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outline part Il:

embedded NC spaces, matrix models, and emergent gravity

@ noncommutative gauge theory
@ Yang-Mills matrix models

@ general geometry in matrix models (embedded NC spaces,
curvature)

@ nonabelian gauge fields, fermions, SUSY
@ quantization of M.M: heat kernel expansion, UV/IR mixing
@ aspects of (emergent) gravity, outlook
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Yang-Mills matrix models

dynamical embedded NC spaces <> gravity
well suited for quantization

Z = [axie s

SIX] = Ti[X2 XP|[XT, XV'|6,440p + (matter)
note:
@ matrix configuration X2 ... matrix geometry (“background”)

@ integration over space of geometries
— “emergent” (dominant, effective) geometry

@ very closely related to NC gauge theory

@ D =10, add Majorana-Weyl fermions — IKKT model
(=dim-red. of D = 10 SYM) “nonperturb. def. of IIB string theory”
Ishibashi, Kawai, Kitazawa and Tsuchiya hep-th/9612115

@ more generally: 3 intersecting spaces, stacks, etc.
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NC gauge theory

Gauge theory on R}

Let [X» X*]=i0",  XteL(H)  (Moyal-Weyl) consider
fluctuations around Rj:

Xt =X —gm A,
recall [X*,¢] = i0"d,¢ —
[(XE, XY = G 4 i0 6 (DA — Dy A+ i[A, AL])
= 0" 0P G F o
= i (0 + )
Fu(x) ... u(1) field strength
gauge transformations:
Xt = UXrU—Y = UXHE -0 AU = X# 4+ UIXH, U~ + 6+ UA, U
= Xt 0m (U, U + UAUT)

infinites: U = e"X) §A, = i9,A(X) + i[ANX), A,



NC gauge theory

Yang-Mills action:
Sym[X] = Tr[X*, XYX*, XY 16,0000
= p [ Ad*X(Fu +i0.))(Fur +16,,),) G G
or
Tr([X*, X¥] — i0%)([X*, X¥'] = 0" )8 00 = p [ d*XFyu Furr G GV

(same up to surface term Tr[X, X] = [ F — 0)
... NC U(1) gauge theory on R},
effective metric
G}LV _ éw/éyl/(;u’u’, p= |§71 ‘1/2

nv

reduces to usual U(1) gauge theory on R* (as classical FT.!)
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NC gauge theory

Yang-Mills action:
SYM[X] = TI'[XH, XV] [X,u’ , X]/](Sllrlb/(sl’y/
= p/‘ d4X(I:,ul/ + ié;J)(F,u/l/' +i§;,‘://)éy,y,’éuyl

or
Tr([ X", X¥] — iélw)([X”/>XV/] - iéll/ul)(suu’(sw’ = Pf d4XFuuFu’y’ G G

(same up to surface term Tr[X, X] = [ F — 0)
... NC U(1) gauge theory on R},
effective metric
G}LV _ é”“léyl/(;w,,/, p= |§71 ‘1/2

nv

reduces to usual U(1) gauge theory on R* (as classical FT.!)
invariant under gauge trafo

Xt - UXeU—?,
F.. — UF,U' ~ symplectomorphism

no “local” observables ! (need trace)
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NC gauge theory

coupling to scalar fields:

consider

S[X’ (bl] Tr ([X“’ XV] [XHI ’ XV/](SHH’(SVV’ + [XH’ (bl] [X/L/7 ¢i]6l¢“/>
= ) d** (FuFuns GG + D, /D, ¢/ G
[XE, 6] = 0 (D, + i[A,, 1)¢ =: i0" D, ¢

(dropping surface terms)
gauge transformation

¢ — Up'U™'  (adjoint)

same form as

S[X] = Tr[X?, XP|[X? , XY |60 Oy,  @=1,....,4+k
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NC gauge theory

note:
@ extremely simple origin of gauge fields:
arbitrary fluctuations X* — X* + A* (A" = —0M"A,)
configuration space = {4 hermitian matrices X4}

works only on NC spaces!
@ matrix models Tr[X, X][X, X] ~ gauge-invariant YM action

@ generalized easily to U(n) theories but
U(1) sector does not decouple from SU(n) sector

@ one-loop: UV/IR mixing — not QED, problem
except in N' = 4 SUSY case: finite (!?)

