Numerical simulations of Causal Dynamical Triangulations 1

Jerzy Jurkiewicz

Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

The Third Quantum Gravity & Quantum Geometry School Zakopane 2011
1 General introduction
 - Path integral for Quantum Gravity
 - Basic assumptions of CDT
 - Regularization of a theory
 - Construction elements in 4d
 - Geometry of 3d states and a 4d configurations

2 Numerical setup
 - Objectives
 - Monte Carlo technique
 - Phase structure
Outline

1. General introduction
 - Path integral for Quantum Gravity
 - Basic assumptions of CDT
 - Regularization of a theory
 - Construction elements in 4d
 - Geometry of 3d states and a 4d configurations

2. Numerical setup
 - Objectives
 - Monte Carlo technique
 - Phase structure
Outline

1 General introduction
 - Path integral for Quantum Gravity
 - Basic assumptions of CDT
 - Regularization of a theory
 - Construction elements in 4d
 - Geometry of 3d states and a 4d configurations

2 Numerical setup
 - Objectives
 - Monte Carlo technique
 - Phase structure
Quantum Gravity (without matter) - states of the system are defined as spatial geometries of the universe. Example of the evolution of a one-dimensional closed universe:

Joining spatial geometries produces a space-time geometry. In this example the sum over trajectories becomes a (weighted) sum over all two-dimensional surfaces joining the in-state with the out-state.
Our aim is to calculate the amplitude of a transition between two geometric states

\[G(g_i, g_f, t) := \sum \int_{\text{geometries: } g_i \rightarrow g_f} e^{iS[g_{\mu\nu}(t')]} \]

To define this path integral we have to specify the “measure” and the “domain of integration” - a class of admissible space-time geometries joining the in- and out- geometries.
Causal Dynamical Triangulations

- Using methods of QFT.
- Regularization of geometry follows the method of Dynamical Triangulations.
- New element: causality - Causal Dynamical Triangulations - additional restriction on the topology of space-time.

Very promising results of CDT

- Correct continuum limit.
- Information about quantum effects on the Planck scale.

Jerzy Jurkiewicz
Numerical simulations of CDT
Causal Dynamical Triangulations

- Using methods of QFT.
- Regularization of geometry follows the method of Dynamical Triangulations.
- New element: causality - Causal Dynamical Triangulations - additional restriction on the topology of space-time.

Very promising results of CDT

- Correct continuum limit.
- Information about quantum effects on the Planck scale.
Introduction

General introduction
- Path integral for Quantum Gravity
- Basic assumptions of CDT
- Regularization of a theory
- Construction elements in 4d
- Geometry of 3d states and a 4d configurations

Numerical setup
- Objectives
- Monte Carlo technique
- Phase structure
Basic concepts

- Path integral – amplitude of a quantum transition between in- and out- states can be written as a weighted sum (integral) over all possible trajectories.
- Possibility to perform analytic continuation in time – Wick rotation to imaginary time. In effect weights become real and positive and can be interpreted as probabilities.
- Lattice regularization – discretization of space-time provides a cut-off a.

In our approach (also in Dynamical Triangulations) we start with “Euclidean” formulation of space-time and then we eventually rotate back (or define) the time variable.
Wick rotation

Rotation to imaginary time $t \rightarrow it_4$ - the weight is formally real:

$$e^{iS[g(t)]} \rightarrow e^{-S_E[g(t_4)]}$$

After Wick rotation quantum amplitude becomes a weighted sum over geometric manifolds bounded by the in- and out-states.

The simplest form of the action – Hilbert–Einstein action

$$S[g] = -1/G \text{Curvature}(g) + \lambda \text{Volume}(g)$$

where G - gravitational constant, λ - cosmological constant (essential to suppress the entropy of quantum fluctuations).

This action used both by DT and CDT.
Measure and domain of integration in a path integral for QG

- **A.** Sum (integral) over diffeomorphism invariant equivalence classes of space-time metrics.
- **B.** Fixed topology of space-time.
- **C.** Suppressed formation of baby universes (fixed spatial topology).

