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Abstract

The geometries of information manifolds are developed in an invariant framework. The
tangent spaces are constructed as Orlicz spaces and corresponds to the metric and affine
connections. Convergences in these spaces correspond to convergences in information de-
viation.
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1 Introduction

1.1 Some fundamental statistical concepts

Statistical problems can be usefully viewed as problems concerning operations on probability
measures which form various spaces. Such treatments are invariant to renaming of sample or
parameter spaces [MS66]. Parametric problems can be viewed as problems concerning coor-
dinates on these spaces. Models are subspaces, and robustness concerns the issue that the
true distribution might lie outside this subspace we call a model. Asymptotic theories concern
convergences and other local properties of these spaces. Regularity conditions are essentially
smoothness conditions, one of the best known might be the Cramér-Wald regularity condition
[LeC70, Condition Al].

Several concepts introduced by R. A. Fisher [Fis22, Fis25] are of paramount importance to
statistics: consistency, efficiency, deficiency and sufficiency. Following Rao [Rao62], they may be
called zeroth, first, second and the infinite orders of efficiency. We shall not consider it here as

consistency is often trivial in practice.

Through the work of Fisher[Fis22], Rao[Rao45], Cencov [Cen82], Efron [Efr75], Amari [Ama82]
and many others, it was eventually revealed that the first order efficiency concerns the geometric
concept of metric (“distance”) and the second order efficiency concerns in addition the concept
of affine connection (“straightness”). There is a family of affine connections, ranging from e-
connection (exponential) to m-connection (mixture). We label this family by ¢ € [0, 1] where 0
corresponds to exponential and 1 corresponds to mixture. Under certain regularity conditions
a model admit sufficient statistic if it is e-flat (the exponential families are), and a estimation
method is most efficient if its “ancillary family” is m-flat (the maximum likelihood method is).

1.2 Local and global structures

These two concepts are local, hence only applicable to asymptotics. Asymptotic theories deal
with the situation when the sample is such that the estimate lie close to the true distribution and
certain expansions are available. The metric and affine connections corresponds to second and
third order terms in these expansions. It was proved by Cencov that on finite sample spaces
the Fisher metric and the §-connections are, up to a multiplicative factor, all the possible
such structures independent of structures in the sample space [Cen82]. There is evidence that
this also applies to infinite sample spaces [Ama85] but the proof would presumably be more

complicated than the already complicated proof on finite sample spaces.

A related approach to statistics rely on some global measures of “distance” between two pro-
bability measures. We call these information deviations following Cencov [Cen82]. They are
generalizations of the concept of entropy, through the work of Jeffreys [Jef61], Kullback [Kul59],
Renyi [Rén61], Csiszar [Csi67a), Cencov [Cen82], Amari [Ama85] and many others. One pe-
culiarity of information deviation is that it is generally asymmetric, because the “distance”



one probability measure is from another depends on the point of view taken, as explained in
[Cen82]. Some more intriguing counter-examples can be found in [Csi67b)].

Amari [Ama82] showed that the metric and the family of affine connections naturally and uni-
quely define a family of information deviations as studied previously. Conversely Eguchi [Egu83]
showed that the metric and affine connections are given by second and third order differentia-
tions of the information deviation. Naturally all the information deviations are equivalent up to
second order, as do the y? distances. It was also shown that there is a beautiful dual-affine geo-
metry underlying all these relations [Ama82, Ama85] which can also be generalized to abstract

statistical manifolds [Lau87].