... nevertheless phys. wrong for U(1) sector:
proper interpretation in terms of (emergent) geometry, gravity.
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NC gauge theory

try something similar for fuzzy sphere:

SIX] = éTr ([X2, XP][Xa, Xp] — 4icapc X2XPXC — 2X3X;)
= g Tr([X? XP] = ie°Xc)([Xa, Xo] — icaneX®)
= T F®Fp >0
where X2 € Mat(N,C), a=1,2,3and
Fab .= [X2 XP] - jedb°X, field strength
solutions (minimal):
Fab 0 < [X2XP =X,
Xa = )4 A@...rep. of su(2)
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NC gauge theory

try something similar for fuzzy sphere:

S[X] = éTr ([X2, XP][Xa, Xp] — 4icapc X2XPXC — 2X3X;)
= g Tr([X? XP] = ie°Xc)([Xa, Xo] — icaneX®)
= T F®Fp >0

where X2 € Mat(N,C), a=1,2,3and
Fab .= [X2 XP] - jedb°X, field strength
solutions (minimal):
Fab 0 < [X2XP =X,
Xa = )4 A@...rep. of su(2)
0

a
Al e 0
0 A, - 0
any rep. of su(2) is a solution! X@ =
. . -
0 0 AR,

concentric fuzzy spheres S,f,,l_!
geometry & topology dynamical !
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NC gauge theory

expand around solution:
X2 = )\% 4 A? € Mat(N, C)
,:ab — [)\a7Ab] _ [)\b7Aa] _ isabCAC + [Aa,Ab]
F = Fabgeach — gA+ AA
can be interpreted in terms of

U(1) gauge theory on S% (tang. fluct. if) A3A, =0
coupled to scalar field D,,¢D*¢ (radial fluctuations) X@ = X\3(1 + ¢)

can fix geometry, suppress radial field by adding constraint
SIX] = Tr ((1X*, XP] = i XC)([Xay Xo] — ieapoX) +(X*Xa — Cn)?)

= indeed deformed Maxwell theory on S%, as classical F.T.
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NC gauge theory

however:
recall fuzzy sphere: near north pole x? = (0,0, 1)

X3 = \/1 — (X1)2 — (X2)2
expect:

radial deformation X2 = A3 + A% = ¢(X', X?)

deformation of embedding, geometry!

geometry <+ NC gauge theory ??77?

= consider deformed fuzzy spaces, effective geometry
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curved NC branes

Yang-Mills Matrix Models, reconsidered

let gap = 0ap ... SO(D)  (resp. gap = Gap --- SO(n, m))
S=-Tr ([xa, XO)X¥, X" |G Gy + fermions)

X2 = X3" ¢ Mat(co,C), a=1,..,D
gauge symmetry X2 — UX2U~", or
S — fﬁ’ (([Xa,Xb]*iQab'l)([Xa/’Xb/]fiea/b/‘l)gaa/gbb' =+ )

(up to boundary terms Tr[X, X])

NC space(-time)

© pre-geometric; { metric (gravity)

} solutions (emergent)

nonabelian gauge fields
“gravitons”

} ... fluctuations of NC space

@ D =10 : quantization well-defined (?!)
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curved NC branes

Space-time & geometry from matrix models:

eom.: §5=0 = [X2[X¥ XV)gaw =0
solutions: (— NC spaces)
@ 1) prototype (d=4):
[X2, XP] = i#?1, rank 0% = 4
split X2 = (X*, &), p=1,...4

(Xr X = o™ } R4
o = 0 ’
interpretation:
X2: R§—R'"" . “embedded quantum plane”

fluctuations X = X2 + X2 — propagating fields on R}
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curved NC branes

Noncommutative spaces and Poisson structure

(M, 6#7(x)) ... 2n-dimensional manifold with Poisson structure
Its quantization My is NC algebra such that
I:CWM) — A= Mat(oo,C)
f(x) — f(X)
X2 = Xaq eik)( — eikX

such that [F(X), 8(X)] = Z(i{f(x), g(x)}) + O(6?)

