L, ;= e,A = Ae, and e,f — ¢. We have

ol A%e,) = po((Le)* (Leop) = ledl? < IS]1? <003

hence the operator A is of summable square with respect 10 iy, Moreover, for any
x e £(AU)*, we have :

LARAu,(x) = lim p,(Ae,,er,,) = lim I‘g((L(x”‘en{))‘ (L(xlllenc)))

= lim [|x"2,[? = IIxV*]? = o(x).
Thus,
¢ = LRpq:

Conversely, let 9 be a positive self-adjoint operator in 2, which is affiliated:
to £(2A), of summable square with respect to i and such that @ = L (R ,yiy. Since
pin(A%,) < +oo, there exists a &, & U*, such that L, = Ae,. For n > m we have

16, — Enll® = pg((Ae, — Ae,)?) = py(A(es —en) 4) = 9ley — &p);

22 —c. 1540 -
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hence {£,} is a Cauchy sequence. Let { = limé,eP= P, For any ne A’ we have

Ly = R, = lim R, =lmLyn = lim Ae;n = A,
n-oo n-co n-+ 00

Since the operators L, and 4 are self-adjoint, it follows that 4 = L, Thus, for any
x € &AW, we have
@(x) = L 4R 4pt(%) = pof{(Lans)*(Lanp)) = [ xV/2E||* = y(x);

hence, ¢ = w,. Consequently, & is uniquely determined by ¢ and A = L, is also
uniquely determined by ¢. )

If we now take into account the possibility of using a x-isomorphism (see
Section 9.26), from the preceding results we infer the following !

Theorem. Let # = B(#) be a semifinite von Neumann algebra and p a faithful,
semifinite, normal trace on .#*. For any normal form @ on M there exists a unique
positive self-adjoint operator A in ', which is affiliated to M and of summable
square with respect to {, such that

@ = L,Lp.

This is the Radon-Nikodym type theorem, with respect to a semifinite, normal
trace, obtained by I. E. Segal ([11], Th. 14) and L. Pukénszky ([2}, Th. 1).
The above proof belongs to F. Perdrizet ([4], Cor. 3.6). We mention the fact that
if the trace pu is finite, then the theorem is a particular case of Theorem 10.10;
in this case the theorem has been obtained by H. A. Dye ({1}, Cor. 5.1).

In Section C.10.4, we shall present an extension of this theorem for weights.

C.10.3. .For a weight ¢ on the von Neumann algebra # we consider the following
properties o
(N1) {a;} c A*, a w-summable family = o(Yy a) =Y, 9(a);
W2) {a} c#*, ayt a=ola) t ola); |
(N3) ¢ is lower w-semicontinuous;
(4N) there exists a family {g,} of normal forms on .#, such that

¢(a) = sup ¢,(@), aeM*;
v

(N5) there exists a family {(p,}‘ of normal forms on , such that
o@) =Y, o), aeH*. .

In our text (see Section 10.14) we said that ¢ is normal if it satisfies property (N5).

It is obvious that
(N5) = (N4) = (N3) = (N2) = (N1),

and it is natural to inquire about the equivalence of these properties (see J. Dix-

mier [26], p. 52—53, 2nd ed.) -
Theorem 10.14 retains its validity for the faithful semifinite weights having

property (N4). More precisely, F. Combes ([10], Th. 2.13) showed that if ¢ is
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a faithful semifinite weight on 4*, which has property (N3), then 0,n9Ny,
endowed with the structure of a =-algebra induced by that of .# and with the
scalar product induced by that of 5, is a left Hilbert algebra U,c,, and
n (M) = £U,); if ¢ has property (N4), then U, = A’ and

@ = Qg o,

A variant of proof for this fact can be found in M. Takesaki’s course ([17], 13.5—
13.12). At the basis of the proof lies a result about the *e-filtration” of the
normal forms, which are majorized by a weight, result which is due to F. Combes
([7], Lemma 1.9) (see, also, M. Takesaki [17], Th. 13.8, for a simpler form of this
result, that which is actually used). A

Since the weight which is associated with a left Hilbert algebra has property
(N5) (in accordance with 10.18), it follows that

(N4) == (N5).

This equivalence has been established by G. K. Pedersen and M. Takesaki ([2],
Th. 7.2); in our exposition of the results in Section 10.16.(9)—10.16.(11) and 10.18
we used the main arguments contained in this article.

