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1 Introduction

1.1 This is an attempt to generalize the dual affine geometry to the space of finite measures. It is
nonparametric, without assuming a dominating measure. We first de«cribe things in the space of

finite measures. Then project them onto space of probability measures. We follow [1, 2, 5].
1.2 In this draft we list what the final representations will look like but many defintiions can
fact be turned into theorem. Here we rely on concrete representation i tangent, but later we neeu
to expand on the differential definition of tangents. We omit the mixture and exponential geometry
first.
1.3 For consistency, we need to check that

e The topologies are equivalent.

e The inner product does not depend on the parameter

e These concepts specialise to the Hilbert bundle of [2].

e The projection to P coincide with the finite dimensional case.



2 Preliminaries for Finite Measures

2.1 Let Z be a set, F be a o-algebra of subsets. (Z, F) is called a measurable space.

2.2 Measures A o-additive function F — R, where R = [0, o0, is called a measure. The signed
measures are defined with R = (—o0, co|. The finite measures are defined with R = [0, 00). The
signed finite measures are defined with R = (—o0,00). Denote by M, M,, M, M, and P
the spaces of signed measures, measures, signed finite measures, finite measures, and probability

measures.

2.3 Information deviation For ~ € (0, 1), the y-deviation is defined as

( T s — Ygt=7
[’YP+( 7)a—p'q Ve O.1),
(L—)
D,(p,q) == h_];% D,(p,q) = [ p—q+qloglg/p), v=0, (2.1
i
lim Dy (p,q) = [ ¢ = p+ plog(p/a), v=1

2.4 Generalized Lebesgue spaces Let r € M. Denote the spaces of finite measures dominated
by r,
My(r):={p: pe My, p<r}, 2.2)

M(r):={p: pe M, p=<r}. (2.3)

Lety € (0, 1). Define

ML) = {p": pe My(r)}, (2.4)
M(r) = {p} —pL : p; € M(r)}, (2.5)
ML ={p": pe My}, (2.6)
M= {p] —pT: p; € M}, (2.7)

These spaces have the usual linear structure and norms. The space M?(r) was denoted as L, ., in
[6] and is isomorphic to the usual Lebesgue function space L/, (). The space M? was denoted
Ly, and is the generalized Lebesgue space. The spaces with subscrigi + consists of non-negative
elements. The spaces M7(r) and M7 are Banach spaces, while M"z(r) and M2 are Hilbert

spaces.



3 Tangent

3.1 Notations We generally assume p, ¢, 7 € M, v € (0,1).

3.2 Coordinates Let

_v

lLy: My — ML, L ()= o (3.1)

Tly: M—= M, Tylyu = p" u. (3.2)

% =p' ", (3.3)
3.3 Conjugate We often denote

& :=1,(p) e M1, 1=l (p) € M. (3.4)

They are dual coordinates in the Banach space sense. They are relatec by

()™ = ((1 = 7))/, (3.5)
implies that
O¢n = p'~?, € = g (3.6)

3.4 Manifold The topology of M. induced from M7 by [, does not depend on . Therefore M,
is the same Banach manifold modeled on M7" for each <. In particular, it is a Hilbert manifold
modeled on M'/2, This topology is called the canonical topology. or v € {0, 1} the topology

will be different, but we don’t consider them here.

3.5 Tangent The tangent space T, M is well defined, and does not depend on ~y. (Details)
But since we have the tangent space 7, M7 = M?7, we can also have different representations of

T, M by these mappings. That is

Tl : TyMy = T,M) = M, (3.7)
3.6 In particular,

Tply:  T,P = T,P" = M'([ p~"u = 0). (3.8)

3.7 The norms of M introduces the Matusita distance on M.
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4 Metric and Affine connection

4.1 Metric Let u,v € M!/%, The metric is defined by the natural inner product
g(u,v) = [uv. 4.1)

This induces the metric on M, which is the Fisher information metric.
4.2 Affine connection Let u,v € M'/2. The y-affine connection is defined by the natural affine
connection
v
uVv = 0. 4.2)
This induces the y-affine connection on M, which coincide with Amari’s &« = (1 — ) /2 affine
connection.

4.3 Change of coordinates If we change to u, v, w € M7, then

g(u,v) = [ p'~* uw. (4.3)
.,

uVv = (v — 7)p' " uw. (4.4)

g(u%v,w) =(y—1) fp]_3TuvuJ. (4.5)

4.4 Hilbert bundle This appears to generalize Amari’s Hilbert bundle [2, p67] from v = 0 to ali
7, but in fact, for v = 0 this only works for exponential families because of the different topology.
Note that although the tangent space at each point p is isomorphic to a Hilbert space, it is a different
Hilbert space for each p. So the whole thing is a bundle instead of a single linear space. These

spaces coincide with each other only when v = 1/2.

4.5 Duality Letu € M", v € M'~7. Then the duality coupling

Juv (4.6)
is the same as the inner product between vectors

u € ToM7, vE TpML"T. 4.7

The anchor point p € M is irrelevant. This is also called tensor contraction.
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5 Dual affine

5.1 Potentials There are potentials

f_p,}, = '}’/&n, Y1y = %E == “/)/5??-

Ogthy =, l%?/);—q« =¢.

Py 1= 7

When differentiating, note that £ and 7 are not independent.

5.2 The metric tensor in the dual coordinates is trivial.

Jen = afa P1- —e =1, One = 61_:6{'3/)7 =1

(5.1)

(5.2)

(5.3)

They look the same, but because the identifies are in different spaces, they are different by the

factor 1), /1)-. A better notation is to write 7 on superscripts.

Its representation in one particular space

gee = OOghy = Ogn = g, I = OnyOphy = Gy€ = p*

5.3 Deviation Amari’d definition through Legendre transform

Dy (p, @) = Py (p) + P14 /E p)n

_/'rp+(1— )q—p"fq] 7
(1 -9) '

5.4 Equivalence Given two curves

s, Tty

o = To = P.
Using the cosine theorem [7], the tangent vectors are

U= 65£')’(QS)I5:0 = MT!
v 1= Opl1—(Tt)|1=0 € M

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)



The inner product is

f wy (5.11)
(@7 oM™ =)
= 3
sl}l—{]u st [ 1 —_ ,() (5.12)
251113305(9 (45, ) + Dy(p; 1) — Dy(gs, 1)) (5.13)
1
= sliglﬂ E (D1/2(qs, p) + Drj2(p, 7¢) — D1ja(gs, 7)) (5.14)

- st—m st _[(\/_ VPV = V). )

1/2

This is the same inner product as on M'/#, Therefore it is independent of .

5.5 Dual affine Given two vectors
uw e M, v E M (5.16)

at one point of a curve p,. Their parallel transport to any other point remain the same. Therefore

the inner product
Juv (5.17)

is invariant along the curve (in fact, any curve). This shows that thesc are dual affine coordinates

(connections, geometries).

5.6 Converse The metric and affine connections can be recovered from the deviation by differen-

tiation, following [4].

6 Projection to P

6.1 The following two approaches are equivalent [5]:
Restrict D, to P, and use the differentiation representation of [4].

Project in the coordinate form following [1].



6.2 The formulas are exactly the same, for u, v, w € T,,P7,

glu,v)= [~ uw. (6.1)
%

uVv = (v - 1)p' " uv. (6.2)

g(u%v,w} =(y—-17) f})l_STuuu;. (6.3)

The only difference is that u, v, w cannot move freely in M7, but this is already taken care of

implicitly.

7 Discussions

7.1 It seems that all concepts can be represented neatly. The only thing lacking is a decent notation

for differentials, and for index notations. Maybe we’ll never need them?
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