(“nice”) ¢ € Mat(co,C) <« quantized function on M )
furthermore:
@r2 TH((X)) ~ [d*xp(x)(x)
p(x) = Pfaff(6,)) ... symplectic volume

(cf. Bohr-Sommerfeld quantization)
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curved NC branes

@ 2) generic solutions (d=4):  deformations of R} c R0

X = (X, 01(XH),  p=1,04

A = Mat(oo, C) generated by X*
[XH, X¥] ~ i{x" x"} = i9"*(x), generic NC space C RP

interpretation:
X~ X% MY R
... 4-dim (or 3+1-dim.) space(time),  “brane®

quantized Poisson-MF (M, 6% (x))
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curved NC branes

Effective geometry of NC brane:

consider scalar field coupled to Matrix Model (“test particle”)
use [f,¢] ~ 0" (x)0,.f0,¢ =

Sle] = —Tr[X2 ¢][X?, ¢] gap (U(H) gauge inv.!)

~ [ d*\/ 10| 0" 1D, X300 0¥ D, XPD,, 0 ap
= [ d*%V/[Gu| G*(x) 0updp

G (x) = e 70" (x)0" (X) guw(x) effective metric
9w (X) = 0,x30,xPga, induced metric on Mj
_2 0., .
e = |G| = 19| for dim(M) =4
G|

© couples to metric G (x), determined by 0¥ (x) & embedding ¢’(X)J

... quantized Poisson manifold with metric (M, 6*”(x), G,.. (X))



curved NC branes

same metric G,,,, for gauge fields, fermions
— all matter couples to dynamical metric G, = effective gravity
however: metric is not fundamental d.o.f.

rather: matrices X2 resp. (¢, 0*) resp. (¢', F..,)
= dynamics of gravity NOT given by Einstein equations

not GR (long distances!),
may be close enough to observation (?)

note: D = 10 just enough to describe most general g,,.(x) in d =4
(locally)

A. Friedman (1961)
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curved NC branes

class of embedded NC spaces
X M—RP

is stable under small deformations

consider small deformation

Xa — Xa + Aa
by assumption locally X2 = (X", ¢/(X*)) ~ (x*,¢'(x*))
X* generate A = Mat(N, C)
= A% = A3(x*), smooth
X2 = (Xt + A o+ A) ~ (X ¢(X*): M —RP
[X#, X"] ~ i{%*, %}  ..new Poisson bracket
... deformed embedded NC space M



curved NC branes

dynamics of geometry

def. 0 :=[X2,[X?, ]]lga ... matrix Laplacian on A

result:

(M, w) symplectic manifold, w = 16
x2: M < RP ... embedding in R”
induced metric g,, and G** as above. Then:

—TdxH A dx”

%

{x2,{xb,p}}gr = €°Agp
Va(€70.)) = G0 (e778un + 9,x? AeXPGap)

for p € C>°(M), Vg ... Levi-Civita, Ag ... Laplace- Op. w.rt. G,,.,
and

1
n(x) = Ze" C* Gy

cf. fuzzy sphere, torus etc! (H.S., 2008)

Hence: | O~ —e"Ago(x) |
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curved NC branes

proof: either

—Tr'[X4 [Xa ]l = Tr[X2 ¢][Xa, ¢

Jd*x (/16| 9'{X3, { Xa, 0}} — [ d*x\/1G. | G (X) 8, Dup
f d*x V ‘G;W| e’ ‘P/{Xaa {Xa; 80}} f d*x V |G,“,| ‘PIAGSD
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curved NC branes

proof: either

—Tr'[X4 [Xa ]l = Tr[X2 ¢][Xa, ¢

Jd*x (/16| 9'{X3, { Xa, 0}} — [ d*x\/1G. | G (X) 8, Dup
f d*x V ‘G;W| e’ ‘P/{Xaa {Xa; 80}} fd4 V |Guz/ ' AG‘P

or

(X9 4X% 01}

0120, x20, (00, Xa0yp)

= 01°0,(8, X361, Xa0y0)

= 0M0,(0"" G, 0, 0)

= 07°0"7G,,0,0,0 + 0420,(0"" Gy )Op
= €7(GM0,0np — TM0y) = €7 Agep,
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curved NC branes

in particular:
matrix e.0o.m: [X2 [X? X%]|gaa =0 <=

Agd' = 0, Agxt=0
Vi (eT0,)) = €77 Gubrtou
1= G,
... covariant formulation in semi-classical limit }

in particular:

