ON INTEGRATION THEORY FOR SPACES IN SPECTRAL DUALITY Oleg Tihonov

In this notes some aspects of non-commutative integration are generalized onto the spaces in spectral duality which have been introduced by Alfsen and Shultz $\lceil 2 \rceil$.

Henceforth we shall assume that (V,K) is a base-norm space and (A,e) is the dual order-unit space (see [1]). Let $\underline{\mathbf{x}} = \{\mathbf{x}_E\}$ be an A^+ -valued measure on a measurable space (Ω,A) which is \mathcal{E} -additive in \mathbf{w}^* -topology and $\mathbf{x}_{\Omega} = e$. Let $\mathbf{f} \colon \Omega \to \mathcal{R}$ be a bounded measurable function. Then we can define the element $I(\mathbf{x},\mathbf{f}) \in A$ by the equality

$$\langle I(\underline{x},f), \rho \rangle = \int_{\Omega} f \, d\langle \underline{x}, \rho \rangle \qquad (\rho \in K).$$

The central place in Alfsen and Shultz non-commutative spectral theory belongs to the P-projection notion [2]. We shall not give the exact definition of P-projection here and only remark that if A is a self-adjoint part of von Neumann algebra M, then every P-projection P on A is of the form Pa=pap for a projection $p \in M$. We denote the set of P-projections on A by $\mathcal P$ and $\mathcal U=\{\text{Pe: P}\in\mathcal P\}$. Assume next that the spaces (V,K) and (A,e) are in spectral duality [2]. Then $\mathcal P$ is an orthomodular lattice and for every $a \in A$ there exists the unique $\mathcal U$ -valued measure p^a (spectral measure) on the Borel $\mathcal E$ -algebra on $\mathcal E$ (a) spectrum of a — such that $p^a_{\mathcal E}(a)=e$ and $a=I(p^a,\gamma)$ where $\gamma(\lambda)=\lambda$ for $\lambda\in\mathcal E$ (a). Moreover, the map $\gamma\mapsto \gamma(a)=I(p^a,\gamma)$ for the bounded Borel functions γ on $\mathcal E$ (a) satisfies the usual properties of the functional calculus.

Next we concider some inequalities for a faithfull trace \mathcal{T} (i.e. the element of K such that $(P+P^*)^*\mathcal{T}=\mathcal{T}$ for any $P\in\mathcal{P}$ and $\langle a,\mathcal{T}\rangle>0$ for $a\in A^+$, $a\neq 0$) and convex continuous function $\varphi\colon [\mathcal{L},\beta]\mapsto R$ ($\mathcal{L},\beta\in R$).

Theorem 1. If a function
$$f: \Omega \mapsto [\lambda, \beta]$$
 is measurable, then $\langle \varphi(I(\mathbf{x}, \mathbf{f})), \tau \rangle \in \langle I(\mathbf{x}, \varphi \circ \mathbf{f}), \tau \rangle$. (*)

The crucial point in the proof of this theorem is the following fact which has been proved in von Neumann algebra case by Sherstnev ([3], prop. 12).

Lemma 2. For a & A

$$(|a|,7) = \inf \{(a_1+a_2,7) : a_1, a_2 \in A; a=a_1-a_2\}$$
.

From this result it is easy to show that the equality (*) is fulfiled for any convex piecewise linear function φ and then for any convex function.

Proposition 3. If $a \in A$, $G(a) \subset [a, B]$, then

$$\langle \psi(a), \tau \rangle = \inf \sum \psi(\lambda_i) \langle x_i, \tau \rangle$$
,

where inf is taken over all representations of a as a finite sum a= $\sum \lambda_i x_i$ with $x_i \in A^+$, $\sum x_i = e$ and $\lambda_i \in [\alpha, \beta]$.