U. Haagerup [1] completely solved the problem of the equivalence of the
above properties, by showing that

(V1) < (N4)

We mention the fact that the elegant arguments in the article of U. Haagerup-
can be easily read and the equivalence (N3) <> (N4) is proved in a more general
case. Also, U. Haagerup ([1], 1.12) shows by an example, in the commutative:
case, that the property '

(No) {e;} = # family of orthogonal projections = o(Y e) =Y ele),

is not equivalent to the normality (compare with Theorem 5.11) and the problem:
arises whether a result, analogous to Corollary 5.12, is true for weights.

We mention that the equivalence of the above properties, in the case of traces,.
is well known since a long time (see J. Dixmier [26], Cor. Prop. 2, Ch. 1, §6.1;.
see also E.8.10)

C.10.4. With the help of a technique similar to that used in Section 10.18 one:
can prove the following ,

Proposition. Let ¢ and Y be faithful, semifinite, normal weights on the von Neumann:
algebra #. If @ and Y commute and are equal on a o%-invariant »-subalgebra of Wt,,
which is w-dense in M, then @ =Y.

For the details of the proof we refer to the article of G. K. Pedersen and
M. Takesaki ([2], Lemma 5.2, Prop 5.9; see also Prop. 7.8, loc. cit.). |
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In what follows we choose two faithful, semifinite, normal weights ¢ and ¥
on #*. We shall use the notations from the proof of Theorem 10.28, and we shall
also denote (in accordance with A. Connes [6]) by

Pi:t»—»ﬁ—"’(t)
@

Do -
the mapping ¢ > u, that was obtained there. We shall show that
if %//-(t)% 1, for any teR, then ¢ = Y.
@

Indeed, from the hypothesis we infer that 0%(e;;) = ez, for any te R, i.e., €3 € A 8
In accordance with Theorem 10.27, it follows that

X € mo => X€s31, ezlx € mo and e(xezl) - 0(e21x);
hence

(xi) €My = x1,€ M, AW, and @(x12) = Y(x10).
If yi yu€R, and yi, yn €Ny, then y = (y,;) € Ny, whence

a = yuyi + yuyu € M, W, and ¢(a) = Y(a).
In particular, for yy = Y12 =0, yn =ue N,, Yoo =veR,, We obtain
1) ueMN,, veRN, = u*veM, nM, and o(u*v) = Y(u*v).
If we make u run over an approximate unit fo 9, it follows that R,<
<, NM,”, hence (M, NW,)* is a w-dense face of M+ (see Sections 3.20,3.21).
If ae (WM, NM,)*, then a'Ze N, NN, and, by applying the relation (1), in which
we make y = v = a2, we deduce that
ae WM, N M, = ¢(a) = Y(a).

On the other hand, from the hypothesis it easily follows that the weights ¢ and ¥
commute. Thus, if we now apply the above proposition, we obtain ¢ = /8
By using the fact (e;2)* = ea, it is easy to prove that

Do Dy ]-‘
—_—H=|—0 , telR.
o) (2 ®
Also, if @, @2, @, are faithful, semifinite, normal weights on A+, then
Doy Dos .~ Doy
0= @®- (), teR.
Do, Do Do,
Indeed, let {e;, i,j = 1,2, 3} be the matrix units in Maty(#), and let @ be the
weight on Maty(#)*, given by : :
o(x) = @2(x11) + Pa(x22) + 04(X33), x = (xyp)-

The foregoing equality then follows by an argument similar to that used in the

proof of Theorem 10.28, by taking into account the fact that ey, = eg9€s:.
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Let ¢ be a faithful, semifinite, normal weight on *, and let A be a positive
self-adjoint operator in 2, which is affiliated to AMF; we denote €, = X, ,,)(A).

One defines a semifinite, normal weight ¢w on A by the relations

0 ,(%) = lim ¢((4e,)"? x(4e,)'?), x eMt.

If s(4) = 1, then @ is faithful and
‘ o7 = Aitgf(x)A-%, teR, xedl.

For the proofs we refer the reader to G. K. Pedersen and M. T. Takesaki ([2], § 4)
We define on Mat,(#)* two weights 7 and @ by the relations

7(a) = ¢(an) + ¢ (a), a= (ay),
w(a) = ¢(ay) + (@), a = (ay).

Then T = wg, Where B= (l 0); hence
04

o%(x) = B"op’(x)B~ ir te[R, xe&Maty(A).
In particular, if we make x = e, We obtain
Dou (y = 4, teR.
Do

From the preceding results we infer the following Radon-Nikodym type
theorem for weights, due to G. K. Pedersen and M. Takesaki ([2], Th. 5.12).