Remarkably, it turned out that statistical estimates based on minimization of information de-
viation in a Bayesian framework is not only second order but infinite order efficient, i.e. suffi-
cient [ZR95a), if the estimates are allowed to be finite measures instead of restricted to proba-
bility measures. These estimates are called ideal estimates, and it turned out that the optimal
estimates on any statistical model are given as projections of the ideal estimates onto the mo-
del, where the projections are defined through either the metric and connection or through the
deviation. This may explain why there is virtually no study on asymptotic expansions beyond
the order of three. The non-informative priors in Bayesian statistics turn out to correspond to
d-uniformity, and particular instances of the latter for € {0,1/3,1/2,2/3,1} had been identi-
fied in non-Bayesian studies earlier [Kas84]. The 1-ideal estimate with O-uniform prior happens
to be the empirical distribution, and its 1-projection onto a model is nothing but the maximum
likelihood estimate on that model. It is expected that most non-Bayesian theories in statistics
corresponds to Bayesian theories with these uniform priors.

1.3 Tangent spaces and differentiation

To associate these abstract results with the very rich asymptotic theories, it is necessary to
differentiate these objects and expand them in certain power series. In general differentiation
requires a tangent space which is a linear space attached at the given point. For infinite sample
spaces the space of all probability measures is infinite dimensional so are the tangent spaces.
Although finite dimensional models would lead to finite dimensional tangent spaces, it is always

useful to consider all such space as embedded in one and the same whole space.

Generally infinite dimensional linear spaces require additional topological structures to be of
practical use. The most thoroughly studied and most useful such spaces are Banach spaces,
in particular Hilbert spaces. Therefore it is interesting to see if some Banach spaces can serve
as tangent spaces of statistical manifolds. It was noted in [ZR] that there are certain relations
between the dual-affine geometry and the duality between Lebesgue spaces L;/s. It turns out
that the most natural tangent spaces are some Orlicz space which are equivalent to the Lebesgue
spaces for 6 € (0,1) but are different for § € {0,1}. Orlicz spaces are certain Banach spaces
which generalize the Lebesgue spaces.



The use of Orlicz spaces is natural and unavoidable in view of the following facts. Function
spaces have been well studied not only in isolation but more importantly as “scales” of spaces.
All the function spaces of practical use are associated to each other by Sobolev-type embedding
and interpolation relations [Tri83]. Such relations break down usually in two cases, either at
integer order derivatives or for spaces associated with L; and L. We shall not consider
derivatives (with respect to sample space) here because it is only relevant when we also consider
estimation of derivatives of density functions, which involves differentiable structures in the

sample space. All our considerations here apply when the sample space is only measurable.

The other break down points can be removed by replacing L; and L., with some Orlicz spaces.
Remarkably, these spaces studied in pure functional analysis long ago happen to correspond
to information deviations in statistics. It was shown by Csiszar that the topologies defined
by d-deviations are very different for § € {0,1}. This was generalized to the space of finite
measures [Zhu96], and ratios between various deviations are given there. The bare minimum
technical reason is associated with the following well-known anomaly

/w"_l ~ " but /9:_1 ~ log z # 2°. (1.1)

It happens that those important concepts in statistics such as exponential families and log-
likelihood are very closely associated with the logarithm appearing in the above formula. Consi-
dering the richness of asymptotic theory [LC86, IK81], the complication of Orlicz space appears
to be a small price to pay.

1.4 Related approaches

Many attempts have been made in the past to construct a full non-parametric tangent space
[Vaj89, Ama85]. Tangent spaces for finite sample spaces are studied in [Cen82]. Nonparametric
studies of Fisher metric was undertaken in [KL76]. Various formulations of tangent spaces
(mainly corresponding to information metric but sometimes equivalent to third order for § €
{0,1} can also be found in [Pfa82]. A Hilbert fiber bundle construction of tangent spaces for
finite dimensional information manifolds was described in [Ama87]. Recently Orlicz spaces have
been used to construct the e-geometry (6 = 0) for spaces of probability measures equivalent to
a given one [PS95]. Of course, most results in asymptotic theory depend implicitly on some
unspecified tangent spaces. This is our main motivation for explicit construction of tangent

spaces.