Theorem 4. Let (W,K_w) and (B,e_b) be a base-norm space and an order-unit space in spectral duality, $\mathcal{T}_i \colon B \mapsto A$ be positive linear maps, $b_i \in B$, $\mathcal{L}(b_i) \subset [\mathcal{L},\mathcal{L}]$ (i=1,2) and either a) $\mathcal{T}_I(e_b) + \mathcal{T}_2(e_b) = e$ or b) $\mathcal{T}_I(e_b) + \mathcal{T}_2(e_b) \leq e$, $0 \in [\mathcal{L},\mathcal{L}]$, $\varphi(0) \leq 0$ is held. Then

$$\langle \mathcal{T}_{l}(\varphi(\mathfrak{b}_{1})) + \mathcal{T}_{2}(\varphi(\mathfrak{b}_{2})), \mathcal{T} \rangle \geq \langle \varphi(\mathcal{T}_{l}(\mathfrak{b}_{l}) + \mathcal{T}_{2}(\mathfrak{b}_{2})), \mathcal{T} \rangle .$$

Corollary 5. Let $P \in \mathcal{P}$, $O \in [3, \beta]$, $\varphi(0) \le 0$, $a \in A$ and $\varphi(a) \subset [3, \beta]$. Then

·
$$\langle P \varphi(a), \mathcal{T} \rangle \geqslant \langle \varphi(Pa), \mathcal{T} \rangle$$
.

Corollary 6. Let $a_i \in A$, $G(a_i) \subset [A, B]$ (i=1,2), $0 \le A \le I$. Then

$$\langle \varphi(\mathcal{H} \mathbf{a}_1 + (1 - \mathcal{H}) \mathbf{a}_2), \tau \rangle \leq \mathcal{H} \langle \varphi(\mathbf{a}_1), \tau \rangle + (1 - \mathcal{H}) \langle \varphi(\mathbf{a}_2), \tau \rangle.$$

Corollary 7. For $1 \le p \le \infty$ the function

$$a \mapsto \langle |a|^p, 7 \rangle^{1/p} = \left[\int |\lambda|^p d \left(\underline{p}^a, \overline{\iota} \right) \right]^{1/p}$$

is the norm on A .

Our next aim is to give the representation of the completions of A in the introduced norms (we shall denote these completions by $\mathrm{L_p}(\ \mathcal{C}\)$).

We define $J_{\tau} = \{ \rho \in V : \exists \lambda \ge 0 \ (-\lambda \tau \le \rho \le \lambda \tau) \}$, $K_{\tau} = J_{\tau} \cap K$ and introduce norms on $J_{\tau} :$

 $\|\rho\|_{p} = \inf \left\{ \left[\sum_{i} |u_{i}|^{p} \langle e, \rho_{i} \rangle \right]^{1/p} \right. \qquad (1 \leq p < \infty),$ where inf is taken over all representations of ρ as a finite sum $\rho = \sum_{i} \mu_{i} \rho_{i}$ with $\rho_{i} \in V^{+}$, $\sum_{i} \rho_{i} = \widehat{\tau}$, $\mu_{i} \in \mathbb{R}$ and

$$\| \mathcal{O} \|_{\infty} = \inf \{ \lambda \ge 0 : -\lambda \mathcal{I} \le \mathcal{O} \le \lambda \mathcal{I} \}$$

Theorem 8. For $l \leq p < \infty$ and $a \in A$

$$\|\mathbf{a}\|_{\mathbf{p}} = \sup \left\{ |\langle \mathbf{a}, \rho \rangle| : \rho \in J_7, \|\rho\|_{\mathbf{q}} \le 1 \right\},$$
 where $\mathbf{p}^{-1} + \mathbf{q}^{-1} = 1$ for $\mathbf{p} > 1$ and $\mathbf{q} = \infty$ for $\mathbf{p} = 1$.

In the proof of this theorem we essentially use the following lemma;

Lemma 9. If P_1, \ldots, P_n are mutually orthogonal P-projections, then $(P_1 \vee \ldots \vee P_n)^* \overline{\iota} = (P_1 + \ldots + P_n)^* \overline{\iota}$.