M* — RP is harmonic embedding (w.r.t. G,,)
minimal surface
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curved NC branes

dynamics of NC structure 6+

Sym = — Tr[X2, XP][Xa, Xp] ~ / d*x\/ge 7n
Euclidean case: at p € M, diagonalize g,,, = diag(1,1,1,1)

using SO(4) — standard form

0 0
uv o e} 0 0 0
o =0 0 0
0

effective metric G*¥ = diag(a?, a?, a2, a2).
Note

%Guyg‘uy = eio-'f] = %(O[Z + a72) 2 1
w = tw e e n=1%s G =0 < Syw minimal

minimum of Syy < 0 (A)SD < G, = 9. J
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curved NC branes

more structure:

define
N _ ~—0/2 gny’ —_ A0/2 g1
J;’—-e 0" gy =—€ CBVYHMW.
Then
wo_ L v S 2 v
G =7J)T, 9" =—(T°)5 9™,
hence

G"g,, =—(T%), J?=-0 & g=G

... “almost-complex” structure

- (M, J,e7/?g,,) “aimost-Kahler < g=G
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curved NC branes

more structure:

define
N _ ~—0/2 gny’ —_ A0/2 g1
J;’—-e 0" gy =—€ CBVYHMW.
Then
wo_ L v S 2 v
G =7J)T, 9" =—(T°)5 9™,
hence

legup _ *(j2)¢f, j2 —_5 o g= G

... “almost-complex” structure

- (M, J,e7/?g,,) “aimost-Kahler < g=G

note: g =G = e.o.m. for 6*¥ reduces to
vn—1 _
Vg, =0

follows from *w = f+w
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curved NC branes

special class of solutions:

Dgd' =

g = G,u,u:
0
Vo) = 0

holds for (anti)self-dual symplectic structure 6

7l

*(071) = £ Euclidean
*(0~") = +£i0='  Minkowski (Wick rotation X° — it )

S ~ Tr[X3, XP][Xa, Xp] = / d*x \/ 19|

... same structure as vacuum energy / cosm. const.
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curved NC branes

semi-classical derivation of e.o.m.:
1
_ b 2 —0o

geometrical d.o.f:

805 = VubA, —V.,3A,
5

81 21031 (G094 50 Gt s+ G094 07 5,0, + n(x) 04+ 503, )

= 3L \J0) (27 Gyl Grede, + 67 Grvagu, + n(x) 0n 56y,

= [ ExVG(GME e 0LV 0A, — € Tn0PIN 5A, + G 0,610,560,

= — [a?xV/GoA, <GW G'PV,(e70)) — V (e*”n 9Pn)) + 800, (\/é Gwam,)
= = [ ™xVG (04, (G GV (e70)) — J0,(VBe Tnoem)) + 66! Agd)

— [ X VG (5A, (GG PV (€76 — 677071 Opn) + 66/ A

0S
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curved NC branes

(sufficiently) generic 4D geometry in M.M.:

@ take some nice (M*,g,.) (e.g. asympt. flat, glob. hyperbolic, ...)
m

@ choose embedding x2 : M — R0 (Friedman etal)

“Tdx* A dx”,

nv

© equip M with (anti)selfdual symplectic form w = 6
*xg(w) = £w (almost-Kahler)

— construct quantization of (M, w):
Z:C(M)— A= Mat(oo,C)

in particular: X2 ~ x2
Q — effective metric G* ~ g*¥, encoded in (1 in M.M.

(examples: fuzzy spaces = quantized coadjoint orbits, e.g. S5 C R3)
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curved NC branes

su(n) gauge fields:  same model, new vacuum

ya— (Y Xomh
= yi = ¢ @1,

(n coinciding branes)

include fluctuations:

Ya—(1+Ap8p)< AP >

P @1, + o
where
Al = =M A, , @ A\, A* € su(n)
O = @A

= effective action:

Swu = [ d*xVGe” G G"'tr Fuy Fu +2 [n(x)tr FAF

(H.S., JHEP 0712:049 (2007), JHEP 0902:044,(2009) )
.. su(n) Yang-Mills coupled to metric G**(x)
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curved NC branes

fermions
S[V] = TrvDV = TrUl, [X2 V]
~  [d* p(x) Wik (x)0,V,
yH(x) =T 40V+0, x2
note

{y+, 47} = {raz rb}/gu’uawxagu'uawxb
200 1Y Vgu/l,/
= 2e° G"(x)

naturally SUSY (IKKT model with D = 10)

couple to G,,,,, but non-standard spin connection (submanifold!)

