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Summary. The purpose of this paper is to show that the forgetful functors from the category of
compact convex sets to the category of compact spaces and to the category of sets are monadic
(Theorems 3 and 4). These results show that, roughly speaking, the structure of a compact convex
set is (in some sense) algebraic. On the other hand, it turns out that the forgetful functor from the
category of convex sets to the category of sets is not monadic (Theorem 2), hence the convex structure
on a set is not an algebraic structure. Theorem 1 gives some sufficient conditions for a functor
to be monadic; this result is used in the proof of Theorem 3.

1. Let A be a category. A monad (=triple, cf. [2,4) T=(T, %, 1) on A is a co-
variant functor T: A— with two natural transformations n:Iy—=T and u:T?*->T
satisfying the following conditions: T(a)=pa pira and g Rpa=1p,= i, T (n.4)
for each object 4 in U. A T-algebra is a pair (4, a) where a: TA— A is a morphism
in Wsuch that aT (@)=au, and an,=1,. A morphism f* : (4, a)—(4’, a’) of T-algebras
is a triple (£, a, a') where f: A=A’ is any %-morphism such that fa=a’ T(f). AT
will denote the category of T-algebras and their morphisms.

Let ¥: B-U be a functor having a left adjoint @: A—B with front and back
adjunctions #: Iy—¥®, p: @¥—1Iy. In this situation, one obtains a monad T=
=(¥®, 1, ¥po) on A and a canonical comparison functor @: B~ defined by
OB=(¥B, ¥p;), Of=(¥p, ¥ps, ¥py) for B:B-B' in B.

A functor ¥: 89U is monadic (=tripleable) if it has a left adjoint and the
corresponding comparison functor @ is an equivalence of categories. A category B
is monadic over U if there exists a monadic functor ¥: B—9L.

For unexplained terms and notation we refer the reader to [2, 4, 7].

We shall use the following strengthened version of a well-known theorem of
Linton [1] (Linton has proved the theorem under an additional assumption that
any epimorphism in % is a retraction in %):

THEOREM 1. Let a category U have kernel pairs of retractions, and let a category
B have kernel pairs and coequalizers. Let ¥': 8- be a Junctor having a left adjoint. If
() for every morphism fin B, f isa coequalizer if and only if ¥Yf is a coequa-
lizer,
[39]
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(i) for every parallel pair (f,g) in B,(f,g) is a kernel pair if (and only if)
(¥f, ¥g) is a kernel pair,
then the comparison functor @: B-UT is an equivalence of categories.

The proof is omitted.

2. By a vector space we shall always mean a real vector space. Let E and E’
be vector spaces. Let K= E and K’<E’ be convex sets. A map f: K—K’ is affine if it
preserves the convex combinations, ie., f (sx+(1—=8) Y)=sf()+U~9)f (y) for
X,y in K, 0<s<1.

Conv is the category of convex sets and affine maps.

‘THEOREM 2. The category Conv is not monadic over Ens.

Proof. Let B={xe R:0<x<1}, and let A={(x,3):0<x<1 & O<y<i}u
U {0, 0} U {(1, 1)}. We shall consider the maps 7, %,: A—Bdefined by 7, (x, y)=x,
7z (%, y)=y for (x, y) in A. n, and =, are morphisms in Conv, and (n,, 7,) is an
equivalence relation in Conv, ie., for every object K of Conv, ({KX, 1) Conys
<K, T3> conv) is a kernel pair in Ens (cf. [7], 10.2.3).

Let g be a coequalizer of (n;, 7,) in Conv. It is clear that g is a constant map.
'We shall show that (n,, n,) is not a kernel pair of g in Conv. Indeed, let p,, p,: Bx B—
— B be the canonical projections. Of course, they are morphisms in Conv. We have
then gp, =gp,, but there is no morphism /4 in Conv such that nh=p, and w,h=p,.
Hence (n,, #,) is not a kernel pair of g. Since (n;, m,) is not a kernel pair of its
coequalizer, it is not a kernel pair in Conv.

For every right adjoint functor ¥: Conv—Ens the pair (¥r;, ¥n,) is a kernel
pair in Ens. Thus, by Linton’s Theorem ([1], Theorem 3), Conv is not monadic
over Ens.

In particular, the forgetful functor [J: Conv—Ens is not monadic (cf. [7],
23.5.6).

3. By a compact convex set we shall mean a compact convex subset of a locally
«convex Hausdorff space.

Compconv is the category of compact convex sets and continuous affine maps.

The forgetful functor [J: Compconv—>Comp has a left adjoint o: Comp —
—Compconv, where o§(X) is the set of all probability measures on the compact
space X. Composing < with the Stone—Cech functor B (restricted to discrete
spaces) we get a functor &S o B: Ens — Compconv which assigns to each set X the
free compact convex set ¢ (X0 )) generated by X. o B is a left adjoint of the
forgetful functor [J: Compconv—Ens (cf. [7], 23.7.2).

LEMMA 1. 4 morphism f in Compconv or Comp is a coequalizer if and only
If it is a surjection.

