Non-commutative geometry and matrix models

Harold Steinacker

Fakultät für Physik universität wien

Zakopane, march 2011

outline

- Part I: general aspects of NC / matrix geometry
 - motivation, some history
 - basic examples of noncommutative spaces $(S_N^2, T_\theta^2, \mathbb{R}_\theta^4 \text{ etc.})$
 - quantization of Poisson / symplectic structures
 - basic noncommutative field theory
 - spectral aspects, Connes NCG
- Part II: Matrix models and dynamical geometry
 - Yang-Mills matrix models, noncommutative gauge theory
 - general geometry in matrix models (branes, curvature)
 - nonabelian gauge fields, fermions, SUSY
 - quantization of M.M: heat kernel expansion, UV/IR mixing
 - aspects of (emergent) gravity, outlook

literature:

- review article:
 - H.S., "Emergent Geometry and Gravity from Matrix Models: an Introduction". Class.Quant.Grav. 27 (2010) 133001, arXiv:1003.4134
- brief qualitative intro:
 H. S., "On Matrix Geometry" arXiv:1101.5003
- ... (later)

issue in quantum mechanics ↔ gravity:

the cosmological constant problem

QM predicts vacuum energy (cosm.const.)

$$(E_{\rm vac})_{QM} = \pm \int d^3k \, \frac{1}{2} \hbar \omega(k) \sim \begin{cases} O(10^3 GeV)^4, & {
m SUSY} \\ O(10^{19} GeV)^4 & {
m no SUSY} \end{cases}$$

 $(c.c.)_{obs} = (2.10^{-12} GeV)^4$

both described by $\int d^4x \sqrt{g} \Lambda^4 \Rightarrow$ discrepancy

$$\left| \frac{(c.c.)_{\text{QM}}}{(c.c.)_{\text{ACDM}}} \ge \left(\frac{10^3}{10^{-12}} \right)^4 = 10^{60}$$

⇒ ridiculous fine-tuning

... maybe we're missing something !!?

how to adress this in quantum theory of gravity?

- string theory → vast set (> 10⁵⁰⁰) of possible "vacua"
 - \rightarrow "landscape", lack of predictivity
 - \rightarrow "anthropic principle" (= give up ?)
- loop quantum gravity (?)

try different approach

- noncommutative (NC) space-time, NC geometry
- ② dynamical NC space(time):

(Yang-Mills) Matrix models

pre-geometric, BG independent natural quantization hopefully large separation of scales Λ_{Planck} ↔ Λ_{c.c}

how to adress this in quantum theory of gravity?

- string theory → vast set (> 10⁵⁰⁰) of possible "vacua"
 - \rightarrow "landscape", lack of predictivity
 - \rightarrow "anthropic principle" (= give up ?)
- loop quantum gravity (?)

try different approach:

- noncommutative (NC) space-time, NC geometry
- dynamical NC space(time):

(Yang-Mills) Matrix models

pre-geometric, BG independent natural quantization hopefully large separation of scales $\Lambda_{Planck} \leftrightarrow \Lambda_{c.c.}$

Introduction

Q.M. & G.R. ⇒ break-down of classical space-time

measure object of size Δx

Q.M.
$$\Rightarrow$$
 energy $E \geq \hbar k \sim \frac{\hbar}{\Delta x}$

G.R.
$$\Rightarrow \Delta x \geq R_{\text{Schwarzschild}} \sim GE \geq \frac{\hbar G}{\Delta x}$$

$$\Rightarrow$$
 $(\Delta x)^2 \ge \hbar G = L_{Pl}^2$, $L_{Pl} = 10^{-33} cm$

more precise version:

(Doplicher Fredenhagen Roberts 1995)

$$\Delta x^0(\sum_i \Delta x^i) \ge L_{Pl}^2, \qquad \sum_{i \ne j} \Delta x^i \Delta x^j \ge L_{Pl}^2$$

... space-time uncertainty relations, follows from

$$[X^{\mu}, X^{\nu}] = i\theta^{\mu\nu} \qquad \text{(cf. Q.M.)}$$

... noncommutative (quantum) space-time

"fuzzy", "foam-like" structure of space-time (no singularities?)

recall:

Q.M. & G.R. ⇒ break-down of classical space-time

measure object of size Δx

Q.M.
$$\Rightarrow$$
 energy $E \ge \hbar k \sim \frac{\hbar}{\Delta x}$

G.R.
$$\Rightarrow \Delta x \geq R_{\text{Schwarzschild}} \sim GE \geq \frac{\hbar G}{\Delta x}$$

$$\Rightarrow \quad (\Delta x)^2 \geq \hbar G = L_{Pl}^2, \qquad \qquad L_{Pl} = 10^{-33} cm$$

more precise version:

(Doplicher Fredenhagen Roberts 1995)

$$\Delta x^0(\sum_i \Delta x^i) \ge L_{Pl}^2, \qquad \sum_{i \ne j} \Delta x^i \Delta x^j \ge L_{Pl}^2$$

... space-time uncertainty relations, follows from

$$[X^{\mu}, X^{\nu}] = i\theta^{\mu\nu} \qquad \text{(cf. Q.M.)}$$

... noncommutative (quantum) space-time
"fuzzy" "foam-like" structure of space-time

"fuzzy", "foam-like" structure of space-time (no singularities?)

inspiration: Quantum Mechanics!

class. mechanics	quantum mechanics
phase space \mathbb{R}^2	"quantized phase space"
functions $f(q, p) \in \mathcal{C}(\mathbb{R}^2)$	Heisenberg algebra $f(Q, P)$
[p,q]=0	$[P,Q]=i\hbar1$

historical comments:

- old idea (Heisenberg 1938 "universal length")
- Snyder 1947: Lorentz-invariant NC space-time algebra
- Mathematik: von Neumann "pointless geometry",
 Connes NC (differential) geometry
- first field-theoretical models 199x
 - fuzzy sphere Madore, Grosse, ...
 - quantized spaces with quantum group symmetry Wess-Zumino, ...
- Connes-Lott: $M^4 \times \{1, -1\}$ (standard model, Higgs interpreted as connection in internal NC "2-point space")
- Matrix Models
 BFSS, IKKT 1996
- NCG on D-branes (string theory) 1998
 (Chu Ho Douglas Hull Schomerus Seiberg Witten etc 1998 ff
- NC QFT, UV/IR mixing, solitons/instantons, new phase transitions ("striped phase"), matrix models, ...

NC spaces in other physical contexts

- 2D- systems in strong magnetic fields projection on lowest Landau level
 - \Rightarrow coordinates \hat{x}_i satisfy $[\hat{x}_i, \hat{x}_i] = \frac{1}{R} \varepsilon_{ii}$
- Quantum Hall effect Bellisard 1994
- string theory (10 dimensions, zoo of objects)
 - strings end on "D-branes" (=submanifolds)

D-branes in background B-field \Rightarrow strings induce NC field theory (NCFT) on D-branes (NC gauge theory) (Chu Ho Douglas Hull Schomerus Seiberg Witten etc 1998 ff)

- \Rightarrow D-branes = NC space
- 3D quantum gravity → NC spaces (Freidel etal)

NC field theory = (quantum) field theory on NC spaces studied during past 10 – 15 years:

- starting point: NC space & diff. calculus
- Lorentz invariance broken by $\theta^{\mu\nu}$
- straightforward for scalar FT

quantization
$$\Rightarrow$$
 UV/IR mixing due to $\Delta x^{\mu} \Delta x^{\nu} \geq L_{NC}^2$

problem for renormalization

$$\dim \left[\theta^{\mu\nu}\right] = \left[L^2\right]$$

- NC gauge theory:
 - straightforward for U(n)
 - less clear for other gauge groups
 - NC standard model proposed (only effective, not quantiz.)
 - new processes $(Z \rightarrow 2\gamma, ...)$
- generalized (quantum group) symmetries:

```
(\mathbb{R}_q^4, \kappa-Poincare,...) hard to reconcile with "2nd quantization" possibly modified dispersion relations
```

Gravity ↔ NC spaces

many possible approaches:

- deformation of class. GR
 - insist on diffeos (Aschieri, Wess etal, ...)
 - start with generalized local Lorentz invariance (Chamseddine, ...)
 - etc.

problems: extra structure structure $\theta^{\mu\nu}$? dynamical? quantization?