H. Steinacker Non-commutative geometry and matrix models Il



curved NC branes

global SO(9, 1) symmetry:

@ can use to fix ¢'[, = 0 = d¢'|
... analogous to Riemannian normal coordinates
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curved NC branes

global SO(9, 1) symmetry:

@ can use to fix ¢'[, = 0 = d¢'|
... analogous to Riemannian normal coordinates

bottom line: U(1) sector is geometry

@ scalar fields describe embedding M* ¢ R'°,
orv & ¢ completely absorbed in g, G, (semi-classically)

@ dynamics, propagators due to [X?4,.][Xa, ]
@ fluctuations of branes — dyn. geometry, nonabelian gauge fields

@ couples naturally to matter
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curved NC branes

global SO(9, 1) symmetry:

@ can use to fix ¢'[, = 0 = d¢'|
... analogous to Riemannian normal coordinates

bottom line: U(1) sector is geometry

@ scalar fields describe embedding M* ¢ R'°,
orv & ¢ completely absorbed in g, G, (semi-classically)

@ dynamics, propagators due to [X?4,.][Xa, ]
@ fluctuations of branes — dyn. geometry, nonabelian gauge fields

@ couples naturally to matter

@ expect good quantum theory (including gravity):
action=NC N =4 U(1) SYM
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curved NC branes

U(1) gauge fields as gravitons 60, = Fu, on Rj

G;u/(x) _ ,Tllw _ (+O(F2))

FLu(x) ... u(1) field strength
therefore

hF“’ = ﬁVV/éylp Fﬂﬂ + ﬁuﬂ/éuln Fnl/ - %ﬁ,uu (épanﬂ)

... linearized metric fluctuation
e.o.m:

[Xuv [XVvXH/]]nH/—L’ = O
= 0"Fu, =0
0

= R.[C] = (0*h,,, = 0...harm. gauge)

cf. Rivelles [hep-th/0212262]
while R,,,, #0
=- on-shell d.o.f. of gravitons on Minkowski space
i.e.: NC U(1) on R} as gravitons cf. Kitazawa [hep-th/0512204]



curved NC branes

higher-order terms, curvature

Hoo = XA XL X, Xl
Tab = Hab - %gabHv H:= Habgab = [XC7 Xd][XC‘7 XO’] )
OX = [X°[Xb, X]]

result:

for 4-dim. M c RP with g, = G,..:

T (2T*0X.0X, — TE0Hap) ~ 25 [d*x/G e R
Tr([[X, X°], [Xe, XP11[Xa, Xp] — 20X300X4)
~ gy JA*x /G & (37701100 Ry — 2R+ D08, 0)

(Blaschke, H.S. arXiv:1003.4132 )

(cf. Arnlind, Hoppe, Huisken arXiv:1001.2223)
=- Einstein-Hilbert- type action for gravity as matrix model
pre-geometric version of (quantum?) gravity, background indep-!
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curved NC branes

derivation: (assume g = G)

H = 11X X, [X2, X]]; ~ —e° G 0,x20,xb °=C e pab,
Tab _—  pHab _ %nabH ~ e’ Pﬁlb

Pn, Pr ... projector on normal / tangential bundle of M c RP. note

RI/[L)\I{ = Ipﬁlb (*8Hauxaa)\a,uxb + 8Hauxaaua)\xb)
= —V.VuxqVa\V,Xa + V.V, X3V, ViXa

(i.e. Gauss-Codazzi theorem) and
T%[X?, [Xa, Thol]  ~ €7PREV V(€7 gbo — €7 9" Xp0, Xc))
= &7 ((D - 4)0e” — 2P (e"V" 9 X,V .0, Xc) )
= e ((D — 4)0e” — 2e<fanxavMa,,xa)
hence
2TLIXAXP — T[Ty, ~ €27 ((D —4)0e” — 2e"/—?)

noting that H ~ —e” = n, result follows.
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curved NC branes

vacuum energy / cosm.const in matrix model:

recall |g| = |G| for general G # g

can show
L4 1

JL1H2 — HabH,, 2

A(X) = LAZc = Le™ /2
L ... cutoff “length” in matrix model

Tr

(21)2 /d“x A (x)v/g.

where

(recall Ay = "giil = ¢%)
b

note: is different from action

1 i =G 1 n
ST XX ~ s [ dxVIale T = Gl [ae gl
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curved NC branes

proof:
Hab = %[[X‘{XC]’ [)(b7)(c]]Jr -~ _eaGuuauxaayxb — _g° (j2 ° PT)ab,

in normal coords, J2 = —diag(a?,a?, a2, a"2)
2 EV — char. equation

T4 = %(trjz)jz 5
implies (note H = —e” tr.J?)
H®Hap — %Hz ~ —€% PE(Pr)ap = —4NE
hence
L* 1

L4 1 /
Tr ~ — d*x\/ge e 7 = /d“x/\4 x)\/g
%H2 — HabH,, 2 (2m)? Vo 2(2m)? Ve
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Quantization

Quantization of M.M.

