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outline

@ Part l: general aspects of NC / matrix geometry
e motivation, some history
e basic examples of noncommutative spaces
(S%, Tz, R} etc.)
e quantization of Poisson / symplectic structures
e basic noncommutative field theory
@ spectral aspects, Connes NCG

© Part Il: Matrix models and dynamical geometry

@ Yang-Mills matrix models,

noncommutative gauge theory

general geometry in matrix models (branes, curvature)
nonabelian gauge fields, fermions, SUSY

quantization of M.M: heat kernel expansion, UV/IR mixing
aspects of (emergent) gravity, outlook
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literature:

@ review article:
H.S., “Emergent Geometry and Gravity from Matrix
Models: an Introduction”. Class.Quant.Grav. 27 (2010)
133001, arXiv:1003.4134

@ brief qualitative intro:
H. S., “On Matrix Geometry“ arXiv:1101.5003

@ ... (later)
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Introduction

issue in quantum mechanics <« gravity:
the cosmological constant problem

QM predicts vacuum energy (cosm.const.)

0(10%GeV)*, SUSY
(Ewc)ov = = [ d°k 3hw(k) { O(10'°GeV)* no SUSY

(c.c)ops = (2.10712GeV)*

both described by [ d*x,/gA* = discrepancy

(c.c.)om > ( 103 )4 _ 1060

(C.C.)/\CDM 1012

= ridiculous fine-tuning

... maybe we’re missing something !!?
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Introduction

how to adress this in quantum theory of gravity?

@ string theory — vast set (> 10°90) of possible “vacua”
— “landscape”, lack of predictivity
— “anthropic principle” (= give up ?)

@ loop quantum gravity (?)
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Introduction

how to adress this in quantum theory of gravity?

@ string theory — vast set (> 10°90) of possible “vacua”
— “landscape”, lack of predictivity
— “anthropic principle” (= give up ?)
@ loop quantum gravity (?)
try different approach:

@ noncommutative (NC) space-time, NC geometry
© dynamical NC space(time):

(Yang-Mills) Matrix models

pre-geometric, BG independent
natural quantization
hopefully large separation of scales Apjanck <> Ac.c.
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Introduction

recall:
Q.M. & G.R. = break-down of classical space-time

measure object of size Ax

QM. = energy E > hk ~ -

Ax
GR = Ax> RSchwarzschild ~ GE > %ﬁ
= (Ax)?2>hG= 13, Lp=10"33cm
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Introduction

recall:
Q.M. & G.R. = break-down of classical space-time

measure object of size Ax

QM. = energy E > hk ~ -

AX
GR = Ax> RSchwarzschild ~ GE > %ﬁ
= (Ax)?2>hG= 13, Lp=10"33cm
more precise version: (Doplicher Fredenhagen Roberts 1995)

AXO(S Ax) > 13, L AX AX] > [2
i Pl i#f Pl

... space-time uncertainty relations,  follows from
[X*, X"] = io* (cf. Q.M.)

... noncommutative (quantum) space-time

“fuzzy”, “foam-like” structure of space-time (no.singularities?)
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Introduction

inspiration: Quantum Mechanics!

class. mechanics ‘ quantum mechanics

phase space R? “gquantized phase space”
functions 7(q, p) € C(R?) Heisenberg algebra f(Q, P)
[p,q] =0 [P,Q] = ih1
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Introduction

historical comments:

@ old idea (Heisenberg 1938  “universal length”)
@ Snyder 1947:  Lorentz-invariant NC space-time algebra
@ Mathematik:  von Neumann “pointless geometry”,
Connes NC (differential) geometry
first field-theoretical models ~ 199x
o fuzzy sphere  Madore, Grosse, ...

@ quantized spaces with quantum group symmetry
Wess-Zumino, ...

@ Connes-Lott: M* x {1, -1} (standard model, Higgs
interpreted as connection in internal NC “2-point space”)
Matrix Models BFSS, IKKT 1996
NCG on D-branes (string theory) 1998

(Chu Ho Douglas Hull Schomerus Seiberg Witten etc 1998 ff

NC QFT, UV/IR mixing, solitons/instantons, new phase
transitions (“striped phase”), matrix models, ...
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Introduction

NC spaces in other physical contexts

@ 2D- systems in strong magnetic fields
projection on lowest Landau level .
= coordinates X; satisfy  [X;, X] = g¢j
@ Quantum Hall effect  Bellisard 1994
@ string theory (10 dimensions, zoo of objects)

strings end on “D-branes” (=submanifolds) g>

D-branes in background B—field =-  strings induce

NC field theory (NCFT) on D-branes (NC gauge theory)
(Chu Ho Douglas Hull Schomerus Seiberg Witten etc 1998 ff)
= D-branes = NC space

@ 3D quantum gravity — NC spaces (Freidel etal)

H. Steinacker Non-commutative geometry and matrix models



Introduction

NC field theory = (quantum) field theory on NC spaces
studied during past 10 — 15 years:

@ starting point: NC space & diff. calculus
@ Lorentz invariance broken by 0*
@ straightforward for scalar FT
quantization = UV/IR mixing  due to AX*Ax” > L%,

problem for renormalization dim [9"7] = [L?]
@ NC gauge theory:

e straightforward for U(n)

@ less clear for other gauge groups

e NC standard model proposed (only effective, not quantiz.)