Our new formulation do not require any regularity conditions beyond that of a measurable
space, such as dimensionality or smoothness. It is not restricted to the case where there exists
a dominating finite measure, which is often not available in practice; e.g., the family of Gaussians
is only dominated by the Lebesgue measure which is not finite. It also applies to finite measures
as well as probability measures, which is useful because the ideal estimates are finite measures
but not probability measures for any § € [0,1). Our treatment includes all § € [0, 1], which
is important considering the fact that the duality between J and 1 — ¢ plays an important



role in statistics. Most importantly, our Young function defining the Orlicz space completely
corresponds to the information deviations. It is therefore expected that asymptotic expansion
of the ideal estimation and error decomposition formula in these geometric structures will given

all results of asymptotic theories which are invariant with respect to statistical isomorphisms.



2 Measures and some of their functions

Consider a measurable space [Z, F], where Z is a sample space and F is a o-algebra of measu-

rable sets. Denote by M(Z,F), M (Z,F), P(Z,F), and P(Z,F) the space of charges (signed
measures), measures, finite measures and probability measures on (Z, F), respectively. Reference
to F or (Z,F) are omitted when there is no risk of confusion. Obviously,

My={peM: p>0}, (2.1)
',5={peM+:/p<00}, (2:2)

P={peﬁ:fp=1}. (2.3)

A function F': R} — R} U0 is called bounded and homogeneous (bh) if
Vai,...an,c € Ry : F(cay,...,can) = cF(a1,...,an), (2.4)
3C e Ry : Yay,...,anp € Ry : F(ay,...,an) <Cla1+ -+ an). (2.5)

A bh function can be naturally extended to a bh function for finite measures, F' : P ’}5, by
Vpl:"'vpn &P

F(piy...ypn) = rF(1/ry..spaf7), TEP:TLpi+...pn <L, (2.6)

where p/r is the Radon-Nikodym derivative, which exists if and only if p < r, ie., p is dominated
by r. The result F(py,...) is independent of the choice of 7 satisfying the condition in (2.6).

Unless otherwise indicated, it is assumed that p,q,r € P, 6 € [0,1]. In the following we shall
often discuss F(p,q) as if p and g are positive numbers. Such usage is justified by F(p,q) =
rF(f,g) where r = p+ q and f = p/r, g = gq/r are density functions, when the discussion

applies pointwise to F(f,g).

We need fractional powers of measures as introduced in [Nev65, IV.1.4, p. 112-113]. Let p € M,
§ € (0,1]. Define the Lebesgue spaces

Lyys(p) == {f : / |f1Y%p < oo} : (2.7)

Define an equivalence relation among the couples [f,p], where p € My, f € Lyss5(p), by
[f,9p] = [f9°,p]. Then the equivalence class of [f,p] may be unambiguously denoted fp°. The
space of dth power of finite measures

Lys:={fr’: peP,f € L)}, (2.8)
is a Banach space with addition, multiplication and norm given by
5y p\? (5{ 2 3
19+ 9" = (f(,r) +9(4)7) ", (2:9)
afp’ = (af)p’, (2.10)

180y = ( / |f1”5p)6. 211)



The choice of r is irrelevant as long as it is equivalent to p+¢g. When § = 1/2 we have a Hilbert

space Lo with inner product

(fpM2,9g"?) = /fg (g)uz (2) "y (2.12)

T

Clearly for any p € P, the space Ly;(p) C Lyys isometrically. The mapping p — p® maps P
onto P? C Lyys.



3 Information deviation

The concept of information deviation was generalized from the concept of entropy [Sha48, KL51,
Rén61, Csi67a, Cen82, Ama82, Ama85, ZR95b]. It gives a “long range distance” between two
distributions, but is generally non-symmetric.