Z= / axaay e~ SXI-Slvl

...non-perturbative!

@ includes integration over geometries !!
@ probably ill-defined in general (UV/IR mixing = oo ind. gravity)

@ 3 ONE model with well-defined (finite !?) quantization:

N =4NC SYMonR} <« (IKKT) model, D= 10
Ishibashi, Kawai, Kitazawa and Tsuchiya 1996, ff

fully SO(9,1) and U(#) invariant
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7- / AXAdY e~ SXI-SIV] _ oS
2 interpretations:
Q@ onRi: Xt =Xr4 0 A,, X*...Moyal-Weyl
— NC SYMon R}, UV/IR mixing in U(1) sector

IKKT model, D = 10: /' = 4 SYM, perturb. finite 1(?)

©Q on M* Cc R U(1) absorbed in 6#*(x), g
— gravity, induced E-H. action

SeffN/d“x |G| (A* + cN; R[G] + ...)
(R[@G] due to UV/IR mixing in NC gauge theory)

H. Steinacker Non-commutative geometry and matrix models Il



7- / AXAdY e~ SXI-SIV] _ oS
2 interpretations:
Q@ onRi: Xt =Xr4 0 A,, X*...Moyal-Weyl
— NC SYMon R}, UV/IR mixing in U(1) sector

IKKT model, D = 10: /' = 4 SYM, perturb. finite 1(?)
©Q on M* Cc R U(1) absorbed in 6#*(x), g
— gravity, induced E-H. action

Sefr ~ / d*x\/|G| (A* +cNiR[G] + ...)

(R[@G] due to UV/IR mixing in NC gauge theory)

@ explanation for UV/IR mixing & U(1) entanglement
@ D=10 = good quantization !! (maximal SUSY)
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quantum effective M.M.

induced action: fermionic loop

S[V] = Tr W[ X2, ]
induced effective action:
1 2 1 OOdoz —al?
e := ETI(IOQD) — —fTr/Fe D e o = I_L[X].

2
0

L ... cutoff length
heat kernel expansion:

Tre—°? — Z a7
commutative case: (" ... Seeley-de Witt coeff.,
Feft = /d“x(/\4@+ N%R[G] + ...)
.. induced gravity (Sakharov 1967)

NC case: coupling to gravity = compute induced gravity
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quantum effective M.M.

NC heat kernel expansion

perturbation of flat background ~ [° = w§ +V

I’\)\—k

[ (eF —eml)emie =3, ,0(V4)
=: TrL(X)

(cf. Grosse Wohlgenannt 2008)

leir = TrL(X),  invar. under SO(D) and U(o0)

complication: UV/IR mixing, additional divergences ~ A", n € Z,

N=LAc.,  Axc=10,!["8..NC scale

mild UV/IR mixing: finite A, such that &4 < 1,

then semi-class. approx. ok even in Ioops
or: N' = 4 model: finite (?!)
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quantum effective M.M.

for computation: use NC gauge theory point of view
X __prv
perturbation of R}: X2 = <)§) ) + < 9<b’ AV)
w2 _ i + ‘/7 éuy _ /\ﬁcéup/éyy/éﬂ/lﬂ

VWU = =G (21Au, 0,91 + (0,40, V] + A, [As, V1) + 8561, [, W]
FAG (B [FH, W] + 25,007 [0,¢' + i[Ay, ¢'], W] = iZj([¢', ¢1], W])

compute all dimension 6 operators in effective gauge theory
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quantum effective M.M.

.. long computation (one-loop NC YM, generic external fields A,,, ¢')
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quantum effective M.M.

effective gauge theory

induced gauge theory up to dimension 6:

Far = A [ &% /9(9% Day/ Do
—IN (047 F, 077 Fyy + (677 Fror ) (FOFD))
—20""F,ag°?8,9' 05 + 5 (0 FL )9 950 datpi + h-O-)

TR Y f 2 ( DN FoyDgFor GP7 G — 1208 Hge' Dl

(T F ) +)

/\6 d“2 g(...)