Gravity ↔ NC spaces

many possible approaches:

- deformation of class. GR
 - insist on diffeos (Aschieri, Wess etal, ...)
 - start with generalized local Lorentz invariance (Chamseddine, ...)
 - etc.

problems: extra structure structure $\theta^{\mu\nu}$? dynamical? quantization?

start with fundamentally different model, s.t. dynamical NC space(time) "emerges"

(Yang-Mills) Matrix Models

- + contains also gauge theory & matter
- + can be quantized (?!)
- + distinct from GR, → hope for c.c. problem
- not clear if close enough to GR

Poisson ↔ symplectic structure

$$\{.,.\}: \quad \mathcal{C}^{\infty}(\mathcal{M}) \times \mathcal{C}^{\infty}(\mathcal{M}) \to \mathcal{C}^{\infty}(\mathcal{M}) \quad ... \quad \text{Poisson structure if}$$

$$\{f,g\} + \{g,f\} \quad = \quad 0, \qquad \text{anti-symmetric}$$

$$\{f,\{g,h\}\} \quad + \text{cyclic} \quad = \quad 0 \qquad \text{Jacobi}$$

 \leftrightarrow tensor field $\theta^{\mu\nu}(x)\partial_{\mu}\otimes\partial_{\nu}$ with

$$heta^{\mu
u} = - heta^{
u\mu}, \quad heta^{\mu\mu'}\partial_{\mu'} heta^{
u
ho} + \mathsf{cyclic} = 0$$

assume $\theta^{\mu\nu}$ non-degenerate Then:

$$\begin{array}{rcl} \omega &:=& \frac{1}{2}\theta_{\mu\nu}^{-1} \textit{d} x^{\mu} \wedge \textit{d} x^{\nu} & & \in \Omega^2 \mathcal{M} & \text{closed}, \\ \textit{d} \omega &=& 0 \end{array}$$

... symplectic form

Quantized Poisson (symplectic) spaces

 $(\mathcal{M}, \theta^{\mu\nu}(x))$... 2*n*-dimensional manifold with Poisson structure

Its quantization \mathcal{M}_{θ} is NC algebra such that

$$\mathcal{I}: \mathcal{C}(\mathcal{M}) \rightarrow \mathcal{A} \subset \mathcal{L}(\mathcal{H})$$

$$f(x) \mapsto \hat{f}(X)$$

such that

$$\hat{f}\,\hat{g} = \mathcal{I}(fg) + O(\theta)$$

 $[\hat{f},\hat{g}] = \mathcal{I}(i\{f,g\}) + O(\theta^2)$

("nice") $\Phi \in Mat(\infty, \mathbb{C}) \leftrightarrow \text{quantized function on } \mathcal{M}$

furthermore:

$$\begin{array}{ccc} (2\pi)^n \mathrm{Tr}\, \mathcal{I}(\phi) & \sim & \int \frac{\omega^n}{n!} \phi \, = \, \int d^{2n} x \, \rho(x) \, \phi(x) \\ \\ \rho(x) & = & \mathrm{Pfaff} \, (\theta_{\mu\nu}^{-1}) \, \dots & \mathrm{symplectic \ volume} \end{array}$$

note: $dim(\mathcal{H}) \sim Vol(\mathcal{M})$, large!! (cf. Bohr-Sommerfeld)

Example: quantized phase space \mathbb{R}^2_{\hbar}

consider $X^{\mu} = \begin{pmatrix} Q \\ P \end{pmatrix}$, Heisenberg C.R.

$$[X^{\mu}, X^{\nu}] = i\theta^{\mu\nu} \mathbf{1}, \qquad \mu, \nu = 1, ..., 2, \qquad \theta^{\mu\nu} = \hbar \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$\mathcal{A}\subset\mathcal{L}(\mathcal{H})\cong Mat(\infty,\mathbb{C}) \quad \ \ ... \ \text{functions on } \mathbb{R}^2_{\hbar}$$

uncertainty relations $\Delta X^{\mu} \Delta X^{\nu} \geq \frac{1}{2} |\theta^{\mu\nu}|$

Weyl-quantization: Poisson structure $\{x^{\mu}, x^{\nu}\} = \theta^{\mu\nu}$

$$\mathcal{I}: \quad \mathcal{C}(\mathbb{R}^2) \quad \rightarrow \quad \mathcal{A},$$

$$\phi(x) = \int d^2k \, e^{ik_{\mu}x^{\mu}} \hat{\phi}(k) \quad \mapsto \quad \int d^2k \, e^{ik_{\mu}X^{\mu}} \hat{\phi}(k) =: \Phi(X) \in \mathcal{A}$$

$$(L^2(\mathbb{R}^2) \quad \leftrightarrow \quad \text{Hilbert-Schmidt})$$

interpretation:

 $X^{\mu} \in \mathcal{A} \cong \operatorname{Mat}(\infty, \mathbb{C})$... quantiz. coord. function on \mathbb{R}^2_h $\Phi(X^{\mu}) \in \operatorname{Mat}(\infty, \mathbb{C})$... observables (functions) on \mathbb{R}^2_h

star product

= pull-back of multiplication in A:

$$f \star g := \mathcal{I}^{-1}(\mathcal{I}(f)\mathcal{I}(g))$$

Weyl quantization map \rightarrow explicit formula (for $\theta^{\mu\nu} = const$):

$$(f \star g)(x) = f(x)e^{\frac{i}{2}\theta^{\mu\nu}\overleftarrow{\partial_{\mu}}\overrightarrow{\partial_{\nu}}}g(x)$$

proof

$$e^{ik_{\mu}X^{\mu}} \star e^{ip_{\mu}X^{\mu}} = e^{\frac{i}{2}\theta^{\mu\nu}k_{\mu}p_{\nu}} e^{i(k_{\mu}+p_{\mu})X^{\mu}}$$

note:

$$\begin{array}{rcl} \mathbf{X}^{\mu} \star \mathbf{X}^{\nu} & = & \mathbf{X}^{\mu} \mathbf{X}^{\nu} + \frac{i}{2} \theta^{\mu\nu} \\ \mathbf{X}^{\mu}, \mathbf{X}^{\nu}]_{\star} & = & i \theta^{\mu\nu} \end{array}$$

... CCR

Introduction

= pull-back of multiplication in A:

$$f \star g := \mathcal{I}^{-1}(\mathcal{I}(f)\mathcal{I}(g))$$

Weyl quantization map \rightarrow explicit formula (for $\theta^{\mu\nu} = const$):

$$(f \star g)(x) = f(x)e^{\frac{i}{2}\theta^{\mu\nu}\overleftarrow{\partial_{\mu}}\overrightarrow{\partial_{\nu}}}g(x)$$

proof:

$$e^{ik_{\mu}X^{\mu}}\star e^{ip_{\mu}X^{\mu}}=e^{\frac{i}{2}\theta^{\mu\nu}k_{\mu}p_{\nu}}e^{i(k_{\mu}+p_{\mu})X^{\mu}}$$

note:

$$X^{\mu} \star X^{\nu} = X^{\mu}X^{\nu} + \frac{i}{2}\theta^{\mu\nu}$$
$$[X^{\mu}, X^{\nu}]_{\star} = i\theta^{\mu\nu}$$

... CCR

fuzzy spaces & NC geometry

remarks:

- I not unique, not Lie-algebra homomorphism
- need quantization of general Poisson structure $\theta^{\mu\nu}(x)$ such that

$$[X^{\mu},X^{\nu}]\sim i\{x^{\mu},x^{\nu}\}=i\theta^{\mu\nu}(x)$$

(always assume $\theta^{\mu\nu}(x)$ non-deg \Rightarrow symplectic)

- existence, precise def. of quantization non-trivial (formal, strict, ...)
 need strict quantization (operators)
 established for Kähler (Schlichenmaier etal),
 almost-Kähler (Uribe etal)
- quantization map → map NCFT ←⇒ ordinary QFT ("Seiberg-Witten map")

semi-classical limit:

work with commutative functions (de-quantization map), replace commutators by Poisson brackets i.e. replace

$$\hat{F} \rightarrow f = \mathcal{I}^{-1}(F)$$

 $[\hat{F}, \hat{G}] \rightarrow i\{f, g\} (+O(\theta^2), \text{ drop})$

i.e. keep only leading order in θ

is independent of specific quantization I

Noncommutative geometry

Gelfand-Naimark theorem:

every commutative C^* - algebra \mathcal{A} with 1 is isomorphic to a C^* - algebra of continuous functions on compact Hausdorff space \mathcal{M} .

idea: replace $\mathcal{A} \Rightarrow$ noncomm. algebra of "functions" \mathcal{A} manif. $\mathcal{M} \rightarrow$ functions $\mathcal{C}(\mathcal{M}) \rightarrow$ NC algebra \mathcal{A}

but: need additional (geometrical) structures

Noncommutative geometry

Gelfand-Naimark theorem:

every commutative C^* - algebra $\mathcal A$ with 1 is isomorphic to a C^* - algebra of continuous functions on compact Hausdorff space $\mathcal M$.

```
idea: replace \mathcal{A} \Rightarrow noncomm. algebra of "functions" \mathcal{A} manif. \mathcal{M} \rightarrow functions \mathcal{C}(\mathcal{M}) \rightarrow NC algebra \mathcal{A}
```

but: need additional (geometrical) structures

classical geometry	noncomm. geometry
$\mathcal{C}(\mathcal{M}) = \{f: \mathcal{M} o \mathbb{C}\}, \ \ heta^{\mu u}$	$\mathcal{A}\subset\mathcal{L}(\mathcal{H})\ \cong\ extbf{ extit{Mat}}(\infty,\mathbb{C})$
comm. algebra,	NC algebra, e.g. $[x^{\mu}, x^{\nu}] = i\theta^{\mu\nu} 1$
metric structure $g_{\mu u}$	Dirac/Laplace operator $\not D$, Δ
diff. calculus	NC diff. calculus (A. Connes)
field theory: $\Delta \phi = \lambda \phi$	NC field theory: $\Delta \phi = \lambda \phi$,
$\phi \in \mathcal{C}^\infty(\mathcal{M})$	$\phi \in \mathcal{A}$
QFT	NC QFT
	$\int d\phi e^{-S(\phi)}$
$\mathcal{C}(\mathcal{M})$	Å
	(?)
geometries	