Let F: B2 — R, be a homogeneous function F(ac,bc) = cF(a,b). Then there is a canonical
extension of F' to measures F : M3 — M. It associates with a function f: [-1,1] = Ry
by f(u):= F(1+u,1 —u). The f-deviation for p,q € M is defined as

7P, q) [F(p, —/ f(u), (3.1)

=(p+4q)/2, =@-q9/lp+q). (3.2)

A similar construct, [pf(q/p), was proposed in [Csi67a]. Our definition is slightly more general
as it does not require ¢ < p or the special conventions such as a - f(a/b) = 0 when a,b are
0 or co. Therefore all results concerning Csiszar’'s f-divergence can be directly applied to our
f-deviation, with some trivial modification concerning the different appearances of f in the
formulas. It was shown in [Cen82, p.??7?] to the effect that the measure 7f~! on R,

rf~Y(A) = ff ea” (3.3)

is minimum sufficient for specifying the deviation D;. On the other hand, let 7 := ru~!, then
Dy(p.a) = [ i) = /[ L (3.4)

Let 6 € [0,1], p,q € P. Then the d-deviation is defined as

5p+ (1 —0)qg — pig~°

) RECED 0 € (0,1),

(p,q) = lim (p,q) = p — g+ qlog(a/p), &=0, (3.5)
llm (p,q) = g —p+plog(p/a), §=1.

Ds(p,q) ==f(p,f1)- (3.6)

This definition of d-deviation on P was motivated by the need of §-convexity [ZR95c] and
inspired by [Ama85]. The definition of §-deviation on P was given by [Cen82] from consideration
of invariance, and by [Ama82, Ama85] from consideration of dual affine geometry. It is almost
given in [LeC70]. [RV63] considers Hellinger distance between Gaussian processes. The explicit
formulas for 6 € {0,1} seems to first appeared in [ZR, ZR95c| but it is implicitly used in the
proofs of positiveness of the entropies since [Sha48].



4 Orlicz spaces

4.1 General Orlicz spaces

Our treatment of Orlicz spaces follows [KJc77, Chap. 3]. A Young generating function is a
non-decreasing function ¢ : Ry — R, , satisfying

$(0) =0,  ¢(o0) = oo0. (4.1)
The Young function

B(s) := fs b(s) (4.2)
is increasing and convex function and satisfies

®(0) =0, P (00) = o0. (4.3)

Let 1) = ¢! be a generalized inverse of ¢,

P(t) =sup{s: P(s) < t}, (4.4)
then 1 is also a generating function and ¢ = ¢! in the same sense. The Young function

w(e) = [0 (45)
is said to be complementary to ® and they are said to form a Young complementary pair. For
any s,t € Ry

®(s) + W(t) > st. (4.6)

For p € P. The Orlicz class is defined as

Eo(s) = {u: puglu) = [p0(uD) <o} (4.7)

The Orlicz space is a Banach space with Orlicz norm ||u||s.

La(p) = {u ullgp := sup /p|uv| < oo} ; (4.8)

Pw(u),p<1

The subscript p is omitted when it is clear from context. The Orlicz norm is monotone
lul < o] = |lulle < [lvlle- (4.9)
From |julle < pa(u) + 1, we see that Le(p) C La(p).

The Young function @ satisfies the Ay condition, denoted ® € Ao, if either of the equivalent
conditions holds

Ak, T e Ry :Vs > T : ®(25) < kP(s), (4.10)
: tp(t)
]lﬁso;lpm < 00. (4.11)

The space Lg(p) is reflexive if and only if ®, ¥ € Ay, and Eq,(p) = La(p).



4.2 Special Orlicz spaces

The following special family of Orlicz spaces will be of particular interest to information geo-
metry. All the formulas apply to § € [0,1] and are continuous with respect to 4, although the
formula for § € {0,1} is often formally different. We will not always mention limit of § to the
boundary of [0, 1]. Define

(14 6s)(1-9/¢ —1

Bals) = T, (@.12)
do=¢"—1, (4.13)
$1 = log(1 + s). (4.14)
The corresponding Young functions ®; are
14 8s)1/0 — 5 —
P o i ead cd | (4.15)
1-46
Pg=e€°—s5—1, (4.16)
®; = (1+s)log(l+s)—s. (4.17)

For any 4 € [0, 1], the following properties are easy to prove

e ¢5(s) = s and Bs(s) =~ s%/2 for s = 0.
e ¢, s and ¢; are inverse to each other; ®,_s5 and ®5 form a Young pair.
e For § € (0,1], &5 € Ay, but ®y & Ay. The spaces Lg, are reflexive if and only ¢ € (0,1).

e For 0 € (0,1), the space Lo, is equivalent to the Lebesgue space L, /57

Therefore Lg, and L, can be regarded as substitutes of Lo, and Ly without the anomalies of
the latter. For example, the Sobolev embedding theorem holds smoothly for the Orlicz space
Lg, but it does not hold for Ly, [Ada75, p.242].

