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Introduction

As a histriocal origination of the theory of von Neumann
algebray.studying of the éorrelationi between a von Neumann

algedbra and’ife.commutant has been the most fundamental problem

iands

* :in the field One central result has been described that every
. semifinite von Neumann algebra is algebraically isomorphic to a
etandard algedbra which ha;'been defined as an algebra spatially
. 1eom$rphic to;the extended left regular representation of a cer-
tain Hilﬁerf élgebra. (Cor, Prop 9. p. 98 1)),
Unfortunately, euch a standard algebra is not the general
standard form of a von Neumann algebra unless we ignore type III
von Neumann algebras, To study general correlation problem we
need to formulate more general standardizations of von Neumann
algebras, For this purpose we notice that every von Neumann
algebra M has at least a generalized normal strictly positive
functional (Theorem 1,3,4), and such a functional determines an
algebraic isomorphism of M onto a certain type of von Neumann

algebra which we call a modular standard algebra (Theorem 2,3,1).
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| We may define a generalized Hilbert algebra whose extended left
regular representation i1s spatially isomorphic to a given modula:
standard algebdra, Then.the general correlation problem is re- -
duced to the 1nvestigatioﬁ of generalized Hilbert algebras,

The central purpose of this paper is to show the existence
of modﬁlar operators related with generalized Hilbert algebras,
and to verify ultimately that every generalized Hilbert algebra
is equivalent to a certain modulafﬂﬂilbert algebra, (Theorem 2,
4,1), Theorem 2.,4.,1 shail be applied to verify that every mod-
" ular standard algebra is antiisomorphic to its commutant (Theorer
‘2.4.2) and to establish the commutation theorem (Theorem 2.4.4)
(M@ N)' = M @ N' for general von Neumann algebras M and N,

Section 1 1is a preparation from a general theory of semi-
cyclic *-algebras, Such a preparation simplifies the discussion
of generaiized Hilvbert algebras,. Semicyclic mapping ie’én.impor-
tant supprementary concept in the 'elementary theory of von Keumar
algebra.: when we treat unbounded ;%eitive functionals, We shall
establish a generalized von Neumann density theorem (Theorem 1,

5,4) ‘and 8 generaliged Kaplansky density théofem (Theorem 1,5,5)
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§1, *-plgebras with semicyclio mappinge "

1,1, Semicyclic *-algebras

Let ‘f; be a Hilbert space, Mbe a linear subset of g. and
L be a *-algebra of bounded operators on ‘/3 . ¥We call L simply
a *-algebra on '5. L is a normed *-algebra by the operator norm
I | » however, 1t is not generally uniformly closed, We shall
use the following notations, L/ and L' are the commutant and
the second commutant of L, U(L ) dis the unit ball of L,
Ixz is the least *-algebra which contains all the multiplications
-AB of elements A and B of L, LM is the least linear subset
of "§ which contains all Ax such that AelL and erZ'
L hes an approximate identity in. the following sense (of (51),
- Let € be a number > O and (A, ... %) be a finite subset
of I, Then U(L ) contains a certain element A satisfying. :.e
nAi ~ AA1|| ¢ € and IlAi - Mill ¢ €, A ®*-aglgebra L on ‘g
is saild nondegenerate if the set Lg_ is uniformly dense in 5 .
The following three conditions are mutually equivalent (cf, (1),
€2)). (1). I 4s nondegenerate, -(2), If x is an element.
of  such that Ax = 0 for A € L, then x =0,
(3). U(L ) 4is strongly dense'in U(L")',,

et L bve a *-algebra on a Hilbert space 13_ . A linear
mapping N\ of I into § is omlled semicyclic if

1.1.1, A(AB) = AXN(B) for AeL and B € L



Suppose that I has a semicyclic mapping: A.. An element K
of L' is said integrable by O\ if the mappings A —> K\(A)
and A —> K*X\(A) are uniformly continuous on L , We let
Ls ' denote the totality of integrable elements of L'I. if
neéeseary, we shall use the notation L°(>\), instead of I°,
Lemma 1,1.,1 Let ‘5_ be a *-algebra on a Hilbert space ’6
which has a eem@yclio mapping )\.' An element K of L' is
integrable by )\ if &and only if '6_ contains certain elements
W(K) and N(K*) satisfying

1.,1,2. x>\(A) = AX(K), K*A\(A) = AX(K*) for Ae X

Proof, If K 1is an element of L’ for which such X (K)
and '-)\"(K*) are defined, then A ——> KA\(A) and A —) K*)\(A)
are uniformly continuous on 1L, and K belongs to LG,
Conversely, let K t;e an element of I:c. There is a constant
Y such that FRXNGA) N ¢ Y 1Al . For each number € > O and
each finite subset A = (A}, ... An) of L, we consider the set
U (A, €) of all elements x of ‘6 such that | x§ ¢ ¥ and
“K?\(Ai) - Ax]] ¢ € for 1 ¢41¢nm, U(A, €) 1s a weakly
compact subset of ‘5 as & bounded uniformly closed convex set,
The algebra L has an approximate identity, and ‘U( L) contains
a certain element A such that llA; - AAll ¢ Y_Ie Vfor 1 ¢i
¢ n, KXN(A) belongs to U(A, €) since we have IKN(A) ¢ Y
and ; o

} K

MK AAL) = AARNA)ISIE A(AL - A Q)] ¢ e,



The intersection of the directed system of_ all such nonempty
weakly compact sets U(A, £E) is nonempty and contains an element
A'(K) satisfying 1.1.2, The existence of N (E*) 1s similarly
proved,

Lemma 1,1.2, Let I be a *-algebra on a Hilvert space '5.,
and A be a semicyclic mapping/of I .

(a), If an element L' 1s noted in the form K = X;B}

a B,X, for certain elements B, € L° and X € L', then

i
K belongs to I’ and one of N (K) 1is

1.1.3. N(K) =X, N ().

(b), L® 1is a *-pubalgebra of L',

(e), If I 1s rnondegenerate, then the element >\'(K)
defined by 1,1.2, is unique for each K € L®, )\' is a semi-
cyoclic mapping of Lb.

‘Proof, (a), If X is such an element of L’ then from
KN(A) = AX) N'(B)), K* A(A) = Axa*)\’(Bz*),

we find that K belongs to L® , and one of N (K) 1s defined
by 1.1,3, (b), L° 1s a *-algebra since L is an involﬁtive
linear subset of L' such that the multiply KL -of any two
elements K and L of LC belongs to L, (e)., 1f L°

is nondegenerate, then A A'(K) = 0 for all A e L implies

N (E) = 0, and the element \'(K) defined by 1,1,2, 1is unique,
By 1.,1,3 the mapping ' 1is semicyclic on LC®,

cr mme e — wis = N\



The pair (L, \) of a *-algebra L on a Hilbert space '6—
and a semicyclic mapping X of L is called a semicyclic
*-glgebra on ‘5. if L and 1° are nondegenerate, If (L, X\ )
ie a semicyclic *-algebra, the pair (L%, X/) of the algebra’
1° and the mapping )\ is calle;i the} ggrable commutant of
(L, A). Tet (L, A;) and (b,, A,) be semicyclic *-alge-
bras on a Hilbert space '%,. ., If I:2 is a *-subalgebra of IL,.
and )\2 is the restriction-of )\1 on 1'2’ then we note (Ll.

Nqp)2(Dy, N,), and we say that (L, N,) 1is a semicyclic
*-gubalgebra of (I’l’ }\l),

Theorem 1,1,1, Let (L, XN) be a semicyclic *-algebra on a
Hilbert space 13_ . Then (Lc, )\') and (I.cc, x') are semicyclig”
#-glgebras on -6, such that (L°)'* = L', We have (IL°°, X'.)Q(L, N\)
and (L°°°, N)o= .(I:o. 7( ).

LCC

Proof, is a nondegenerate *-algebra which contains a non-

/

degenerate *-algebra L, Then (L%, N ) 1is semicyclic, and so is
(L°¢, X ). The relation  (1°®, X )2 (L, N ) implies ((1°)°C,

(}\’)CC)D(LO,X) and ((L°°)°,'(>(’)')5_(L°,7\’) since (L, )\1)
2(1:2, )\2) implies (I;g, Xl)S(Lg, ?\/2). Hence we have (n.°¢°,

/ , :
7{”) = (1°, N). If K 1is an element of L', then by Lemma 1,1.2
the mapping I —> LKL carries U(Lc) into Lc, and whéen I tend:

to the identity strongly, LKL tends to K strongly, so that K

C,, o[[
belongs to L . L = L' 18 thus verified,
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A semicyolic *-algebra (L,/\) is called maximal if it eat-

' .
tefies (I, N) = (1°%, N ). If (L,\) ie'a 4micyclic *-algebra,
(r°°, 7( ) i called the maximal extension of (L, N,

Theorem 1.1.2, ILet (L, A\) be a aemdyclic *-glgebra whose L
is a C*-algebra, Then the mapping >\ is determined by an ele-
ment g‘ of the underlying space ‘5_ satisfying )\(A) = Ag for
A€ée L,

Proof, et {A } be a sequence in L such that A —> A
and A(A,) —> x for certain A € I and x & 75 . Then
for every K € L° we have KX(A ) = %)\'(x) and Kx = AX(K)
= KX\(A), Since 1% 4is nondegenerate we have x = >\(A). As

a closed linear mapping on the Banach space 'L, A —> 1A\(A) is

uniformly continuous on L, and I° contains the identity 1,

. / - R
Hence 7‘3 contains an element g = A\ (1) such that A(A) = Ag,

Lemma 1,1,3, Let (L,X) be a semicyclic *-algebra on a
Hilvert space 8 and g be an element of 5_. Then L has a
semicyclio mapping \ + g which is defined by

1.1.4, (N +g)A) = \(A) + Ag.

(L, >\+ g) is a semicyclic *-algebra whose integrable commutant
, ,
is the algebra (IL°, >\+ g).

Proof, A + g 1is obviously semicyclic on L, and if KelL
is integrable by )\, then from

K( N+ g8)(A) = AC ) + g)(K), K*(\+ g)(A) = A()\' + g)(K),




K is integrable by XN+ g. Then setting "I° = L°(N\) = L°(\
+ g)’ (1°, X+ g) 1is the integrable commutant of (I, A+ g).
'Let L be a *-algebra on a Hilbert space ‘5 which has a semi-
cyolic mapping )\, and let >\(L) denote the range of /\ .The
projection operator: Cx\ on f} whose range is the uniform closure
of NL) 1is called the carrier of N. A semicyclic mapping >\
of L 1is called cyclioc if the range )\(L) is everywhere dense
in ﬁ. A semicyclic *-algebra (L, \) is said a cyclic *-alge-
bra if A 1ie a cyclic mapping, A cyclic *-algebra (L,\) tis
said a separating cyolic *-algebra if (x°, )\’ ) is also a cyclic

*-algebra,

Lemma 1,1,4, Let (L,)\) be a semicyclic *-algebra and (Lcc,
n 7 "
N\ ) be its maximal extension, Then the mappings )\ and )\
have the same carriers 'Ox = €y , 1-Cx is an element of

/
I°. such that A\(1 - Cx ) = 0O,

Proof., If A belongs to L, then from A A(L) < A(L) and
A* A(L) € A(L) we have ACxn= €AA and (1 - Sx) \(A) = o,
Then 1 - €X 18 an element of I° satisfying /\,(1 - @)) = 0,
If X is an element of L°C then from

@ - N =x Na-an)=0

_X(X) is contained in the uniform closure of - \(L), Hence

" :
NI) and >\(L°°) have the same' uniform closires, and therefore
the carriers of A and >\" are identical,



Lemma 1,1.5., Let L be a *-algebra on a Hilbert space 6_
which has a cyclic mapping >\, Then the algebra I° 4is the
totality of bounded operators K on 73 such that 5 contains
elements )\I(K) and )\’(K*) eatisfying Y

1.1.5. KXN(A) = AXN(K), K*X(A) = AN(K*) for AL,

Proof. If K is.an element of L° then é. contains such
/
>\'(K) and \(K). Conversely let K be a bounded operator in

!
5for which such X(K) and A\(K*) are defined, K commutes

with every A& I since

KAXN(B), = KA(AB) = ABX(K) = AKA(B),"

Therefore K belongs to L°.

Temma 1,1.6, Iet I be a *-algebra on a Hilbert space which
has a semicyclic mapping )\, (a), If the algebra 1° 1s non-
degenerate, then (L, N\) is a cyclic *-algebra, (b), If L ise
nondegenerate and 1f XN (I°) 1is evérywhere dense in § , then
(L, \) 1ie a separating cyclic *-algebdra,

Proof, (a), 1° s nondegenerate and )\ is cyclic, Then:
the sets Lcﬁ and \(L) are everywhere dense in £, From
KA(A) = A X (K), L 4 contains the set I°A (L) which is
everywhere dense in 5,_ . Then 1 1s also nondegenerate, and
(L,)\) is a cyclic *-algebra, (b). L°® 4is a nondegenerate
*-plgebra since it co;xtaine a-nondegenerate *-algebra L,

Since )\' is cyclic on I°, by (a), (Lc,)\’) is a cyclic *-al-

gebra and 1I° is a nondegenerate *-algebra, Hence (L,)\)_ is
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a separating cyclic *-algebra,

Lemma 1,1,7, Let (L,X\) be a semicyclic *-algebra on
a Hilbert spce E;. Then the following three conditions are
equivalent, (1), (L,XN) 1is a oyclic *-algebra., (2), The
mapping )( ie one-to-one on 1°. (3). (ch,.>C) is a cyclie

*-glgebdra,

"

Proof, The carriers of )X\ and X\ are identical, Then (L,
. - y
N) 1is cyolic if and\only if (L°%, XN ) is cyclic, Let (I,
7\) be a cyclic *-algebra, and K be an element of L°. From
KN(A) = AN(K) for Ae L we find that X(K) = 0 implies K
= 0, and that K —) )((K) is a one-to-one mapping, Conversely
' C . /
assume that )\ 1s one-to-one, From A(1 - Cy ) = O we have C)\
=1 and A\(L) 1is dense in E;. Then )\ is a cyclic mapping.

