NOTE ON THE METRIC AND AFFINE CONNE{CTIONS ON
THE SPACE OF FINITE MEASURES

HUAIYU ZHU

ABSTRACT. Explicit formulas for the metric and affine connections on
the space of finite measures are derived in different coordinate systems.
They are transformed and compared with previous formulas of Cencov,
Amari and others. These formulas are given for finite sample spaces but
in a Jorm that is easily generalizable to infinite sample spaces. An error

in Cencov’s book is corrected.

l. INTRODUCTION

1.1 Let X be a sample space with a o-field of measurable sets. Let P(.X)
and M (X) be the spaces of all probability measures ar¢: finite measures

on X, respectively. That is,
(1.1) P(X):{;.'JGM+(X): [p:'l}.

1.2 Cencov (1982) proved that for X = N,, := {1,2,...} teing a finite set,
there is only one (modulo a constant multiplication factor) invariant metric
g on P(X) in the category of congruent (sufficient) Markov morphisms,
and there is only one family of equivariant affine connectior:s % indexed by
a real parameter . The metric is defined by the Fisher information matrix.

1.3 Amari (1985) developed the dual affine geometry which associates
these concepts beautifully with the information divergence : D, commonly
used in information theory and statistics. He also extended these concepts

to M, (X) and made clear that the vy-affine structure is simply the affine
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structure induced by the y-coordinate [, (p) = p?/~. The parameter vy here

corresponds to a of Amari with & = 1 — 2. Conversely, Eguchi (1983)
9

showed that the metric g and affine connections V are uniquely determined

by the second and third order derivatives of the information deviation D,,.

1.4 Zhu and Rohwer (1997, 1995) applied these results to Bayesian de-
cision theory and revealed the importance of the dual affine structure on
M (X). Additional formulas for '

Y ¥
(1.2) gi; = g(ei, €5), L'k = g(eiVej, er),

where ¢; is the ith unit coordinate vector, are also given in different 7-

coordinates !.

1.5 Unfortunately, the representations used in these works are somewhat
different and details are often omitted, making it difficult to associate these

=
results. In this note we explicitly spell out all these formulas concerning g, I'

and D., in any T-coordinates for both M (X) and P(X), where X = N,,.

1.6 We do not derive formulas for arbitrary (ie. infinite) A". but in the final
section we discuss what the corresponding formulas would look like. The
algebraic forms are similar, but there will be additional topological issues

involved. Some additional related topics are also discussed there.

2. METRIC AND AFFINE CONNECTIONS ON M (X)

2.1 Notations Except when explicitly noted, we shall assume X = N,,, and
omit explicit reference to it. For differential geometry equations, we shall
use the index notation but without the summation convention. Generally,
v,7 € [0,1], but the boundary cases v,7 € {0,1} often require special

considerations.

'The covariant differentiation of v with respect to u is usually writien as Vv, but the

notation 4 Vv makes explicit the multiplicative role of u and is typographically nicer.
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2.2 Coordinates The y-coordinate £ of p € M, is an element of a
space (Amari, 1985, p. 66)

(2.1) lL(p) =p"/ye M} 2R,
(2.2) lo(p) :=logp € MY = RT.
The tangent space is a linear space,

(2.3) LML =M =R,

with norm (except for v = 0)

”
(2.4) iy = (Zowi’) "= (Zim)" /.

2.3 Tangent spaces and bundles We shall from now on fix the association
(2.5) by: My = M,

(2.6) Taly:  TaMy = ToML = MY,

Although for different -y the space M = R™ is the same linear space, their
norms are different. Incidentally, the topologies induced by these norms are
the same, even for infinite X, but that is beyond the scope of this note.

At each fixed point p, the tangent mappings T}., are linear, so the pull-
back of the affine structures by 7,/, from T, M7 to T, M are the same
for all 7. That is, all the 7}, M?" are isomorphic to the same tangent space
T, M. However, because [, itself is nonlinear, the isomorphism between
T,M" and T, M, is different at different p. This gives rise to different
affine connections depending on 7 as shown below. For most 7y the whole

tangent bundle 7'M is not isomorphic to a single linear space.

2.4 Change of coordinates A change of coordinate frcm & = p7 /7 to

u=p"/T gives

0¢; ¥
2. — 7. s ,Y Ly
(2.7) Bu; il
& 9
.8 = 6‘6' el — X
(2.8) OujOuy, by (=)

These relations will be used repeatedly in the sequel.
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2.5 Metric The metric g on T M is induced by the nner product of
T;,M:T& = M2 which is independent of p. That is

(2.9) Vu,v € MY2:  g(u,v) = Zuivz—.
1

If u = l2(p), v = li/2(q), then

(2.10) g9(u,v) =4 \/pigi.

Let e; denote the ith standard unit vector in M'/2, then

@2.11) gij = g(ei, ) = bij.

Changing to 7-coordinates transforms the tangent vectors
(2.12) u; € MY? 5 g7 Py e M7,

and the metric is represented as (Zhu and Rohwer, 1995, p. 30)
(2.13) 9i = pi " 6ij.