Theorem. Let ¢ and y be two faithful, semifinite, normal weights on the von Neumann
algebra M. If ¢ and y commute, then there exists a uniquely determined positive self-
adjoint operator A in 3, which is affiliated to M, such that s(4) = 1 and Y = @ 4.

Indeed, since ¢ and y commute, from the proof of Corollary 10.28 we infer

that oy ) is a so-continuous group of unitary operators in #g. From the

14 R . .0 -
Stone theorem ('seee 9.20) we infer that there existsa positive self-adjoint operator
A in 2, such that s(4) =1 and

DY (=4, teR.

Do
In accordance with exercise E.9.25, 4 is affiliated to g; hence we can define the
weight ¢, and we have

Doa (5 = 4¥, teR.
Do :
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Thus,

Doy py — DPa y PO (i — gircgity1 — .
Dy ® Do ® Dn//(t) A (49 1, telR;

Consequently, we have
V=0,

The uniqueness of the operator 4 immediately follows from the uniqueness of the
analytic generator in Stone’s theorem®).

It is obvious that any weight commutes with any trace; hence, the theorem
of I. E. Segal and L. Pukanszky, we have stated in section C.10.2, is a parti-
cular case of the theorem of G. K. Pedersen and M. Takesaki.

For a faithful, semifinite, normal weight ¢ on .#*, {of},eR is the only group
of *-automorphisms of .#, with respect to which ¢ satlsﬁes the KMS-conditions
(see Section 10.17). Consequently, if ¢ is another faithful, semifinite, normal
welght which satisfies the KMS-conditions with respect to {a?’},em, then of =
= g%, te [R. We hence infer that ¢ and ¥ commute; hence, in accordance with
the above theorem, there exists a positive self-adjoint operator 4 in 5, which is
affiliated to ., such that s(4) =1 and ¥ = ¢ . Since

o?(x) = 0¥(x) = o{*(x) = A*eP(x)A~", xe,

it follows that Ai* belongs to the center & of #, for any te [R hence A is affiliated
to #. We thus obtain the following

Corollary 1. Let ¢ and  be faithful, semifinite, normaI weights on ./{“ The
Jollowing assertions are then equivalent:

(i) ¥ satisfies the (KMS)-condmon wzth respect to {07} sers
(ii) of = of, teR; :
(iii) there exists a positive self-adjoint operator A in 3¢, which is affiliated to %,
such that s(A)=1 and Y = ¢,.
The assertions in this corollary are true, for example, if ¢ and ¥ are faithful
semifinite normal traces on *; if, moreover, Y < ¢, then 42,0 < A <L
In particular, we have the following

Corollary 2. Let # be a factor and @, Y two semifinite normal traces on M*. Then
there exists a A >0 such that = Ao.

Indeed, the corollary follows from the facts that the support of a trace is
a central projection and @ -+ is also a semifinite normal trace, whereas p<@ -+,
¥ <o+, etc.

*) This method if proving the theorem of G. K. Pedersen and M. Takesaki was commﬁ-
nicated to us by Gr. Arsene. In a recent paper, G. A. Elliott [15] glves a yet simpler proof,
and also indicates technical simplifications for the proofs of the results in Sections 10.18, 10.27
and 10.28.
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The preceding results concerning the traces have direct and simpler proofs
(see J. Dixmier [26], Ch. L, §6.4). For finite traces they can easily be obtained
from the Radon-Nikodym type theorem of Sakai (see E.7.14).

The problem now arises whether the theorem in this section can be extended
for weights which do not commute. Theorem 10.10 is such an extension for the
case in which ¢ and ¥ are normal forms. In the article of G. K. Pedersen and
M. Takesaki [2] another partial extension is given (loc. cit., Prop. 7.6), as well as
a negative result (loc. cit., Prop. 7.7).

“Another theorem of the Radon-Nikodym type, for weights, was obtained by
,(&. van Daele [5], who generalized a theorem of S. Sakai for normal forms
see C.5.5). ' '

C.10.5. Let ¢ and i be faithful normal forms on the von Neumann algebra.# < #(5¢).
We recall that by |¢ 4 iy/| we denote the modulus of the w-continuous linear form
¢ -+ iy, in accordance with Theorem 5.16. M. Takesaki ({18}, Th. 15.2) and
R H. Herman and M. Takesaki ([1], Th. 1, Th. 2) proved the following results:

Proposition 1. The following assertions are equivalent:
(i) ¢ and ¥ commute;
(i) {of} and {o¥} commute: of°0] = o¥oof, t,5€R;

(iii) lo + i) = lp —i¥l-

Proposition 2. If ‘1 is a s-automorphism of M, which acts identically on the center,
then the following assertions are equivalent:
(i) @ is m-invariant: @om = @; )

(ii) = commutes with {of}: noof =ofom, telR.