+...

all of this is due to UV/IR mixing !
(D. Blaschke, H.S. M. Wohigenannt arXiv:1012.4344. )
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quantum effective M.M.

effective generalized matrix model:

- o
re-assemble effective action: X4 = (f;) + < o ¢'AV)

reX] _Tr/1H2HabHa:4 — ~ [ d*x M (x)\/g(x)

Hab = [X2 X°|[XP, X;] + (a <+ b), H = H3by,,
(D. Blaschke, H.S. M. Wohlgenannt arXiv:1012.4344 )
SO(D) manifest, broken by background (e.g. Rj)
= highly non-trivial predictions for (NC) gauge theory
expect generalization to nonabelian N’ = 4 SYM: full SO(9,1) !

effective generalized matrix model
= powerful new tool for (NC) gauge theory and (emergent) gravity J
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quantum effective M.M.

effective generalized matrix model:

- o
re-assemble effective action: X4 = (f;) + < o ¢'AV)

rx] =Tr L
VEHR = H®Hap e 10 cuns [ X] .

Liocn[X] = c1[XC, H®N[Xe, Hab] + C2HO[ Xz, [X2, XP|][Xq, [Xa, Xoll + ..
Hab = [X2 X°|[XP, X;] + (a < b), H = Haby,,
(D. Blaschke, H.S. M. Wohlgenannt arXiv:1012.4344 )
SO(D) manifest, broken by background (e.g. Rj)
= highly non-trivial predictions for (NC) gauge theory
expect generalization to nonabelian N’ = 4 SYM: full SO(9,1) !

effective generalized matrix model
= powerful new tool for (NC) gauge theory and (emergent) gravity J
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quantum effective M.M.

SO(9,1) resp. SO(10) symmetry:

é;uf 0_;1,;1,’9_1/1//_- ‘o é;uxDu AN
@ eg. [X2 XY = < +§““Dy¢f " % qﬁ) is SO(9,1)

multiplet
only possible due to NC !

SO(9,1) acts on X2 = <Xﬂ j/WA"),
. . —0* A,
non-linearly realized (cf. SSB) on < & >

@ can use to fix ¢/'|, = 0 = d¢'|
... analogous to Riemannian normal coordinates
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quantum effective M.M.

full IKKT model around R: (=N =4SYMon R}

background field method X% — X2 4 Y3,
fully SO(9, 1) covariant, e.g.

Mictoop = 3T (Iog(1+ F'07'[6%,]) - %(Iog(1+ sW-1[e, ]))
O = [X&[X4 ]
ors = [XI,XS]
Y,s = SO(9,1) generator

— effective generalized M.M.
(work in progress, D. Blaschke, H.S.)

SO(9, 1) invariant formalism, broken spontaneously through R$
NC essential.
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quantum effective M.M.

dynamics of emergent NC gravity

assume effective action
S~ [ d'xv/Igl(~2A* + 3R) + S
leads to
§S = [d*x\/|g]6g(—N*gH + 8rTH — N2GH)
—2 [6¢'0,(\/19] (=N\*g"” + 8xTH — N2GHV))D, ¢
since g, = g + 9,00, ¢'
@ “Einstein branch”

NG + N3GH = 8 TH

@ “harmonic branch”
N*Og¢ = (87 TH — N3G*)V .0, 6
prototype: flat space R c R'?, even for A >> 0!
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quantum effective M.M.

illustration of Einstein branch

example: Schwarzschild geometry (Blaschke, H.S. arXiv:1005:0499)

embedding M C R’, asymptotically flat (harmonic), e” — const
t
rcos ¢ sind
rsinpsind
rcos v

x4 = ,
1/ cos (w(t+1))

Lf\ﬁsin (w(t+1r))

1 /r
w r

Wlth gab = dlag(_a +7 +7 +7 +a +7 _)

central singularity: embedding — oo
with complexified SD symplectic form
N #~' — const for r — oo
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quantum effective M.M.

issues remain:

@ 0"¥ degenerate on a circle on horizon
— gauge coupling depends on e? ~ |6#¥|, not good

extrinsic term such as TrOX40X? ~ [ Agx?Agx? may arise
— need to understand (quantum) effective action
show: predominantly intrinsic geometry ~ GR

@ Lorentz violating effects due to 6 must be very small
(maybe average out 6" ?)