Lemma 1,1.8, A cyclic *-algebra (L,)\) is separating if and
only if the mapping )< of 1°% is one-to-one,

! !
Proof, The algebra (IF, )\) is cyclic if and only if )( is

one-to-one on Lcc. Then we obtain Lemma 1,1.8,

1.2, Elementary operations,

Let L ©be a nondegenerate *-algebra on a Hilbert space j),
E be a‘prodection operator in ti, and E §_ be the range of E,
If A 1is an element of L, then the reduced operator AE is
defined as the restriction of the operator EAE on the space

E g - We let L, denote the totality of Ay such that A € L.
N 4



If E 1is a projection in L', then A —= Ap 1s a *-homo-
morphism of L onto a 'hondegenerate *-algebra LE which we
call the induction of L, The algebra LE is called the in-
duced algebra of L, If E 48 a projection in L" such that
A —) EAE carries L into L, then the mapping A —> Ag is
called the reduction of L, LE is a nondegenerate *-algebra

on E'%_ which we call the reduced algebra of L, A projection
E in a vbn Neumann algebra M 1is sald generating in M 1if the
set MER is uniformly dense in 7; The following Lemma 1,2,1
is well-known (of, (1], (2)),

Lemma 1,2,1, Let M be a von Neumann algebra on a Hilbert
epace,g\ and % be the center of M, Let E, F, 2 and W
=1 -2 bYe projections such that E € M, FeM' and 2 € &,
Then (a). MEF and M'EF are von Neumann algebras such that
(Mgp)' = M'EF . (v), If weset G =F, and H = Eg, then

Mpp = E)G (MF)H. (¢). The induction A —) A, of M 1is

F
an isomorphism if and only if P 4is generating in M', (d), M

is spatially isomorphic to the direct sum M, @ M.

Lemma 1,2,2, Let (I, \) be a semicyclic *-algebra and E be
a projection in L' such that K ——> EKE carries L° 1into Lc.

Then the induced algebra L; hae a semicyclic mapping >\E which
is defined by |

1,2.1, Ne(Ag) = EN(A)  for AeL,

and the reduced algebra L°; has a semioyclic mapping (N
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which is defined by
1.2.2, (N )g(Kg) = W(EKE)  for KGIL°,

(I.E,)\E) is a semicyclic *-algebra and ((LC )E’ (N )E) is: ... @

ite integrable commutant,

Proof, If A 1is an element of L such that Ag = 0, then
EX(A) = 0 follows from EKXA(A) = AEXN'(K) = 0 for KelIC,
Then Xg(Ag) 1s uniquely defined for each A€ L, and Ag 1s
a semjioyclic mapping of Ly, Similarly we find that (><)E is
a semicyclic mapping of (LC)E. K —> K; carries I° into
(LE)O since, if K 4s an element of IL®, then from

/ ’ !

Kg Ap(Ag) = Ap N\ (EKE), K* N\p(Ap) = Ay \ (EK*E),
we find that K, is an element of (LE)c satisfying

INg)' (Kg) = (X" )g(Kg).
LE is nondegenerate. as the induced algebra of a nondegenerate
algebra, (LE)c is a nondegenerate algebra which z2ontains the
nondegenerate algebra (Lc)E, Then (LE,)\E) is a semicyclic
*-algebra, We verify that (LE)O = (LC)E. If K is an element

of (LE)O, then, remarking (LE)OSQ(LE)' = (L')E; K 1is a reduced
operator K = LE of a certain L € L' such that L = ELE, Fronm

IA(A) = ANG)'(K), T*X(A) = A()\g)' (K)

we find that L belongs to LF’ and K belongs to (LC)E.
C .
Since (L°); = (LE)C is thus proved, ((LP)E, ( )c)E) is the

integrable commutant of (LE‘ )\E).
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Let (L,X\) be a semicyclic *-algebra. A projection E in
L' is said normal with respect to (L,>\) if K ——) EKE carries
1° into I° and if ((L°%)g, (X)) is maximal,

Lemma 1,2.3, Let (L,\) be a semicyclic *-algebra on a
Hilvert space, T}"nen every projection 2 1in the center of L"
is normal with respect to (L, \), If (L, N\) is a separating
cyclic *-algebra, then (Lz, )\Z) is a separating cyclic *-algebra,

Proof, Notice that 2K4 = KZ = 2K for KeI°, Then by Lemma
1.,1.,2 +the mapping K —) ZKZ carries IL° into L°, and (Lz,
>‘z) is a semicyclic *-algebfa whose integrable commutant is
((1°),, (N),). Similarly the mapping A —> 2ZAZ carries L°¢
into I°®, fThen ((Lcc)z, (>\")z) is the integrable commutant
of ((Lc)z, (>\')z) and is the maximal extension of (L, )\z),

Z2 1is therefore normal, If (I, A) i8 & separating cyclic *-alge-
bra then A\(I) and )'\(Lc) are everywhere dense in 5 The

pets >\z(I’z) and ()\')Z(ch) are equal to 2ZX(L) and Z)((Iac)
respectively, and are everywhere dense in 2 5 . Then (Lz,)\z)

is a separating cyclic *-algebra,

Lemma 1,2,4, Let (L,X\) be a semicyclic *-algebdra, Then
the carrier E of the mapping >\ is normal with respect to

(L, N). I°® is the totality of Ae L” such that Ag
belongs to (LE)CO. :

. ’.'

Proof, The mapping K ——) EKE carries I° into L°® since

1l - E belongs to L° and since we have
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EKE = K - (1 - E)K - K(1 - E) + (1 —--E)K(ﬁ - E),

Then (Ly, Ag) 18 a semicyclic *-algebra and ((1° )E,(}\’)E)

ig its integrable commutant, ((Lcc )E’ (X’ )E) is then contained
in ((15)°%, (X)g). Iet X be an element of L" such that X,

€ (LE)°° and K be an element of L®, Let KE = UB be the
polarization of KE, Then B = U*(K - K(1 - E)) = (K - K(1 - E))*U
and by Lemma 1,1,2 B is an element of L° satisfying B = EBE
and X(K) = U>\'(B) = U(X)E(BE). From the identities

XN(K) = U Ng(Bg) = KAG(Xg).
and

X*N(K) = KAg(X*p),

we find that X is an element of Lcc,;and I°® 1is the totality
of Xel' ° such that X & (Ly)°®, Hence we have ((L°%)g,

> ce "
( )“)E) = ((Dy)"7, (>\E) ) and E is normal,

1,3, Generalized normal positive functionals,

Let M be a von Neumann algebra and Mt denote the totality
of Hermitian elements ) O of M, An extended real functional

p on M' such that O 4 p(A).g + oo 18 called an extended pos-
itive functional on M if it satisfies

1,3,1, © p(A + B) = P(A) + p(B),

S

1.3.2, DoA) = &p(A) for &3 O,



where we assume O0(+0°) = 0, Let p be an.extended positive

functional on M, An element A of M is gaid integrable by

p if p(A*A) ¢ 09 and p(AA*) ¢ oq The totality M(p) of .
integrable elements of M 1s called the integrable part of M |
related with p, An-extended positive functional p is called

a generalized normal positive functional if (1). The integrable

part M(p) of M 1is a nondegenerate *-algebra, and (2), There

is a certain system _A_ of normal positive functionals on M such

that
1.3.3. p(A) = sup W(A) for Ae M+,
w e

Theorem 1,3,1, Let M be a von Neumann algebra and [ be a
normal representation of M onto the von NReuman extension L"
of a certain semicyclic *-algebra (L,N\). Then there is a certain
generalized‘normal positive functional p on M such that (1),

A€M 1s integrable by p if and only if T{(A) is contained in L°C,

and (2), If A is an element of M(p) then
1.3.4, p(A*A) = IN(TC(A)) N2,

Proof, For every KE:U(LC) we define a normal positive func-

tional Wy on M by

/ 4
we(A) = (TU(A) X (K), X(K)),

- and oconsider the set _A of all w, such that Ke&U(L®), We show
" that the functional p on MY which 4s defined by plA) = eug:LKA)
w

€
ie the desired functional in the Theorem., Remark that if AeM then

p(A*A) = sup( WR(A).)<(K)||2 t KeU(L®)),
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TI(A) belongs to 1°® if and only 1f A 1s integrable by p,
and, if A 1is an element of M(P), 1,3,4 1is aatiJQied

M(P ) is a nondegenerate strongly dense *-subalgebra of M as
the complete inverse immage of the algebra 1°° by the G —weakly
continuous mapping. TT, Then to see that P is a generalized nor--
mal positive functional, it is sufficient to verify the additivity
of the functional P, Since 1,3,3, has been satisfied, it is |
easily shown that of A€ M ana Be MT  then -

P(A) + P(B) 3 P(A + B) s max ( r(A), P(B)),

The additivity of P is verified if we show P(A + B) ) p(A)
+ DP(B) in the case that p(A) ¢ oo and p(B) ¢ 0o, In this
L
case T[(A%) and 'ﬁ(B-‘) are elemente of IL°® and we obtain

e INCTTAEN 12 ena p(B) = AIN(TI(BEN]Z,
et K be any element of p(L ). Then we have

|
PRNCTT (AZ) 12+ [RN(T(BZ)) || 2
= (T (A + B) X(K), X(K)) < P(A + B),

Let K strongly tend to the iddentity, Then from
I . 1 1 1
KNCTT(AZ ) —N T(A*)) and KA(TW (B*)) —> N\ (1{(B?)),

we obtain the inequality p(A) + p(B) ¢ p(A) + p(B),
The additivity of p is thus proved, and p is a desired general-
ized normal positive functional on M. Let M be a von Neumann

algebra and p be a generaliged normal positive functional on M,
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If TU is a normal representation of M on the von Neumann
extension of a certain cyclic *-algebra and if P and [ are
in the relation of Theorem 1,3,1, then such a representation
TC is uniquely determined up to the unitary equivalence,

We call T[ the extended normal cyclic representation of M

which corresponds to P,

Theorem 1.3.2. Every generalized normal positive functional
P on a von Neumann algebra M corresponds to a certain extended

"normal cyclic representation of M,

Proof, Iet M; denote the totality of A€ MT such that
P (A) ¢, and M, the linear span. of Mp)r K If A is an

n
element of M; which is noted as A = %—;O i A, = iéf)
ian for certain elements An and Bn of Mz » then the identity

3

1.3.5, ,%;01“9(%) Zoi"p(B)

follows from Al + B3 = A3 + B, and AO + }32 = A2 + BO'

We let q(A) denote the left side of 1,3.,%, and extend the

functional P to a linear functional q on Mo,. The totality

S of X€M such that P(X*X) ¢oo is a left ideal of M, For,
let L be a complex number, X and Y be elements of S and A
be an element of M, Then LX, X + Y and AX are contained in
R eince we have (AAX)*(of X) = 10U12X*X, (X + Y)*(X + Y) ¢ 2X*X
+ 2Y*Y and (AX)*(AX) ¢ §Af% X*X, If X and Y are elements
of S then from 4Y*X x ?3;0 17(x + 19Y)*(X + 17Y) we find

that Y*X 1is an element of Mp , The funotional q(Y*X) which
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ig defined for X&€S5 and Yé&S 1is a positive sequilinear form,
and we find a certain Hilbert space 73 and a linear mapping @
of S into a dense subset of f such that q(Y*X) = ( (X),
c(1))and Ne(ax)l ¢ Al W)l for Xes, YES and
AeM, Mis repres‘ented on a certain *-algebra ‘n(M) of bounded
operators on "3 by a *-homomorphism Jr which is defined by J{(A)
r(x) = ¢(AX) for AeM and X&S§. We show that TU is a
normal homomorphism, Let A ve a system of normal positive func-
tionals whd¢h satisfies 1,3,3, For every w ej\_ and Xe& S we
define positive functionals qy and Wy, on M by qy(A) =q(X*AX)

and wX(A) = W(X*AX)., Then qy -~ % 1is s po'eitive functional
on M such that

fa, = W, I =a, (1) - wx(l)

. p(X*X) - w (X*X), »
when || , || denotes the functional norm, The space of all
normal positive functionals on M 1is uniformly closed, and jL
containe a sequence {wn} such that wn(X'X) —> p(X*X),

Then q 1is a normal positive functional ¢n ‘M' such that q (A)
= (T(A) 6(X), 7 (X)), Since the set §(S) is everywhere dense

in 'g y TUis a normal representation and TE(M) {8 a von Neumann
algedbra on '5 From the assumption that M( p) is nondegenerate,
ve find that M(P ) 1is etrongly dense in M, For, M(p ) is
the totality of Xe€S s8uch that X*e S, If A  is an element

of M then the mapping X —> XAX carries the set U(M(p ))

into M(P) and, when X tends to the identity strongly, XAX

tends to A strongly, and A 1ie contained in the strong closure.®

of M(p), .
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Now 1let L ©be the represented algebra of. M(p ) by TC. Then

L is strongly dense in TU(M), We notice that if TT(A) = O then
T(A) =0, If T(A) = 0 then for a1l w e A and XeS we have
W(X*A*AX) ¢ P(X*A*AX) = | 1T (A)'6 (X) 12 = 0 and w(A*A) = o,
which means P(A*A) = 0 and ¢(A) = 0, We definea semicyclic
mapping A on L by  N(T(A)) = §(A) for AeM(p ). Let

A be an element of S and A = UB he its polarization, B is
an element of M( P) such that p(B2) = p(A*A) ¢ oo and (§(A)
=  T(WX( T(B)) is contained in L'AN (L) and in the uniform
closure of LX(T) & AU(L). Then the uniform closure of
A( L) contains ¢ (S) and is identical to % . Hemce X\ fis

a cyclic mapping of L, Finally we verify that 1° is non-
degenerate, Let W be a positive functional in _A_., Then a
sequilinear form w(Y*X) 4s defined for X€S and YeS, By

0 ¢ w(x*x) & I (X) “2, an Hermitian operator T 0 1is
defined by  wW(Y*X) = (T 6 (X), 6(Y)). T commutes with
every T((A) € TU(M) since .