The proofs of these propositions can also be found in the course of M. Take-
saki ([17], 15.14—15.18).

Let now ¢ and ¥ be faithful, semifinite, normal weights on .#*, The problem
now arises whether the equivalences (i) <> (ii) in the two propositions remain
true. If 7 is an arbitrary s-automorphism of #, then, with the help of the KMS-
conditions, it is easy to prove that '

" =n"toofom, teR.

Thus it is obvious that the implications (i) = (ii) in both propositions remain true
for weights, too. Nevertheless, the converse implications are not true, in general,
as G. K. Pedersen and M. Takesaki have shown ([2], Prop. 5.11). In the presence
of some additional hypotheses; the equivalence (i) <> (ii) from Proposition 1 retains
its validity for weights, too (see G. K. Pedersen and M. Takesaki [2], Lemma 5.8,
Prop. 6.1, Cor. 6.4, Th. 6.6). We also mention that from condition (ii) (in Pro-
position 2), it follows that the weight @ -+ ¥ is semifinite (in accordance with loc.cit.,

Prop. 5.10). .
Let us now assume that @ and ¥ are faithful forms on the hyperstandard

von Neumann algebra 4 = #(F) and that < @. On the one hand we have
the “derivative” %—— , introduced in Section 10.25, on the other hand we have
SR ®
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the “derivative” given by the theorem of Sakai (5.21). It is obvious that the two
“derivatives” coincide iff ﬂ = 0. One can prove the following result (see
H. Araki [27], Th. 13):

Proposition 3. The following assertions are equivalent:

O ()
(i) E/j—;o
(iif) af(§Z)=%ﬁ-, teR;

(iv) ¥ and ¢ commute.

C.10.6. The problem of the continuous dependence of the group {af} of modular
automorphisms with respect to the faithful normal form ¢ has been solved by
A. Connes ([3], Th. 1) by the following

Theorem. Let @,, ¢ be faithful normal forms on the von Neumann algebra.//
If |¢s — @l = O, then

of"(x)ﬁa;’(x), telR, xed,

and the convergence is uniform with respect to t, for |t| < t,

A proof of this theorem, based on the methods developed in Sections 10.23—
10.25, can be found in H. Araki ({27], Th. 10). See also A. Connes[26]for another
result of this kind.

C.10.7. One calls a modular Hilbert algebra (or a Tomita algebra) a complex algebra
with an involution &~ &¥, endowed also with a scalar product (-|:) and with a
group of algebra automorphisms {4(«)},e¢, depending ona complex parameter,
which satisfies axioms (i), (ii), (iii) from Section 10.1, and also the axioms:
V) (@)™ = A(— @)e¥, for any e, aeC;
(V) (4(@)¢ln) = (€l4(@)n), for any ¢, ned, ae C;
(VD) (4()E*I1n*) = (1l&), for any &1 e s
(VII) € 3 a— (4(x)¢|n) e € is an entire analytic function, for any &, e QI'
(VIID) (1 + 4())YU is dense in U, for any te [R.
It is easy to see that the Tomita algebra, associated to a left Hilbert algebra,
is, in a natural manner, a modular Hilbert algebra, with
4) = 4%, aeC.

Let now U be a modular Hilbert algebra and »# the Hilbert space obtained
by the completion of UA. From axiom (V) one infers that A(if) is an isometric
mapping; hence, by denoting by u, the closure of A(if), we obtain a one-parameter
group {u,},er of unitary operators on 3. In accordance with the Stone theorem,
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there exists a positive self-adjoint operator 4 in 3, such that s(4) = 1 and u, =
= A*, te[R. One can then prove that )

A® is the closure of 4(x), ae C.

The operator 4 is called the modular operator associated to the modular Hilbert
algebra U. For any te[R, the mapping

Uslmr AH Y

is an involution in 21, which is compatible with its algebra structure. It is easy to
prove that the involution corresponding to t = 1/2 extends to a conjugation J
of 2#, called the canonical conjugation associated to the modular Hilbert algebra .

.

On the other hand, the involution correspondingto t =1, i.e., 1+ nh = 4, is
called the adjoint involution and it has the property that

Elm = P 1EF), Ened.

Hence one can immediately infer that 2 also satisfies axiom (iv) from Section 10.1,
hence U is a left Hilbert algebra. 1t is easy to prove that 4 and J are associated
to the structure of a left Hilbert algebra of U, as in Section 10.1, i.e., S = JA4'%,
For details we refer to M. Takesaki ([17], [18]).