classical geometry	noncomm. geometry
$\mathcal{C}(\mathcal{M}) = \{f: \mathcal{M} ightarrow \mathbb{C}\}, \ \ heta^{\mu u}$	$\mathcal{A}\subset\mathcal{L}(\mathcal{H})\ \cong\ extit{Mat}(\infty,\mathbb{C})$
comm. algebra,	NC algebra, e.g. $[x^{\mu}, x^{\nu}] = i\theta^{\mu\nu} 1$
metric structure $g_{\mu\nu}$	Dirac/Laplace operator \cancel{D} , \triangle
diff. calculus	NC diff. calculus (A. Connes)
	matrix geometry: embedding $x^a:\mathcal{M}\hookrightarrow\mathbb{R}^D$
field theory: $\Delta \phi = \lambda \phi$	NC field theory: $\Delta \phi = \lambda \phi$,
$\phi \in \mathcal{C}^{\infty}(\mathcal{M})$	$\phi \in \mathcal{A}$
QFT	NC QFT
$\int \;\; d\phi e^{-S(\phi)}$	$\int d\phi \ e^{-S(\phi)}$
$\mathcal{C}(\mathcal{M})$	\mathcal{A}
(canon.) quantum-gravity	
e.g. $\int dg_{\mu\nu} e^{-S_{\it EH}[g]}$	(?)
geometries	
	matrix models
	$\int dX e^{-S_{YM}[X]}$
	matrices

classical geometry	noncomm. geometry
$\mathcal{C}(\mathcal{M}) = \{f: \mathcal{M} o \mathbb{C}\}, \;\; heta^{\mu u}$	$\mathcal{A}\subset\mathcal{L}(\mathcal{H})\cong \mathit{Mat}(\infty,\mathbb{C})$
comm. algebra,	NC algebra, e.g. $[x^{\mu}, x^{\nu}] = i\theta^{\mu\nu} 1$
metric structure $g_{\mu\nu}$	Dirac/Laplace operator $\not D$, \triangle
diff. calculus	NC diff. calculus (A. Connes)
	matrix geometry: embedding $x^a: \mathcal{M} \hookrightarrow \mathbb{R}^D$
field theory: $\Delta \phi = \lambda \phi$	NC field theory: $\Delta \phi = \lambda \phi$,
$\phi \in \mathcal{C}^{\infty}(\mathcal{M})$	$\phi \in \mathcal{A}$
QFT	NC QFT
$\int \;\; d\phi e^{-S(\phi)}$	$\int { extbf{d}} \phi { extbf{e}}^{-S(\phi)}$
$\mathcal{C}(\mathcal{M})$	Ă
(canon.) quantum-gravity	
e.g. $\int dg_{\mu\nu} e^{-S_{EH}[g]}$	(?)
geometries	
"emergent" quantum-gravity	matrix models
(other def., \approx GR)	$\int dX e^{-S_{YM}[X]}$
•	matrices

The fuzzy sphere

$$\begin{array}{cccc} \underline{\text{classical } S^2:} & & x^a:S^2 & \hookrightarrow & \mathbb{R}^3 \\ & & x^ax^a & = & 1 \end{array} \right\} \ \Rightarrow \ \mathcal{A} = \mathcal{C}^{\infty}(S^2)$$

fuzzy sphere S_N^2 :

(Hoppe, Madore)

let $X^a \in Mat(N, \mathbb{C})$... 3 hermitian matrices

$$[X^{a}, X^{b}] = \frac{i}{\sqrt{C_{N}}} \varepsilon^{abc} X^{c}, \qquad C_{N} = \frac{1}{4}(N^{2} - 1)$$

$$X^{a}X^{a} = 1,$$

realized as $X^a = \frac{1}{\sqrt{C_N}}J^a$... N- dim irrep of $\mathfrak{su}(2)$ on \mathbb{C}^N , generate $A \cong \operatorname{Mat}(N,\mathbb{C})$... alg. of functions on S_N^2

SO(3) action:

$$\mathfrak{su}(2) \times \mathcal{A} \rightarrow \mathcal{A}$$

 $(J^a, \phi) \mapsto [X^a, \phi]$

decompose $A = Mat(N, \mathbb{C})$ into irreps of SO(3):

$$\label{eq:lambda} \begin{array}{lcl} \mathcal{A} = \text{Mat}(N,\mathbb{C}) \cong (N) \otimes (\bar{N}) & = & (1) & \oplus (3) & \oplus ... \oplus (2N-1) \\ & = & \{\hat{Y}^0_0\} \oplus \{\hat{Y}^1_m\} \oplus ... \oplus \{\hat{Y}^{N-1}_m\}. \end{array}$$

... fuzzy spherical harmonics (polynomials in X^a); UV cutoff! quantization map:

$$\begin{array}{cccc} \overline{\mathcal{I}} : & \mathcal{C}(S^2) & \to & \mathcal{A} &= \text{Mat}(N, \mathbb{C}) \\ & Y_m^I & \mapsto & \left\{ \begin{array}{cc} \hat{Y}_m^I, & I < N \\ 0, & I \geq N \end{array} \right. \end{array}$$

satisfies

$$\mathcal{I}(fg) = \mathcal{I}(f)\mathcal{I}(g) + O(\frac{1}{N}),
\mathcal{I}(i\{f,g\}) = [\mathcal{I}(f),\mathcal{I}(g)] + O(\frac{1}{N^2})$$

Poisson structure $\{x^a, x^b\} = \frac{2}{N} \varepsilon^{abc} x^c$ on S^2

decompose $A = Mat(N, \mathbb{C})$ into irreps of SO(3):

$$\begin{split} \mathcal{A} &= \operatorname{Mat}(N, \mathbb{C}) \cong (N) \otimes (\bar{N}) &= (1) \oplus (3) \oplus ... \oplus (2N-1) \\ &= \{\hat{Y}_0^0\} \oplus \{\hat{Y}_m^1\} \oplus ... \oplus \{\hat{Y}_m^{N-1}\}. \end{split}$$

... fuzzy spherical harmonics (polynomials in X^a); UV cutoff! quantization map:

$$\mathcal{I}$$
:

$$\begin{array}{cccc} \overline{\mathcal{I}} : & \mathcal{C}(S^2) & \to & \mathcal{A} &= \text{Mat}(N, \mathbb{C}) \\ & Y_m^I & \mapsto & \left\{ \begin{array}{cc} \hat{Y}_m^I, & I < N \\ 0, & I \geq N \end{array} \right. \end{array}$$

satisfies

$$\mathcal{I}(fg) = \mathcal{I}(f)\mathcal{I}(g) + O(\frac{1}{N}),
\mathcal{I}(i\{f,g\}) = [\mathcal{I}(f),\mathcal{I}(g)] + O(\frac{1}{N^2})$$

Poisson structure $\{x^a, x^b\} = \frac{2}{N} \varepsilon^{abc} x^c$ on S^2

$$\frac{4\pi}{N} \text{Tr}(\mathcal{I}(f)) = \int_{S^2} \omega f, \qquad \omega = \frac{1}{2} \varepsilon_{abc} x^a dx^b dx^c$$

 S_N^2 ... quantization of $(S^2, N\omega)$

decompose $A = Mat(N, \mathbb{C})$ into irreps of SO(3):

$$\begin{split} \mathcal{A} &= \text{Mat}(N,\mathbb{C}) \cong (N) \otimes (\bar{N}) &= (1) \oplus (3) \oplus ... \oplus (2N-1) \\ &= \{\hat{Y}_0^0\} \oplus \{\hat{Y}_m^1\} \oplus ... \oplus \{\hat{Y}_m^{N-1}\}. \end{split}$$

... fuzzy spherical harmonics (polynomials in X^a); UV cutoff! quantization map:

$$\begin{array}{cccc} \overline{\mathcal{I}} : & \mathcal{C}(S^2) & \to & \mathcal{A} &= \text{Mat}(N, \mathbb{C}) \\ & Y_m^I & \mapsto & \left\{ \begin{array}{c} \hat{Y}_m^I, & I < N \\ 0, & I \geq N \end{array} \right. \end{array}$$

satisfies

$$\mathcal{I}(fg) = \mathcal{I}(f)\mathcal{I}(g) + O(\frac{1}{N}),
\mathcal{I}(i\{f,g\}) = [\mathcal{I}(f),\mathcal{I}(g)] + O(\frac{1}{N^2})$$