2.6 Affine connection The vy-affine connection on 7'M 1s induced by the

affine structure of T?,Ml = M?". That is, for constant vectors,
i
(2.14) u,v € M7 uVv=0.
s v
(215) lt'j.‘c = g(erej,ek) =,

Changing to 7-coordinates, using both (2.8) and (2.13), gives (Zhu and Ro-
hwer, 1995, p. 30)

& 137
(2.16) L= (r—m)p; " G-

Obviously, it vanishes exactly when v = 7. That is, only in M7 the constant

vector fields are y-parallel transforms of themselves.

2.7 Dual affine The inner product of vy and 1 — -y transforms of two vectors

remain constant on any curve. That is (Amari, 1985, p. 68)

(2.17)

! 1=y
g(uVv,w) + g(v,u Vw) = (1—27) Z}JI_STU?:'UéUJi = (uVg)(v,w)
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‘T l_.a}.
This means V and V are dual-affine with respect to g (Amari, 1985).

2.8 Potential and deviation The y-potential is defined as (Amari, 1985,
p. 83)

(2.18) (@) =Y pi/(1=7), i)=Y pilogp:.
The ~y-deviation is defined as (Amari, 1985, p. 85)

(2.19) Dy(p, @) = ¥4(p) + 1-1(2) = 4(p) - Li~(q)-

This expands to (Zhu and Rohwer, 1995, p. 16)

—

VPi + (11 = I") q‘g
(2.20) 2 (P, 4) Z 7(1 5

This expression was also studied in (Vajda, 1989, p. 228) without using the
dual affine geometry.
2.9 On P, because ) ,p = ) ¢ = 1, it simplifies to (Amari, 1985, p. 87)
1-3.pia "

(1=

Familiar examples include the Hellinger distance, the Kuilback-Leibler de-

(2.21) Dy(p,q) =

viation and the y?-deviation:

(2.22) Dipa(p,a) =2 _(VBi — V&),

(2.23) Di(p,q) = »_ pilog };—
Y2

(2.24) Dy(p,g) = %

2.10 Differentiation Letu; = p] /7, v; = ¢ /7, then

(2.25) 0uiu; Dy (p, 9) = —p] 7q; 7765
(2.26) 840,00, D (p,q) = —(v = T)p) *7q} "6y
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Obviously this is indeed consistent with (Eguchi, 1983),

(22?} Gi5 = _au;auj D’T(p! Q)J

q=p’

-
(228) Fijk = -au,-aujaka'}f(ps Q)‘

q=p’

2.11 Conjugate If the two vectors are represented in mutually dual coor-

dinates, then

(2.29) ue M, ve M = g(u,v) = [w.

2.12 Dual coordinates We have (Zhu and Rohwer, 1995, p. 30)
(2.30) g = p?r1v,
bk —r5 k
(23 [) Fz’j = (’]/ = T)}Ji 53" 5
In particular, for 7 = 0, ie. in exponential coordinates,
h
(2.32) L% = v8,*.

This will be shown (§3) to be consistent with the equations (12.12) and
(12.13) in (Cencov, 1982, p. 175).

3. THE METRIC AND AFFINE CONNECTIONS ON P

3.1 Equivalent projections The space of probability measures P is a
submanifold of M characterized by 3, p; = 1. Therefore not all p; are
independent. There are at least three ways to “project” the :netric and affine

connections from M to P:

e Projecting the tangent vectors to 7P after an infinitesimal parallel
transport (Amari, 1985, p. 38-40).

e Using the same formula with all the redundant components as if they
are independent (Lauritzen, 1987, p. 187 (3.10)).

e Restricting D, to P, and using (2.27) and (2.28).

Their equivalence is due to the fact that vectors in the tangent space TP are

constrained by a differential relation implied by 3. p; = 1, which in the 7
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coordinate is

3.1 Vu e T,P" Cc M": Zpil_”rui =0

¥
The expressions for g and I' in 7P are therefore

"
(3.2) gij = P65 Lije = (v — 7)) "> bisi

i 3 ¥
(3.3) g9 =p¥ 6. LIy® = (y—7)pi" 6"

3.2 Cencov’s affine connections Cencov (1982, p. 175) showed that the
following family of affine connections is unique in the category of Markov

morphism on 7, P,

(35) X;'Vz\’f = ’}/(1 = 2}’),‘_)/\1‘,

where X; € Y},P”. This corresponds to

i
(36) Fijk = ’}'(6{5;'& — }Ji(‘;‘? — p?é:‘)
Since Yu,v € TP’PU,

(3.7) > opu=) pivi =0,

1
this is also equivalent to

T T
(3.8) > Tifuw; =yue, Tyt =98,4",
ij
which is identical to (2.32).
’

The difference between (2.32) and (3.6) for uVv only shows up when
u,v € T,M% \ T,P°. In that case (3.6) gives the covariaat differentiation
of their projections into 7, P° while (2.32) gives differentiations in T,M".