The e-geometry, i.e. 0-geometry was studied by [PS95] using ®(s) = cosh(s) — 1. From

e —s—1

< i 2 (4.18)
it is clear that their space L®(p) is equivalent to a subspace of our Lg,(p). It is a subspace
because not all elements of the latter are probability measures. The convergence in these two
spaces are equivalent up to second order, as can be seen by examining 8*®(0) for k =0, 1,2, 3.
It should be pointed out, however, that due to some technical complications the “e-convergence”
defined there is in fact not equivalent to either of these convergences. We do not think such
complications are relevant to statistics. Our choice of the Young function has the advantage
of corresponding exactly to information deviations, besides being identical to that used in the

study of function spaces.
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5 Tangent spaces

5.1 J-coordinates

Let ¢ € [0,1]. For given r € P define the 4, r-coordinate or 0, r-representation of any p € P as

4 _
-'EJ,-:‘(.TJ) = %} {51)
bo+(p) = log(p/r), (5.2)
JIl,r(p) — (I/T =5 (5-3)
Then for all § € (0, 1],
[ rtets @) = [68 =191 < (7P + (7)) < o0, (54)
T(I)J(IJ,‘."(p)) = Fﬁ(p: ?"), (55)
[ r®s(lsr () = Ds(p,1) < 00, (5.6)
Dj(p,r) + Dslryq) — /7'56,1'(p)£l~6,r(9) = Ds(p,q). (5.7)

Therefore I5,(p) € Lyys (), lsr(p) C E(;;(r).

Remark 5.1 This means that it is more concenient to use ¢ as an anchor in D(p,q), as follows the
convention of Csiszar.

To examine convergence in Lg,(r), it is convenient to define what can intuitively described as

the “difference between p and ¢ as reflected in r”

1/6
rs(p,a) = (r*+ 1" = ")) ", (5.8)
ro(p, q) = rexp |log(p/q)|- (5.9)
Then the “distance between p and ¢ from point of view of r” is

] r®5(|Ls2(p) — L2 (@)]) = Ds(ra(p,a),7)- (5.10)

e The spaces Lg,(r) and L/4(r) are linearly isomorphic and topologically equivalent.
e The convergence does not depend on r for § € (0,1).

o The topology thus defined is weaker than Dj(p,q) for 6 € {0,1}.

In analogy to the embedding of L;/s(r) to L/, we can regard all the Lg,(r) as embedded in

a large Banach space Lg, which is then independent of any dominating measure,
Lgg = {(1+(5.s)'.~“ts :’rEﬁ,sELq,é('r)}, (5.11)

Lg, = {s +logr:reP,se .L@o(r)} . (5.12)

11
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Note that L, is an affine space instead of a linear space. When only affine properties are
considered, T° M = Lg, is a tangent bundle of P and T°M = Lg;(r) is the tangent space at r.

For ¢ € (0,1) all the topologies are the same. So the tangent bundle is in the ordinary sense,
although being infinite dimensional. The tangent space is naturally embedded in the Banach

space Ly /s,

For § = 1 the tangent space is spanned by likelihood functions and for 6 = 0 it is spanned by
log-likelihood functions. However, the convergence in both Lg,(r) and Lgy(r) depends on 7.