WX*AY) = (Tw TL(A) 6 (Y)6 (X)) = (T(A)Twe(Y), B(X)),

1
Tw> 18 an element of L’ such that

1T N (EANDIZ = w(a®a) ¢ w(@) 1 TR

. 1
and it belongs to U(L®), From (1 - T )2 ¢ 1-7T, , we find
that

1
INCTC(A)) = Ty N (TUAIZ ¢ p(A*®A) - w (A*A),



A contains a sequence [\Un} auch that u)n(MA) ——> p(A*A),
Then the uniform closure of the set Lc‘g. contains A(L) and
{g identical to %.. 1° 1is therefore nondegenerate and (Lc, )\)
{s a cyclic *-algebra on @, and hence T{ 1is the extended cyclic

representation of M which corresponds with p,

Lemma 1,3,1, Let p be a generalized normal positive functio-
nal on a von Neumann algebra M, and TJ[ be the corresponding normal
representation of M onto the von Neumann extension of a certain
cyclic *-algebra (L, N). If r 1is another generalized normal po-
sitive functional on M such that p(A) 3 Y (A) for all Aent,
then a certain Hermitian operator K in L' 1is defined by

1,3.6, Y(A*A) = Y(KN(T(A)), A(TU(A))),

Proof, We use the same notations in the proof!‘:of Theorem 1,3.,2,
The value of Y(A) 1is finite if A eng, and r .is extended to a
linear functional {; on the space My. Coneider a positive sequi-
linear form  Y;(Y*X) which is defined for X€S and Y€ S, From

0¢ H(x*xX) ¢ | §XN°. for Xes,

we can define an Hermitian operator K ) O on % by ¥ (Y*X) = (K@ (X
¥ (Y)), to which we apply the proof of TwET(M)', and we find that
KeT (M) =1,

A generalized normal positive fgnctional P on a von Neumann alge-

bra M is said strictly positive if p(A) > O for all 0 A AE—M.1~
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Theorem 1,3.3, Let P be a generalized normal positive
funoctional on a von Neumann algeﬁra M, and J[ he the corre-
oponding normal representation of M on the von Neumann exten-
sion of a maximal cyclic *-algebra (L ,7\). Then p is strictly
positive if and only if (L ,N\) is separating cyclic and T1 is

an algebraic isomorphism,

Proof, TU carries M(p ) onto L and satisfies p(A*A)
o I 11;_(1\)"2 for A€M(p), ‘If p is strictly positive, then
the mapping A —> A(TC(A)) is one-to-one, TU is an alge-
braic isomorphism since A€M and Tt(A) = 0 implies P (A*A)
=0 and A = 0, Also the mapping )\ 1is one-to-one on L,
and (L ,}\) is a separatiné cyclic *-algebra, Conversely, if
T is an algebraic isomorphism end ( L, \) 1is separating, then * *'®
the mapping A — >\(T\(A)) is one-to-one on M(p). If A
is an element of M' such that HA) = O then p (A) = “NI((A)J':)HE’
= 0 1implies A‘= 0, Therefore p 1is strictly positive,

Theorem 1,3,4, Let M be a von Neumann algebra and E be
n projection in M, Then every generalized normal positive func-
tional q on the reduced algebhra ME is extended to a generalized
normal strictly positive functional qy on M such that q(AE)
* q(FAE) and q(EAE) ¢ q(A) for all AcM,

Proof, Let {EJ\: L €A} be a maximal orthogonal system
of cyclic projections E, 4in M’ whith are orthogonal to the

projection E, The range: Eok ‘5 of Eo( contains a everywhere
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dense subaet M'g, = (Ago<: AeM') which is generated by a certain
element goL of Ev('g, and by the %zorns principle we find that

I = E + ZJ\EJ\‘ Now we shall verify that a functional qq in
tho Lemma may be defined by

13.1. apA) =alag) + 2 (Ae /1y 8y ).

Such Q9 is obviously an extended positive functional on M+,
The integrable part M(qo) of M contains the system {E4 :

* e ,/L} and the totality of EAE such that AgeM(q).
Then the set M(qo)'g is uniformly dense in ‘5_, and M(qo) is
non degenerate, ILet _A_be a system of normal positive functionals
on M. such that q(A ) = supw(A) for Ae Mp, and for each
AtM define a normal positive functional Wgp on M by qu(A)

.u)(AB), " Also for each finite subsystem A= (0(1, v(n)
of J_ define a positive functional Y)b by ‘f)A(A) = S (Ag 4 844)

Then we have

Qg(A) = sup (wy(A) + l{JA(A) : we N, AecA)

Therefore qois a‘generalized normal positive functional on M,
We show that Qg is strictly positive, If A 1is an element

+
of M" euch that qo(A) = 0, then q(AE) = 0 and (Ago(, g"() =0
for all ¢ A, which means EAE = O and EAAEOL = 0 for all
{ ¢ /L. Prom this we find easily that A = 0 and A = 0,

1.4, Unbounded operators and cyclic ‘-algebras;

Let X be a closed operator which is defined in a everywhere

dense subnet of a Hilbert space "5, We let L (X) denote the
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domain of X, and we consider that LX) 1s a Hilbert space whose
norm # XMy is defined by

2

1, xl? = gx® e xxg®,

X {8 noted in the form .

1.4.2, X = UyC = BU,

where U -is a partially isometric operator in ‘g whose range is

L.
the uniform closure of the range of B, and B = (XX*)* and

v

C = (X')()-i are selfadjoint operators ) O, Such the represen-
tntion.: of X 1is called the polarization of X (ef, (1)(2)(3)),
D(X) and D(B) are identical as Hilbert spac:es.

Lemma 1,4,1, Let X be a closed operator which is defined

in a dense subset of a Hilbert space *g A subset 1] of D(X)

1
io everywhere dense in it if and only if the set (1 + (x*x)X )77l
is everywhere dense in "f},

1
Proof, We note (X*X)* by C and let X = UC be the

1 -
polarization of X, Then W = (1 + 02)"(1 + )1 1s an invertibe

Heraitian operator in ‘g . Let x be an element of D(X) and

set y = (1 +C)x, Remarking JXxll = |CxIll we have
x4, = 0+ )7Ly 4 e + 0)7 1y
= Iwy)? = W + o) |2,
x —> W(1 +C)x is an isometry, and x — (1L +C)x is a
homeomorphism, of the Hilbert B-I;;C D(X) onto . Then a

-

nubsot )}/ of D(X) 4e dense in.it if and only if (1 + C)7{ ie
denre 1in (‘f}’ . —

T S —

— e e e—— ey = -0
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We consider a not generally closed operator Y 1in ‘3 such
that the domains of Y and Y* are everywhere dense in ‘fj .
Then Y** 1is defined as a closed extension of Y, If A 1is
s bounded operator in 13‘ such that YA D AY, then we have
Y*A®* D A*Y* and Y**ADAY**, We say that Y commutes with
n *-algebra L on f; if YA O AY holds for all A€ T,

In partiqular, let M be a von Neumann algebra and X be a
cloned operator whose domain is everywhere dense in ‘g We use
the J.,V, Neumann's notation XIM if X commutes with the
algedbrn M',

lemma 1.,4.2, Let I be a nondegenerate *-algebra on a Hilbert
apnce ‘6. and X bhe an operator such that the doméins of X

and X* are everywhere dense in ‘5 If X commutes with L
then we have  X* )z L' and X** )’l L',

Proof, As X commutes with L, so do X* and X**,
To oee X'?l L' it 1s sufficient to show that X commutes with
L " . Coneider elements A of IL" and x of D(X*),

24

L in strongly dense in L" and contains a sequence {An} such

thnt Anx —> Ax and AnX‘x

and (Anxl is a sequence in D(X*) such that X*A x —> AX*x,
Then Ax ie an element of D(X*) euch that X*Ax = AX*x, We
obtain therefore X*A > AX*, X*/L' and X** K L,

let M be a von Neumann algebra on a Hilbert space 'é and

!

X be a closed operator YIM, and X = BU = UC be the polariza-
tion of X, Tt ie verified that U€M, BIM and cnM (cf (23],

> AX*x, X% 1is a closed operator

lemma 4 4.1, p.33), We define a *-algebdbra Co(X) 4ncidental to X
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Iat (0,09) be the set of all po';a'itive regl numbers, and CO(O,

00 ) be the linear algebra of all continuous functions on (0,00)
vith compact carriers, CO(X) denotes the *-algebra of all oper-
atorn f(B) such that fe C,(0,90), CO(X) is an abelian *-sub-

algebra of M, and the mapping f(B) —> f(B)X carries CO(X)
into M, and we have f(B)X = Xf(C),

lat (L,A\) be a cyolic *-algebra on a Hilbert space 7§ ,
and X be an operator defined in a subset of '% We say that
xn( L°, 7\') if X satisfies the following three conditions ;
(1). Tho domaine of X and X* contains /\( L), (2). X is

n oloned operator which NIL', (3), ‘%contains certain elements
!
N (X) and \(X*) such that

1,43, XA(A) = AN (X)), X*N(A) = A>\’(x‘).

Theorem 1.,4,1, Let (L,N) be a cyclic *-algebra in a Hilbert

!
space ‘5 ‘X be a closed operator which YZ(L°,>\) and Cg(X)
be the incidental *-algebra, Then

(n), CO(X) is an abelian *-subalgebra of :1°
(v),

If KeCy(X), then KX € L%and (N(K*RX)*), N(X*)) 2 O,

(c), C4x(X) contains a sequence {K,} such that

1,44, \'(lg‘?'x) — X(X); )’\((Knex)*) > \'(X*).
(4), Suppose that there 18”.8 constant Y such that
L5, ON(K"KX) ¥, >\'( X*)) ¢ Y.Qu )((x)\lz.

for all KGCO(X). Then
xng Y.

X 18 an element of LC such that
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Proof of (a). Let X = BU =UC and X* = CU* = U*B be the
polarirationn of X and X*, As the mapping f(t) —> tf(t)
in invertihle and linear on 00(0,00), the mapping f(B) —> Bf(B)
{n fnvertihle and linear on CO(X), To prove% (a) it is suffici-
ent to find Bf(B)€ I° for all reco(o,w).' We notice that

RE(B) N(A) = UF(C)X* \(A) = A(Uf(C))\(ﬁ(‘))

and

pr(B)* N(A) = A(UE*(C) N(X*),
Then Bf(ﬁ) is an element of I° such that

x,c;s, N(B£(B)) = ur(c))\'(x*).

§ Froof of (b). From the identities
e(nIX N(A) = a(r(B) X(x))

and
(F(R)X* N(A) = £(C)*x* \(A) = A(f(C)* )\l(x*)),

i ¢(R)X {s an element of IL° such that

1.4.7., N(r(B)X) = F(B) N(X), N((F(B)X)*) = £(C)* \(X*)

. and

(NCCE(R) £ (mx)*), N(x*)) = | £(e) N(x*W% 3 o,

Proof of (c), L 1a nondegenerate and contains a sequence

(ln} ruch that An)\'(x)——-) )\’(X); I\RX(X) is identical to
. l"\(kn) and in contained in the range of B, Then )((X) is

: eontained in the uniform closure of the range of B, Similarly

o |
- N{X*) in contnined in the uniform closure of the range of C,
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Let (f ) be a sequence in 0,(X) such that 0 ¢ f) ¢ f, ¢

and £ _(t) —> 1 for 0 ¢ t < oo, Then £ Z(BI)N(X) — N (x)
and fnz(c)X(x*) >  X(X*), Setting K, =f (3, by 1.4,6

ve have ,\l(l%?'X) = fn(B)2>\’(X) and }\'((Khz)()“') = fn(C)2 X(X‘).Then
lKn} is a desiered sequence in (c).

Proof of (d). The assumption 1.4.5 may be noted in the
following form :

ey XU B, Nx*) ¢ ¥ 1 £(B) K,
Reffeoring 14 .6 and 14..7, the left side of 1,4,% 1is estimated ae./

(N(F(B)* £(B)X)*), N(X*) = (£(C)*£(C) N\(X*), \(X*))
e N NX)IZ 3 qUE(C) N(X)I? = IN(B +5(B)) )2,

and we obtain the inequality

1.4y, IN(B £(B)) ¢ YINE(B) . for £ e cy(0,09),

lat f be a function in C4(0,00) whose carrier is contained
in the extended open interval (\’,00). Then there is a certain

conatant > Y such that § £(t) ¢ tf(t) for 0 ¢ t ¢ oo
let f and g be functions 2 0in 00(0,00) such that g(%)

<« % and h(t)2 + (52 = 32 for all t in the carrier of f,

Then f(B), g(B) and h(B) are elements of I° such that
RE(B) = g(B)f(B) and

Wr(Rn) = g (B)2f(B) = (h(B)? + d‘z)f(B).

’

Yo reffer 1,%.9 to the following inequality
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lIX(g(B)f(B))\I? )
SZ ANGGNIZ + X (n(m)e(3))]2
>? I NN [

I\ (Bs(B)) 2

i

w

and obtain, X(f(.B)) = 0, Since )\I is one-to-one we have
f(B) = 0, Since f(B) vanishes whenever the carrier of fec,(0,
Q) is contained in (Y,OQ), B and X = BU are elements of
ch, such that I Xf= Bl ¢ Y . Theorem 1,4,1 1is thus
proved,

Let ( L, \) be a cyclic *-algebra on a Hilbert space ‘13,_ ,

and x be an element of ‘% ‘An element xh of '5 is called
the adjoint of x if it satiafies

1.4.8, (A, XN(B)) = ( \(A), Bx®) for A ¢ L, B € I,

or the equivalent identity

1.4.9. ( MA), x) = (x®, \(A*)), for A e 1°,

An element x of 15\ is said adjointive if it has an adjoint,

We let é‘e denote the totality of adjointive elements of 75

its ad joint x® s uniquely defined,

Then for each X e 13?

We define an innerproduct (x, y)B in 3_8 by

1.4.10, (xy ¥)g = (x, y) + (y°, x°)

and the norm [xi, by IxI2 = (x, x)_, It is easily verified ..o’

that x —> x° 18 a closed operator in ‘5 Then we have,

Lemma 1.4.3, Let ( L,N) be a cyclic *-algebra on a
Hilbvert space 5 , and 58 be the totality of adjointive



elements of 'g . Then .%s is a Hilvert space by the innerprod-

et 1,4.9, x —> x? 1is a reflexive cojugatelinear isometry of 58.

Theorem 1,4.,2, Let (L, \) bhe a cyclic *-algebra on a Hilbert
gpace % y and x Dbe an adjointive element of - ., Then there is

s certain closed operator w'q(Lc, N ) such that x = X (W) and
/ .
o= A (W), _
Proof, From the identity (Ax, A\ (B)) = ()\(A), Bx®) follows

that if A(A) = 0 then Ax = 0 and Ax® = 0, We défine linear
operators W, and W, on the space )\ (D) by

1,4,11, Wo NA) = Ax, W) N(A) = Ax® for A€L,

fhen W, and wl comiutes with the algebra 1L and we have Wo‘F

0

le, W = WO** is a closed operator which satisfies W'{]L', WoW
'_ . . C ’ / - /

and W* = W *, Then we obtain W1 (L7, N )y X(W) =x and XN(w*)

=X

0

Lemma 1.4,4, Let (L, )\ ) be a cyclic *-algebra on a Hilbert
space '% . Then the set 7\'(L°2) is everywhere dense in the

Hilbert space 69. The identity 1.4.9., is extended to the follow-
ing identity

1,4.12, (N(x), x) = (x7, X(x*)) for xef}“ and XeL®C,

Proof, Let x be an element of %s and consider an operator

¥ such that wn(Lc, ANy x

/ -

N(W) and x8 = )\'(W*). By (c)
of Theorem 1.4.1 C,(W) containa a sequence {KnJ such that
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/ !
(K2 W) —> x and >\((Kn2 W)*) —3 x® uniformly in 5
/ - /
an W 1is an element of L°? such that ()\((Knew)*)) = (>\(Kn2
’
W))®, Then we have I )\(Khz w) - x\\B —> 0, and the set
)( (L°2) is everywhere dense in the Hilbert space f;s, Now

let X be an element of L°® and K and I be elementse of 1°,

Then we find that

()((x), )((KL))

CRUBK)*), X (xX*))
(CNKD))®, N'(x*)),
Since X(ch) is everywhere dense in 5‘8 we have

( X(X), x) = (x%, ){(X*)) for x e 58.