The modular Hilbert algebras are a useful tool for the computations (see,
for example, M. Takesaki [33]).

C.10.8. Bibliographical comments. In Sections 10.1—10.6, which contain the ‘“‘ele-
mentary” part of the Tomita theory, we followed the lessons of M. Takesaki [18],
but the systematic use of Proposition 10.3, exhibited by A. van Daele ([4], Lemma 2.6)
allowed the simplification of the exposition given by M. Takesaki [18].

The commutation theorem for tensor products (10.7) has been known for along
time, for semifinite von Neumann algebras, and conjectured in general (J. Dixmier
[26], Ch. I, § 2.4, §6.9). S. Sakai [23] proved this theorem by assuming that only
one of the two von Neumann algebras is semifinite. The general case was obtained
by M. Tomita [10], [11], as a corollary of his main results. The direct proof we
presented here was obtained by I Cuculescu [5] and S. Sakai [32] (see, also,
M. Takesaki [24], and L. Zsid6 [1]). Recently, M. A. Rieffel and A. von Daele [
obtained a simple proof of another nature, which does not use the theory of un-
bounded operators. See also R. Rousseau, A. van Daele and L. van Heeswijck [1].

The cones Ps and P+ (§10.9) were introduced by M. Takesaki [18], for
the case A = .#&,, and by F. Perdrizet [4] in the general case. Lemma 10.9, which
is the main argument in the proof of the general Radon-Nikodym type theorem
for normal forms (10.10), is due to M. Takesaki [18]. We mention that M. Takesaki
{18] also gives a new proof to the Radon-Nikodym type theorem of Sakai, which
is based on elementary results from the theory of Tomita.

Tomita’s fundamental theorem (10.12) allows the conclusion that any von
Neumann algebra is *-isomorphic to a standard von Neumann algebra (10.15),
a result which concludes a long series of efforts in the development of the operator
algebras theory, highlighted by the works of F. J. Murray and J. von Neumann [1],
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[2], H. A. Dye [1], I. E. Segal [11], J. Dixmier [19], L. Pukanszky [3], M. Tomita
[8], and others (see C.10.2). The proof of Theorem 10.12, given in the text, is due
to A. van Daele [4] and it is different and simpler than the proofs given by M. To-
mita, in [10], and by M. Takesaki, in [18]. Another proof, given by L. Zsid6 [6],
is indicated in exercise E.10.13*).

The culminating point in Tomita’s theory, and the main technical instrument
for handling the left Hilbert algebras, is the theorem on the existence of the Tomita
algebra (10.20). For the exposition given in Sections 10.19—10.21 we developed
the ideas from the article of L. Zsid6 [6], thé analytic continuation methods we
use (Sections 9.15, 9.24) originating in the article by G. K. Pedersen and M. Take-
saki [2], which also suggested to us a part of the criterion 10.21. The proof of
Theorem 10.20, thus obtained, is different from that given by M. Takesaki in [18].
The algebra S (Section 10.22) was first considered by L. ZsidS [6].

The weights were introduced by F. Combes [7] and G. K. Pedersen [1], whereas
the link existing between the weights and the left Hilbert algebras was established
by F. Combes [10] and M. Tomita [10]. For the exposition given by us in Sections
10.16 and 10.18 we used the articles by F. Combes [10], G. K. Pedersen and M. Take-
saki [2], as well as the course by M. Takesaki [17].

The KMS-condition originates in theoretical physics, and it was framed into
the theory of operator algebras by R. Haag, N. M. Hugenholtz and M. Winnink
[1], who showed that, given a C*-algebra, endowed with a one-parameter group
of »-automorphisms, the cyclic representation associated to a positive form, which
satisfies the KMS-condition, is standard. Another application of the KMS-condi-
tions was given by N. M. Hugenholtz [1]. These papers appeared at the same
time as M. Tomita’s papers [10], [11] whereas M. Takesaki ([18], § 13) found the
deep link between the Tomita theory and the KMS-condition, by proving Theorem
10.17 for the case of the faithful normal forms. Subsequently, F. Combes [12] and
M. Takesaki ([17], Th. 14.6) proved a variant of Theorem 10.17 for the case of
the weights. The KMS-condition for weights is similar to the condition ¢(xy) =
= @(yx), which is characteristic of the traces. For various results on the KMS-
condition, we refer to: H. Araki [8], H. Araki and" H. Miyata [1], F. Combes
[10}, [12], N. M. Hugenholtz [2], O. Bratteli, A. Kishimoto and D. W. Robinson
(1], D. W. Robinson [3}, F. Rocca, M. Sirugue and D. Testard [1], [4], M. Sirugue
and M. Winnink {1], (2], [3], M. Takesaki [17], [18], [19], [26], [27], M. Winnink [2].
We also mention the works which gave a name to the KMS-condition: R. Kubo,
J. Phys. Soc. Japan, 12 (1957), p. 570, and P. C. Martin, J. Schwinger, Phys.
Rev., 115 (1959), p. 1342.