- To suppress the divergent volume of the diffeomorphism group. Realized in the DT regularization.
- To suppress the divergence of the path integral coming from entropy. Realized in DT.
- Causality: it means the existence of a time foliation. For each time the topology of the universe is the same. Realized in CDT.
Measure and domain of integration in a path integral for QG

- **A.** Sum (integral) over diffeomorphism invariant equivalence classes of space-time metrics.
- **B.** Fixed topology of space-time.
- **C.** Suppressed formation of baby universes (fixed spatial topology).

To suppress the divergent volume of the diffeomorphism group. Realized in the DT regularization.

To suppress the divergence of the path integral coming from entropy. Realized in DT.

Causality: it means the existence of a time foliation. For each time the topology of the universe is the same. Realized in CDT.
Measure and domain of integration in a path integral for QG

- **A.** Sum (integral) over diffeomorphism invariant equivalence classes of space-time metrics.
- **B.** Fixed topology of space-time.
- **C.** Suppressed formation of baby universes (fixed spatial topology).

To suppress the divergent volume of the diffeomorphism group. **Realized in the DT regularization.**

- To suppress the divergence of the path integral coming from entropy. **Realized in DT.**
- Causality: it means the existence of a time foliation. For each time the topology of the universe is the same. **Realized in CDT.**
Measure and domain of integration in a path integral for QG

- **A.** Sum (integral) over diffeomorphism invariant equivalence classes of space-time metrics.
- **B.** Fixed topology of space-time.
- **C.** Suppressed formation of baby universes (fixed spatial topology).

- To suppress the divergent volume of the diffeomorphism group. *Realized in the DT regularization.*
- To suppress the divergence of the path integral coming from entropy. *Realized in DT.*
- Causality: it means the existence of a time foliation. For each time the topology of the universe is the same. *Realized in CDT.*
Measure and domain of integration in a path integral for QG

- **A.** Sum (integral) over diffeomorphism invariant equivalence classes of space-time metrics.
- **B.** Fixed topology of space-time.
- **C.** Suppressed formation of baby universes (fixed spatial topology).

To suppress the divergent volume of the diffeomorphism group. Realized in the DT regularization.

To suppress the divergence of the path integral coming from entropy. Realized in DT.

Causality: it means the existence of a time foliation. For each time the topology of the universe is the same. Realized in CDT.
Measure and domain of integration in a path integral for QG

- **A.** Sum (integral) over diffeomorphism invariant equivalence classes of space-time metrics.
- **B.** Fixed topology of space-time.
- **C.** Suppressed formation of baby universes (fixed spatial topology).

- To suppress the divergent volume of the diffeomorphism group. **Realized in the DT regularization.**
- To suppress the divergence of the path integral coming from entropy. **Realized in DT.**
- Causality: it means the existence of a time foliation. For each time the topology of the universe is the same. **Realized in CDT.**
Difference between DT and CDT

Difference lies in the domain of integration over allowed space-time geometries. In DT one cannot avoid introducing causal singularities.

Example of a causal singularity, which leads to creation of baby universes. Creation of baby universes dominates the possible evolution.
1 General introduction

- Path integral for Quantum Gravity
- Basic assumptions of CDT
- Regularization of a theory
- Construction elements in 4d
- Geometry of 3d states and a 4d configurations

2 Numerical setup

- Objectives
- Monte Carlo technique
- Phase structure
Method of triangulations

Counting equivalence classes of manifolds. Example in 2d.

Discretization: One of the standard regularizations in QFT. Here: we replace a continuous space-time surface by a triangulated surface built from regular triangles with the edge a, serving as a cut-off. In the continuum limit $a \to 0$.

Jerzy Jurkiewicz
Numerical simulations of CDT
Example in 2d (Euclidean time):

In a triangulation a variable number of triangles can meet at each vertex. Deficit angle δ - (a) positive, (b) - negative. Curvature is localized in vertices. In other points geometry is flat!
Three steps in regularization of a path integral

Regularization of a geometric state
One-dimensional state with a topology S^1 is built from links with length a.

Regularization of a space-time geometry (trajectory)
2d space-time surface built from equilateral triangles. Curvature localized in vertices.