The distance between p, g is given explicitly as
Dolra, ) = [r(et =5 =1),  s=Iloglo/al, (5.13)
Din@,a)r) = [r((+8)log(l+5)=a), s =lp—al/r (5.14)

For s =~ 0, we have ®;(s) ~ s%/2 regardless of §, and

2
P’ —q°

)

Tl—zé

/T@g(”é,r(p) —ls+(9)]) "‘“/ 2

which corresponds to the Hilbert space given in [Ama87]

T?fﬁ = {ur‘s : /1r'(;{)/'.i")1_2‘514;2 < oo} = {u € Ly : /pl_z‘iuz‘s < oo} (5.16)

For u < C < 1 only expansion at 0 matters. (7)

5.2 Alternative d-coordinates

An equivalent way to construct tangent space was suggested in [Ama85, §3.1, p.66], using

Ly/5(r) as a tangent space with d-coordinate l5(p) € Lys

L

ls(p) : = 3P § #0, (5.17)

lo(p) : = logp. (5.18)
If we define

1/6

@(s) = 00 (5.19)
then

25(l5(p) = T, (5.20)

®5(ls(p)) + P1-s(li-s(q)) — ls(p)l1-s(q) = Fs(p, ). (5.21)

12



Let Q denote a finite dimensional family dominated by r € P. Suppose p is parameterized by
some coordinates. Using the tensor index notation generalized to Banach manifold [LL56], we

may take the Fréchet derivatives

dils(p) = p’Bilo(p). (5.22)
0:0515(p) = 095l (p) + 6p° Ailo (p)0jlo (p). (5.23)

The derivatives of log-likelihood are also known as Fisher's score functions. We can compute
the metric tensor and the Christoffel symbol for the coordinate l5(p) € L;/s. This computation
requires Fréchet differentiation, but the index notation of tensor analysis is still usable [LL56],
since Ly is reflexive. For the Hilbert space case d = 1/2 a more intuitive interpretation of the
index notation is possible [Iya80]. [Kal63] uses Volterra differentiation which is less restricted

than Fréchet differentiation.

The infinite dimensional logarithmic differentiation of measures in [DM85] may be irrelevant
as it appears to be differentiation with respect to the sample space. Other considerations
include [Pfa82].

A non-parametric Fisher information metric was constructed in [KL76] which of course is equi-
valent to the metric defined by all the above geometries. In particular, it can be easily obtained
from the Hellinger distance, which is the distance in L.

5.3 Affine connections

In general, for any & € [0, 1], the affine structure of Lg; naturally define the -affine connection.
It can be seen that it coincides with Amari’s c-connection with v = 1 — 26 when the latter is
defined. It is interesting to give the explicit formula for the Riemannian metric and Christoffel
symbols of é-connection as expressed in e-coordinates, e € [0,1], for any finite dimensional

model parameterized by 67, using
oile = Gy, 9;0ile = 0;0;1 + €0;10;1, (5.24)
which does not depend on r, we have
gij = / pO;ile0jle, (5.25)
Do = / pBidil. Okl + (5 — ¢) / pOL.O,1.Oile. (5.26)

From this it is obvious that d-affine structure is exactly the natural affine structure of the

d-coordinates in Ly s.
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6 Convergence issues

Given a signature function f, for € € Ry, the (f,)-ball centered at r € P is defined as
Bre(r):={peP: Dylp,r) <e}. (6.1)

The collection of these balls for all centers and radii,

By = {Bf,f(r) . rePee R+} , (6.2)

forms a neighborhood subbase. The collection of finite intersections of these balls forms a
neighborhood base which defines a topology called the f-topology. This topology is Hausdorff
(T2) if By itself is a neighborhood base. It is however always a T1 space.

It was shown [Csi67b] that f-deviation defines a metrizable topology on P if f is convex, f'(0) =
0, f(0) > 0 and f(+1) < oo. This is true for Djs if § € (0,1).