Poisson structure $\{x^a, x^b\} = \frac{2}{N} \varepsilon^{abc} x^c$ on S^2

integral:
$$\frac{4\pi}{N} \text{Tr}(\mathcal{I}(f)) = \int_{S^2} \omega f, \qquad \omega = \frac{1}{2} \varepsilon_{abc} x^a dx^b dx^c$$

$$S_N^2$$
 ... quantization of $(S^2, N\omega)$

Coherent states

(Perelomov)

class. geometry: let $p \in S^2$... north pole

$$SO(3) \rightarrow S^2$$

$$g \mapsto g \triangleright p$$

stabilizer group $U(1) \subset SO(3) \Rightarrow S^2 \cong SO(3)/U(1)$

fuzzy functions: $A = \mathcal{L}(\mathcal{H}), \quad \mathcal{H} = |m, L\rangle, \quad m = -L, ..., L \quad N = 2L + 1$

consider group orbit

 $(|L,L\rangle$... highest weight state)

$$SO(3)
ightarrow \mathcal{H}$$
 $g \mapsto |\psi_g\rangle := \pi_N(g)|L,L\rangle$

note: projector $|\psi_g\rangle\langle\psi_g|\in\mathcal{A}$ is independent of $U(1)\subset SO(3)$

$$S^2 \cong SO(3)/U(1) \rightarrow \mathcal{A}$$

$$p \mapsto \Pi_p := |\psi_g\rangle\langle\psi_g| =: 4\pi\delta_N^{(2)}(x-p)$$

def.
$$|p\rangle := |\psi_{g(p)}\rangle \sim |\psi_{g(p)'}\rangle$$

can show

$$\int_{S^2} |p\rangle \langle p| = c\mathbf{1}$$
 overcomplete $|\langle p|p'\rangle| = \left(\cos(\vartheta/2)\right)^{N-1}, \quad \vartheta = \measuredangle(p,p')$ localization $p \approx p'$ $p_a X^a |p\rangle = |p\rangle$ $\langle p|X^a |p\rangle = \operatorname{Tr} X^a \Pi_p = p^a \in S^2,$

$$X^a \sim x^a$$
: $S^2 \hookrightarrow \mathbb{R}^3$

coherent states minimize uncertainty

$$\begin{array}{ll} (\Delta X^1)^2 + (\Delta X^2)^2 + (\Delta X^3)^2 &= \sum_a \langle \rho | X^a X^a | \rho \rangle - \langle \rho | X^a | \rho \rangle \langle \rho | X^a | \rho \rangle \\ &\geq \frac{N-1}{2C_N} \sim \frac{1}{2N} \end{array}$$

intuition

 $S^2 \approx$ "fuzzy common spectrum" of $X^a \sim x^a$: $S^2 \hookrightarrow \mathbb{R}^3$

semi-classical limit:

- $X^a \sim X^a := \langle p|X^a|p\rangle : S^2 \hookrightarrow \mathbb{R}^3$
- or: replace

$$X^a \rightarrow \mathcal{I}^{-1}(X^a) = x^a, \quad \Phi \rightarrow \mathcal{I}^{-1}(\phi) = \phi(p) \in \mathcal{C}(S^2),$$

 $[\phi, \Psi] \rightarrow i\{\phi(p), \psi(p)\}$

error $\sim \frac{1}{N}$

local description:

near "north pole"
$$|L,L\rangle$$
: $X^3 \approx 1$, $X^1 \approx X^1 \approx 0$

$$X^3 = \sqrt{1 - (X^1)^2 - (X^2)^2}$$

 $[X^1, X^2] = \frac{i}{\sqrt{C_N}}X^3 =: \theta^{12}(X) \approx \frac{2i}{N}$

cf. Heisenberg algebra!

quantum cell $\Delta X^1 \Delta X^2 \ge \frac{1}{N}$, area $\Delta A \sim \frac{4\pi}{N}$ inferred from Poisson structure

local description:

near "north pole" $|L,L\rangle$: $X^3 \approx 1$, $X^1 \approx X^1 \approx 0$

$$X^3 = \sqrt{1 - (X^1)^2 - (X^2)^2}$$

 $[X^1, X^2] = \frac{i}{\sqrt{C_N}} X^3 =: \theta^{12}(X) \approx \frac{2i}{N}$

cf. Heisenberg algebra!

quantum cell $\Delta X^1 \Delta X^2 \ge \frac{1}{N}$, area $\Delta A \sim \frac{4\pi}{N}$ inferred from Poisson structure

note: can modify $X^3 = X^3(X^1, X^2)$

2D submanifolds $\mathcal{M}^2 \subset \mathbb{R}^3$

metric structure of fuzzy sphere

metric encoded in NC Laplace operator

$$\Box: \mathcal{A} \to \mathcal{A}, \qquad \Box \phi = [X^a, [X^b, \phi]] \delta_{ab}$$

$$SO(3)$$
 invariant: $\Box(g \triangleright \phi) = g \triangleright (\Box \phi) \quad \Rightarrow \quad \Box \hat{Y}_m^l = c_l \hat{Y}_m^l$

note:
$$\Box = \frac{1}{C_N} J^a J^a$$
 on $\mathcal{A} \cong (N) \otimes (\bar{N}) \cong (1) \oplus (3) \oplus ... \oplus (2N-1)$

$$\Rightarrow \qquad \boxed{\Box \hat{Y}_m^I = \frac{1}{C_N} I(I+1) \hat{Y}_m^I}$$

spectrum identical with classical case $\Delta_g \phi = rac{1}{\sqrt{|g|}} \partial_\mu (\sqrt{|g|} g^{\mu
u} \partial_
u \phi)$

 \Rightarrow effective metric of \square = round metric on S^2

Symplectomorphisms

 $\exists U(N)$ action on $A = Mat(N, \mathbb{C})$:

$$\phi o U \phi U^{-1}$$

infinitesimal version: $U = e^{i\alpha H}$,

$$\phi \to \phi + i[H, \phi]$$

semi-classical version:

$$\phi \to \phi + \{H, \phi\}, \qquad H \in \mathcal{C}(\mathcal{M})$$

Hamiltonian VF $i_X\omega = dH$, infinites. symplectomorphism on (S^2, ω)

is area-preserving diffeo: $dVol = \omega$, $\mathcal{L}_X \omega = (i_X d + di_X)\omega = 0$

in 2D: all (local ...) APD's

in 4D: special APD's (≅ action of symplectomorphism group)

Symplectomorphisms

 $\exists U(N)$ action on $A = Mat(N, \mathbb{C})$:

$$\phi \rightarrow U \phi U^{-1}$$

infinitesimal version: $U = e^{i\alpha H}$,

$$\phi \to \phi + i[H, \phi]$$

semi-classical version:

$$\phi \to \phi + \{H, \phi\}, \qquad H \in \mathcal{C}(\mathcal{M})$$

Hamiltonian VF $i_X\omega = dH$, infinites. symplectomorphism on (S^2, ω)

is area-preserving diffeo: $dVol = \omega$, $\mathcal{L}_X \omega = (i_X d + di_X)\omega = 0$

in 2D: all (local ...) APD's

in 4D: special APD's (≅ action of symplectomorphism group)

Scalar field theory on S_N^2

consider $\mathcal{H}:=\mathcal{A}=\mathrm{Mat}(N,\mathbb{C})$... space of functions on S_N^2 Hilbert space structure:

$$\langle \phi, \phi' \rangle = \frac{4\pi}{N} \text{Tr}(\phi^{\dagger} \phi) \sim \int_{S^2} \phi^{\dagger} \phi \quad \text{cf. } \mathcal{H} \approx L^2(S^2)$$

action for free real scalar field $\phi = \phi^{\dagger}$:

$$S[\phi] = \frac{4\pi}{N} \text{Tr}(\phi \Box \phi + \mu^2 \phi + \lambda \phi^4)$$

$$= \frac{4\pi}{N} \text{Tr}(-[X^a, \phi][X^a, \phi] + \mu^2 \phi + \lambda \phi^4)$$

$$\sim \int_{S^2} (\phi \Delta_g \phi + \mu^2 \phi + \lambda \phi^4)$$

... deformation of classical FT on S2, built-in UV cutoff

scalar QFT on S_N^2

most natural: "functional" (matrix) integral approach

$$Z = \int \mathcal{D}\phi e^{-S[\phi]}$$

$$\langle \phi_{I_1 m_1} \cdots \phi_{I_n m_n} \rangle = \frac{\int [\mathcal{D}\phi] e^{-S[\phi]} \phi_{I_1 m_1} \cdots \phi_{I_n m_n}}{\int [\mathcal{D}\phi] e^{-S[\phi]}}, \qquad [\mathcal{D}\phi] = \prod d\phi_{Im}$$

$$\phi = \sum \phi_{Im} \hat{Y}_m^I$$

... deformation & regularization of (euclid.) QFT on S^2 , UV cutoff

propagator: as usual, $\langle \phi_{lm}\phi_{l'm'} \rangle = \delta^{lm}_{l'm'} \frac{1}{l(l+1)+\mu^2}$ vertices: $V = \lambda \sum \phi_{l_1m_1} \cdots \phi_{l_nm_n} \mathrm{Tr}(\hat{Y}^{l_1}_{m_1} \dots \hat{Y}^{l_4}_{m_4})$

perturb. expansion, Gaussian integrals ⇒ Wick's theorem, distinction planar ↔ nonplanar diagrams

scalar QFT on S_N^2

most natural: "functional" (matrix) integral approach

$$Z = \int \mathcal{D}\phi e^{-S[\phi]}$$

$$\langle \phi_{l_1 m_1} \cdots \phi_{l_n m_n} \rangle = \frac{\int [\mathcal{D}\phi] e^{-S[\phi]} \phi_{l_1 m_1} \cdots \phi_{l_n m_n}}{\int [\mathcal{D}\phi] e^{-S[\phi]}}, \qquad [\mathcal{D}\phi] = \prod d\phi_{lm}$$

$$\phi = \sum \phi_{lm} \hat{Y}_m^l$$

... deformation & regularization of (euclid.) QFT on S^2 , UV cutoff

propagator: as usual,
$$\langle \phi_{lm}\phi_{l'm'}\rangle = \delta^{lm}_{l'm'}\frac{1}{l(l+1)+\mu^2}$$

vertices: $V = \lambda \sum \phi_{l_1m_1}\cdots\phi_{l_nm_n}\mathrm{Tr}(\hat{Y}^{l_1}_{m_1}\dots\hat{Y}^{l_4}_{m_4})$

perturb. expansion, Gaussian integrals \Rightarrow Wick's theorem, distinction planar \leftrightarrow nonplanar diagrams

large phase factors, oscillations for $I_1I_2 \geq \Lambda_{NC}^2$ \Rightarrow distinct from usual QFT, UV/IR mixing Minwalla, V. Raamsdonk, Seiberg central feature of NC QFT, obstacle for perturb. renormalization.