@ new processes (Z — 27, ...)

@ generalized (Quantum group) symmetries:
(R, x-Poincare,...)
hard to reconcile with “2nd quantization®
possibly modified dispersion relations
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Introduction

Gravity <+ NC spaces many possible approaches:

@ deformation of class. GR

@ insist on diffeos (Aschieri, Wess etal, ...)
e start with generalized local Lorentz invariance

(Chamseddine, ...)
e etc.

problems: extra structure structure 6#¥? dynamical?
quantization?
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Introduction

Gravity <+ NC spaces many possible approaches:

@ deformation of class. GR

@ insist on diffeos (Aschieri, Wess etal, ...)
e start with generalized local Lorentz invariance

(Chamseddine, ...)
e etc.

problems: extra structure structure 6#¥? dynamical?
quantization?

© start with fundamentally different model, s.t.
dynamical NC space(time) “emerges”

\ (Yang-Mills) Matrix Models

+ contains also gauge theory & matter

+ can be quantized (?!)

+ distinct from GR, — hope for c.c. problem
- not clear if close enough to GR
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Symplectic spaces, Quantization

Poisson «» symplectic structure

{,.}: C®(M)xC®(M)—C®(M) ...Poisson structure if

{f,9} +{g9.f} = 0, anti-symmetric
{f.{g,h}} +cyclic = 0 Jacobi

> tensor field 6" (x)0, ® 9, with
orr = —o"H, 9““'8,/0”P +cyclic=0

assume #*” non-degenerate

Then:
w = 0 tdxt Adx” € Q®M closed,
dv = 0

... symplectic form
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Symplectic spaces, Quantization

Quantized Poisson (symplectic) spaces

(M, 67 (x)) ... 2n-dimensional manifold with Poisson structure
Its quantization M, is NC algebra such that
Z:CM) — ACL(MH)

fx) — FX)
such that R
fg = ZI(fg)+ O(9)
.1 = Z(i{f.g}) + O(?)
(“nice”) ¢ € Mat(co,C) <« quantized function on M )
furthermore:
@m)YI(9) ~ [ =[x p(x)$(x)
p(x) = Pfaff(6,)) ... symplectic volume

note:  dim(H) ~ Vol(M), large!! (cf. Bohr-Sommerfeld)
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Symplectic spaces, Quantization

Example: quantized phase space R2

consider X* = (/C:)) , Heisenberg C.R.
174 J— H v J— VA 7 0 1
X0, XY = i1, pv=1,..2, O 771(71 0)
A C L(H) = Mat(co,C) ... functions on R2
uncertainty relations AX*AX” > 1|gr|

Weyl-quantization: ~ Poisson structure {x*,x"} = "~

I: C(R?) — A,

o(x) = [ Pke X" d(k) — [dPke" X" G(k) = d(X) € A
(L?(R?) + Hilbert-Schmidt)

interpretation:
X* e A= Mat(oo,C) ... quantiz. coord. function on R2
d(XH) € Mat(oo, C) ... Observables (functions) on R2
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Symplectic spaces, Quantization

star product

= pull-back of multiplication in A:

fxg:=1""(Z(f)I(9))

Weyl quantization map — explicit formula (for 6#¥ = const):

(F+ g)(x) = F(x)e3”" 20 g(x)
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Symplectic spaces, Quantization

star product

= pull-back of multiplication in A:

fxg:=1""(Z(f)I(9))

Weyl quantization map — explicit formula (for 6#¥ = const):

(F+ g)(x) = F(x)e3”" 20 g(x)

proof:
X" 4 @PuX" _ 30" Kupy gi(ku+pu)X"
note:
" v Ly V I puv
Xt xx¥ = x XY + 50
[xt, x"]. = iom
.CCR
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Symplectic spaces, Quantization

remarks:
@ 7 not unique, not Lie-algebra homomorphism
@ need quantization of general Poisson structure 6"”(x)

such that
X, X ~ x4, X"} = 16" (X)
(always assume 6"”(x) non-deg = symplectic)

@ existence, precise def. of quantization non-trivial (formal,
strict, ... )
need strict quantization (operators)
established for Kahler (Schlichenmaier etal),
almost-Kahler (Uribe etal)