Regularization of a path integral
Integral over equivalence classes of metrics is replaced by a summation over all possible triangulations, belonging to some topological class.
Outline

1. General introduction
 - Path integral for Quantum Gravity
 - Basic assumptions of CDT
 - Regularization of a theory
 - Construction elements in 4d
 - Geometry of 3d states and a 4d configurations

2. Numerical setup
 - Objectives
 - Monte Carlo technique
 - Phase structure
Generalization to higher d

Method of Euclidean Dynamical Triangulations

Replace 2d triangles by higher-dimensional simplices.

2d

3d

4d
Outline

1. General introduction
 - Path integral for Quantum Gravity
 - Basic assumptions of CDT
 - Regularization of a theory
 - Construction elements in 4d
 - Geometry of 3d states and a 4d configurations

2. Numerical setup
 - Objectives
 - Monte Carlo technique
 - Phase structure
CDT: 3d geometric “states”

Spatial states are 3d geometries with a topology S^3. Discretized states are constructed from 3d simplices - tetrahedra glued along triangular faces.

Regular tetrahedron (3-simplex) - a basic block to build 3d manifolds.

Space of states

There are many inequivalent ways of gluing tetrahedra. For N tetrahedra and a fixed topology this number grows exponentially $\sim \exp(\lambda N)$.
Connecting 3d states

In 4d each tetrahedron becomes a base of a pair of \{4, 1\} and \{1, 4\} simplices, pointing up or down in t. The lengths of edges in time direction are a_t (may be different than a_s).
We need two more types of simplices: \(\{3, 2\}\) and \(\{2, 3\}\).

Simplices \(\{3, 2\}\) and \(\{2, 3\}\) form a “layer” gluing together states at \(t\) and \(t + 1\).

It takes at least 4 steps to connect two \(\{4, 1\}\) simplices at times \(t\) and \(t + 1\).

\[
\{4, 1\} \rightarrow \{3, 2\} \rightarrow \{2, 3\} \rightarrow \{1, 4\} \rightarrow \{4, 1\}
\]
Space-time manifolds in 4d (trajectories)

We build a 4d manifold with a topology $S_3 \times S_1$. Each manifold is characterized by a set of “global” numbers

- $N_4^{\{4,1\}}$ - number of $\{4, 1\}$ and $\{1, 4\}$ simplices.
- $N_4^{\{3,2\}}$ - number of $\{3, 2\}$ and $\{2, 3\}$ simplices.
- N_0 - number of vertices (0-simplices).
- T - time period.

Other “global” numbers depend on those above. Each manifold is a specific way of gluing together geometric states at integer times t. For a discretized manifold the Hilbert-Einstein action depends only on these global numbers.
Each 4d manifold is represented by a “local” information, describing how simplices are glued together. To do this we assign labels to vertices.

Definition

Manifolds are assumed to be simplicial manifolds: Each (sub)simplex with a particular set of labels appears at most once.

Labels are analogues of coordinates. Relabelling is the analogue of a diffeomorphism transformation.

There is an exponentially large number of possible “local” realizations of geometry, corresponding to the same topology and the same set of “global” numbers.
Manifolds in 4d CDT: Summary

- Each “trajectory” is a sequence of T 3d geometric states with a topology S^3. These states are discretized: geometry is obtained by gluing together regular tetrahedra to form a closed S^3 simplicial manifold. Each state is characterized by an integer “time”. 3-volume of a manifold is $\propto N_3(t)$ – number of tetrahedra.

- In 4d tetrahedra become bases of $\{4,1\}$ and $\{1,4\}$ simplices pointing up and down in “time”. We have
 \[\sum_t N_3(t) = N_4^{\{4,1\}} / 2. \]

- To connect two states at t and $t + 1$ we need a layer formed by $\{3,2\}$ and $\{2,3\}$ tetrahedra. This layer has no analogue in $d = 2$ and $d = 3$.