scalar QFT on S_N^2

most natural: "functional" (matrix) integral approach

$$Z = \int \mathcal{D}\phi e^{-S[\phi]}$$

$$\langle \phi_{l_1 m_1} \cdots \phi_{l_n m_n} \rangle = \frac{\int [\mathcal{D}\phi] e^{-S[\phi]} \phi_{l_1 m_1} \cdots \phi_{l_n m_n}}{\int [\mathcal{D}\phi] e^{-S[\phi]}}, \qquad [\mathcal{D}\phi] = \prod \mathbf{d}\phi_{lm}$$

$$\phi = \sum \phi_{lm} \hat{Y}'_m$$

... deformation & regularization of (euclid.) QFT on S^2 , UV cutoff

propagator: as usual,
$$\langle \phi_{lm}\phi_{l'm'}\rangle = \delta^{lm}_{l'm'}\frac{1}{l(l+1)+\mu^2}$$

vertices: $V = \lambda \sum \phi_{l_1m_1}\cdots\phi_{l_nm_n}\mathrm{Tr}(\hat{Y}^{l_1}_{m_1}\dots\hat{Y}^{l_4}_{m_4})$

perturb. expansion, Gaussian integrals \Rightarrow Wick's theorem, distinction planar \leftrightarrow nonplanar diagrams

large phase factors, oscillations for $I_1I_2 \geq \Lambda_{NC}^2$ \Rightarrow distinct from usual QFT, UV/IR mixing Minwalla, V. Raamsdonk, Seiberg

central feature of NC QFT, obstacle for perturb. renormalization.

Note: "functional integral" $\int \mathcal{D}\phi \exp(\mathcal{S}[\phi])$ very natural:

 $\bullet \exists U(N)$ action on $A = Mat(N, \mathbb{C})$:

$$\phi o U \phi U^{-1}$$

(≅ action of symplectomorphism group)

• can diagonalize $\phi = U^{-1} \operatorname{diag}(\lambda_1, ..., \lambda_N) U$, decompose

$$\int \mathcal{D}\phi = \int dU \prod_{i=1}^{N} d\lambda_i \Delta^2(\lambda_i),
\Delta(\lambda_i) = \prod_{i < j} (\lambda_i - \lambda_j)$$

action for scalar field theory NOT invariant under U(N)
 (cf. M.M. approach to 2D gravity)

BUT

action for gauge theory IS invariant under U(N) !!! (later)

scales

$$[x,x]pprox heta$$
 ... NC length scale, e.g. $heta\sim rac{R^2}{N}$ on S_N^2

UV cutoff: $\Lambda_{UV} = \frac{N}{R}$, IR cutoff: $\Lambda_{IR} = \frac{1}{R}$

 \Rightarrow 3 scales:

$$\Lambda_{IR} = \sqrt{rac{1}{N heta}} \quad \ll \quad \Lambda_{NC} = \sqrt{rac{1}{ heta}} \quad \ll \quad \Lambda_{UV} = \sqrt{rac{N}{ heta}}$$

in particular: $\Lambda_{IR} \Lambda_{UV} = \Lambda_{NC}^2 \quad (= \frac{1}{\Delta A})$

very general: for compact NC spaces: $\dim \mathcal{H} \sim \textit{Vol} < \infty$

⇒ NC implies naturally large separation of scales!

product $\phi_k \phi_l$ semi-classical $\Leftrightarrow pq \leq \Lambda_{NC}^2$ (uncertainty rel.n)

"anomalous" aspects in scalar QFT on \mathcal{S}_N^2

- 1-loop effective action does NOT reduce to commutative result for $N \to \infty$
- interaction vertices rapidly oscillating, unless $pq \ll \Lambda_{\rm NC}^2$ (loop effects probe area quantum $\Delta A \sim 1/N$)
- new physics!

scaling limits:

• commutative sphere limit $S_N^2 \rightarrow S^2$

$$S_N^2 o S^2$$

$$X^a \to RX^a$$
, $R = \text{fixed}$, $N \to \infty$

quantum plane limit:

$$\mathcal{S}_{N}^{2}
ightarrow \mathbb{R}_{ heta}^{2}$$

 $R = \sqrt{N\theta}$. $\theta = \text{fixed}$:

$$z^a = J^a \sqrt{\frac{\theta}{N}} \sim \sqrt{N} X^a$$

consider "north pole" of S_N^2 :

$$[z^1, z^2] = i \frac{\theta}{N} J_3 \quad \stackrel{N \to \infty}{\approx} i\theta$$

therefore: S_N^2 can be used as regularization of \mathbb{R}^2

similarly:

compactification of \mathbb{R}^{2n}_{θ} using e.g. $\mathbb{C}P^n_N$, $S^2_N \times S^2_N$, etc.

additional structure on S_N^2

embedding sequence

$$S_N^2 \subset S_{N+1}^2 \subset ...$$

(map $\hat{Y}'_m \to \hat{Y}'_m$), S^2 recovered in inductive limit

Dirac operator:

but $\chi^2 \approx 1$, \exists top mode with $\chi = 0$

- Jordan-Schwinger: $X^a = a^+_{\alpha}(\sigma^a)^{\beta}_{\alpha}a_{\beta}$ on $\mathcal{F}_N = (a^+...a^+|0\rangle)_N$
- differential calculus:
 differential forms Ω*(S_N²), Leibnitz rule etc.

differential calculus on S_N^2

graded bimodule Ω_N^* over $\mathcal{A} = S_N^2$ with

- $d^2 = 0$
- graded Leibnitz rule $d(\alpha\beta) = d\alpha\beta + (-1)^{|\alpha|}\alpha d\beta$

turns out: radial one-form does not decouple,

$$df = [\omega, f],$$
 $\omega = -C_N X^a dX^a$ (cf. Connes)

 $\Omega_N^\star = \bigoplus_{n=0}^3 \Omega_N^n$, need $\Omega_N^3 = f_{abc}(X) dX^a dX^b dX^c$

can introduce frame:

$$\xi^a = \Omega X^a + \sqrt{C_N} \, \varepsilon^{abc} X^b dX^c, \qquad [f(X), \xi^a] = 0$$
 Madore

most general one-form:

$$\begin{array}{lcl} A & = & A_a \xi^a & \in \Omega_N^1, & A_a \in \mathcal{A} = \operatorname{Mat}(N, \mathbb{C}) \\ F & = & dA + AA = (B_a B_b + i \varepsilon_{abc} B_c) \xi^a \xi^b & \in \Omega_N^2 \\ B & = & \omega + A = (X^a + A^a) \xi^a & \in \Omega_N^1 \end{array}$$

differential calculus on S_N^2

graded bimodule Ω_N^* over $\mathcal{A} = S_N^2$ with

- $d^2 = 0$
- graded Leibnitz rule $d(\alpha\beta) = d\alpha\beta + (-1)^{|\alpha|}\alpha d\beta$

turns out: radial one-form does not decouple,

$$df = [\omega, f], \qquad \omega = -C_N X^a dX^a \qquad \text{(cf. Connes)}$$

 $\Omega_N^{\star} = \bigoplus_{n=0}^3 \Omega_N^n$, need $\Omega_N^3 = f_{abc}(X) dX^a dX^b dX^c$

can introduce frame:

$$\xi^a = \Omega X^a + \sqrt{C_N} \, \varepsilon^{abc} X^b dX^c, \qquad [f(X), \xi^a] = 0$$
 Madore

most general one-form:

$$\begin{array}{lcl} \textbf{A} & = & \textbf{A}_a \xi^a & \in \Omega_N^1, & \textbf{A}_a \in \mathcal{A} = \operatorname{Mat}(N, \mathbb{C}) \\ \textbf{F} & = & \textbf{d} \textbf{A} + \textbf{A} \textbf{A} = (\textbf{B}_a \textbf{B}_b + i \varepsilon_{abc} \textbf{B}_c) \xi^a \xi^b & \in \Omega_N^2, \\ \textbf{B} & = & \omega + \textbf{A} = (\textbf{X}^a + \textbf{A}^a) \xi^a & \in \Omega_N^1 \end{array}$$