@ quantization map — map NCFT <= ordinary QFT
(“Seiberg-Witten map”)

H. Steinacker Non-commutative geometry and matrix models



Symplectic spaces, Quantization

semi-classical limit:

work with commutative functions (de-quantization map),
replace commutators by Poisson brackets
i.e. replace

f=T7(F)

E o
Gl — i{f.g}  (+O(6?), drop)

[F. Gl

i.e. keep only leading order in 6

is independent of specific quantization Z
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fuzzy spaces & NC geometry

Noncommutative geometry

Gelfand-Naimark theorem:
every commutative C* - algebra .4 with 1 is isomorphic to a C* - algebra of
continuous functions on compact Hausdorff space M.
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fuzzy spaces & NC geometry

Noncommutative geometry

Gelfand-Naimark theorem:
every commutative C* - algebra .4 with 1 is isomorphic to a C* - algebra of
continuous functions on compact Hausdorff space M.

idea: replace A = noncomm. algebra of “functions” .A
manif. M — functions C(M) — NC algebra A

but: need additional (geometrical) structures
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fuzzy spaces & NC geometry

classical geometry noncomm. geometry
CM)={f: M — C}, o* AC L(H) = Mat(co,C)
comm. algebra, NC algebra, e.g. [x*, x"] = i6**1
metric structure g, Dirac/Laplace operator [, A
diff. calculus NC diff. calculus  (A. Connes)
field theory: A¢ = \¢ NC field theory: A¢ = Ao,
¢ €C®(M) peA
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classical geometry

fuzzy spaces & NC geometry

noncomm. geometry

CM)={f: M — C}, o*
comm. algebra,

metric structure g,

diff. calculus

AC L(H) = Mat(co,C)

NC algebra, e.g. [x*, x”] = i0*"1
Dirac/Laplace operator [, A
NC diff. calculus  (A. Connes)

field theory: A¢ = \¢

NC field theory: A¢ = Ao,

¢ €C®(M) peA
QFT NC QFT
[ dpe S [ dpe S
c(M) A
(canon.) quantum-gravity
e.g. J dgu e—Senldl )
geometries
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classical geometry

fuzzy spaces & NC geometry

noncomm. geometry

CM)={f: M — C}, o*
comm. algebra,

metric structure g,

diff. calculus

AC L(H) = Mat(co,C)

NC algebra, e.g. [x*, x”] = i0*"1
Dirac/Laplace operator [, A

NC diff. calculus  (A. Connes)

matrix geometry: embedding x2 : M < RP

field theory: A¢ = \¢

NC field theory: A¢ = Ao,

¢ €C®(M) peA
QFT NC QFT
[ dpe S [ dpe S
c(M) A
(canon.) quantum-gravity
e.g. [ dg,, e Seld (?)
geometries
“emergent” quantum-gravity matrix models
(other def., ~ GR) [ dXe SwlXl
matrices
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fuzzy spaces & NC geometry

The fuzzy sphere

i 2 .
classical 5° x2:S2 <, RS

e }=>A_C°°(82)

fuzzy sphere S%, : (Hoppe, Madore)

let X2 € Mat(N, C) ... 3 hermitian matrices

X%.XE] = o Xe, Oy= (N 1)
Xéxa =1,

realized as X2 = \/» ... N—dimirrep of su(2) on CV,
generate A = Mat(N, C) ... alg. of functions on S%,
SO(3) action:

su2)xA4A — A
(J%9) = [X%9]
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fuzzy spaces & NC geometry

decompose A = Mat(N, C) into irreps of SO(3):

A=Mat(N,C) =2 (N)@(N) = (1) @3) @..@(2N-1)
= (Ve {Viyo..o{VN ).

... fuzzy spherical harmonics (polynomials in X4); UV cutoff !

quantization map:

Z: C(S?) — A = Ma(N,C)
/ Y, I<N
Ym = { 0, I>N
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fuzzy spaces & NC geometry

decompose A = Mat(N, C) into irreps of SO(3):

A=Mat(N,C)=(N)®(N) = (1) &(3) &..®(2N-1)
= {(YQe{Y}o.o{¥n ).
... fuzzy spherical harmonics (polynomials in X4); UV cutoff !
quantization map:
Z: C(S?) — A = Ma(N,C)
Yi, I<N
/ m»
Ym = { 0, I>N
satisfies ;
I(fg) = Z(NZ(9) +O(y),
(i{f.9}) = I[Z(F),Z(9)] + O(w)

Poisson structure {x2, x°} = 2 <3¢ x¢ on S2
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fuzzy spaces & NC geometry

decompose A = Mat(N, C) into irreps of SO(3):

A=Mat(N,C) =2 (N)@(N) = (1) @3) @..@(2N-1)
= (Ve {Viyo..o{VN ).