For all § € (0,1), it was effectively proved in [Csi67b] and generalized in [Zhu96] that the
topology on P9 defined by Dj is equivalent to that of L; 5. Therefore P is a Banach promanifold
Ly 5. Using the techniques in [Zhu96] it is easy to show that the ratio of convergence diverges.
Since these topologies are equivalent to that of Ly they are also Hilbert promanifold. The
concept of infinite dimensional manifolds are studied in [CBWMDB77|. See [AMRS83] for an
introduction.

Note that each § defines a different linear structure. The spaces P are not strictly manifolds
because they are positive cones in a Banach space and it is known that in infinite dimensional
spaces cones are generally not open subsets. We call this space a promanifold. All of its finite
dimensional submanifolds are ordinary manifolds.

Since this topology corresponds to all the convergence concepts in asymptotic theories, we shall
take it as default unless stated otherwise. Given the topology on P, the o-algebra of Bair sets
and Borel sets are well defined [Nev65, I1.7]. The Borel measures on P are well defined [Kol56,
Hal50], which can be used to define the measurable space on which the prior and posterior are
defined. For infinite sample space, the space P is infinite dimensional. The prior and posterior
as measures might be too coarse for applications and the conditional distribution space defined
by [Rén56] may be useful.

It was discovered by Csiszar [Csi67b] that By may not be a neighborhood base. For d € {0,1}
the topologies are non-Hausdorff but still Fréchet (T1), [Csi67b, Zhu96]. This topology is
stronger than the topology defined by Dg, d € (0,1). It was shown [Zhu96] that the same is
true on P. Note that the notion of topology used by Csiszér followed [Sie56] which is somewhat

different from current usage [Kel55].

The proper condition for a sequence p, to converge to p under such Dy is that Vg € P:

D¢(p,q) < oo = Im:¥n >m: D¢(pn,q) < Df(p,q). (6.3)

14



One consequence is that it is not feasible to define p, — p simply by Dy (pn,p) — 0, which may
not even be able to exclude Dy (pn,pns1) = oo. If the topology defined by Dy is stronger than
that defined by D,, we shall say that Dy is stronger than D, or simply f is stronger than g.

Such topologies are far too strong and not very convenient for applications. It effectively means
convergence from the point of view of all 7. Therefore the convergence in each tangent space

at 7 may be more useful in practice, which however depends on 7.
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7 Asymptotics

It was proved in [Zhu96] that the d-deviations are approximated to the second order by the

“symmetric x* deviation” and to the third order by the §-x? deviations

i 2
Ds(p,p) ~ X3 2(p, 9) :=/({;—;~% = /?‘23:2,

C(prq) = / (0—a/2rs,  rs=(p+a)/3+((1-8)p+bq) /3

This implies that the asymmetric x2-deviations are more skewed than Dy and D;.

X1 (p,q) = /(p -9/,  xpa) = /(p -9)°/q.
The following bounds were also proved in [Zhu96]

. [02 1 =49 Ds, (p,q) b9 1 — 0
e < < —_— — .,
mln{5111_51}-—-D62(p1q)—max 5111—'51

Ds(p, q) 2( {1 1 })
1< <—-(1l+maxs—,——>].
x3(pyq) ~ 3 0’1—¢

By differentiation we have

n 0 83' 6 " 0
9ij = =00, D (D, @)|p=q = fi ) / ppjp = fi ) /Paz‘fajf,

ik =—8:0;0:.D5(p, @) lp=¢
_ /") / 0ipdipdkp  "(0) / (6@63.-3)— aipajp) Okp

8 p* 4 2p P
I 0 " 0 i 1
_f 8( ) [ pOiL;lO}1 + ! i ) / p (aidjz— 5&@5) Ol

Without loss of generality, we can set f”(0) = 4. Then

9ij = /Pai£6j£;

i
Lijk = {fT((DO)) /pailajfakf + /p (31;(')}'{ - %3;’53}‘5) Opl.

For f(z) = zl +z,1 — x), it is easy to show that

F(0) =4, £ (0) = 8(3 — 1/2),

so the geometry is exactly the §-geometry.

Gij = /Pasiajla
1/2

Lije = (0 —1/2)Tix + T ijk.
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