Jerzy Jurkiewicz
Numerical simulations of CDT
Manifolds in 4d CDT: Summary

- Each “trajectory” is a sequence of T 3d geometric states with a topology S^3. These states are discretized: geometry is obtained by gluing together regular tetrahedra to form a closed S^3 simplicial manifold. Each state is characterized by an integer “time”. 3-volume of a manifold is $\propto N_3(t)$ – number of tetrahedra.

- In 4d tetrahedra become bases of $\{4, 1\}$ and $\{1, 4\}$ simplices pointing up and down in “time”. We have
 \[\sum_t N_3(t) = \frac{N_4^{\{4,1\}}}{2}. \]

- To connect two states at t and $t + 1$ we need a layer formed by $\{3, 2\}$ and $\{2, 3\}$ tetrahedra. This layer has no analogue in $d = 2$ and $d = 3$.

Jerzy Jurkiewicz

Numerical simulations of CDT
Manifolds in 4d CDT: Summary

- Each “trajectory” is a sequence of T 3d geometric states with a topology S^3. These states are discretized: geometry is obtained by gluing together regular tetrahedra to form a closed S^3 simplicial manifold. Each state is characterized by an integer “time”. 3-volume of a manifold is $\propto N_3(t)$ – number of tetrahedra.

- In 4d tetrahedra become bases of $\{4, 1\}$ and $\{1, 4\}$ simplices pointing up and down in “time”. We have

$$\sum_t N_3(t) = N_4^{\{4,1\}} / 2.$$

- To connect two states at t and $t + 1$ we need a layer formed by $\{3, 2\}$ and $\{2, 3\}$ tetrahedra. This layer has no analogue in $d = 2$ and $d = 3$.

Jerzy Jurkiewicz
Numerical simulations of CDT
Hilbert-Einstein action

For each space-time manifold we assign the action S_{HE} and a "probability" $\exp(-S_{HE})$.

$$S_{HE} = -(\kappa_0 + 6\Delta)N_0 + \kappa_4(N_4^{4,1} + N_4^{3,2}) + \Delta(2N_4^{4,1} + N_4^{3,2})$$

κ_0, κ_4, Δ - bare dimensionless coupling constants.

Discretization of a theory always leads to a dimensionless formulation. We will reintroduce physical dimensions later.

Analogy to Statistical Physics. Path integral \rightarrow Ensemble of space-time discretized manifolds with a "partition function"

$$\mathcal{Z}(\kappa_0, \kappa_4, \Delta) = \sum_{\mathcal{T}} e^{-S_{HE}(\mathcal{T})}$$
Parameters of the H-E action

Physical properties of the system are determined by values of bare coupling constants

- $\kappa_4 - \kappa_4^{\text{crit}}(\kappa_0, \Delta)$ - related to the average ”volume” $\langle N_4 \rangle$.
- κ_0 - related to the inverse of the bare gravitational constant.
- Δ - related to asymmetry between a_s and a_t.

$$Z(\kappa_0, \kappa_4, \Delta) = \sum_{N_4} e^{-\kappa_4 N_4} Z_{N_4}(\kappa_0, \Delta)$$

where $N_4 = N_4^{4,1} + N_4^{3,2}$ - total number of simplices.
Outline

1. General introduction
 - Path integral for Quantum Gravity
 - Basic assumptions of CDT
 - Regularization of a theory
 - Construction elements in 4d
 - Geometry of 3d states and a 4d configurations

2. Numerical setup
 - Objectives
 - Monte Carlo technique
 - Phase structure
Objectives

Ideally we would like to be able not only to obtain the analytic formula for the partition function $\mathcal{Z}(\kappa_0, \kappa_4, \Delta)$, but also, using this function, to calculate arbitrary physical observables. Calculating (some of) these observables will be our objective.

$$
\mathcal{Z}(\kappa_0, \kappa_4, \Delta) = \sum_{\mathcal{T}} e^{-S_{HE}(\mathcal{T})}
$$

$$
\langle A \rangle = \frac{1}{\mathcal{Z}} \sum_{\mathcal{T}} A(\mathcal{T}) e^{-S_{HE}(\mathcal{T})}
$$

There is in general much more information in $\langle A \rangle$ than in \mathcal{Z}.