.. fuzzy spherical harmonics (polynomials in X4); UV cutoff !

quantization map:
Z: (82 —

satisfies
I(fg) = Z(fZ(9) + O(4),

I(i{f,9}) = [Z(f),Z(9)] + O(z)
Poisson structure {x2, x°} = 2 <3¢ x¢ on S2
integral: TT(I(F) = [wf,  w= Jeax3axPadx®

S2, ... quantization of (52, Nw) J
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fuzzy spaces & NC geometry

Coherent states (Perelomov)

class. geometry: let p € S? ... north pole

S0@3) — 82

g — gep
stabilizer group U(1) c SO(3) = S? = SO(3)/U(1)
fuzzy functions: A= L(H), H=|m,L), m=—L,...L N=2L+1
consider group orbit (IL, L) ... highest weight state)
SO(B) — H
g = |bg) :=mn(9)IL L)
note: projector |¢q) (¢g| € A is independent of U(1) c SO(3)
2= S0@3)/U(1) — A
p o Mpi=lughlig] = 4oy (x —p)
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fuzzy spaces & NC geometry

def. |p) := [Yg(p)) ~ [¥g(o))

can show
JelP)pl = c1 overcomplete
l(plp')| = (cos(19/2))N71, 9 =4L(p,p') localization p ~ p’
paX2p) = |p)

(pIXp) = TeXM, = p?e &,

X FoE]

coherent states minimize uncertainty

(AXTP + (AX2)P? + (AX®)? = 32,(pIX2X2p) — (pIX?|p){pP|X?|p)
> Nt 1

N o~

2Cy 2N
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fuzzy spaces & NC geometry

S? ~ "fuzzy common spectrum“of X2 ~ x: S2 < R3

semi-classical limit:

@ X2~ x2:= (p|Xqp): S?— RS
@ or: replace
X = I7U(X)=x2 &= TI'(¢)=9(p)€C(S),
[, V] — {o(p),v(p)}

]
error ~
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fuzzy spaces & NC geometry

local description:

near "north pole“ |L, L) : X3 ~1, X'~ X'~0

X3 = \/17()(1)27()(2)2

1 y21 _ i y3 _.pi2 ~ 2 : |
[XT, X4 mX 105 (X) 8 cf. Heisenberg algebral!

quantum cell AX'AX? > 1 area AA~ 4%
inferred from Poisson structure
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fuzzy spaces & NC geometry

local description:

near "north pole“ |L, L) : X3 ~1, X'~ X'~0

X3 \/1 f(X1)27(X2)2

1 y21 _ i y3 _.pi2 ~ 2 : |
[XT, X4 mX 105 (X) 8 cf. Heisenberg algebral!

quantum cell AX'AX? > 1 area AA~ 4%
inferred from Poisson structure

.o

note: can modify X3 = X3(X', X?)

2D submanifolds M2 c R3 o
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fuzzy spaces & NC geometry

metric structure of fuzzy sphere

SO(3) symmetry = obviously "round sphere”

metric encoded in NC Laplace operator
O: A=A, O¢=[X%[X" ¢]l6a
SO(3) invariant: O(g> ¢) = g» (O¢) = OYL =c¢ V),
note: 0= 4-J32 on A= (N)e(N)=(1)e@)e..o((2N-1)

= OV =211+ 1),

spectrum identical with classical case Agp = ﬁau(\/|g|g“”6,,¢)

= effective metric of O = round metric on S? )
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fuzzy spaces & NC geometry

Symplectomorphisms

3 U(N) action on A = Mat(N, C):
¢ — UpU™!
infinitesimal version: U = e®H,
¢ — ¢+ i[H, ]
semi-classical version:
¢—o+{H ¢},  HelM)

Hamiltonian VF ixw = dH, infinites. symplectomorphism on (S?, w)
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fuzzy spaces & NC geometry

Symplectomorphisms

3 U(N) action on A = Mat(N, C):
¢ — UpU™!
infinitesimal version: U = e®H,
¢ — ¢+ i[H, ]
semi-classical version:
¢—o+{H ¢},  HelM)

Hamiltonian VF ixw = dH, infinites. symplectomorphism on (S?, w)
is area-preserving diffeo: dVol = w, Lxw = (ixd + dix)w =0

in 2D: all (local ...) APD’s
in 4D: special APD’s (= action of symplectomorphism group)
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fuzzy spaces & NC geometry

Scalar field theory on S

consider # := A = Mat(N,C) ... space of functions on S
Hilbert space structure:

(0.0) = 1) ~ [ alo ot~ 1S
action for free real scalar field ¢ = ¢':

Sl¢] = %Te(¢0¢ + 126 + Ag*)
= FT(-[X2,9)X?, 6] + 1P + Ao*)
~ [ (¢Dgd + 126 + Ap?)