The results in Section 10.27 are due to G.K. Pedersen and M. Takesaki-
({2], § 3), whereas Theorem 10.28 is due to A. Connes [4], [6]. In our exposition
we have used these sources.

The characterization of the semifinite von Neumann algebras in terms of
the group of the modular automorphisms (Section 10.29) was obtained by M. Take-
saki ([18], § 14) by a very intricate proof. A simpler proof was given by G. K. Pe-

*) In the case A = A%, A. van Daele [3] gwes for Proposmon 10.11 a proof similar
to the proof of Sakai’s theorem, mennoned in C.5.5
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dersen and M. Takesaki ([2], Th. 7.4), on the basis of their theorem of the Radon-
Nikodym type for weights (see C.10.4). The proof given in our text does not expli-
citly use this theorem, but the theorem of A. Connes.

The results in Sections 10.23—10.26 are from H. Araki [27], A. Connes 4l
{7] and U. Haagerup [2]. In our exposition we followed the preprint of U. Haagerup
[2]. The sets P, (E.10.18) were introduced by H. Araki [27], [28], who also proved
Radon-Nikodym type theorems relatively to these sets. A. Connes [7] found a
characterization of the von Neumann algebras as ordered vector spaces, thus giving
an answer to a problem posed by S. Sakai [4]. U. Haagerup [2] made a comprehen-
sive study of the hyperstandard von Neumann algebras.

One of the most important applications of Tomita’s theory concerns the classi-
fication of the factors of type IIL In this direction we mention the wealth and depth
of the results obtained by A. Connes [1—13], [19], [23], [24], [26). Other im-
portant results were obtained by M. Takesaki [28], [29] and E. Stérmer [15], [20].

A remarkable application of Tomita’s theory to the structure of type I
von Neumann algebras was found by M. Takesaki [30], [31), [32], [33], who showed
that any type III von Neumann algebra is, in a unique manner, the cross-product
of a type Il von Neumann algebrabya one-parameter group of s-automorphisms.
Particular cases of this theorem were previously proved by A. Connes [6] and
M. Takesaki [28], [29].

For other results and applications concerning the Tomita theory we refer
the reader to the Proceedings of some recent International Conferences on
Operator Algebras such as: C*-algebras and their applications to statistical
mechanics and quantum field theory, North-Holland, 1976; Symposia Mathe-
matica, vol. XX, Academic Press, 1975; Operator Algebras and their Applica-
tions to Mathematical Physics (Conference held in Marseille, June, 1977; the
book, edited by CNRS, is in preparation). ‘
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Appendix

Fixed point theorems

In this Appendix we shall prove Ryll-Nardzewski’s fixed point theorem, which we
used in Chapter 7.

A.1. Let ¥ be a vector space and A" < & a convex set. A mapping T : X — X
is said to be affine if for any x;, x; € X and any A€ [0, 1] we have

Ty + (1 — A xg) = AT(x) + (1 = HT(xo)-

Lemma (Markov-Kakutani). Let & be a Hausdorff topological vector space, A&
a non-empty, compact, convex subset and § a family of continuous, affine mappings
of A into A, which are mutually commuting. Then there exists an Xo€ X, such

that
Txo =X T€T.

Proof. For any T €& and any patural number n we write
1
r= — ([+T+... + 1Y),
n

The sets T,(»") are compact subsets of X". Forany TW, T®, ..., T® e& and any
natural numbers 7 ,. . ., M We have

k
T, ... T*), K <) TN
i-1

hence
k
Q (Tm)n'x' # @’
Consequently, there exists an
x0€MT, ()= X
TES
nemlN

Let now T e & be arbitrary. Since the set o —o is compact, for any neigh-
bourhood % of the origin, there exists a natural number n, such that

Lir—aca.
n
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Since xq € T,(X'), there exists an x € 2", such that x, = T,x; consequently -
Txg — Xp = -l—(T"x—x)el(f—-.%’) <.
n , n

Since % is separated and % was an arbitrary neighbourhood of the origin,

Tx°=x°. QED

A2, Let p be a seminorm on the vector spaée Z. For any subset < & let us
denote

p-diam(&¥) = sup plx — »).
Lemma (Namioka-Asplund [1]). Let & be a Hausdorff locally convex vector space’

A < X a non-empty, separable, weakly compact, convex subset, p a continuous
seminorm on & and € > 0. Then there exists a closed convex subset ‘6 < &, such that

€ # A and p-diam (X' \ %) < ¢
Proof. Let ‘
U= {x; xeZ, p(x) < ¢/4}.