\mathcal{T} - triangulations \equiv space-time configurations \equiv trajectories.
Grand-canonical and canonical ensembles

Partition function $\mathcal{Z}(\kappa_0, \kappa_4, \Delta)$ from a statistical point of view defines a grand-canonical ensemble

$$\mathcal{Z}(\kappa_0, \kappa_4, \Delta) = \sum_{N_4} e^{-\kappa_4 N_4} Z_{N_4}(\kappa_0, \Delta)$$

$Z_{N_4}(\kappa_0, \Delta)$ defines a “canonical” ensemble with fixed four-volume N_4.

If a regularized theory should be finite – the sum in \mathcal{Z} should be convergent. It follows that Z_{N_4} can grow at most exponentially with N_4 (restriction on a global topology).

$$Z_{N_4}(\kappa_0, \Delta) \approx \exp(\kappa_4^{\text{crit}}(\kappa_0, \Delta) N_4)$$
Observables

- Observables $\langle A \rangle$ can be decomposed as

$$\langle A \rangle = \sum_{N_4} P(N_4) \langle A \rangle_{N_4}$$

- In particular

$$\langle N_4 \rangle \sim \frac{1}{(\kappa_4 - \kappa_4^{\text{crit}})}$$

“Canonical” averages are much easier to calculate (at least numerically).

$$\langle A \rangle_{N_4} = \sum_{T_{N_4}} P(T) A(T)$$
Canonical averages, infinite volume limit and continuum limit

- For a finite N_4 summation is over a finite (but exponentially large) set of configurations. Different configurations give contributions, depending on $P(T)$. Exact summation is practically impossible - we have to restrict ourselves to numerical estimates.

- Numerical estimate based on a smaller sample of “important” configurations.

- “Typical” (important) configurations - those with large probabilities (or large entropy, i.e. many different configurations with the same probability and similar physical properties)
For a set \(\{ \kappa_0, \Delta \} \) of bare coupling constants we perform numerical experiments at a sequence of volumes \(N_4 \). Each experiment means generating a large but finite sample of “important” configurations.

- These configurations are generated using the Monte Carlo technique.
- We calculate numerical estimates of the observable \(\langle A \rangle_{N_4} \).
- We perform a finite size scaling analysis, i.e. we determine the scaling of the observable as a function of \(N_4 \) in the infinite volume limit \(N_4 \to \infty \).
- We try to interpret this limit as a continuum limit by reintroducing physical dimensions.
Outline

1 General introduction
 - Path integral for Quantum Gravity
 - Basic assumptions of CDT
 - Regularization of a theory
 - Construction elements in 4d
 - Geometry of 3d states and a 4d configurations

2 Numerical setup
 - Objectives
 - Monte Carlo technique
 - Phase structure
In the space of configurations $\{\mathcal{M}\}$ we define a Markov process (a random walk in the configuration space) by choosing a probability $\mathcal{W}(\mathcal{M}_a \rightarrow \mathcal{M}_b)$ of a move from \mathcal{M}_a to \mathcal{M}_b. Fictitious (discrete) time τ numbers the steps of a random walk. At each step we have a (normalized) distribution of probabilities $P_\tau(\mathcal{M}_i)$ with a recurrence relation

$$P_{\tau+1}(\mathcal{M}_j) = \sum_{\mathcal{M}_i} P_\tau(\mathcal{M}_i) \mathcal{W}(\mathcal{M}_i \rightarrow \mathcal{M}_j)$$
Choosing transition probabilities

It is possible to choose $\mathcal{W}(M_a \rightarrow M_b)$ in such a way that the Markov process has a **unique** limiting distribution

$$P_\infty(M_i) \propto \exp(-S(M_i))$$

Detailed balance condition

$$\exp(-S(M_a))\mathcal{W}(M_a \rightarrow M_b) = \exp(-S(M_b))\mathcal{W}(M_b \rightarrow M_a)$$

There are infinitely many solutions of this condition.
Monte Carlo cont’d’