.. deformation of classical FT on S2, built-in UV cutoff
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fuzzy spaces & NC geometry

scalar QFT on S3

most natural: “functional® (matrix) integral approach

Z = [Dge 5V

J1Dole” ) Gy my - bipmy

<¢/1 my " ¢lnmn> - f[D¢]e*s[¢] ’ [D¢] = H d¢/m
¢ = Z Oim Vrln

... deformation & regularization of (euclid.) QFT on S?, UV cutoff
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fuzzy spaces & NC geometry

scalar QFT on S3

most natural: “functional® (matrix) integral approach

Z = [Dge 5V

D —Stel my " Plpmn
<<75/1m1 ¢lnmn> = il qﬁ]ef[Dd)]:ﬁs[L] d 5 [D¢] = H d¢lm
¢ = Z ¢Im \A/,ln

... deformation & regularization of (euclid.) QFT on S?, UV cutoff

propagator: asusual, (¢mdym) = 6,’C”m,,(,+1‘w
vertices: V=AY um - bpmTe(Yh .. VE)

perturb. expansion, Gaussian integrals = Wick’s theorem,
distinction planar <+ nonplanar diagrams
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fuzzy spaces & NC geometry

scalar QFT on S3

most natural: “functional® (matrix) integral approach

Z = [Dge 5V

D —Stel my " Plpmn
<<75/1m1 ¢lnmn> = il qﬁ]ef[Dd)]:ﬁs[L] d 5 [D¢] = H d¢lm
¢ = Z ¢Im \A/,ln

... deformation & regularization of (euclid.) QFT on S?, UV cutoff
propagator: asusual, (¢mdym) = 6,’C”m,,(,+1‘w
vertices: V=AY um - bpmTe(Yh .. VE)

perturb. expansion, Gaussian integrals = Wick’s theorem,
distinction planar <+ nonplanar diagrams

large phase factors, oscillations for /1 > /\ﬁ,c
= distinct from usual QFT, UV/IR mixing  Minwalla, V. Raamsdonk, Seiberg

central feature of NC QFT, obstacle for perturb. renormalization
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fuzzy spaces & NC geometry

Note: “"functional integral* | D¢ exp(S[¢]) very natural:
@ 3 U(N) action on A = Mat(N, C):

¢ — UpU™!

(=2 action of symplectomorphism group)

@ can diagonalize ¢ = U~ "diag()\1, ..., \y) U, decompose

[Do = [UT]dna?(n),
i=1
A =TIV )

i<j

@ action for scalar field theory NOT invariant under U(N)
(cf. M.M. approach to 2D gravity)
BUT

@ action for gauge theory IS invariant under U(N) !l (later)
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fuzzy spaces & NC geometry

scales

R2
’[x, x]~ 6 ..NClengthscale,| e.g.0~ —— on S%

N
UV cutoff:  Ayy =5, IRcutoff: Ap=1
= 3 scales:
Np = \/NIQ < My = \/; < MNyy = \/g
in particular: NrAuy = Ne (= 24)

very general: for compact NC spaces: dimH ~ Vol <
= NC implies naturally large separation of scales!

product ¢, ¢, semi-classical < pg < A%, (uncertainty rel.n)
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fuzzy spaces & NC geometry

"anomalous” aspects in scalar QFT on S

@ 1-loop effective action does NOT reduce to commutative
result for N — oo

e interaction vertices rapidly oscillating, unless pg < A2

(loop effects probe area quantum AA ~ 1/N)
@ new physics!

H. Steinacker Non-commutative geometry and matrix models



fuzzy spaces & NC geometry

scaling limits:
@ commutative sphere limit S — &2
X2 — RX4, R=fixed, N - oo

@ quantum plane limit: 52, — RS

R=+vN6, 0 ="fixed:

za:Ja\/E ~ VN X3

consider “north pole” of S2:

(2!, 2%] = /% Js g

therefore: S can be used as regularization of R3

similarly:
compactification of R3" using e.g. CPy, Sz x S&, etc.
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fuzzy spaces & NC geometry

additional structure on S%

@ embedding sequence
S3CShC ..