$$\operatorname{def.} \ U = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ & & \ddots & & \\ 0 & \dots & 0 & 1 \\ 1 & 0 & \dots & 0 \end{pmatrix}, \quad V = \begin{pmatrix} 1 & e^{2\pi i \frac{1}{N}} & & & \\ & e^{2\pi i \frac{2}{N}} & & & \\ & & & \ddots & \\ & & & & e^{2\pi i \frac{N-1}{N}} \end{pmatrix}$$

satisfy

$$UV = qVU, U^N = V^N = 1, q = e^{2\pi i \frac{1}{N}}$$

 $[U, V] = (q-1)VU$

generate $A = Mat(N, \mathbb{C})$... quantiz. algebra of functions on T_N^2

 $\mathbb{Z}_N \times \mathbb{Z}_N$ action:

$$\begin{array}{ccc} \mathbb{Z}_N \times \mathcal{A} & \to & \mathcal{A} \\ (\omega^k, \phi) & \mapsto & U^k \phi U^{-k} \end{array}$$

similar other \mathbb{Z}_N

$$A = \bigoplus_{n,m=0}^{N-1} U^n V^m$$
 ... harmonics

quantization map:

$$\begin{array}{cccc} \mathcal{I}: & \mathcal{C}(\mathcal{T}^2) & \to & \mathcal{A} &= \operatorname{Mat}(N,\mathbb{C}) \\ & e^{in\varphi}e^{im\psi} & \mapsto & \left\{ \begin{array}{ccc} \mathit{U}^n\mathit{V}^m, & |n|,|m| < \mathit{N}/2 \\ & 0, & \text{otherwise} \end{array} \right. \end{array}$$

satisfies

$$\mathcal{I}(fg) = \mathcal{I}(f)\mathcal{I}(g) + O(\frac{1}{N}),
\mathcal{I}(i\{f,g\}) = [\mathcal{I}(f),\mathcal{I}(g)] + O(\frac{1}{N^2})$$

Poisson structure
$$\{e^{i\varphi},e^{i\psi}\}=rac{2}{N}\,e^{i\varphi}e^{i\psi}\,$$
 on T^2 $(\Leftrightarrow\{\varphi,\psi\}=-rac{2}{N})$

$$\frac{4\pi^2}{N} \operatorname{Tr}(\mathcal{I}(f)) = \int_{\mathcal{I}_2} \omega f, \qquad \omega = d\varphi d\psi$$

 T_N^2 ... quantization of $(T^2, N\omega)$

quantization map:

$$\begin{array}{cccc} \mathcal{I}: & \mathcal{C}(\mathcal{T}^2) & \to & \mathcal{A} &= \text{Mat}(N,\mathbb{C}) \\ & e^{\textit{i}n\varphi}e^{\textit{i}m\psi} & \mapsto & \left\{ \begin{array}{cc} \textit{U}^n\textit{V}^m, & |n|,|m| < \textit{N}/2 \\ 0, & \text{otherwise} \end{array} \right. \end{array}$$

satisfies

$$\mathcal{I}(fg) = \mathcal{I}(f)\mathcal{I}(g) + O(\frac{1}{N}),
\mathcal{I}(i\{f,g\}) = [\mathcal{I}(f),\mathcal{I}(g)] + O(\frac{1}{N^2})$$

Poisson structure $\{e^{i\varphi}, e^{i\psi}\} = \frac{2}{N} e^{i\varphi} e^{i\psi}$ on T^2 $(\Leftrightarrow \{\varphi, \psi\} = -\frac{2}{N})$

integral:
$$\frac{4\pi^2}{N} \text{Tr}(\mathcal{I}(f)) = \int_{T^2} \omega f, \qquad \omega = d\varphi d\psi$$

 T_N^2 ... quantization of $(T^2, N\omega)$

metric on T_N^2 ? ... "obvious", need extra structure:

$$\mathsf{r}^\mathsf{2} \hookrightarrow \mathbb{R}^\mathsf{4}$$
 via

embedding
$$T^2 \hookrightarrow \mathbb{R}^4$$
 via $x^1 + ix^2 = e^{i\varphi}$, $x^3 + ix^4 = e^{i\psi}$

quantization of embedding maps $x^a \sim X^a$: 4 hermitian matrices

$$X^1 + iX^2 := U, \qquad X^3 + iX^4 := V$$

satisfy

$$\begin{array}{rcl} [X^1,X^2] & = & 0 = [X^3,X^4] \\ (X^1)^2 + (X^2)^2 & = & 1 = (X^3)^2 + (X^4)^2 \\ [U,V] & = & (q-1)VU \end{array}$$

$$\Box \phi = [X^{a}, [X^{b}, \phi]] \delta_{ab}$$

$$= [U, [U^{\dagger}, \phi]] + [V, [V^{\dagger}, \phi]] = 2\phi - U\phi U^{\dagger} - U^{\dagger}\phi U - (\%V)$$

$$\Box (U^{n}V^{m}) = -([n]_{q}^{2} + [m]_{q}^{2}) U^{n}V^{m} \sim -(n^{2} + m^{2}) U^{n}V^{m}$$

$$[n]_q = \frac{q^{n/2} - q^{-n/2}}{q^{1/2} - q^{-1/2}} = \frac{\sin(n\pi/N)}{\sin(\pi/N)} \sim n \qquad \text{("q-number")}$$

metric on T_N^2 ? ... "obvious", need extra structure:

quantization of embedding maps $x^a \sim X^a$: 4 hermitian matrices

$$X^1 + iX^2 := U, \qquad X^3 + iX^4 := V$$

satisfy

$$\begin{aligned} [X^1, X^2] &= 0 = [X^3, X^4] \\ (X^1)^2 + (X^2)^2 &= 1 = (X^3)^2 + (X^4)^2 \\ [U, V] &= (q-1)VU \end{aligned}$$

Laplace operator:

$$\Box \phi = [X^{a}, [X^{b}, \phi]] \delta_{ab}$$

$$= [U, [U^{\dagger}, \phi]] + [V, [V^{\dagger}, \phi]] = 2\phi - U\phi U^{\dagger} - U^{\dagger}\phi U - (\%V)$$

$$\Box (U^{n}V^{m}) = -([n]_{q}^{2} + [m]_{q}^{2}) U^{n}V^{m} \sim -(n^{2} + m^{2}) U^{n}V^{m}$$

where

$$[n]_q = rac{q^{n/2} - q^{-n/2}}{q^{1/2} - q^{-1/2}} = rac{\sin(n\pi/N)}{\sin(\pi/N)} \sim n$$
 ("q-number")

$$spec \square \approx spec \Delta_{\mathcal{T}^2}$$
 below cutoff

therefore:

geometry of (embedded) fuzzy torus
$$T_N^2 \hookrightarrow \mathbb{R}^4 = \text{flat}$$

momentum space is compactified! $[n]_q$

note: could have started with

$$egin{array}{lcl} ilde{U}V &=& qV ilde{U}, & ilde{U}^N=V^N=1, & ilde{q}=e^{2\pi irac{k}{N}} \ [ilde{U},V] &=& (ilde{q}-1)V ilde{U} \end{array}$$

related via $\tilde{U} = U^k$

generate same $A = Mat(N, \mathbb{C})$... quantiz. algebra of functions on \tilde{T}_N^2 different embedding:

$$\tilde{X}^1 + i\tilde{X}^2 := \tilde{U} = U^k = (X^1 + iX^2)^k, X^3 + iX^4 := V$$

related to previous by "winding" map $\tilde{Z} = Z^k$

compare: noncommutative torus T_{θ}^2

Connes

$$egin{array}{lll} UV &=& qVU, & q = e^{2\pi i heta} \ U^\dagger &=& U^{-1}, & V^\dagger &=& V^{-1} \end{array}$$

generate \mathcal{A} ... algebra of functions on \mathcal{T}_{θ}^2

<u>note</u>: all U^nV^m independent, A infinite-dimensional

in general non-integral (spectral) dimension, ...

for
$$heta=rac{p}{q}\in\mathbb{Q}$$
: ∞ -dim. center $\mathcal{C}=\langle \emph{U}^{nq}\emph{V}^{mq}
angle$

fuzzy torus
$$T_N^2 \cong T_\theta^2/\mathcal{C}, \qquad \theta = \frac{1}{N}$$

center \mathcal{C} ... infinite sector ("winding modes") NC torus \mathcal{T}^2_{θ} very subtle, "wild"

fuzzy torus T_N^2 "stable" under deformations

Fuzzy $\mathbb{C}P^n$

(Grosse & Strohmaier, Balachandran etal)

consider

$$\mathbb{C}P^2=\{g^{-1}\lambda_8g,\ g\in SU(3)\}\subset su(3)\cong\mathbb{R}^8$$
 ... (co)adjoint orbit $\lambda_8=\mathrm{diag}(1,1,-2)$

fuzzy version:

$$\mathcal{A} := \mathbb{C}P_N^2 := \mathcal{L}(V_N, \mathbb{C}) = \operatorname{Mat}(d_N, \mathbb{C})$$