DB solution

We may have

\[\mathcal{W}(\mathcal{M}_a \rightarrow \mathcal{M}_b) = \mathcal{W}(\mathcal{M}_b \rightarrow \mathcal{M}_a) = 0 \]

or

\[\frac{\mathcal{W}(\mathcal{M}_a \rightarrow \mathcal{M}_b)}{\mathcal{W}(\mathcal{M}_b \rightarrow \mathcal{M}_a)} = \exp \left(- (S(\mathcal{M}_b) - S(\mathcal{M}_a)) \right) \]

- Non-zero transitions must satisfy **ergodicity** – all configurations can be reached by a random walk.
- They should connect configurations which are **close** - with small action difference (to be effective).
MC in numerical simulations

The numerical procedure is based on definitions presented above. On a computer we start the iterative process:

- Generate the initial configuration M_0.
- Pick a (single) new configuration M_i with a probability given by $W(M_0 \rightarrow M_i)$
- Pick a (single) new configuration M_j with a probability given by $W(M_i \rightarrow M_j)$
- ...

If we perform sufficiently many steps and reach a particular configuration M_a we know that it will appear with a probability $\propto \exp(-S(M_a))$.
MC in numerical simulations cont’d’

Configurations separated by many iteration steps are called statistically independent.
A set \(\{M_1, M_2, \ldots, M_N\} \) of independent configurations can be used to get the estimate

\[
\langle A \rangle \approx \frac{1}{N} \sum_{i=1}^{N} A(M_i)
\]

Statistical error of the estimate depends on \(N \) and typically behaves as \(1/\sqrt{N} \).
We use this technique to obtain estimates in CDT.

Monte Carlo

- Finite set of local geometric *moves*, preserving topology.
- Detailed balance condition determining a probability to perform a particular change of geometry.

Local moves: “Alexander moves” – satisfy a condition of *ergodicity*.
Alexander moves in general change the volume N_4. In our approach we either fix $N_4^{\{4,1\}} = 2 \sum_t N_3(t)$ or we let it fluctuate with a Gaussian probability around $\langle N_4^{\{4,1\}} \rangle$.

- Physical properties of the system depend on κ_0 and Δ.
- We fine-tune $\kappa_4 \approx \kappa_4^{\text{crit}}$ to keep $\langle N_4^{\{4,1\}} \rangle$ stable.

In the Monte Carlo process we generate typically $10^7 – 10^8$ configurations. This is a finite sample representing typical configurations for a given set of $\{\kappa_0, \Delta\}$.
Outline

1. General introduction
 - Path integral for Quantum Gravity
 - Basic assumptions of CDT
 - Regularization of a theory
 - Construction elements in 4d
 - Geometry of 3d states and a 4d configurations

2. Numerical setup
 - Objectives
 - Monte Carlo technique
 - Phase structure
Approximate phase diagram of CDT

- \mathcal{Z} is defined for $\kappa_4 > \kappa_4^{crit}(\kappa_0, \Delta)$.
- Approaching a critical surface means taking an infinite volume limit.
 - $\langle N_4 \rangle \sim 1/(\kappa_4 - \kappa_4^{crit})$.

Red lines - first order phase transitions. Perhaps a triple point.
Volume distribution in (imaginary) time

Different value of the critical exponent β: $\langle N_{4}^{(3,2)} \rangle_{N_4} \sim N_{4}^{\beta}$.

- **Phase A.** Not physical. Non-interacting 3d states. $\beta = 0$.
- **Phase B.** Not physical. Compactification into a 3d Euclidean DT. $0 < \beta < 1$, $d_{H} = \infty$.
- **Phase C.** Extended de Sitter phase. $\beta = 1$, $d_{H} = 4$.
We formulated our model with a topology $S_3 \times S_1$, but the initial topology is dynamically modified.

- Among the observed phases only phase A has the unbroken symmetry of the translation in time. This phase is unphysical (no causal relation between different times).
- In phase B we observe a spontaneous compactification of topology to that of Euclidean 3-sphere. The stalk is a lattice artefact and has a cut-off size.
- In phase C we also observe a spontaneous compactification of topology to S_4 (to be discussed).