(map Y} — Y!), S? recovered in inductive limit

@ Dirac operator:
DV = /Cn(oa[X?3 ]+ 1)V, X = yoa{X?.}
{B.x} = 0

but x? ~ 1, 3 top mode with y =0

@ Jordan-Schwinger: X?@ = a}(08)%as on Fy = (at...a"|0))n

@ differential calculus:
differential forms Q*(S2), Leibnitz rule etc.
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fuzzy spaces & NC geometry

differential calculus on S%,

graded bimodule Qj, over A = S with

@ d?=0

@ graded Leibnitz rule d(a3) = daj + (—1)*lads
turns out: radial one-form does not decouple,

= [w, f], w = —CnX%dX? (cf. Connes)
Qy = @3 ,Qf ,need Q3 = fape(X)dX3AXPdXC
can introduce frame:
€8 = QX3+ /Cne®°XPdX®,  [f(X),£%9 =0  Madore

H. Steinacker Non-commutative geometry and matrix models



fuzzy spaces & NC geometry

differential calculus on S%,

graded bimodule Qj, over A = S with

@ d?=0

@ graded Leibnitz rule d(a3) = daj + (—1)*lads
turns out: radial one-form does not decouple,

= [w, f], w = —CnX%dX? (cf. Connes)
Qy = @3 ,Qf ,need Q3 = fape(X)dX3AXPdXC
can introduce frame:
€8 = QX3+ /Cne®°XPdX®,  [f(X),£%9 =0  Madore

most general one-form:

A = A2 €Q}, Az € A=Mat(N,C)
dA+ AA = (BaBy + icapeBo)E%b € 2,
wtA=(X3+ AN €Ql

W™
[l
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fuzzy spaces & NC geometry

Fuzzy torus T3

0 0 e27\'iN7,\_,1
satisfy

Uv = gqW, UN=VN=1 g=¢&>n
[U, V] (g-1WU

generate A = Mat(N, C) ... quantiz. algebra of functions on T3

Zn X Zy action:

Inx A — A similar other Zy
(W 9) — UrpU*

A=@aN 1, uvm . harmonics
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fuzzy spaces & NC geometry

quantization map:

IZ: C¢(T?’) - A = Mat(N,C)

nogms o, | UV |nl|m| < N/2
0, otherwise

satisfies

I(fg) = Z(fZ(g) + O(y).
I(i{f.g}) = [Z(1).Z(9)] + O(e)

Poisson structure {e'#, eV} = 2 eV on T2 (& {p, v} =—%)
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fuzzy spaces & NC geometry

quantization map:

IZ: C¢(T?’) - A = Mat(N,C)

nogms o, | UV |nl|m| < N/2
0, otherwise

satisfies

I(fg) = Z(fZ(g) + O(y).
I(i{f.g}) = [Z(1).Z(9)] + O(e)

Poisson structure {e'#, eV} = 2 eV on T2 (& {p, v} =—%)

integral: SETHI(F) = [ wf,  w = dpdy

T2 ... quantization of (T2, Nw) |
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fuzzy spaces & NC geometry

metric on T3 ? ... “obvious”, need extra structure:

embedding T2 R* via x'+ix?2=¢e%, x>+ ix* =€

quantization of embedding maps x@ ~ X2 : 4 hermitian matrices
X' +ix?.=U, X3 +iXt =V

satisfy
[X'.X?] = 0= [X% X
(X1)2+(X2)2 — 1:(Xs)2+(x4)2
U, V] = (q—1)W
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fuzzy spaces & NC geometry

metric on T3 ? ... “obvious”, need extra structure:
embedding T2 R* via x'+ix?2=¢e%, x>+ ix* =€
quantization of embedding maps x@ ~ X2 : 4 hermitian matrices
X' +ix?.=U, X3 +iXt =V
satisfy
(X", X?] 0 = [X® X

(X1)2+(X2)2 1:(X3)2+(X4)2
[U, V] = (qg—1)VU

Laplace operator:

0o = [X%[XP, ¢]loan
= [U.[U" @]l +[V.[VT,¢]] = 2¢ — UsUT — UTpU — (%V)
owrvm = —([n5+ M) U"V™ ~ (P + m?)U"vm
where

[, = q"? —q~ "2 _sin(nr/N)
‘qg'/2-qg1/2  sin(7/N)

~n (“g-number”)



fuzzy spaces & NC geometry

’specD ~ specA 2 below cutoff

therefore:

geometry of (embedded) fuzzy torus T3 — R*  =flat

momentum space is compactified!  [n]q

H. Steinacker Non-commutative geometry and matrix models



fuzzy spaces & NC geometry

note: could have started with
Ov = qvO, OVN=VvN=1, §=¢é*t
[U,V] = (@g-1)VU
related via U = U¥

generate same A = Mat(N, C) ... quantiz. algebra of functions on 7’,%,

different embedding:
X' +iX? = U =U = (X" +iX?)¥,
X34ixt = V

related to previous by “winding“ map Z = Zk
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fuzzy spaces & NC geometry

compare: noncommutative torus T2 Connes

uv = gqWwu, q = e?mi?
Ut=u-t, vi= vy

generate A ... algebra of functions on Té2

note: all U"V™ independent, A infinite-dimensional
in general non-integral (spectral) dimension, ...