§1.5. Density theorems for semicyclic *-algebras,

Let (L, \) be a maximal semicyclic *-algebra, The restric-
tion )\K of the mapping )\ on a *-gabalgebra K of L is
a semicyclic mapping of K, If K is nondegenerate then (K,
>\K) is a semicyclic *-algebra since K° is a nondegenerate
*-algebra which contains the nondegenerate algebra Lc, Ve

define the cyclic seminorm |X\| on L by

1.5.1 DNICVIEN DN R DXCS

The topology of L which is defined. by the cyclic semi-norm |\ |

AN o

is called the cyclic topology of L, In the succeeding sections

we shall mainly use the cyclic topologies to apply the next Theorem
1.5.1, '
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Theorem 1,5,1 Let (L, N) be a maximai cyclic *-algebra
and K bYe a *-gubalgebra of L, (K, )\K) ies a semicyclic
*-gubalgebra with the maximal extension: (L, \) 4if and only
if K 18 cyclicly genee in L,

To prove Theorem 1.5:1//;;\need to prepare Lemma 1,9%,1 and
1,5.2,

Let ‘g be a Hilbert epace_and 77’( be a real linear subset of
H, Elements x and y of 'ﬁ are called mutually real orthog-
onal if Re(x, y) = 0, We let deenote the totality of elements
of '% which are real orthogonal to 77, and call it the real or-
thogonal complement of 7}’(. ' m is everywhere dense in T7ZLL

H

If L 1is a *-algebra on H, we let L  denote the real linear -

set of all Hermitian elements of L,

Lemma 1.5.1, Let (L,A\) be a maximal cyclic *-algebra on
a Hilbert spac'e 13, and let K be a *-subalgebra of L,. K 1is
cyclicly dense in L if and only if the set >\(KH) is every-
where dense in the set >\(LH).

Proof, The direct sum H@ H is the cartesian product of the

Helbert space H, and the cartesian product m@ﬂof linear
subsets 7)] and 1] of “5 is a linear subset of H @ H,

Notice that A ¥ 1A, — (Al; A2) is a one-to-one mapping of L
onto the cartesian product LH x LH, and the cyclic seminorm '>\|

is represented as

4

INH A, +38,) = (2 0 NI + 2 1 Naplf?)

1
2



The eubalgedbra K 18 cyclicly dense in L 1if and only if

NED ® N(K)  1s everywhere dense in A(LF) ®© A ().
Then X is cyclicly dense if and only if )\(KH) 18 every-
where dense in >\(LH).

Lemma 1.5.2. Let (K, \) be a cyclic *-algebra on a Hilbert
space ‘S , and 738 be the Hilbert space of all adjointive ele-
mente of '5\ with reepect to (K, \). Then the real orthogonal

complement of the set )\(KZH) is the set (x e ‘5_8 : x = - xB),

Proof, An element x of '5_ is real orthogonal to the set
N(&?H) if ana only if

(X(A), x) = =(x, \(A))  for a11 Agk?H

.

"The above identity is equivalent to the identity
(N(&), x) = ~(x, \(A*)) for all A ek,

The second indentity is valid if and only if x 1is an adjointive
element of ‘g such that x = -xs,

Now Theorem 1,%,1 will be proved, devided to the next Lemma
105.3 and 105'40

Lemma 1,%.3, Let (L,X\) be a maximal cyclic *-algebra on
a Hilbert ‘5_ ., and K be a nondegenerate *-subalgebra of L
such that (L, \) = (K°°, >\"K.)‘ Then K° 1is cyclicly dense
in L._

Proof, By Lemma 1,177 (K, \¢) 1s a cyclic *-subalgebra of
(L, >\). To see that K° dis cyclicly dense in L it is suf-
ficient to show that X(LH) is contained in >\(K2H)LL

3z
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Let gs be the Hilbert space of all adjqintive elements of
with respect to the algebra (K,}\K), By Lemma 1,5,2 )\(KZH)L
ia the totality of x € 58 such that x° = -x.. If X 1is an
element of LH, then by Lemma 1.4.,4 we have

CNX),x) = (2%, N(X*)) = -(x, \(X)) for x e‘)\(Kzn)l .

. » 11
Then A(X) 1is contained in }\(KZH) , and >\(K2H) is every-
where dense in )\(LH). Hence K2 is cyclicly dense in L, - 4

Lemma 1.5.4, Let (L,}\) be a maximal cyclic *-algebra on
a Hilbert space ‘g, and let K be a cyclicly dense *-subalgebra
of L, Then (K, }\K) is a cyclic *-subalgedbra of (L, \) such

that (I, N) = (k°%, \J).

Proof, To simplify the notations we set /.l = )\K. Since
the mapping A —> )\_(A) is cyclicly continuous on L, the
set A(K) is everywhere dense in >\(L) and in ‘5 . /u is -there-
fore a cyclic mapping of K, and KC is a nondegenerate *-algebra
which contains L°, By Lemma 1.,1.8 (K, ,Ll) is a cyclic *-algebra
on ‘g - Consider the elementse X of L and K of Lc, As a
cyclicly dense subset of L, K contains a certain sequence {An}

satisfying

Iu.(An) — (X)), /I(An')

> A\(X*),

/A’(K) is the adjoint of /(L'(K*) with respect to the algebra (K, ),

Then by Lemma 1,%,4 we have

&“'(K)'/“(An)) a su(Ann),/J,.v(K;)).

33




Letting n —> 00, we have

(p (KD NXD) = (ON(X*), et (k®)

and for every AeK

(K)\(x),/u('.A))_ = (ONX), Kep(n)) = (\(X), A/'u(x*))
= ()\(A'x),/v(x’)) = (/('(K),)\(X’A)) = ()Su'(K),/u(A)),

Thus we obtain the relations KA (X) = )9'1'(}() and K* A(X)
= XP'(K‘). By 'I-eﬁlma 1.1.6 K is an element of L° ar:’d hence
we have (L%, N\ ) = (Kc,/u') and (L°, N ) = (Kcé, >\K)‘
Corollary of Theorem 1.9,1, et (L, N) be a separating
cyclic *-algebra on a Hilbert space ‘5_ . Let 7§_5 be the Hilbert
space of all adjointive elements of 5_ with respect to (L, \),
and let K be a *-aubalgebra of IC, (K,)\;{) is a separating
cyclic *-algebra on ‘5 with the maximal extiension (1°, )\') if
and only if X(K) is everywhere dense in ~,§8,

: !

Proof, Let \ l\s be the norm in ® and |>\| be the
cyclic seminorm in IL°, By Lemma 1.4,4, >\'(L°) 18 a dense
subset of -§B satisfying

1.5.2, PNI(R) = | N (K, for Kei1l,

Then K 1is cyclicly dense in I° 4if and only if )\'(K) is every-
where dense in —5", and if K'is cyclicly demee in 1°, (K, A\,)

is a separating cyclic *-algebra on jg. Therefore we obtain the
Corollaryy,

3¢

Let (L,A\) be a maximal semicyclic *-algebra, A norm | I'\\)\-on 1
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which ie defined by

1.9.4, NAlN =max (HAl, “ANA T,  Ixas) 1),

is called the cyclouniform norm of L,

Theorem 1,5.2., If (L,)\) is a maximal semicyclic *-algebra,
then L 4s a Banach *-algebra by the cyclouniform norm, - The
unit ball U(L, \) of L defined by the cyclouniform norm 1is
weakly compact,

Proof, Since L 1is obviously a Banach *-algebra we show that
U(L, N.) is veakly compact, Let'%_be the underlying Hilbert
space of (L, \). Then U(L, \) is the totality of AeU(Lﬂ)
patisfying, for Kel® and x ¢ g, A

max (!(A 7\'(K), x)l, 1(A* )\'(K), x)I) ¢ BxW Wixil
The functionals A —> (AN(K), x) and A —> (A*X (K), x)

are weakly continuous on U(L" ). Then U(L, \) 1is weakly
compact, as a closed subset of the weakly compact sét U(L”). L
Consider a maximal cyclic *-algebra (L, A\) ona Hilbert
space ?; and the cyclic seminorm !A! on L , If {xn}
2
is an arbitrary sequence in'S such that Z I x [ < oQ ,

we define a seminorm |)\|x on L by

. ' 1
1504, TN = (ONIA)2 + 2 [ ax 1 + 5 | aex | ?)2

The system of all these seminorms ! %Jx defines a certain

locally convex topology of L whiéh we call the 0 -cyclostrong
.topology of L,
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Theorem 1,5,3, If (K, )K) is a semicyclic *-subalgebdbra of
a maximal semicyclic *-algebra (L, \) such that (L,>\) = (Kec’
>\K")’ then K is 6 ~cyclostrongly dense in L,
Proof, Let {xn} be a sequence 1n'§_euch that %;uxnﬂz < o,
and define the seminorm I\lx by 1.5.4. Let M denote the

von Reumann algebra L'ﬂ Define a normal positive functional

w. on M by

x

wy(A) = (ke x),
and consider generalized normal positive functional p on M
such that M(p) € I and p(A*A) = || N(A)I® for AcL,
Then q = Wy + p 1is a generalized normal positive functional

on M such that L = M(p) = M(q). Corresponding to the functional
q, we consider a normal representation L of M on the von
Neumann éxtension TC(M) of a certain méximal cyclic *-algekra
(Tt(L),O‘ ), which carries I onto T{(L), and which satisfie\
q(a*a) = I £ ((l® and 16 1(TL(A))1 = TN (A), Since U(K)
‘is strongly dense in U(M), TU carries K onto a certain strongly
dense *-subalgebra JU(K) of 7qr(M). If the identity (TC(L), S )
= (m(K)CC, ( SW(K))"i is satisfied, then TU(K) 4is cyclicly
dense in ]((L), and K 1is everywhere dense in L with respect
to the semi-norm |>\'x, Thus, K 1is cyclostrongly dense in L,
‘Then Theorem 1,6,3 1is reduced to prove (TL(L),G‘) = (TL(X)CC.
0w )
' By Lemma 1,3.,1 we take an Hermitian operator T 2.0 in
TUL)' such that for every Ael




@?

p(A*a) = AX(A)I? = .(Tzo‘(n:(A)). LT (A)))
and ’
*A) = - me
W_(A*A) = ((1 - T°) ¢ (T(A)), 6 qu(A))).

Rotice that
1 - D6 (R (A? gw (a*A) ¢ w (1) || T(AIZ

~Then X —> (1 - T)6(X) 1is uniformly continuous on [((L),

and 1 - T is an element of W(L)®, Setting g =.5‘,(1 -T)

6(X) - Xg for XE€TUL), We let p denote

the restriction of T¢§ in TC(K), By Lemma 1,1,3 the identity
(TU(K)®C, 6‘7((1()") = (J0(L),0) is equivalent to (U (K)®C, f)")
= (T(L), T6). Let E and F be the carriers of X and T6;

and let mﬁnd 7l be the ranges of E and F, The mapping (&
—> T6(JT(A)) 1is extended to an isometry U of 7)Z onto ﬂ'

which determines a spatial isomorphism of the algebra (LE, >\E)

we have Tg¢ (X)

onto (TC(L)F,(TG‘)F). By lemma 1,2,4, Ky is a nondegenerate

n
*-subalgebra of L, satisfying ((~KE)°°, ()\K)E)) = (Lg, >\E)'
Then T[(K)F is a nondegenerate *-subalgebra of TC(L) satisfying
((T[(K)F)co, (PF)") = (K(L)F. (Tc‘“)F). Since F 1is the carrier
of P, by Lemma 1.2.4 TU(K)®® 1is the totality of Ae JU(M)
such that A; e TL(K)FOC..= T[(L)F} Then we find (T[(K)cc, f”)

"

= (TU(L), T¢), Hence (TL(L),8) = ( T(K)®C, 6\1uL)) is proved,
and K 18 cyclostrongly dense in L, '

Theorem 1,5,4 If (K, )\K) is.a semicyclic *-subalgebra of
a maximal semicyclic *-algebra’ (L,)\) such that (K°®C, XK") = (L,)\),
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then the unit ball U(K, )\K) is £ -cyclostrongly demse in U(L, \).

Proof, Let W be the totality of A€L such that max(INa)|,
IN(A*)) ¢ 1. Since the mappings A —> A(A) and A —> \(A*)
are O -strongly cont.inuOue on L, W is a (§ -strongly open set

in L, and U(L, \) 4is the 6 -strong closure of the set U(L) A W,
If it is proved that U(K) 18 {§-cyclostrongly dense in U(L) then
" the 6 -cyclostrong closure of U(K, >‘K) contains the G-syclostrong
closures of U(K) N W and then U(L)A W, and coinsides with U(L,
N). Then the Theorem is reduced to verify that U(K) is §-cyclo-

\

strongly dense in U(L), We consider the mapping A —> f(A) of
I which is defined by

£(A) = 2(1 + AA*)"IA = 2a(1 + A*a)7 1
and the mapping A — (f’(h) of U(L) which is defined by
L t
¢(A) = (1 + (1 A+ )" )T = a1 + (1 - axaP)7L,

By Lemma 1,1.2 f carries L into L and ¢ carries U(L) into
U(L), Let A be an element of U(L) and A = BU be its polar-
ize.i‘.:lon.l Then we have , f(A) = 2B{1 + B2) 1y a.nd. P(A) = B(1 +

(1 - B2 )I)-]‘U. If y 41ie a number in the closed interval -1 ¢ ¥y

¢ 1, ther‘l the equation y = 2x(1 + xz)-l has & solution x = y(1 +
(1 - yz)i)-l, Then we have f( ¥{A)) = A =FP(£(A)) for AeU(L),
and f carries L onto U(L), . : .. Since K is

¢ -cycloetrongly dense in L, U(K) is 6*-cyclostrongly dense

in U(L) 4if it is proved that f is ¢ -cyclostrongly continuous,
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Now we shall use all the no@étiona in the proof of Theorem 1,
5.4. The normal representation JU satisfies f(TC(A)) =TU(£(A))
and X !x(A) = I61(TT(A)). To see that f 4is d°-cyclostrongly
continuous on L, it is sufficient to show that f : T{(L) — U(
TT(L)) 4is continuous on JU(L) when the topology b{ the domain © ;;

TC(L) of f is'thé 6*-cyclostrong topology and the topology of

the range U(TU(L)) of f 1s the cyclic topology, Let X and Y
be elements of TJ[((L). Then

Lee() - £(¥) = (1 +yy)le(x - ¥)

+ 1+ 1) ryr - xx0)(2 + xx)7L (),
where

YY* - XX* = Y(Y* - X*) + (Y - X)X*,
We set x; =36 (£(X)), x, = 361(x*), x5 = G1X*£(X)) and x,
= EXX£(X*)). Then remafking that (1 + Yy*)™! a.nd 2(1 + Yy#) 1y
belong to U(L'), we have

168 (e(x) - £l ¢ 2. Xx - v b+ W(xr = x*)x, |l

+ 1Y = Xxq 0

and

L (e(X) - £(Y))
. $ 2 =
¢ Beri@-n+ ZNx-Dxl? s Zhae - rxgh?h,

i=\

The last inequality verifies that-the mapping f on TU(L) 1is

continuous, Theorem 1.5,5 is thus proved,

T



.§2. Modular standard algebras,

§2.1. Generalized Hilbert algebras,

We consider a *-algebra Ol which is a prehilbert space and
whose innerproduct is denoted by (a, b), We say that Ol is

a prehilbert *-algebra if the following three conditions are
satiefied,

(1), (ab, e¢) = (b, a*c)

(2). For every a € ({ the mapping b —> ab is continuous
on (L.