3.3 Special cases Here we correct a small but confusing error on (Cencov,
1982, p. 177), where he gave the mixture, metric, and exponential con-

nections as corresponding to vy = —1,3/2, 0, while in fact they should be
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v =1,1/2,0. Here we follow the convention of regarding covariant vectors
as differentials. Let

(3.9) V' = Oy,, Xiv= FV, f=p1(1-p1).

(3.10) =2/ U=0, =+FV=Ff"X.

Then the mixture connection is given by V'V = 0,

(3.11) XXy = fV(fV) = fVIV = (1-2p)X,,

corresponding to oy = 1. The metric connection is given by UU = 0,

(3.12) XXy = fU(/IU) = VU = %(1 —2p1) Xy,

corresponding to v = 1/2. The exponential connection is of course given
by X1 X, = 0, corresponding to v = 0.

The proof for all y goes almost identically. Let w :== I,(p), W :=
O, = f77X; = f177V. Then the y-connection as defined here is given by
WW =0,

(3.13)
X1 Xy = fIW(fIW) = fIW W =X f W =5(1 - 2p1) Xy,

which shows the + is the same parameter as used by Cencov.

4. ELIMINATING REDUNDANT COORDINATES

4.1 Constraint on tangent space The formulas in (Amari, 1985) elimi-
nates redundant coordinate using ) . p; = 1. Here we use a slightly dif-
ferent approach which is perhaps somewhat simpler. Denote > := 717",
and generally use a primed symbol to denote corresponding object on P
with index running from 1 through n — 1. For u € T, P,

4.1) Z ’pg'Tu,: + p,',h_ruﬂ = (J;

1—7
4.2) Un == (&) i,
pﬂ

i
This can be used to simply substitute out the last elemeit in each sum to

arrive at the desired formula, as the following paragraphs show.
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4.2 Metric We have

43) gu,v) = giguw; = > 'PI 2 wvi + Py unvy = Y ghuiv;
] i i
(4.4) gij =P i + vyt (pips) T

In particular,

(4.5) T=0 = gi; = pii; + p;, ' PiD;.
(4.6) T=1=> g, =p; 0 +p;,

the 7 = 1 formula being identical to that on (Amari, 1985, p. 31).

4.3 v-affine connection We have

uV’u w) E meu 0 Wi

ijk
(4?) =(,Y - T) ( ?Jl JTH‘-‘.UET'Ut + p‘:l? ST?"HT}‘H?-U‘H)
JTI
ik
(4.8) F:J;L = (v =) (p; " bijk — vy 2 (Pijpk) ")

In particular,

(4.9) T=0 = Fuk = (pibijx — PQZFJz'Pj}‘Jk) :
(4.10) r=1 —= I‘Uk = (v=1) (p; %6 — ;%)

the 7 = 1 formula being identical to that on (Amari, 1985, p. 43).

4.4 Dual coordinate The corresponding formulas for the metric are
(4.11) 9" =18 — (pip;)".
(4.12) T=0 = ¢¥=p716% -1

(4.13) re] = g¥= Pidij — pip;-

9
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and those for the affine connection are

@) T = (g =) (57705 — dupl "ok — v (o))

(4.15) T=0 = ﬁjk =9 (5z'jk — 05 — E'Jf:lpz'}"’j) :

(4.16) Tl = E‘;jk = (v—1) (pi'6:* — 0uspi 'ok — 11" prc) -
5. DISCUSSION OF RELATED ISSUES

5.1 Itis obvious that the generalization of these equations to arbitrary sam-
ple space X requires calculus on the fractional powers of measures. It can
be shown (Zhu, 1998), using ideas in (Neveu, 1965) that the linear spaces
M7 (X)) spanned by these elements are Banach spaces with the desired du-
ality, if we restrict attention to v € (0,1). These space: generalizes the
corresponding classical Lebesgue function spaces and act as enveloping
tangent spaces. The cases of {0,1} are very important but need special
treatment because of nonequivalence of topologies. In this paper the issue

of topology does not arise because X is assumed to be finite.

5.2 The formulas for the metric and affine connections on arbitrary X look
very similar to those given here. In nonparametric fashion, we have, for

peEMyuv,weT,M, =M,

(5.1) 9(u,v) = f p' v,

(5.2) g(u%’v,w) =(y—1) [p"'%uvw.
4

(5.3) uVv = (y —7)p" " uv € M.

These are calculations in the generalized Lebesgue spaces.

5.3 Campbell (1986) showed that the extension of g from 7(X) to M, (X)
is not unique under classical Markov morphisms. It is likely that the same
is true for %7 The metric and affine connections defined here may be called
the canonical versions. We conjecture that if the Markov morphisms are
relaxed to allow unnormalized mappings, the canonical versions are again

unique equivariant extensions. On the other hand, it is shown elsewhere that
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the extensions of the canonical versions from X' = N,, t¢ arbitrary X are

unique.

5.4 Amari (1985) uses functions of random variables and their differentials
where we uses functions of measures and their differentials as models of
tangent vectors. It is trivial to verify that they are equivalent, as long as all

variables with the same distributions are identified.
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