for =2 € Q: oo-dim. center C = (U"V™9)

fuzzytorus T3 = TZ/C, 0=14 )

center C ... infinite sector (“winding modes”)
NC torus T2 very subtle, “wild”

fuzzy torus T2 “stable” under deformations
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fuzzy spaces & NC geometry

Fuzzy CP"

(Grosse & Strohmaier, Balachandran etal)
consider

CP? = {g'"\sg, g€ SU@3)} Csu(38)=R® .. (co)adjoint orbit
Ag = diag(1,1,-2)

fuzzy version:
A = CP% := L(Vy,C) = Mat(dy, C)

Vy ... irrep of su(3) w. highest weight (N,0), dy = dim Vy

R
X2 — T ~ —
enn(Ta) CN N

satisfy the relations
(X3, XP] = icyfabe X°©

ayb _ 2 abc yayb _ 2N/3+1 c
0apX8XP = Re, dXX—Fi’\/WX.
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fuzzy spaces & NC geometry

again:
@ X2~ x2:CP?— R8®  quantiz. embedding map

@ 3 SU(3) actionon A = A=l  (k,k) (harmonics)
= quantizatonmap Z:C(CP?) — A
... quantiz. of (CP?,w), w ... Kirillov—Kostant symplectic form
intrinsic UV cutoff

@ [=[X2[X" ]l6a» ..same spectrum as Ay on CP?

@ ... goes through for any (compact) coadjoint orbit
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fuzzy spaces & NC geometry

the Moyal-Weyl quantum plane R2

[Xe XY = iomA, v =1,..2, g — ( 0 0 )

Heisenberg alg. A = £(H), coord.- functions on R3
uncertainty relations AX*AX" > |60*¥|

Weyl-quantization: Z: C(R?) — A, Poisson structure 6+

P(x) = / d?’k %X (k) / d?k %" (k) =: d(X) € Mat(co,C)

interpretation:
X* € A= Mat(oo,C) ... quantiz. coord. function on R2
d(XH) € Mat(co, C) ... function (scalar field”) on R2

(2m) TH(Z(9)) ~ / pox). p=1/10)
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fuzzy spaces & NC geometry

note:
® 9,¢(X) == —i0,)[X", ¢(X)] ~ 0u(X)
... inner derivations
e translations: U, := ePxX"

Up(X" U™ = ¢(X” — 0" p,,)

translations (symplectomorphisms!) are inner!
@ Laplace operator: [ = [X*,[X",¢]]0 ~ —G*0,0,¢0

G = OO 5 (1)
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fuzzy spaces & NC geometry

note:
@ 0,9(X) = fié)ljlj (XY, 6(X)] ~ 0,0(X)

... inner derivations
e translations: Uy := ePuX"
Us(X")U" = 6(X” — 6"p,)

translations (symplectomorphisms!) are inner!
@ Laplace operator: [ = [X*,[X",¢]]0 ~ —G*0,0,¢0

G = OO 5 (1)

@ star product:

fxg = T-YZ(f)

7(9)) ... pull-back algebra
“Jdt pa

(Frg)(x) = f(x)e" T2 g(x)

... can work on R?  (will not)

@ generalizes immediately to R3"



fuzzy spaces & NC geometry

Hopf fibration, fuzzy spheres

consider R%, W, o] = i0,,. nondeg — redefine
zZi = Yitie, Z2=yst+in
[Za, 28] = idap, [z,z] =0=]z,2Z] CCR
define ] ’ ]
X* = 52.0%525, X0 = ézaaoza =N
satisfy
[Xa7xb] _ fsabCXC, [XO,Xa] =0
X = Zz,z,,  X3X3=1XO(X0+1)
1 2 .
rescale o — recover Sy
a ~ _ [ af T
X2 € End(Hy) 2 Mat(N,C) on Hy={a'..a'|0)} cF
N

essentially Hopf fibration S? =~ CP' = S3/U(1)
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fuzzy spaces & NC geometry

scalar field theory on R3

real scalar field ¢ = ¢+ € L(H)
action functional: e.g.