(3), The algebra 012 is everywhere dense in (.

Let (L be a prehilbert *-algebra, By the metrical completion
JL 1is extended to a certain Hilbert space ‘g which we call the

Hilvert extension of (J{ . For every a ¢ (U we define a bounded
operator L, on 6 by

2.1.1, Lab = ab for v edl.

Then a —> La is a *-homomorphism of (] onto a certain *-alge-
bra LUL on ‘% which we call the left regular repreventation of (J,
The von Neumann algebra (L oz)” is called the extended left regular
representation of (I, Lo is a nondegenerate *-algebra since I‘(ﬂ-ﬁ.
contains 0‘(? and is everywhere denee in ‘5 An element k of “5

is saild commuting with ¢7 if there 1s a certain bounded operator
Ry and an element k% of Eeuch that

2.1.2. R = Lk, (Rk)*a = Laks.



The set ¢’ of all elements of ‘5commuting with OUL is called ¢
the commutant of (L., Since (], is not an operator algebra, the
above definition does not derive any confusion, For every k

€ ML° the operator R, 1is uniquely defined, The set R 47°

all operators Rk ‘such that k e 0L° is called the right regular
representation of oz,c, The von Neumann algebdbra (Rmo )" is called
the extended right regular representation of JLC.

A pfehilbert *-algebra (], is called a generalized Hilbert alge-
bra if the commutant (1% dis everywhere dense in the Hilbert ex-
tension of (1. DLet (l,be a generalized Hilbert algebra, o be
its commutant and ‘6 be the Hilbert extension of (7. An element
a of ‘)3_ is said commuting with ;° 4f there is a certain bounded
operator L, on ‘5_ and an element a* of § such that for every kea_

2,173, L.k = Rea (L)k R a*.

The set (1°C of all elements of g commuting with (¢ is calleg
the second commutant of 07, For each a € (| CC the operator L

a
is uniquely defined, The set L gL cc of all operators L such

a
that a ¢ chc is called the left regular representation of olcc
A generalized Hilbert algebra (7 is called maximal if it satisfies
. = Q°° ' L

Theorem 2,1,2, Let Ol ve a generalized Hilbert algebra, and ‘g_
be the Hilbert extension of ;. Then Ly, Rge and LOZCC are

174 /

nondegenerate *-algebras on ‘5_ such that I‘Ol,,’-" (Lm_cc) = (Rol.c)-
a —> L, 1is an isomorphism of gy onto L, . (Ly, L, — a) is
a separating cyclic *-algebra which has the integrable commutant
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(R oL° » Rk ——> k) and the maximal extension (Lwc. L, — a),

Proof, We take elements a, b of prand k of &C. Then

(L, a, k) = (a, I s k) = (a, R_ b*)

k
= ((R)*a, b*) = (L, k?, b*),

Since LUL is nondegenerate, the above identity verifies that
L, = 0 implies L, a =0 for all b &€ 0L and & = 0, Then the

*~homomophism a — I'a is an isomorphiem, and the mapping I-&1

—> a is a cyclic mapping of Lgyz. By Lemma 1,1.%(Ree, R

k
k) 1is the integrable commutant of (I’OL’ L, — a). Since @°
is everywhere dense in.'g, "Rk —> k 1is & cyclic mapping and by
Lemma 1,1.6 (LOI,’ La —F a) 1e a separating cyclic *-algebra,

We apply again Lemma 11,5 to the cyclic *-algebra (R e, Ry

—> k) and find that (L gee, I, —> a) dis the integrable commu-

4] ’
tant of (Rpc, R, — k). Hence we have (L) = (mec)"= (ROLC)'

Theorem 2,1,2, ILet (L,)\) be a8 separating cyclic *-algebra on

a Hilbert space ‘5_ Then ‘5 contains a certain densely defined

generalized Hilbert algebra ( satisfying (L, X) = (L, L, —> a),

Proof, We set (| = '>\(L) and introduce *-algebraic operations
in . 0L so that the mapping )\ is an isomorphism of L onto {(.
Then the involution and the multiplication in (J{ are defined by

a*.= N (A), ab = )\(ABf for a'=',XxA). b = N(B),

Since 012 = L N(L) 1is everywhere dense in ‘g, 0L is a pre-

Hilbert *-algebra whose commutant OZO = )\’(Lc) is everywhere

dense in ‘6_. Then 0l 1s a generalized Hilbert algebra satisfying

e ——— e ———— - e c—— . e e - -
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(L! >\) = (LOL’ La _> 8.). ..

Let (L,N\) be a separating cyclic *-algebra, The generalized
Hilbert algebra (L satisfying (L, A\) = (Lo Iy — a) 1is called
the underlying generalized Hilbert algebra of (L, \).

Theorem 2,1.3, If (L is a generalized Hilbert algebra, then
gL°® 1s a maximal generalized Hilbert algebra such that OIFCC
= 51?.

Proof.‘ (L(ﬂFc’ La —> a) 1is a maximal separating cyclic *-
algebra, and (ﬂ?c is its underlying generalized Hilbert algebra,

—_—

N -

Since (R(np, R, — a) 1s the integrable commutant of (LOKFC' &\

cco

L, —> a) we have (U c¢c

= OLF' Then (U is a maximal generalized
Hilbert algebra,

If 0L is a generalized Hilbert algebra, the maximél Hilbert algebra

(nfc is called the maximal extension of oL.

§»2,2,_ Modular Hilbert algebras, )

Let (T be a prehilbert *-algebra, and K denote the complex number
field, An automorphism group T’ of 01 as a linear algebra is called
a modular group of (U if the following six conditions are satisfied

(1), There is a certain homomorphism o( —— éf'of the additive
group K onto ]7 .

@), (&a)r= &Far

3). (&a, b) =(a, &F b) e
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(4). (¢ &' a)*, b*) = (b,a)

(v). For every a €0l and beor, ( & a, b) ie an
analytic function of the variable KA on K,

(6). For every real number t, the set (1 + At) Ol 1is

everywhere dense in (] .

A prehilbert *-algebra which has a certain modular group
is called a modular Hilbert algebra, ILet G be a locally compact
group and CO(G) be the linear space of all continuous functions

on G with compact carriers, If, f and g are elements of CO(G),

we define the involution f* of f by f*(a) = é(a)f(a-l), mul-
tiplication fog and the innerproduct (f, g) by

f-g L[f(b)g(b‘iﬁ)db.(f', g) = uff(a)é?£3da,

where da 1is a left invariant measure of G and Af(a) is the
related modular function on G such that ff(xa)dx = A (a)ff(x)dx.
It is well-known that C,(G) 1is a modular Hilbert algebra whose
modular group - r = A* } 1e defined by

A tx) — A* (),

Lemma 2,2,1, Let (JL be a modular Hilbert algebra which has ‘
a modular group [7 = { A'k }, and 1let )3 be the Hilbert extension
_of Ol Then the automorphism ‘Al of oL is exteﬁded to a certain
gelf-ad joind operator Z 2 0 on "5_. If:_. A is 8 complex number ,

then KJ* is an extension' of A", and (¢ is everywhere dense in the
Hilbert space O ( Z&‘, ). '
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Proof, Let t be a real number, The set (1 + At) Ol 1s
everywhefe dense in 'g, and from (Ata, a)"; 0O we find that
I (1 + atall > |lall for a e¢(]. We define a bounded Hermi-
tian operator By 3 0 in E by Bt(l + At)a = a, Then Qt o "
1 .

is extended to & self-adjoint operator Ut = B; - 1 whose domain

‘S(Ut) contains (U as a dense subset, Notice that AL At A®
and (Uta, b) 1is continuous on the real line for fixed a e (J{ and
b & Ol. Then we obtain U, = U U, and setting U, = ‘A we find
that U, = Z)t > At. (A‘ia, b) and ( —&La, b) are regular
analytic functions of the complex variable [ which coincide on the
real line, Then they coincide on K and we have ’&’( 2 QJ\
for all L €K, If t | is the real part of a complex number [, then
09(2—50( ), DI Zt) and gB(Ut) are the same Hilbert space which .
contains Ol as a dense subset, .,

We consider a modular Hilbert algebra which has a modular group
V 3 {AA}. Letg_ be the Hilbert extension of (j7, and A be the
self-adjoint extension of Al in 7§ If t 1is a real number, then
a —> (Ata)* is an involution, i,e, a reflexive conjugate linear

anti-automorphism, of the linear algebra (7, . We define two spe®ial

involutions & —) a® and a — a® by ‘
L
2.2.1, a® = ( Aca)*, a® = (Aa)*,

Then 1t is immediately shown that

2.2,2, (a, b) = (b?, &%),

2.2,3, (a, b) = (b°, a*), (ab, ¢) = (a, cb?),
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The involution & =) a® is extended to a oertain reflaxive

conjugate linear isometry J on ‘5, If X 1s a bounded linear

T

operator, we set X" = JX*J, XT is called the transpose of X,

If L is a *-algebra on ‘%, the transpose X —) XT induces an
antiisomorphism of L onto a certain *-algebra LT on f. I.T is
called the transpose of the algebra L, From (ta.b)z = bZa? and

az* = a%% we find that

»
2,2.4, (L'az)T = ba, (I.az)Tb = va®,

Then every a &l is contained in 010 and satisfies

R - T'»
2.2,5%, Ry (Laz) .

We let R denote the. totality of R, such that a € 0L and
call it the regular right representation of (.

Theorem 2,2.,1, Let (JU be a modular Hilbert algebra, Then gt
is a generalized Hilbert algebra, and R 4; 1is a cyclicly dense
*-gubalgebra of Rgyc, The associated transpose X —> XT‘ca_rries

T .
Ly, onto R 47, L0L°° onto Rolc' and (I'UL) onto (ROLc)f‘.

Proof, By 2.2,4 and 2,2,5 Ry is the transpose (LOL)T of L
and is a *-subalgebra of Rgyc, Since 0C contains prend is dense
tn %, (Lis & gemeralized Hilbert slgebra. Let R° ve the Hilbert
space of all adjointive elements of )3 with respect %o the separat-
ing cyclic *-algebra (I ,, L, —> a), An element x of ‘gbelonga
to -5_9 if and only if 13_ contains,a certain element x° satisfying

1
(3%, a) = (x, a?") = (x, &A*a) fora c(O(,



Then x&'g is adjointive if and only if x ..belongs to ", ([\5‘3),.
and the adjoint x° of x € .ge is determined by
2.2,6, x° "-'1' X,

=J
g ~1
% and ({(A*) are the same Hilbert space with the norm
’ 1 1 1

nx = Cuxi? +x®i22 = (e +u g 2 x@)2,
Since (L is everywhere dense in 5_8, by the Cor.ollary of Theorem 1,
- 9.1, Ro-LiS a cyclicly dense subalge.bra of RO‘LC | satisfying (R ol_)cc
- ROLC and (Ra'(_)”= (ROI_C )". Then the transpose of (La[)" is (ROZ.C
We show that the transpose of Lglcc is Rote. Let x be an eleme:
of Ol,cc -and a be an element of (Jl., Reffering 2.,2.9% we have

'(Lx)Ta = J(I’x* a?) = J(Raz x*) = L dx*,
and

T*
(Lx) a = L Jx,

T T .

Then we fined that (I'x) = R;.» and (L gree) LRpe. Similarly
we have (Rg(c)Tc_Lolcc. Hence (Lg-Lcc)T = Rye 1is proved,

Consider the tensor product 61 ¥ %2 of Hilbert spaces 6_1
and %_2. If " and 7] are linear subsets of %1 and 62, we let
}‘ﬂ_l Q;)mz denote the least linear set which contains the tensor
products x Xy of xe7N and ye¥]. Let (land B be modular
Hilbert algebras and 1 and "ﬁ} o be their Hilbert extensions,
Then (¥ B is a dense subset ,of %1® %.2' 0l ® B':.'..

is considered as a *-algebra whose involution and multiplication

are determine%\by
N\

2,2,7.  (aXVb)* =a* Yb*, (a X b)(cWd) =ac bd,
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The algebra (01\203))2 is i1dentical to 01,2 &) 82 and is
everywhere dense in gl & %2, and, if ae0l and be B ,
then the mapping x —> (a ¥ b)x 1s continuous on (¥ B.