 V_N ... irrep of su(3) w. highest weight (N, 0), $d_N = \dim V_N$

$$X^a = c_N \pi_N(T_a), \qquad c_N pprox rac{R}{N}$$

satisfy the relations

$$\begin{array}{lcl} [X^a, X^b] & = & ic_N f^{abc} \ X^c \\ \delta_{ab} X^a X^b & = & R^2, & d^{abc} X^a X^b = R \ \frac{2N/3+1}{\sqrt{\frac{1}{3}N^2+N}} \ X^c. \end{array}$$

again:

- $X^a \sim x^a : \mathbb{C}P^2 \hookrightarrow \mathbb{R}^8$ quantiz. embedding map
- \exists SU(3) action on \mathcal{A} \Rightarrow $\mathcal{A} \cong \bigoplus_{k=1}^{N} (k, k)$ (harmonics) \Rightarrow quantization map $\mathcal{I} : \mathcal{C}(\mathbb{C}P^2) \to \mathcal{A}$... quantiz. of $(\mathbb{C}P^2, \omega)$, ω ... Kirillov–Kostant symplectic form intrinsic UV cutoff
- $\square = [X^a, [X^b, .]] \delta_{ab}$...same spectrum as Δ_g on $\mathbb{C}P^2$
- ... goes through for any (compact) coadjoint orbit

the Moyal-Weyl quantum plane $\mathbb{R}^2_{ heta}$

$$[X^{\mu}, X^{\nu}] = i\theta^{\mu\nu} \mathbf{1}, \qquad \mu, \nu = 1, ..., 2, \qquad \theta^{\mu\nu} = \begin{pmatrix} 0 & \theta \\ -\theta & 0 \end{pmatrix}$$

Heisenberg alg. $\mathcal{A}=\mathcal{L}(\mathcal{H}), \quad \text{coord.- functions on } \mathbb{R}^2_{\theta}$ uncertainty relations $\Delta X^{\mu} \Delta X^{\nu} \geq |\theta^{\mu\nu}|$

Weyl-quantization: $\mathcal{I}: \mathcal{C}(\mathbb{R}^2) \to \mathcal{A},$ Poisson structure $\theta^{\mu\nu}$

$$\phi(x) = \int d^2k \, e^{ik_\mu x^\mu} \hat{\phi}(k) \, \leftrightarrow \, \int d^2k \, e^{ik_\mu X^\mu} \hat{\phi}(k) =: \Phi(X) \in \operatorname{Mat}(\infty, \mathbb{C})$$

interpretation:

 $X^{\mu} \in \mathcal{A} \cong \operatorname{Mat}(\infty, \mathbb{C})$... quantiz. coord. function on \mathbb{R}^2_{θ} $\Phi(X^{\mu}) \in \operatorname{Mat}(\infty, \mathbb{C})$... function ("scalar field") on \mathbb{R}^2_{θ}

(2
$$\pi$$
) Tr($\mathcal{I}(\phi)$) $\sim \int \rho \, \phi(\mathbf{x}), \qquad \rho = \sqrt{|\theta_{\mu\nu}^{-1}|}$

note:

- $\partial_{\mu}\phi(X) := -i\theta_{\mu\nu}^{-1}[X^{\nu},\phi(X)] \sim \partial_{\mu}\phi(X)$... inner derivations
- translations: $U_p := e^{ip_\mu X^\mu}$,

$$U\phi(X^{\nu})U^{-1} = \phi(X^{\nu} - \theta^{\mu\nu}p_{\mu})$$

translations (symplectomorphisms!) are inner!

• Laplace operator: $\Box = [X^{\mu}, [X^{\nu}, \phi]] \delta_{\mu\nu} \sim -G^{\mu\nu} \partial_{\mu} \partial_{\nu} \phi$

star product:

$$f\star g:=\mathcal{I}^{-1}(\mathcal{I}(f)\mathcal{I}(g))$$
 ... pull-back algebra $(f\star g)(x)=f(x)e^{rac{i}{2} heta\mu
u}\overleftarrow{\partial_{\mu}}\overrightarrow{\partial_{
u}}g(x)$

... can work on \mathbb{R}^2 (will not)

• generalizes immediately to \mathbb{R}^{2n}

note:

- $\partial_{\mu}\phi(X) := -i\theta_{\mu\nu}^{-1}[X^{\nu},\phi(X)] \sim \partial_{\mu}\phi(X)$... inner derivations
- translations: $U_p := e^{ip_\mu X^\mu}$,

$$U\phi(X^{\nu})U^{-1} = \phi(X^{\nu} - \theta^{\mu\nu}p_{\mu})$$

translations (symplectomorphisms!) are inner!

• Laplace operator: $\Box = [X^{\mu}, [X^{\nu}, \phi]] \delta_{\mu\nu} \sim -G^{\mu\nu} \partial_{\mu} \partial_{\nu} \phi$

$$G^{\mu
u}= heta^{\mu\mu'} heta^{
u
u'}\delta_{\mu'
u'}$$
 (!!)

star product:

$$f\star g:=\mathcal{I}^{-1}(\mathcal{I}(f)\mathcal{I}(g))$$
 ... pull-back algebra $(f\star g)(x)=f(x)e^{rac{i}{2} heta^{\mu\nu}\overleftarrow{\partial_{\mu}}\overrightarrow{\partial_{\nu}}}g(x)$

... can work on \mathbb{R}^2 (will not)

• generalizes immediately to \mathbb{R}^{2n}_{θ}

Hopf fibration, fuzzy spheres

consider
$$\mathbb{R}^4_{\theta}$$
, $[y_{\mu},y_{\nu}]=i\theta_{\mu\nu}$. nondeg \to redefine
$$\begin{aligned} z_1 &=& y_1+iy_2, & z_2=y_3+iy_4 \\ [z_{\alpha},\bar{z}_{\beta}] &=& i\delta_{\alpha\beta}\mathbf{1}, & [z,z]=0=[\bar{z},\bar{z}] \end{aligned}$$
 CCR

define

$$X^a = rac{1}{2}ar{z}_{lpha}\sigma^a_{lphaeta}z_{eta}, \qquad X^0 = rac{1}{2}ar{z}_{lpha}\sigma^0z_{lpha} = rac{1}{2}\hat{N}$$

satisfy

$$[X^a, X^b] = i\varepsilon^{abc}X^c, \qquad [X^0, X^a] = 0$$
$$X^0 = \bar{z}_{\alpha}z_{\alpha}, \qquad X^aX^a = \frac{1}{4}X^0(X^0 + 1)$$

rescale $\frac{1}{\sqrt{C_N}} \rightarrow \text{recover } S_N^2$:

$$\textit{X}^\textit{a} \in End(\mathcal{H}_\textit{N}) \cong Mat(N,\mathbb{C}) \quad \text{ on } \quad \mathcal{H}_\textit{N} = \{\underbrace{\textit{a}^\dagger...\textit{a}^\dagger}_\textit{N} |0\rangle\} \ \subset \mathcal{F}$$

essentially Hopf fibration $S^2 \cong \mathbb{C}P^1 \cong S^3/U(1)$

scalar field theory on $\mathbb{R}^2_ heta$

real scalar field $\phi = \phi^+ \in \mathcal{L}(\mathcal{H})$ action functional: e.g.

$$S[\phi] = Tr\left(\frac{1}{2}[X^{\mu},\phi][X^{\nu},\phi]\delta_{\mu\nu} + \frac{1}{2}m^{2}\phi^{2} + \frac{\lambda}{4}\phi^{4}\right)$$
$$\sim \int \left(\frac{1}{2}G^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi + \frac{1}{2}m^{2}\phi^{2} + \frac{\lambda}{4}\phi^{4}\right)$$

equations of motion: $\frac{\delta S}{\delta \phi} = 0$

$$\Delta \phi := -[X^{\mu}, [X^{\nu}, \phi]] \delta_{\mu\nu} = m^2 \phi + \lambda \phi^3$$

... see Grosse's lectures

lessons

- algebra $\mathcal{A} = \mathcal{L}(\mathcal{H})$... quantized algebra of functions on (\mathcal{M}, ω) no geometrical information (not even dim) $\dim(\mathcal{H}) = \text{number of "quantum cells"}, \ (2\pi)^n \mathrm{Tr} \, \mathcal{I}(f) \sim \mathrm{Vol}_\omega \mathcal{M}$ finite-dim. $\mathcal{A} = \mathrm{Mat}(\mathrm{N}, \mathbb{C})$ sufficient for local physics
- ullet every non-deg. fuzzy space locally $pprox \mathbb{R}_{ heta}^{2d}$

lessons

- algebra $\mathcal{A} = \mathcal{L}(\mathcal{H})$... quantized algebra of functions on (\mathcal{M}, ω) no geometrical information (not even dim) $\dim(\mathcal{H}) = \text{number of "quantum cells"}, \ (2\pi)^n \mathrm{Tr} \, \mathcal{I}(f) \sim \mathrm{Vol}_\omega \mathcal{M}$ finite-dim. $\mathcal{A} = \mathrm{Mat}(N, \mathbb{C})$ sufficient for local physics
- ullet every non-deg. fuzzy space locally $pprox \mathbb{R}_{ heta}^{2n}$
- geometrical info encoded in specific matrices X^a:

$$X^a \sim x^a : \mathcal{M} \hookrightarrow \mathbb{R}^D$$
 ...embedding functions

contained e.g. in matrix Laplacian $\Box = [X^a, [X^b, .]]\delta_{ab}$ Poisson/symplectic structure encoded in C.R.