Slg] = Tr (X", QX" ¢l6m + zmPd? + 30%)
~ [(3G"0,90,6 + 3mP¢® + 53¢

0S8
equations of motion: = =0

Ap = XXV, 010, = mPo+ A o°

.. see Grosse’s lectures
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fuzzy spaces & NC geometry

lessons

@ algebra A = L(H) ... quantized algebra of functions on (M, w)
no geometrical information (not even dim)
dim(#) = number of “quantum cells”, (27)"Tr Z(f) ~ Vol , M
finite-dim. A = Mat(N, C) sufficient for local physics
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fuzzy spaces & NC geometry

lessons

@ algebra A = L(H) ... quantized algebra of functions on (M, w)
no geometrical information (not even dim)
dim(#) = number of “quantum cells”, (27)"Tr Z(f) ~ Vol , M
finite-dim. A = Mat(N, C) sufficient for local physics

@ every non-deg. fuzzy space locally ~ R2"
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fuzzy spaces & NC geometry

lessons

@ algebra A = L(H) ... quantized algebra of functions on (M, w)
no geometrical information (not even dim)
dim(#) = number of “quantum cells”, (27)"Tr Z(f) ~ Vol , M
finite-dim. A = Mat(N, C) sufficient for local physics

@ every non-deg. fuzzy space locally ~ R2"

@ geometrical info encoded in specific matrices X?:
X% ~ x2: M —RP  ._.embedding functions

contained e.g. in matrix Laplacian O = [X2, [X?, ]|0a»
Poisson/symplectic structure encoded in C.R.

how to extract it? general geometries?
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spectral geometry

some spectral geometry

... extract geometric info from Laplace / Dirac op
recall: fuzzy Laplacian O = [X2,[X?, .]]0ab
classical case: heat kernel expansion of Ay on (M, g) (compact)
Tre=*As = Y ol=9/2 [ d9%,/|g] an(x)
M

n>0
ao(X) ~ 1
ap(x) ~ —% R[g]
an(x) ... Seeley-de Witt coefficients (cf. Gilkey)
physically valuable information on M, e.g. 1-loop eff. action
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spectral geometry

some spectral geometry

.. extract geometric info from Laplace / Dirac op
recall: fuzzy Laplacian O = [X2, [X?, ]]6a
classical case: heat kernel expansion of Ay on (M, g) (compact)

Tre—uAg — (n—d)/2 f ddX\/@an
n>0
ao(X) ~ 1
a(x) ~ —gARldl
an(x) ... Seeley-de Witt coefficients (cf. Gilkey)
physically valuable information on M, e.g. 1-loop eff. action
M toop = TrlogAg——Trf d"e alg s _ Ty f da g—aly
1/A2
= -2 ] daa(n=94- 2/zfaf"x 9] an(x)
n>01//\2
= - [d%/|g| (§A4ao( X) + N2ap(x) + log A\%ag + ...)
n>0M
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spectral geometry

In particular,
Na(N) := #{u? € specAg; 2 < N2}
Weyls asymptotic formula

A—soo d B volS9-1
NA(/\) CqvolM A N Cq = d(271’)d .

— (spectral) dimension d of M
However: specA, does not quite determine g,,,, uniquely
works if replace A, — spectral triple (A = C>°(M), D,H) (Connes)

suitable for generalization to NC space
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spectral geometry

Connes Noncommutative Geometry

spectral triple: A ... x - algebra with
@ *- representation A — L(#) on separable Hilbert space

@ unbounded selfadjoint operator D on A with (D — \)~' compact
such that [, a] bounded Va € A

Then (A, #H, D) ... “spectral triple”
3 various refinements (real spectral triple, ...)
commutative case: D ... standard Dirac op on L? spinors

can define differential calculus using d = [, .] (over-simplified)
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spectral geometry

Connes Noncommutative Geometry

spectral triple: A ... x - algebra with
@ *- representation A — L(#) on separable Hilbert space

@ unbounded selfadjoint operator D on A with (D — \)~' compact
such that [, a] bounded Va € A

Then (A, #H, D) ... “spectral triple”

3 various refinements (real spectral triple, ...)

commutative case: D ... standard Dirac op on L? spinors

can define differential calculus using d = [, .] (over-simplified)

— Connes-Lott interpretation of S.M  (Higgs «++ NC 2-point space)

spectral action: S = Tr(y (D% /A2))

symplectic structure, Axc, Tr <+ [ etc. plays no role
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spectral geometry

for fuzzy spaces:

@ Jintrinsic UV cutoff Ayy ~ %
= no asympotic limit:  Na(A) ~ A° but
Na(A) ~ voIMA?  for A< Ayy
gives correct dimension d = 2
@ dim =0 inthe Connes sense
@ chirality operator for ) = o4[X?,.] + & problematic

@ heat kernel expansion problematic for NC spaces (Gayral etal.)
ok if put finite cutoff A = O(Anc)  (Blaschke-H.S.-Wohlgenannt 2010)

— need Matrix (“fuzzy”) geometry:
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spectral geometry

abstraction & generalization:

Q: how to obtain generic matrix (fuzzy) geometries?

A: consider generic embedded fuzzy spaces:

[
X8~ x2: M — RP

@ inherits pull-back metric (geometry)

@ (quantized) Poisson / symplectic structure via
[XH, X"] = ior

@ easy to work with

@ noncommutativity essential
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