Therefore 1¥ B 1is a prehilbert *-algebra,.
-r‘heorem 2.2.2, T4e WW of&w Mm&-«»&@ ”WWW ;mMﬁWa%
Proof, Consider modular Hilbert algebras (J{ and B y their

Hilbert extensions *%1, _‘%2, and the related modular groups ]'71
= { Ai‘ } and ]72 = {AS‘ }. For every complex number  , let
Aci . A°(2 be a linear-algebraic automorphism of 0l \&B such that

228, (AW flewn) = Kaw v,

We show that the automorphism group rl & Fz = {Abi ) ﬁg} is

a modular group of [l¥® B . To see this, it is sufficient to verify
that, for each real number t, the set (1 +A & A%)( 01 ® B)

is everywhere dense in Oll ¥ B,. Let Zl and 7z, be the self-
adjoint extensions of the automorphisms A‘l and Adz. If + 1is
-1’ Elt(l + Xlt)‘-l, (1 + Egt)-l
and Ezt(l + 521;)-1 are bounded Hermitian operators ) O whose

a real number, then (1 + th)

ranges are everywhere dénse in ‘51 and ‘%\2 respectively,
We set

W=+ 3,07

¥ (1 + 521;)'1 + th(i + ﬁlt)-lxzs)fxzt(l +52t

Then W 1s a bounded Hermitian operator whose range is everywhere

dense in %1 &) 4’92 and which satisfies

MO AL, ADE ) = arate Abpep).
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Then the sets (1 + A{) 0l & (1 + A;)B:'and (M A{Qs) A;)
( (LB ) are everywhere dense in @1&5) ‘%2. Hence (] & B

is a modular Hilbert algebra with the modular group T’l » T

Lemma 2,2,2, If 0] and B are two modular Hilbert algebras,
Then

(I’Ul@B)" = (Lm)"(ia (L,B)" , (RO—L@B)" = (Rm_)“ & (RB')"

Proof, Fronm

2.2.9. I,y =L, ®L, for ae0l, veB,

We find that LpgopR 1ie the least linear algebra Lg® LB which
contains the tensor products LLa(E Lb of elements of Lgz and I’B'

Then we have

(L 01(3)8)”: (Lo'(_)” b (L'B), and similarly

(RULQS)B)” = (Rp) @ (R ),

§ 2,3, Modular standard algebras,

A von Neumann algebra M 1is gaid modular standard if M is.
spatially iéomorphic to the extended 1éft regular representation
of a certain generalized Hilbert algebra, By Theorem 2,1,1 and
2.1,2 we odtain the nexﬁ Theorem 2,3.1,
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Theorem 2,3,1, A von Neumann algebra is modular standard if

and only if it is the von Neumann extension of a certain separat-

ing cyclio *-algebdbra,

Theorem 2,3,2, Every von Neumann algedbra is algebraicdally iso-
morhic to a certain modular standard algebra,
Proof, Let M bve a von Neumann algebra, Theorem 1.,3.4 implies
' ..
that M has at least a generalized normal strictly positive func- '
tional p, and by Theofem 1,3,3 the corresponding extended normal

cyclic representation of M 1is an algebraic isomorphism of M

onto a certain modular standard algedbra,

Theorem 2.3.3., (a). The commutant of a modular standard alge-
bra M is modular standard, (b), If M is mo@ular standard and
if Z 18 a progection in the center of M, then Mz is modular

standard,

Proof, We can suppose that M 1ie the von Neumann extension
of a separating cyclic *-algebra (L,)\). Then M' 1s the von .
Neumann extension of a separating cyclic *-algebra (L°, )\f), and
Mz is the von Neumgnn extension of a separating cyclic *-algebdra
(Lz’ >\z)° Then M' and M, are modular standard algebras,

A von Neumann algebra M 1is saild of reduced type if it is
spatially isomorphic to a reduced algebra of a certain modulab“‘r

standard algebra, M 1is said of induced type if it is spatially

isomorphic to an induced algebra of a certain modular standard

algebra,
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Theorem 2,3,4, A von Reumann algebra is of reduced type if

and only if ite commutant is of induced type.

Proof, Iet N be a modular standard algebra and E be a
projection in N, A von Neumann algebra M is spatially iso-

morphic to NE if and only if M' 1ie spatially isomorphic to
Né. From this we obtain the Theorem,

Theorem 2,3,%., A von Neumann algebra M 1is spetially iso-
morphic to a direct sum of two von Neumann algebras which are
of induct type and of reduced type,.

We shall prove Theorem é.}.s combining Theorem 2,3.2 to the
comparability theorem of the algebraic isomorphisﬁ. Let Tl be
a normal homomorphism of a von Neumann algebra M. onto another-
von Neumann algebra N, We say that J{ is an induction if M'
contains a certain projecfion E such that the induced algbra
Mp has a spatial isomorphism T(y onto K satiefying TT(A)
= Tf_E(AE) for all AeM, An induction TU of M onto N is
an isomorphism if and only if E 1is generating in M', Let T
be an algbraic isomorphism of a von Neumann algebra M onto
a von Neumann algebra N, uand 2 be a projection in the center
of M, Then an algebraic isomorphism T[z of Mz onto NT[EZ,
is defined by T, (A,) = TUAl(,) for all A €M, Ve call
T(, the sublsomorphism of TU restricted on M,

4

Theorem 2,3,6, Let TU be an élgebraic isomorphism of a von
Neumann algebra M onto a von Neumann algébra R. Then the center

of M ocontains certain projections 2 and W =1 - Z such that
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—~

T, end (T]’w)-l are inductions, . ©

N

Proof, TLet ‘Ig and ), be the underlying Hilbert spaces of
M and N and consider the direct sum % W) of % and )} of
which elements are denoted by <Xy, X5, We regard ‘3 and TL_
asg subepac'ee of g@'}( identifying every x ¢ 5_ to «<x, 0> and
every yeéX to <0, y>, Let H and K be projections defined
on ‘5\:97{ whose ranges are ‘g and 'for every AeM we define
an operator T(A) on '5\97’[ by T,(A)<'x, y> = <Ax, M(A)y>. T is
an algebraic isomorphism of M onto a certain von Neumann alge-
bra T(M) on '5(9 k. H and K are elements of T(M)', and by
the comparability theorem (cf,(1],p228,Theorem 1) we may find
projections 2 and W =1 - 2 in the center of M such that
T(2)K £T(2)H and T(WH £ T(W)K, We take projection; H,
and KO in 7(M)' and partially isometric operators U and V
in T(M)' such that U*U = H, c T(z2)H, Uu* = T(2)K, V*V = K, ¢~
C T(W)X and VV* = T(W)H, Notice that M’

TT )y end

72 = “c(z)fH. Then by (b) of Lemma 1.,2,1 we find that T(M)'Ht(z)
= M'Z and E = H”HT,'(Z)GM'Z' Similarly we obtain F = KE’K‘C(W)

C'N'T(-('w)' Let ‘21,-52,7(.1,7{.2, 7’721 and7ﬂz denote the ranges
of the projections 32, W, T{(%),T{(W), E and P, Then they are
simultaneously the ranges of the projections T(Z)H, T(W)H,
T(2)XK, T(W)K, HO and Ko re(‘apectively. The operator U trans-
poses 77’(1 isometricly onto 7{1, and if AeM then we have

vAu 1y =T(A)y for all y€K,, We define a epatial isomorphism
¢ of (M), onto Nrdzy by P (Xz) = T ,(X) for Xe&M,.

Then Ty is an induction of MZ onto N‘ﬂ{j)- Similarly it

is verified that (T[w)-1 is an induction of NT[&W) onto M,
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Proof of Theorem 2,3,5, Let M be a von Neumann algebra and
consider an algebraic isomorphism JU of M onto a certain modu-
lar standard algebra N, The center of M contains projections

2 and W =1 = 2 such that the isomorphisms Ty, and ( ﬂ:w)-l

are inductions, We set Hl = MZ' M2 = My Nl = NWIZ)‘ ‘Nz = NK(w)'
(f =T, and v)? (ﬂfw)-l. M is spatially isomorphic to the
direct sum Mlkﬁ M2, and K,  and N, are modular standard alge-

bras, We can find a projection F in N2‘ and a spatial iso-

‘morphism %@ of N,p onto M, such that }KX) = ?%(XF) for
all x €& N2, Then M2 is a von Reumann algebra of induced type,
Similarly there are a projection E in Ml' and a spatial iso-

morphism (P of My, onto K, such that -(f’(X) = ?E(XE)
for all XeM, Then MlE is a modular standard algebra spatially
isomorphic fo Nl, and E 1is a nondegenerate projection in M',
If the next Lemma 2,3,1 is proved, then Ml is of reduced type,

and Theorem 2.3.,% 1s proved,

Lemma 2.3,1, A von Neumann algebra M is of reduced type if
M!' contains a certain generating projection E such that ME
is modular standard,

Proof, Let 7§ be the underlying Hilbert space of M, Mp and
M'p are modular standard algebras, and Mi 18 the von Neumann
extension 1" of a certain maximal separating cyclic *-algebra

(L, \) on the range E-i% of E, Mi has a generalized normal
strictly positive functional Po which 18 defined by pO(A*A)
= b NI for A¢L, and L 1is the integrable part of Mg'.
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By Theorem 1,3.,4 we extend Pg to a generalized normal strictly
positive functional p on M' guch that po(AE) = p(EAE) and
p(EAE) ¢ p(A) for all A€ M', Consider the algebraic isomorphism
TC of M' on the von Neumann extension K" of a certain maximal
separatifxg oyclic *-algebrd: (K, /A) on a Hilbert space K which
corresponds to p, Then T{ carries the integrable part M'(p)
onto K, and satisfies p(A*A) = ll,l,L(T[(A))ll2 for all AeM'(p). ¢
By Lemma ‘1.3.1 K' ocontains an Hermitian operator T2 which
_represents the positive functional .p(EAE) in the form

p(EA*AE) = (T2A(T(A)), M (TC(A)))  for AeM'(p),
From the relation
po(Agshy) = P(EA*EAE) ¢ p(EA*AE),

we find that the reduction A —) A; carries M'(p) onto L
and we have for Ae€M'(p) and BeM'(p),

I XA = T A TC (EA)) 12
and
(ANAg)s A(Bg)) = (TA(TC(ER)), TM(TT(EB)),

Let A, B, X and Y %e elements of M'(p), From the identity
EB*A N(Xg) = X((B*AEX)y) 1t is calculated that

(AX(Xg), BA(Yg)) = ()\(B*.AEX)E, \(¥g))
= (T M( TC (AEX)), TA{ TC(BEY)),

The linear set L}\(LE) is uniformly dense in “ﬁ since >\(LE) is
everywhere dense in E‘l; and since L'E '§ is identical to ME'5

A
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and is uniformly dense in f}, Then the mapping A\(XE) ———? Ty (T
(AEX)) is extended to an isometry U which carries f§onto)a certain
closed subspace J/|. of K, Let F denote the projection of K onto
TL. F 1is an element of the algebr K' such that T(A)g = vau~L

for all AeM, M' 1is of induce type since it is spatially isomorphic
to the induced algedbra ]t(M')G of the modular standard algebra'ﬁ(ﬂ').
So that M 1is an algebra of reduced type, Iemma 2.3.1 and Theorem
2,3.5 are thus proved

§ 2.4, The fundamental equivalence theorem,

Two ‘generalized Hilbert algebras Jl and B are said isomorphic
to each other if there is a certain isometric isomorphism of 01
onto B ., Two generalized Hilbert algebras are said equivalent if
their maximal extensions are isomorphic to each other, We call the
next Theorem 2.,4,1 the Fundamental Equivalence Theorem,

Theorem 2,4,1, Every generalized Hilbert aigebra is equivalent

to a certain modular Hilbert algebra,

Theorem 2.4.1 will be proved in the next section, 1In this sub-
gection we describe some applications of Theorem 2.4.1 assuming the

validity. Theorem 2,4,1 18 obviously equivalent to the next Coro-
llary 1,

Corollary 1, Every maximal generalized Hilbert algebra is the
maximal extension of a certain modular Hilbert algebra,

By Corollary 1, the extended left regular representaion of a
generalized Hilbert algebra is always the extended regular repre-

sentation of a certain modular Hilbert algebra, Then we obtain
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Corollary 2, A von KNeumann algebra is mogular standard 1f:and
only if M 1ie spatially isomorphic to the extended left regular
representation of a certain modular Hilbert algebra,

Let (L be a maximal generalized Hilbert algebra and B be its
modular Hilbert subalgebra whose maximal extension is (L, ILet F
= { &%} be the modular group of B, and B be the Hilbert exten-
sion of (Jl., The self adjoint extension A of A'is called the
mddular operator associated with (. The involution J, and the
transpose X —> XT, associated with P, is called the involution
and the transpose associated with thé algebra (L ,-

Theorem 2.4.2. Let 0L be a maximal generalized Hilbert 'algebra,'

Then the associated modular operator & , the involution J and

the transpose X —> XT are invariants of (., X —> XT induces

~ an antiisomorphism between I’lﬂ, and ROLO’ and between (L OI.) and

(RULC)' i

Proof, ‘Let ~gbe the Hilbert extension of (1, and B bhe a modular
Hilbert subalgebra of ( whose maximal extension is (U, Let. l'b
= {A‘L} be the modular group of P and & be the self ad joint exten-
sion of‘ A’ . We show that B does not depend on the choice of B
Let Jr| be the set of all elements a of ¢C such that a° belongs

to (1. Reffering the identities 2,2,1 and 2,2,6 every xe7/ and
.a € B satisfies .

ot

(x®*, a) = (x, a®*) = (x, &a)

and x%* = A x,.
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Then A 1is a unique self-adjoint operator in 73 satisfying o x

= x8%*  for fem By 2,2,6 the involution J 1is determined

by Jx = A x® for xe®®., The operators A, J and the trans-
pose X —> XT are therefore the invariants of (J{. Since X.
—_— XTI transposes, Ly onto Rgpc and (I’O'L)" onto (RO‘LC)’ we
obtain the Theorem, From Theorem 2,4,2 we obtain immediately:
Corollary of Theorem 2,4,2, ' A modular standard algebra is anti-

isomorphic to its commutant,

Theorem 2.4 .3, The tensor product MY N of modular standard
algebras M and N 1s a modular standard algebra which satisfies

the commutation relation (M® N)' = M' ¥ N',

Proof, We can assume that M and N are extended. left regular
representations of modular Hilbert algebras (L angd B . Then by
Lemma 2,2,3 MY N and M' X N' are the extended left and right

regular representation of L B Then MY N is a modular stand-
ard algebra satisfying (M@ N)' = M' @ N',

Theorem 2,4,4, If M and N are von Neumann algebras, then

we have (MY N)' = M' ¥ N',

Proof, A von Neumann algebra is spatially isomorphic to a dir-
ect :sum of von Neumann algebras of induced type and of reduced
type. Then it is sufficient to verify the theorem in the following
three cases, (a), M and N are of induced types, (b), M and

N are of reduced types, (c), M is of induced type and N 4is of
reduced type,



In the case (a), we can aseume that M and N are induced alge-
bras M = MOE and N = NOF of modular standard algebras MO
and No, E and F are projections in Mo' and No', Then E
@ F 1is a projection in My' ® Fo' = (My ® Ny)' such that

M@K = (Mon)N'O)E@P

and

M' ¥ N (MO)'E X (N0°)F = (M, ®“No')E W P

1]

»‘"o®“o"n®r = (Mg @ Folp o p)'e

]

(MY N)',

In the case (b), M and K' are of induced type and it is reduced
to the case (a), In the case (c). We can assume that M is a
induced algebra MOE’ and N 1is a reduced algebra. NOF' of modular
standard algebras MO and NO' Since E 18 a projection in MO',
E®1 is a projection in M{ & o' = (MO® Ny)': Similarly F
is a projection in N, eand 1 @ F 1s a projection in M, N,.
Then remarking that EWF = (E®1)(1 W F) we have (MY KN)p oy p)'
= (MWK} gp. Since (MPIFlpp=MIN and (MO F)'p o p
=M @R, = M @ K' we have (M® K)' = M' ¥ K',

c @

)

&
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§3, Structures of generalized Hilbert algebras,

3.1, Extended multiplications and involutions,

Throughout this section. we let (7 denote a generalized Hilbvert
algebra, ch the commutant of 47, andg the Hilbert extension of
0l . We extend the multiplication in g7 to a certain multiplication
between elements of ((, gand o'Lc. "Let a be an element of Ji, k

be an element of ()Lc and x be an element of ‘5. Then ax and

xk are defined by
3.1010 ax = Iaxﬁ xk = kao
Since

3.1,2. ak

1]

Itk = Rga,
two multiplications in 3,1,1 are identical whenever they are defined

simultaneously,

Lemma 3,1,1, 01? is a linear algebra with an involution k —
k® 1if we define the multiplication in 6ZF as the restriction of
the multiplication 3,11 in ¢7°, k —> R, 1is a *-algebraic anti-
isomorphism. of é(}c onto R gc.