Corollary 10. Let

$$\hat{a}(\rho) = \lim_{n \to \infty} \langle a_n, \rho \rangle$$

for $\|.\|_p$ -fundamental sequence $\{a_n\}$ in A. Then this formula defines correctly the injection of $L_p(\mathcal{T})$ into the space of linear functions on $J_{\mathcal{T}}$. Moreover,

 $\lim_{n\to\infty}\|\mathbf{a}_n\|_p=\sup\left\{|\widehat{\mathbf{a}}(\rho)|\colon \rho\,\epsilon\,\mathbf{J}_7\;,\;\|\rho\|_q\,\epsilon\,\mathbf{1}\right\}.$ Thus $\mathbf{L}_p(\mathcal{T})$ can be represented as a space of linear functions on $\mathbf{J}_{\mathcal{T}}$. As $\mathbf{J}_{\mathcal{T}}$ is linearly generated by $\mathbf{K}_{\mathcal{T}}$, then $\mathbf{L}_p(\mathcal{T})$ can be represented also as a space of affine functions on $\mathbf{K}_{\mathcal{T}}$.

Next we shall observe some order properties of the introduced spaces considering the order in $L_p(\ \overline{\iota}\)$ induced by the last representation.

Theorem 11. a) $J_{\tilde{c}}^+$ is w*-dence subcone of V + and hence it is dense in norm topology.

b) $L_p(\mathcal{T})^+$ is the closed generating cone of $L_p(\mathcal{T})$, $L_p(\mathcal{T})^+ n A = A^+$ and the closure of A^+ in $L_I(\mathcal{T})$ is equal to $L_I(\mathcal{T})^+$.

The following example shows that the properties of considered spaces may be quite different from those in von Neumann algebra case.

Example. Let X be an ordinary L_r -space $(1 < r < \infty)$, X be its unit ball, $V = \mathcal{R} \oplus X$, $K = 1 \oplus X$, $Y = L_s$ $(r^{-1} + s^{-1} = 1)$, $A = \mathcal{R} \oplus Y$, $A^+ = \left\{ (\mu, y) : \mu \geqslant \|y\| \right\}$, e = (1, 0). Then (V, K) and (A, e) are base-norm space and order-unit space in spectral duality [2] and $A = V^*$. The element $\mathcal{T} = (1, 0)$ in K is a faithful trace, the space $L_p(\mathcal{T})$ $(1 \le p < \infty)$ is $\mathcal{R} \oplus Y$ provided with the norm $\|(\mu, y)\|_p = \left[\frac{1}{2} |\mu + \|y\||^p + \frac{1}{2} |\mu - \|y\||^p\right]^{1/p}$ and the dual space $L_p(\mathcal{T})^*$ is $\mathcal{R} \oplus X$ provided with the norm $\|(\mu, y)\|_q = \left[\frac{1}{2} |\mu + \|y\||^q + \frac{1}{2} |\lambda - \|x\||^q\right]^{1/q}$ for $1 , <math>p^{-1} + \frac{1}{2} |x|^q + \frac{1}{2} |x - \|x\||^q$ for $1 , <math>p^{-1} + \frac{1}{2} |x - \|x\||^q$

 $q^{-1}=1$ and $\|(\lambda,x)\|_{\infty}=|\lambda|+\|x\|$ for p=1. It is easy to show here that in contrast to von Neumann algebra case $L_{1}(\mathcal{T})$ is not isometrically isomorphic to V and $L_{2}(\mathcal{T})$ is not hilbertian if $r\neq 2$.

The proof of the most of adduced results can be found in [4], [5].

References

- 1. E.M. Alfsen, Compact convex sets and boundary integrals. Ergebnisse der Math. 57, Springer Verlag, 1971.
- 2. E.M. Alfsen and F.W. Shults, Non-commutative spectral theory for affine function spaces on convex sets. Mem. Amer. Math. Soc. 172, Providence, R.I., 1976.
- 3. А.Н. Шерстнев, Об одном некоммутативном аналоге пространства L_1 . Матем. анализ, Казань, 1978, с. II2-I23.
- 4. О.Е. Тихонов, Неравенства для пространств в спектральной двойственности, связанные с выпуклыми функциями и следом. Казань, 1987. Рукопись деп. в ВИНИТИ №3591-В87.
- 5. О.Е. Тихонов, Пространства L_{ρ} (\mathcal{T}), ассоциированные с пространствами в спектральной двойственности. Казань, 1987. Рукопись деп. в ВИНИТИ #8487-В87.

СССР, 420008, Казань, ул. Ленина 18, Казанский гос. университет НИИ матем. и механики.