how to extract it? general geometries?

lessons

- algebra $\mathcal{A} = \mathcal{L}(\mathcal{H})$... quantized algebra of functions on (\mathcal{M}, ω) no geometrical information (not even dim) $\dim(\mathcal{H}) = \text{number of "quantum cells"}, \ (2\pi)^n \mathrm{Tr} \, \mathcal{I}(f) \sim \mathrm{Vol}_\omega \mathcal{M}$ finite-dim. $\mathcal{A} = \mathrm{Mat}(N, \mathbb{C})$ sufficient for local physics
- ullet every non-deg. fuzzy space locally $pprox \mathbb{R}^{2n}_{ heta}$
- geometrical info encoded in specific matrices X^a:

$$X^a \sim x^a : \mathcal{M} \hookrightarrow \mathbb{R}^D$$
 ...embedding functions

contained e.g. in matrix Laplacian $\Box = [X^a, [X^b, .]]\delta_{ab}$ Poisson/symplectic structure encoded in C.R.

how to extract it? general geometries?

spectral geometry

some spectral geometry

... extract geometric info from Laplace / Dirac op

recall: fuzzy Laplacian
$$\Box = [X^a, [X^b, .]]\delta_{ab}$$

<u>classical case</u>: heat kernel expansion of Δ_g on (\mathcal{M}, g) (compact)

$$\begin{array}{rcl} {\rm Tr} e^{-\alpha \Delta_g} & = & \sum\limits_{n \geq 0} \alpha^{(n-d)/2} \int\limits_{\mathcal{M}} d^d x \sqrt{|g|} \, a_n(x) \\ a_0(x) & \sim & 1 \\ a_2(x) & \sim & -\frac{1}{6} \, R[g] \end{array}$$

 $a_n(x)$... Seeley-de Witt coefficients (cf. Gilkey) physically valuable information on \mathcal{M} , e.g. 1-loop eff. action

$$\begin{split} \Gamma_{1-\text{loop}} &= \operatorname{Tr} \log \Delta_g = -\operatorname{Tr} \int\limits_0^\infty \frac{d\alpha}{\alpha} e^{-\alpha \Delta_g} \to -\operatorname{Tr} \int\limits_{1/\Lambda^2}^\infty \frac{d\alpha}{\alpha} e^{-\alpha \Delta_g} \\ &= -\sum\limits_{n \geq 0} \int\limits_{1/\Lambda^2}^\infty d\alpha \alpha^{(n-d-2)/2} \int\limits_{\mathcal{M}} d^d x \sqrt{|g|} \, a_n(x) \\ &= -\sum\limits_{n \geq 0} \int\limits_{\mathcal{M}} d^d x \sqrt{|g|} \, \left(\frac{1}{2} \Lambda^4 a_0(x) + \Lambda^2 a_2(x) + \log \Lambda^2 a_3 + \ldots \right) \end{split}$$

some spectral geometry

... extract geometric info from Laplace / Dirac op

recall: fuzzy Laplacian
$$\Box = [X^a, [X^b, .]]\delta_{ab}$$

<u>classical case:</u> heat kernel expansion of Δ_g on (\mathcal{M}, g) (compact)

$$\begin{array}{rcl} {\rm Tr} e^{-\alpha \Delta_g} & = & \sum\limits_{n \geq 0} \alpha^{(n-d)/2} \int\limits_{\mathcal{M}} d^d x \sqrt{|g|} \, a_n(x) \\ a_0(x) & \sim & 1 \\ a_2(x) & \sim & -\frac{1}{6} \, R[g] \end{array}$$

 $a_n(x)$... Seeley-de Witt coefficients (cf. Gilkey) physically valuable information on \mathcal{M} , e.g. 1-loop eff. action

$$\begin{split} \Gamma_{1-\text{loop}} &= \operatorname{Tr} \log \Delta_g = -\operatorname{Tr} \int\limits_0^\infty \frac{d\alpha}{\alpha} e^{-\alpha \Delta_g} \to -\operatorname{Tr} \int\limits_{1/\Lambda^2}^\infty \frac{d\alpha}{\alpha} e^{-\alpha \Delta_g} \\ &= -\sum_{n \geq 0} \int\limits_{1/\Lambda^2}^\infty d\alpha \alpha^{(n-d-2)/2} \int\limits_{\mathcal{M}} d^d x \sqrt{|g|} \, a_n(x) \\ &= -\sum_{n \geq 0} \int\limits_{\mathcal{M}} d^d x \sqrt{|g|} \, \left(\frac{1}{2} \Lambda^4 a_0(x) + \Lambda^2 a_2(x) + \log \Lambda^2 a_3 + \ldots \right) \end{split}$$

In particular,

$$\mathcal{N}_{\Delta}(\Lambda) := \#\{\mu^2 \in \operatorname{spec}\Delta_g; \ \mu^2 \leq \Lambda^2\}.$$

Weyls asymptotic formula

$$\mathcal{N}_{\Delta}(\Lambda) \overset{\Lambda o \infty}{\sim} c_d \mathrm{vol} \mathcal{M} \Lambda^d, \qquad c_d = \frac{\mathrm{vol} S^{d-1}}{d (2\pi)^d}.$$

 \rightarrow (spectral) dimension d of \mathcal{M}

However: $\operatorname{spec}\Delta_g$ does not quite determine $g_{\mu\nu}$ uniquely works if replace $\Delta_g \to \operatorname{spectral triple} (\mathcal{A} = \mathcal{C}^\infty(\mathcal{M}), \not \!\!\!D, \mathcal{H})$ (Connes) suitable for generalization to NC space

Connes Noncommutative Geometry

- \star representation $\mathcal{A} \to \mathcal{L}(\mathcal{H})$ on separable Hilbert space
- unbounded selfadjoint operator $\not \!\! D$ on $\mathcal A$ with $(\not \!\!\! D-\lambda)^{-1}$ compact such that $[\not \!\!\! D,a]$ bounded $\forall a\in \mathcal A$

```
Then (A, \mathcal{H}, \cancel{\triangleright}) ... "spectral triple"
```

```
∃ various refinements (real spectral triple, ...)
```

```
commutative case: \not D ... standard Dirac op on L^2 spinors can define differential calculus using d = [\not D, .] (over-simplified)
```

```
→ Connes-Lott interpretation of S.M (Higgs ↔ NC 2-point space)
```

```
spectral action: S_{	ext{eff}} := \operatorname{Tr}(\chi({\cancel{\hspace{-0.05cm}/}}{\cancel{\hspace{-0.05cm}/}}^2/{\wedge^2}))
```

Connes Noncommutative Geometry

- \star representation $\mathcal{A} \to \mathcal{L}(\mathcal{H})$ on separable Hilbert space
- unbounded selfadjoint operator $\not \!\! D$ on $\mathcal A$ with $(\not \!\!\! D-\lambda)^{-1}$ compact such that $[\not \!\!\! D,a]$ bounded $\forall a\in \mathcal A$

```
Then (A, \mathcal{H}, \cancel{\triangleright}) ... "spectral triple"
```

```
∃ various refinements (real spectral triple, ...)
```

```
commutative case: \not D ... standard Dirac op on L^2 spinors can define differential calculus using d = [\not D, .] (over-simplified)
```

→ Connes-Lott interpretation of S.M (Higgs ↔ NC 2-point space)

```
→ Connes-Lott interpretation of S.M. (Fliggs ↔ NO 2-point space
```

```
spectral action: S_{\text{eff}} := \text{Tr}(\chi(\cancel{D}^2/\Lambda^2))
```

symplectic structure, Λ_{NC} , $Tr \leftrightarrow \int$ etc. plays no role

for fuzzy spaces:

- \exists intrinsic UV cutoff $\Lambda_{UV} \sim \frac{N}{R}$
 - \Rightarrow no asympotic limit: $\mathcal{N}_{\Delta}(\Lambda) \sim \Lambda^0$ but

$$\mathcal{N}_{\Delta}(\Lambda) \sim \operatorname{vol} \mathcal{M} \Lambda^d$$
 for $\Lambda < \Lambda_{UV}$

gives correct dimension d = 2

- dim = 0 in the Connes sense
- chirality operator for $\not \! D = \sigma_a[X^a,.] + \frac{1}{R}$ problematic
- heat kernel expansion problematic for NC spaces (Gayral etal.) ok if put finite cutoff $\Lambda = O(\Lambda_{NC})$ (Blaschke-H.S.-Wohlgenannt 2010)
- → need Matrix ("fuzzy") geometry:

× χ^μ

abstraction & generalization:

Q: how to obtain generic matrix (fuzzy) geometries?

A: consider generic embedded fuzzy spaces:

- inherits pull-back metric (geometry)
- (quantized) Poisson / symplectic structure via $[X^{\mu}, X^{\nu}] = i\theta^{\mu\nu}$
- easy to work with
- noncommutativity essential