A
Proof, Consider the underlyipng generalized Hilbert algebra ozf

of the separating cyclic *-algedbra (R 0C Rk —> k), fy\(‘c and J(,c
-' A

are the same subspace of 5 However, the multiplications in OLC

and (KF are antiisomorphic since the multiplication kem 1in 6i?

is defined by
3.1.3 kom = ka = mk,
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Then k —> R, 1s an antiisomorphism of 0C onto ROLC'
Let a and b be elements of (fl, k and m be elements of ()Ic.

and x and Yy be elements of ‘% . The extended multiplication
satisfies obviously the following relations,

3.1.4, ax 1is bilinear with respect to a anid "x, xk 1s bilinear

with respect to x and k

3.1050 (ak)k a(Xk)

3,1,6, (ablx

a(bx), (xk)m = x(km)

]

3,1,7, (ax, y) = (x, a*y), (xk, y) = (x, yk®),
3.1080 (8’ k) = (ks, a*)
3.1,9,  lax| ¢ IT 0 ux W, fixk|l ¢ xR,

If an element x of 13 is adjointive with respect to the algebra
(I'OL’ I’a —> a), then x 1is saild s-adjointive and the adjoint of
x 1is called the s-adjoint of x, The s-adjoint of an element x

ofba— is determined as an element x of ‘é_ satisfying -
3,1,10, (x, a) = (a*, x°) for a ¢ (L.

The set 5_8 of all s-adjointive elements ofgis a Hilbert space

whose innerproduct (x, y)S and the norm Ix)], are defined by
3,111, (x, ), = (b7, x%) = (x, ¥) = (4°, x%),
3.1.12, uxng = (x, x) = hxn® xS,

The uniform topology of the Hilbert space gs is called the 8-

cyclic topology., 0'(,? is an s-cyclicly dense subset of 58.

(&
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A linear algebra B of M° 1s called an g-slibalgebra if it is
invarj.ant under the involution x —) xe, If B is an s-subalge-
bra of 61°, then Rp= (R : ke B) 1s & *-suvslgebra of Ryec.

RB is cyclicly dense in Rpe if and only if B is e-cyclicly

dense in 38. If an element x of ‘5_ is adjointive with respect

to the algebra (Rm_c, R, —> k), then x is said *-adjointive,
and the adjoint of x 1is said the *-adjoint of x, The *-adjoint
of an element x of 'g is determined as an element x* of'S satief‘;*
ing iy
3.1.12, (x, k) = (x7, x*) for ke ¢C.

The set --3’ of all *-adjointive elements of 5 is a Hilbert

space whose innerproduct (x, y); and norm Nx#, are defined by
i

3,1,13, (x, y); = (y*, x*) = (x, y) + (y*, x‘);

3.0.14,  Uxid = (x, x)y = axh? ¢ gx*n?,

The uniform topology of the Hilbert space 15’_* is called the *-
cyclic topology., (L is 8 *-cyclicly dense subset of 5*.

Lemma 3,1,3, Let (3 a *-subalgebra of 0l which is uniformly
dense in ‘g . Then [3 is a generalized Hilbert algebra, 0L is
the maximal extension of B if and only if R is ’-cyciicly dense
in 0C, .

Proof, The left regular representation LB = (Lb : beB) of

4

B is a *-gubalgebra of LUL' whiéh has a cyclic mapping Lb —> b,

since (LB )¢ 18 a nondegenerate *-algebra which contains (La‘)c,

by Lemma 1,1,6 (Lg , Ly —> b) is a separating cyclic *-algebra

whose underlying algebra is B. B is *-oyclicly dense in 13_‘ if



and only if Ly is cyclicly dense in LM... Therefore |3 is

*-cyclicly dense in (L if and only if the maximal extension Bcc
of B 1is identical with 0T,

Lemma 3.1.4, An element x of *5_" belongs to (L if and only
if there is a constant Y satisfying

3,1.15, pxkl ¢ Yk for keoC,

An element x of ‘t; belongs to ¢ if and only if there is a
constant Y satisfying

3,1,16, raxil ¢ Y nall for ae(l.

Proof, Iet a be an element of ‘5’. If there is a constant Y
satisfying 3.1.15, we find a bounded operator L  on 5 such that

a
Lk = xk = Ry x for kefl .

From
(xm, k) = (m, x*k) for meg®, k eolc,

We find that (Lx*)k = R x*, Then x is an element of 0cC.

Iet x be an element of ~§*. By Theorem 1,5,2 there is a certain
closed operator I"X}Z(I’UL’ L, —> a) eatisfying

Lk = Ryx, (L )*k = Ry x* for k eqL®,.

Consider the incidental *-algebra:* CO(LX) of L_. By Theorem1,
5.1, Co(x) is an ablian *-subalgebra of I’OL' and is isomorphic

to a certain *-subalgebra (7(x) of 0t by the mapping Ly, —> a,
we call (L(x) a *-algebra incidental to x,
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Lemma 3,1,7, Let x be an element of S_f and (((x) be a
*-algebra incidental to x, (l(x) 1is an ablian *-subalgebra
of (L. The mapping a —) ax carries (UL(x) 1into 0 and satisfies
((a*ax)*, x*) > 0, Suppose that there is a constant )’ satisefying

3.1.17. ((a*ax)*, x*) ¢ Y f1al for a e (l(x),
Then x 4is an element of (U such that [ I . ll¢ Y .

Proof, By (b) of Theorem 1.5,1, L, —> L,L_ carries CO(Lk)
into L g . Since 1.4.7 implies L,L =L, for a ¢ 0(x), the
mapping a —> ax carries ({(x) into (7 and satisfies ((a*ax)*,
x*) 3 0 for a € JUx), If Y 1is a constant which satisfies 3,1,
17, then by (d) of Theorem 1,5,1 L,. 18 an element of L, satis-
fying I ¢ Y . ,

If x is an element of f;e, then we define a *-algebra ¢ﬂF(x)
incidental- to x which satisfies the next Lemma 3,1,8 as an analogy
of Lemma 3,1,7,

Lemma 3,1.,8, Let .x be an element of‘g?, Then ULC contains
an ablian *-algebra (ﬂ?(x) which satisfies the following conditions,

c

k —> xk carries olc(x) into (p° and satisfies ((xxx°)°®, x%)

> 0 for k ¢ (C(x). Suppose that there is a conetant‘{ such that

N
3.1,18,  ((xk k)%, x®) ¢ Yhki for ke (L°(x).

Then x 18 an element of 0£: sé%iefying IBRell ¢ Y

- '-‘

33.2. The existense of the modular operator,

The modular operator and the involution which we have defined 1in

Section 2 1is based on the assumption of Theorem 2.4.1,



Since our present problem is to prove this theorem we have to define

thege operators in a different way,

Theorem 3,2.1, (a), Let A be an operator in é_ such that

3.2010 Ax =x8*’

and let the domain of A& be the totality of x 6‘5 such that x%*
is defined, Then A and a-]' are positive selfad joint operators
in "3 . The domain of 6.1 i8 the totality of xeS such that x*8§

is defined, and we have

3oé020 A X =X‘s'

(b), There is a certain reflexive conjugate linear isometry J of
‘5_ satisfying

3.2.3. x* = O

] .
Jx =J AT x for xeg‘*, :

pi—

B \
3.2.4, x2 = A'dx =7 AT x for x e 58.

We call the operator A the modular operator, and J the involu-

tion, associated wit‘h 0l . To prove Theorem 3,2,1 we prepare the

next lemma 3,2.1,

Lemma 3,2,1, If x 1s an element of 5‘ and Yy ie' an element
of ‘gs, then |

302050 (x’ y) = (ys! X*)o

Proof, (L is *-cyclicly dense in' 73* and contains a sequence

> x* in % i is e-
cyclicly dende in 1;8 and contains a sequence {kn} satisfying

{an} satiefying &, —> x and a *

kn - y and kns —> y!5 in 3 Prom the identity (an, kn)



a » ) . [}
= (k" 8y ) we obtain 3,2.4, .

Proof of Theorem 3.,2.1, We reffer 3,1.11 vhich defines the

innerproduct of ‘55, and define an Hermitian operator T ) O in
the Hilbert space ‘5_8 by '

3.2.6, (P xy y)g = (xy, y)y (0= 1T)x, y) = (5%, x°),
Then the involution x ——) x® 1in ‘5.8 satisfies
3.2.7. (r x%)% = (1 - Tx,

» d J
Notice that || '1"-x||8 = \x !, where the range of T?* is s-cyclicly

dense in '58 and 138 is uniformly dense in ‘5 v Then the mapping
x —> Ti, X 18 extended to a certain isometry U of the Hilbert

space ‘3 onto the Hilbert space ‘58. We set ' S = U-l‘TU. Then S
is an Hermitian in H such that S2T and S22 = U2T%, We define

an involution J on 73_ by
3.2.8. Jx = U L (ux)®,

We consider the transpose X —) X'T = JX*J associated with J,

Then X —> X'T is an antiautomorphism of the total operator alge-

bra B(‘g) on ‘3 Since 3,2,7 4implies
T

3.2.9. S 1 -5

)
setting A = S-l(l - 8) we have
1 -1
3.2,00, A= Al ((amn)T - AT,
and by 3,2,7 x ¢ ¥°? implies
| ] ol - J
3,2.11, x® =85%s*x = A *Jx = Jaox,
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‘39 is identical with gA7) as Hilbert spaces, since they are

1
the range of 52 and they satisfy
1
3,22, axid =axi® ¢+ natx?,

By Lemma 3.,2,1, an element x of 5 has the *-adjoint x* if and

only if x* 1is an element of § satisfying

|
(Ix*, Y) = (x’ (Jy)a) = (x’ A-L }').
1 | _!

for all ye £ ( & *), Then ~§* is the domain of A% 3*

_d
and f)( A %) are identical as Hilbert spaces since

> 2 3,2

3,23, Ixif = 1xi? + 1812 for x e %,

The *-adjoint x* 1s therefore determind by 3,2,3 If W 1is a

non-zero non-positive- - 1 complex number, we use the folloving
-notations,

]
—_— X

3.2.14, Y(w) = 21wl - w - ® ),
3.,2.15. By= ( A= w)L,

Then we have (Bl = (AL -~w)™L

Theorem 3,2,2, Let w be a non-zero non-positive complex number,

Then a —> B,a. carries (L into glc, and setting b = B,,a we have

3.2.06, IRy ¢ Y(w) N 0.

k —> Ru,Tk carries (° into (1, and setting m = BwTk we have

3.2.17. D, ¢ Y (W) PR,

I’roof.~ Iet x Yve an element ofag( &-), and consider the s-sub-
algebra (JU°(X) of (7° 4ncidental to x, For every k € ({° we have
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(A= w)x)k|?

= 1AKIZ + 1w i2)xx]2 - 2 Re (wxk, (Ax)k).

By Lemma 311.8 we have
(xk, (ka)i) = (xkk®, x%%)
= (x®%, (xkk?)8)y o0,
Then we have
I (Ax)xl? + 'WI2|| xk || y 2lwl (xk,:‘ (ax)x),

and

I} (( A‘uf)x)kllz y (21wl - w - [;,)(XB’ (xkks)a),

Let a be an element of (), and set b = R,a, Then from

a=(A-w)b, we have

(%, (5kk®)®) ¢ ) (w)? Hn N2Hxl?,

Then by Lemma 3,1,8 b 1is an element of 0[0 satisfying 3.2,16,

3.3, Analytic forms of modular operators,

We consider the complex Riemann sphere KO which consists of
the complex number field K and the ‘infinity point,and let (O,
©0 ) denote the extended positive half line (z : 0 ¢ z ¢ 20), An
analytic function f which is defined in a certain open set U

f

in K, containing (0, %) 18 said an analytic function on (0O, o

>), Two analytic functions on (O,FOJ are regarded to be identi-

cal if they are identical in a certain region contéining €0, 9,



Then we can assume that Uf is a region containing (0,29) whose
boundary r'f is rectifiable , and that f 1is a continuous func-
tion on ["f U Uso We let A(0,°°) denote the set of all analy-
tic functions-on (0,29) which vanishes at 29, Then every func-

tion f in A(0,°9)" 1is represented by an integral

3.3.1 f(>\)=_lf (X -w) lt(w)aw,
ont JPt

where the integral surrounds Uf to .the positive dirrection, The
analytic form f(A) of A is defined by

3.3.2. £(4) = 5%,—1- j,f £(w ) Bydyr.

Theorem 3.,3,1, Let f ©be a function in A(0,29]), Then a —
£f(A)a carries (b into B°, and k —> £(. 1)k carries oS into
. f

Proof, If b is an element of (0 then

b(£(D)e) = 5 ﬁ,f £(w )b(Ba)d, .

Let )} be the length of Ff, and c¢ be the supremum of the functign
V(w)lf(w)! on Ff. Then

Io(e(A)a)l ¢ M) e [llvll  for bve(].

2£(z) 1s analytic on (0, 29) and Af(A) a is defined, Then (D¢
is an element of ?B 3 Q (A"i)'. and hence by Lemma 3.,1.4, f(&)a
belongs to al_,c, Analogously, we find that kéO'Lc implies I(A-l)k
€ (L.
Theorem 3.3.2, Let (JL® be the totality of ae(l. such that
Aa€(, . (U 4is an s-cyclicly dense s-subalgebra of 0L°., Let
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(L°* be the totality of k€ (L° such that” A 1k€(L®, Then (1°*
is a *-cyclicly dense *-subalgebra of (i .