Since X" is separable, there exists a sequence {x,} = ", such that
-
A < U (x,+%).

We denote by & the weak closure of the set of all extreme points of ", Since &
is weakly compact, and the sets x; + % are weakly closed, from

€ c iL-Jl (xl +0”),

and by taking into account the theorem of Baire, we infer that there exists an index 7,
and a weakly open subset 2 < &, such that :

T #END < &0 (x;, + %).

Let 'y be the closed convex hull of &\ @ and 5", the closed convex hull of
46 N 2. From the Krein-Milman theorem, 5 is the convex hull of ', U of",. Since
the set &\ 2 is weakly compact, it contains all the extreme points of X" (by virtue
of the converse Milman theorem; see R. R. Phelps [1], Ch. 1). Since & n 9+,
it follows that ¢y # X, Obvxously,
p-diam(of,) < p-diam(x,, + %) < -;—
. We denote d = p-diam(2f") and we consider a number o, such that 0<é <
< min {1, ¢/4d}. The set - .

E={+ 0=y 1€, y26, <A <1},
is a closed convex subset of X .
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Let us assume that ¥ = X, Let x be an extreme point of 5. Then there
exist Y1 € A1, Yo € Kz, Ae[d, 1], such that
R x=)~y1+(l —A)yz.
If A =1, then x = y; if A <1, since x is extreme, it follows that x = y,= Y.
In both cases, x = y; € &';. Since X is an arbitrary extreme point of X, we obtain
A < Ay, thus contradicting the fact that X", # X
Consequently, € # A.
Since " is the convex hull of %"y U X"y, for any y € H\\¥ there exist y, € b 2
y2€ A a, A0, 8], such that
y=+ 0=y
Thus,
Py — y) = pOn — y2) € od.
Since p-diam() < /2, it follows that
‘ p-diam(H#"\ ¥) < 26d + g2 < e
Q.E.D.
A.3. Let & be alocally convex vector space, # <4 and 8 a semigroup of mappings

of & into &. One says that 8 is non-contracting if, for any x,y€ &, x # y, there
exists a continuous seminorm p on Z, such that

inf p(Tx — Ty) > O.
Te$

Theorem (Ryll-Nardzewski [1]). Let & be a Hausdorff locally convex vector space,
A = & a non-empty, weakly compact, convex subset and 8 a non-contracting
semigroup of weakly continuous affine mappings of X" into X. Then there exists
an x,€ A, such that

Txo = Xo» Te8.

Proof. Let Ty,..., T,€8 and let

To= —l-(T1+ see +T,,).
n

In accordance with Lemma A.1, there exists an xo € A, such that Toxo = Xo.
Let us assume that there exists an index i, 1 < i < n,suchthat Tyxo # Xo.

We can assume that
Tixo & Xo» forl<i<sm,

T Xo = Xo» for i > m.

If we denote To = -!- T+ .- + T WE have ToXo = Xo.
m
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" Since 8is non-contracting, there exists a contmuous seminorm p on % and
an & > 0, such that

Q) P(TTxyg — Txg) = 2e, Tes, 1<igsm

Let 8 be the subsemigroup. of &, 'generated by Ty,..., T, and let o, .

be the weakly closed convex hull of the set {Tx,; T € -o}. Obv10usly, Ay is a
nonempty, separable, weakly compact, convex subset of 2. In accordance with
Lemma A.2, there exists a closed convex subset o< ', such that €, and
p-diam(ot 0\%0) <e

Since Gy # Ay, there exists a S, € &, such that Syxo€ H# g\ ¥,. From the
equality Tgxo = x,, we infer that

SoXo = ; (SOT]:xo + “ee + SoT,,,xo).

Thus, there exists an index i,1 < i < n, such that S,T;x € g\ %,. Then
P(SoTixo — SoXo) < p-diam( A\ \%o) < &

and this contradicts the relation ().
Consequently, any finite subset of $ has a common fixed point. A familiar
compactness argument shows that § has a fixed point.