LEMMA 2. Let []: Compconv—Comp be the Jorgetful functor, and let f,, f,: A—B

be morphisms in Compconv. If (Of;, 0Uf,) is a kernel pair in Comp, then (fy, f2)
Is a kernel pair in Compconv.



Monadic Functors and Convexity 41

Proof. Let f: B—C be a coequalizer of (f3, f3) in Comp. Thus (f;, 1) is a kernel
pair of fin Comp. B is a compact convex subset of a locally convex Hausdorff space
(E, v). We can assume that 0 € B and E=span B.

Let M={x € E: there exist b;, b, in B and ¢ in R such that S(b)=f(b,) and
x=1 (b, —b,)}. It can be proved that M is a linear subspace of E. It can be also
shown that f'(b,)=f (b,) if and only if b, —~ b, € M (the proof of these facts is omitted).
Consequently, for every x in E the set (x+M)N B is empty or is an inverse image
of a one-point set; hence it is compact.

The sets B—B and (B—B) NM are compact. Indeed, the map g: BxB—-B—B
defined by g (b, b'")=b"—b"’ for (b', b"") in Bx B is a continuous surjection. (The
topologies in B and B—B are induced by 7 and the topology in Bx B is the product
topology.) Hence B—B is compact and g is a closed map. Therefore it is enough
to prove that

D=g=!'((B—B)n M)

is a closed subset of Bx B. Let (b’, b'’) be an element of the closure of D. For every
neighbourhood U of zero in E the set

W=[('+U)NBIx[(b" + U) N B]

is a neighbourhood of (b’, 5’’) in BxB. Thus there exists (b1, by) in W ND. But
the condition (by, b,) € D is equivalent to f(b,)=f(b,). Hence f ®d)=F(@®'") and
b, b'")eD.

It is easy to see that the set K=B— B is absolutely convex, absorbing and compact
in (E, 7). Let ||-|lx be the Minkowski functional of K. Then (E, [l+llx) is a Banach
space. Moreover, there exists a Banach space (F,|-|) such that (E, Illg) 1is
isometrically isomorphic to the conjugate of (F, ||-|]). (Cf. [5], 13.6 and [8], Proposition
1). Of course (E, o (E, F)) is a locally convex Hausdorff space. The topologies 7 and
o (E, F) coincide on K (and consequently on B). Since M N K is compact in (E, 7)
it is compact in (E, o(E, F)). Hence by the well-known Krein—Smulan theorem
(cf. [3], IV.6.3) M is o (E, F)-closed.

Let u be the quotient topology on E/M determined by o (E, F). Then (E/M, )
is a locally convex Hausdorff space. Let n: E~E/M be the quotient map. Then
the map

p: B—n(B)

defined by p (b)=x () for b in B is a Compconv-morphism. It follows immediately
from the definition of p that there exists a unique homeomorphism (Comp-iso-
morphism) k: w (B)—~C such that f=hp. We shall show that (f,,f,) is a kernel pair
of p in Compconv. Let (g4, g,) be a parallel pair in Compconv such that DE1=Dg2,
i.e., fg1=/2,. Hence there exists a unique morphism # in Comp such that fiu=g,
and fou=g,. Simple verification shows that u is an affine map, i.e., it is a morphism
in Compconv. This completes the proof of Lemma 2.

THEOREM 3. The forgetful functor [J: Compconv—Comp is monadic.
The Theorem immediately follows from Lemmas 1 and 2 and Theorem 1.
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THEOREM 4. The forgetful functor [1: Compconv—Ens is monadic.

Proof. The functor [J: Compconv—Ens is the composition of the forgetful
functors [J,: Compconv—Comp and [J,: Comp—Ens. It is well known that the
functor [, is monadic (cf. [2], VI.9). Hence by the Linton theorem ([1], Theorem 3).
[J, satisfies conditions (i) and (ii) of Theorem 1. Therefore the functor
[J: Compconv—~Ens satisfies these conditions and consequently, by Theorem 1,
is monadic.

4. It is not difficult to prove that the forgetful functor [1: Compsaks— Compconv
(cf. [6]) satisfies conditions (i) and (ii) of Theorem 1 and consequently is monadic.
Similar arguments as in the proof of Theorem 4 show that the forgetful functors

[J: Compsaks—Comp

[0J: Compsaks—Conv

[d: Compsaks—Ens ®
O: Compconv—Conv

are also monadic.
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T. Creupm, Monagmueckne (GYHKTOPBI B TOpHE BBETYKIOCTH

Copepxanme. B macTosmeit pa6ore mpusoguTCs HAOKas3aTENECTBO, YTO HmpeHeGperaromue (yEKTO-
PEL M3 KaTETOPAM KOMIAKTHEIX BEIIYKIBIX MHOKECTB B KaTeropui0 KOMITAKTHEIX LOPOCTPAHCTB
¥ B XaTCrOpMro MHOXECTB — MOHafmieckue. J{okasbmpaercs TaKKe, YTO KATCPOTHR BEITYKIBIX
MHOXECTB HE MOHA[WYECKAS Haf, KaTeropmell MHOJKECTS.