Proof, If a 18 an element of (l.°, then b =a + Aa belongs
to(l end a = B_;b Dbelongs to (.°. Hence (L ° 1s a subset of 017,
et a and b be elements of l.°, Prom a® = (Aa)* and A(a®)
= a* we find that a° and A(a®) are elements of (., and a®

belongs to (L.%.Aleo, (ab)®* = a®*p®* implies
3.3.3. A(abh) = (A a)(Av),

Since ab and A(ab) are elements of (L, ab belongs to (JU°.
Therefore ULS is an 8- eubalgebra of (JLC To see that OLS is
s-cyclicly dense in (L.° and in ia, Remarking 3 09( Ql)
and lemma 1.4,1, it is sufficient to show that (1 +A’- Yor®  is
2)7t

uniformly dense.in § Consider the functions 2z (1 + z and

(1 + z2)-1 in A(0,0d), and take an element k of ac, Since
A-l(A-2+ 1)1k and ( A-z + 1)-1}( are elements of O(, A‘l(

A2 + 1)1k 15 an element of ®®. Then 6-1(6-2' +1) 1 ;C 1s

a subset of 4%, and (1 + A“‘) L® contains (1 + az)A i (a™? + 1)73
oL®. (1 + AF[) A1( A2 +1)1 is a bounded Hermitian operator whose
range is dense in %,'and @c is dense in 130_ Then (1 +A~i} A'-l
(6—2 + 1)-1 M® and (1 +Az)0’l.. are everywhere dense in g and
D'LB is an e-cyclicly dense a- aubalgebra of UL Analogously we

find that (1°* 1is a *-cyclicly dense *-gubalgedbra of 0,

Lemma 3,3,1, If o is a complex number, then the intersection of
g ® and OO(A_’“) is everywhere dense in the Hilbert space 09([3&)



Proof, Let t ©be the real part of 4 , -n be an integer
such that n 3 !t! +1 and f be the function f(g) = z(z°"
+ 1)-1. We show that 4-11'( 4-1)0(0* is contained in QO °* N
L A"‘ ) and is everywhere dense in JQ(A"!' ). If k is an ele-
ment of (L°*, then k and A1 belong to 0%, and f£( A-l)k
and AYf(A™1)kx belong to 0. Then A Xr( A 1)k belongs to
0, ana A Yr(A™Y) OLS* 16 contained in (U °. Notice that
1+ aY) A7 e( At) is a bounded Hermitian operator whose range
is everywhere dense in .5’ and ([ °* 1is uniformly dense in g . (
Then (1 + AY) A7 e( A-l) OL®*, 1s everywhere dense in 5“ Hence
O'LBAJ,Q(AJ) is everywhere dense in &(A"I).

Lemma 3,3,2, Let a be an element of ([®, x be an element
of Wg, @ and 'q be numbers in K, - (0,00) such that w1 belongs
to Kg - (0,00), Then By a 1is an element of M °® satisfying

3,.3.4, (Bu)a)(B,d x) = qu(( A Bwa )x +'I]a(B,,(x)).
Proof, From
ABwe =w (A -wl)a, Bwa = wl(a - ABwa),

we find that Bwa Dbelongs to as. Since 0{8 is uniformly dense

in 3, 1t is sufficient to show 3,3.4 1in the case that x belongs
to U'LS. We obtain

A((Ban)(qu)) = (AB«;&)(.AB,,{I)

= (a + wBwa)(x + '7]B'47x).
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and

(A“Uq) ((Bwa)(nyzX)) = (ABu)a)x + ’l]a(qu).

3.3.4 follows from the last identity,

Let I be any number ) 1, We define a function (- on co,
oo)' by C()r(x) =1 for %g x ¢ ¥ and (Pr(.x) = 0 otherwise,
Setting Er= ‘-PJ" (A), we have Ea-A =AEy ErT = Ey and
max(ll AEp\, W A-lEa-\\ ) ¢ ¥, vwhere Ea-T is the transpose JEr'.‘I
of Ey, Let f be an analytic function on (O,oOJ. We consider
the set W(f) = (‘tz“1 : 0 ¢t ¢, ze]’funf), If ¥ is a number
2 1, (3‘; y, ¥) and W. are disjoint compact subsets of Ky we
consider a certain rectifiable closed curve whose interior contains

C Jl, y ¥J), and whose exterior contains W(f),

Lemma 3,3,1, Let x ©be an element of %, a be an element of 0[_0“,
f be an anaiytic function on (0,%J), n be a number > 1 and ¢
be a rectifiable curve which devides W, and E# , ¥) to ite ex-
terior and interior and intersects with (0, c0) 6n1y at two points,

Then f(A)a belongs to ( and

33,9, (£(8)a)(Byx) = 53 jcf(ﬂ-lA)(an’Erx)dq ,

Proof, If 7] ie not on the line (0,00), then
B,;]Er =(AE)~-7',).‘1EJA
and therefore '
-1
3.3.6, Eyr =557 BNEydqg.
© U g ”] & 7

If the function f in the Lemma is a constant, then 3,3,5.follows
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immediately from 3.3.6, Any analytioc function f on (0,00) is a
sum of a constant and a function in A(O,GOJ:. Then it is suffici-
ent to prove the Lemma supposing that f is an element of A(O,
00), In the identity 3,3,4, we suppose that wis a fixed number

T [ ]
of the identity and integrate along C to the positive direction,

in Ff and substibute x to E.x, Multiply d7 to the bothside

By 3,3.6 the left side of the identity is calculated by

(Bwa)(Ea—x) = :2-}[_1- l(Bwa)(Bq}Erx)d‘q .

To calculate the right side we notice that Ban is an analytic

function of 'q on and in the interior of the curve C, Then we have
..l -
5T chqu((ABwa)(E rx))dq 0

and

3.3.7. (Bwal)(Ey x) = '-2'%? ‘!Bwq( MaBy Eprxldy

We multiply f(w)dw to the both side of 3,3,7 and integrate the
identity along the curve Fk. Then the left hand is calculated by

(f(A)a)(Epx) = 7 Jf(0)(Bwa)(Erxldw |

Notice that if 7] is a number in C, then

i

f('q-.lt) %%—i-'&_f(w)?]‘(t -m])“ldw for t «(0,00).

Therefore

£(n71A)

5 j,ff(g))?j Buy dw .

Hence we obtain 3.3.Y.
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3.4, PFormutation of a modular Hilbert subalgebra

Let W be the-set (-2 : Z ¢(0,00)), and for every complex

number o we define an analytic function z% on KO - W by

o

3.4.1, 2% = Exp(  loglz!l +1 o arg 2),

where we assume =~ T¢ arg 2 <. Then we have 2% = 772€,

The normal operator & is naturally defined by the function ik
restricted on (‘0,06). If o/ 418 noted as o/ =t + is, then o~
-=At Aie, At is a positive selfadjoint operator and 418 is

an unitary operator,

Theorem 3,4,1, Let o be a complex number, a be an element of

OLA JQ(A&) and k be an element of U(C}\.[Q ( A."’). Then aA'l }
is an element of «Q(A%) satisfying

34,2, N@aAY x) = (A% ak,

Pfoof. Iet o be a complex number, and for each'numberl)__ (S\ 2 0
let f£§ (2) denote a function f£§ (2) = (1—?&% Jd. fO(Z) is
the function 2’ which is defined in Ky - W, If 13 &> 0, fJ
is analytic except on the segment -"5‘? < 2 ¢ - 8 . Then fg¢ 1is
an analytic function on (0,°0) and W(f§ ) is contained in Re3Z
¢ 0, We consider a fixed number n ; 1 and a rectifiable curve
which is contained in the half plane ReZ » 0, whose interior co-
ntains ( }l.' y, ¥) =and which inte'reects with (0,00) only at two
points, Let a and b be elements of ®° and Xk be an element

1
of (L°, Then E k and Ryk are elementqy of 5" = (Qx),



Suppose that § > O, Then from 3,3,5 we have
(£§ (Ada, b(Exk)®)
= 5 j(a, (f5 (ﬁ-lA)b)(Bqlk)a)dq .
(o]

Since 0'(8 is uniformly dense in 4} the element a in the last
identity can be taken from ({ , Then we have

3.4.2.‘ (f& (Ada, b(Eyk)®)
= -'25%]—1- J(a(BqE,r k), £§ (Wl'lA Jolaq .
c
~ for aeﬂ’\iQ(Ad), kGOLOI\(Q(A_O{ ) and b(-O(eA{Q(AJ ).

We show that 3,4,2 is valid in the case that § =0, Let J be

noted as J =t + is, and set

1
T2
3 = sup( larg U | :.7](-0),

inf(Re 7] :7, € C)

sup(1f| +7 € C)

C

Exp ( rals').

We estimate the function £§ ( 7]'1z) when 7 ¢(0,00), If 7]¢€C,

and A\N¢(0,00), and 0 ¢ & ¢ 1 then reffering our definition of
P
2

3.4.3, 0 (IND = LTI e St g
X Exp(zs arg(( 7]-1/\ + Mo+ 1]_175‘)\)-1).

we obtaih



since Re 7] > O we have )
larg (1 + 'q'fm )- arg(”q-l)\ +§ ) ¢ larg ’] [
and
Exp(-e arg(( 77 "IN #9001 + 73PN )Y 1)) ¢ Exp(F4l8t) = c,
If t> 0, then from 11 + N IPX 13y 1 we rind that
TIN5+ 7N g N v Y,
and ' o
Nep (N Taden ¢ o d‘ilA + )%l

Similarly, if t ¢ O, then from 1 + N\ "1t 2 1 we have

KIR W NASI U atf S W RAAPRR I oD NI R
and

Wep (Tladmhec f(ryat + 05,
If t+ = 0, then

hes (n7Ra)b ¢ civl .

We obtain an analogous estimation in the case that 71 =1,
Then function £ (7 T\ ) of the variable 7 and )\, which is
defined for 'r, ¢ C and )\E( Tlc' y kJ where k 1is a number 3 1,

is continuous and when & —; 0 f§& tends uniformly to fo.
From this we find that if § —> 0 then, '

NEg (A6 - £5(A)b )\ —> 0



and

| a . .
;ggnfs(q A)b fo('q 4)vl] — o0,

Hence as a limit form of 3.4.,2 we obtain
343, ( Na, bEF0°) .

=7 JeEER, (772 b)cfn :
Notice that

37 Jc 'V]'e(B»,]Erk an = A" Epk,
Then we have

(Y, b(Ep k)%) = (g™ Epk, A%D),

et n ——)og, then En tends to 1 strongly, Since E = E
we have (Enk)B = Enka —> k®, Then we have ‘

(&'a, v®) = @A™k, AY b).
and

((Aa)k, v) = (a A%k, A% b),

b 1is an arbitrary element of OLE f\lQ(ZSJ) which is dense in domain
,LQ(A"(). Then we have

A (e k) = (A¥a)k,

Theorem 3,4,1 1is thus proved
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Theorem 3.,4,2, Let- t be a real number, a —> Aita is

an automorphism of (L, and
3,43,  Lats, = AL ATV gor 8 e 0L,
it c
k —> A 'k 1is an sgutomorphism of (i, and
- it -1t
304040 Rbitk = A Rk A »

Proof, Notice that op( Ait) =0@( A-it) = g_ Then by
Theorem 3.4,1 we have '

3.4.9, Ait(a( A-itk)) 2 (Aita)k for aell, x € (°.
From this we obtain the Theorem,

Lemma 3,4.,2, Let /(} be a positive definite continuous func-
tion on the real number field, Then a —) /b(log A )a. carries
(L into Jl, and we have

3.4.6, lI’-/U(log )all ¢ ,((O)I\Lal for a e O,

Proof, /a is a Fourier transform

too ~
3.4.7. MN) = Exp(12t)d ANt)
o0

A
of a certain Borel measure () O on the real line with the total
mass /a(o). Notice that /0(‘log &) is a strong integral

+60 N
348,  _M@oga) = ) S _a(w)

and if a & JL and ked® we have

Sxa) A
(U(loge)a)k = Jjoa( Aita)k d A(t).
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since (M (logo)a)* = Af(loga)a*, applying Lemme 3.1,4 a is
an element of (] satisfying 3.4 .6,

Theorem 3,4 ,3, (L contains a certain *-cycli"cly dengse *-gubalge-
bra which is invariant under every transform a —) AoLa and which

is everywhere dense in every Hilbert space 09( AA ).

Proof, Let R be the real number field and CO(R) be the linear
space of all complex valued continuous functions on R, We let &
denote the least linear space which contains all the convolutions

f*g of functions f and g in C4(R) where f * g denote
+00 '
£ *g(N\) = j £(t)g( N\ - tldt,
Lo

We define the adjoint f of f by f(A) = ﬂ), Then for every
feCy(R) £ * f 1s a positive definite function and § 1is linearly
spanned by these functions f * ’f' We notive that f —_ ’F trans-
poses £ onto £ and if £ is a complex number f(\) —> f(N\)Exp(

&) transposes £ onto £ , In fact let EX denote the function
Exp( L N). Then :

B (r * g) = (B 1) * (B%). °

We let B denote the least linear subalgebra of (T which contains
all f(log &)a such vthat ac@land fc &, P is a *-subalge-

bra since

(f(log o Ja)* = ?(loga )a'*.
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B is invariant under the transform a —) A‘La since
& o ad
K f(log &O)a = E” (log A )f(log A)a,

We show that B is dense in each Hilbert space 08( £L ). To see
this we let J/ =t + is, and consider & function f 1in CO(R)
and an element a of (. Let X be the carrier of f and U

‘be a bounded open set which contains X, As it is well-known, there

is a sequence {fn} in £ which converges uniformly to f and

the carrier of each fn is confained in U, Then we obtain
(1 + At)(fn(logb) - f(log&)a) =) 0 (n —> N)

uniformly in '5, Notice that the Hilbert spaces 09 AA) and of)(at
are identical, and (1 is uniformly dense in % , Then B is dense in

each Hilbert space 09( &b) = 0@( &( ), and in particular B is
*-cyclicly dense in ‘5*.

The algebra B in Theorem 4.,3.,4 1is contained in OLS and is an

s-subalgebra of 0?,0' Then we have
. ' .
3.4.9, éé(ab) - £a Ab for aeld, be B.

From this we find that B is a *-syclicly dense modular Hilbert
subalgebra of 0[, Hence we obtain Theorem 2.4.,1 and the Cordllary 1
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