Q.E.D.
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. adjoint linear ~ (2.1, 9.2)
*antilinear ~ (9.35)
bounded linear ~ (2.1, 9.1)
closed linear ~ (9.1)
compact linear ~ (E.2.19)
densely defined linear ~ (9.1) :
linear ~ affiliated to a von Neumann algebra (9.7, E.9.25)
linear ~ (domain, equality, extension, graph, range, restriction of a ~) (9.1)
linear ~ summable with respect to a normal form (10.10) )
lower semi-bounded linear ~ (9.4)
,modular~associated to a left Hilbert algebra (10.1)
pormal linear ~ (2.5, 9.13)
positive linear ~ (2.9, 2.12, 9.4)
preclosed linear ~ (9.1)
self-adjoint linear ~ (2.5, 9.4)
symmetric linear ~ (9.4)
unitary linear ~ (2.24, 4.22)
upper semi-bounded linear ~ (9.4)
commuting linear ~ (E.9.20, E.9.23, E.9.249)
predual (1.11)
- product
cross ~ of von Neumann algebras (C.3.7)
tensor ~ of Hilbert spaces (2.33)
tensor ~ of linear operators (2.33, 9.33)
tensor ~ of von Neumann algebras (3.17)
projection (2.13) -
abelian ~ (E.4.11)
continuous ~ (E.4.11)
cyclic ~ (3.8)
final ~ of a partial isometry (2.13)
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finite ~ (4.8)
initial ~ of a partial 1sometry .13y
maximally cyclic ~ (E.8.1)
~ of countable type (4.13)
~ piecewise of countable type (7.2)
properly infinite ~ (4.8)
spectral ~ of a self-adjoint operator (E.2.17, E.9.10, E.9.13)
equivalent ~ (4.1)
radius
spectral ~ (2.3)
rule
parallelogram ~ (4.5)
scale
spectral ~ of a self-adjoint operator -(2.19, E 9.10)
set '
resolvent ~ of a linear operator (2.3, 9.26)
spectrum of a linear operator (2.3, 9.26)
subalgebra
left Hilbert ~ (10.4)
sum
direct ~ of von Neumann algebras (C.3.7)
support
central ~ of an element in a von Neumann algebra (3.9)
left ~ of a linear operator (2.13, 9.1)
right ~ of a linear operator (2 13, 9.1)
~ of a normal linear form (5.15)"
~ of a self-adjoint operator (2.13, 9.4)
~ of a trace (7.13)
symmetry (E.2.5)
theorem
comparison ~ (4.6)
coupling ~ (7.19)
density ~ of I. Kaplansky (3.10)
density ~ of J. von Neumann (3.2)
- fundamental ~ of M. Tomita (10.12)
Jordan type decomposition ~ for w-continuous forms (5.17)
Radon-Nikodym. type ~ of S. Sakai (5.21)
representation ~ of M. H. Stone (9.20)
Schroder-Bernstein type ~ of J. von Neumann (4.7)
- spectral ~ (2.19, E.9.10)
~ of A. Connes (10.18)
~of H. A. Dye (C.6.2)
~ of operational calculus for analytic functions (2.25)
~ of operational calculus for Borel function (2.20, 9.11)
~ of operational calculus for continuous functions (2.6)
~ of polar decomposition for linear operators (2.14, 9.29)
~ of polar decomposmon for w-continuous forms (5.16, E.5.10)
topology
strong operator (so-) ~ (1.3) .
s-topology (E 5.5)
s*-topology (C.5.1)
ultrastrong operator ~ (E.1.4)
ultraweak operator (w-) ~ (l 3, E.1.3, E.7.9, 8.17)
weak operator (wo-) ~ (1.3
T-topology (C.5.1)
trace :
. canonical central ~ on a finite von Neumann algebra (7.12)
canonical ~ on B(H) (E7.6)
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faithful ~ (7.13) .
finite ~ (7.13)
normal ~ (7.13)
semifinite ~ (7.13)
transform )
Cayley ~ (E 9.8)
transport by s-isomorphism (9.25)
uniformity of /£  (8.6)
unit
approximate ~ (3.20)
value
absolute ~ of a linear operator (2.14, 9.28)
eigen- ~ (E.2.20)
vector
cyclic ~ (3.8) .
eigen ~ (E.2.20)
- separating ~ (3.8)
totalizing ~ (3.8)
trace ~ (E.3.9)
weight (10.14)
faithful ~ (10.14)
normal ~ (10.14)
semifinite ~ (10.14)
~ associated to a left Hilbert algebra (10.16) i
~ invariant with respect to a group of s-automorphisms (10.17)
commuting ~ (10.28, C.10.5)
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