probably need something like M* x K, intersecting branes, ...

singularities ? — presumably resolved by fuzzyness
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further aspects

Fuzzy extra dimensions in field theory

e.g. Sy may arise in ordinary 4D gauge theory through Higgs effect: J
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further aspects

Fuzzy extra dimensions in field theory

e.g. Sy may arise in ordinary 4D gauge theory through Higgs effect: J

consider SU(N') Yang-Mills theory on 4-D Minkowski space M*

Sy = [ d*y Tr (5t FiuFuw + (Duda) Duda) — V(6)

A, ... su(N) - valued gauge fields, D,, = 9, + [A,, .]. and
ba=o¢h, a=1,2,3 ... scalar fields in adjoint of SU(\)

global SO(3) symmetry, gauge symmetry
dpa — Uloal, U=U(y) e UN)

V(¢) ... renormalizable potential respecting the symmetries
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further aspects

(almost) most general potential respecting the symmetries:
V(p)=Tr <a2(¢a¢ab 12 +c+ QQ F' F, )

for suitable constants a, b, ¢, g, where

Fap [¢a, </)b] — leapete

vacuum = minimum of V(¢), achieved if

Fab = [ba, db] — icabcdc = 0, a(pada — B) =0

= ¢, ... representation of SU(2)
with Casimir b = Cy(N) for some N € N

¢a = JgN) @ 1n

JéN) ... generator of the N-dimensional irrep of SU(2)
(assume N = Nn)
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further aspects

note: Mat(N, C) = Mat(N, C) ® Mat(n, C) = C(S%) ® Mat(n, C)

interpretation:
#3(y) ... generate u(n)-valued functions on S% x M*

o
therefore: (éa) .. functions on M* x S% — R’

Higgs effect: U(N') gauge symmetry broken to U(n)
(= commutant of ¢, = J;N))

spontaneously generated extra dimensions

model describes 6-dimensional U(n) gauge theory on M* x S5,
finite tower of massive Kaluza-Klein modes due to Higgs effect

(also true if add fermions to model)
P. Aschieri, T. Grammatikopoulos, H.S., G. Zoupanos 2006; Madore, Manousselis; etc.

... same mechanisms as in string theory, within renormalizable QFT!

full matrix model — same applies to space-time itself
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further aspects

Y-M. Matrix Models + fermions:
contain all ingredients for theory of fund. interactions.

a priori only SU(n) gauge groups

symmetry breaking, contact with particle physics:
possible mechanisms:

@ extra-dimensional fuzzy spaces M* x K ¢ R'°

add cubic terms to matrix model = extra-dim. fuzzy S?,
interesting low-energy gauge groups, including
SU(3) X SU(2) X U(1) (X U(1)anomalous)

(P. Aschieri, T. Grammatikopoulos, H.S., G. Zoupanos 2006; Madore,
Manousselis; Aoki, Azuma, Iso, ...; H. Grosse, F. Lizzi, H.S. arXiv:1001.2703)

however non-chiral

@ difference to string theory: R? “bulk” unphysical, nothing
propagates in bulk

predictive framework
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further aspects

Summary, outlook

"Matrix (fuzzy) geometry“: quantized symplectic spaces M c RP
generic class, many examples

@ matrix-model Tr[X2, X][X?, X*'| Qua Gbty

dynamical matrix geometries
— emergent gravity & gauge thy
@ notsame as G.R., but might be close enough
(extrinsic geometry, physics of vacuum energy, ...)
@ can address curvature, etc.

@ suitable for quantizing gravity !
(IKKT model D =10, maximal SUSY)

@ new powerful techniques: effective generalized matrix models
... to be developed

@ ... "new”, more work is needed
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further aspects

Cosmological solution

D. Klammer, H. S., PRL 102 (2009)
assume: vacuum energy A* > energy density p
= look for harmonic embedding Ax? = 0 of FRW metric
ds® = —dt? + a(t)?(dx? + sinh?(x)dQ?),

Ansatz

sinh(x) sin# cos ¢
cos v(t) >® sinh(x) sin @ sin ¢

alt) ( 4 .
xX3(t,x,0,¢) = ( sin(t) ilonshh((xx))cosa c R0

xc(t)

(cf. B. Nielsen, JGP 4, (1987) )

Evolution a(t), W(t), x;(t) determined by Ax? = 0
solution of M.M + leading term [ d*xv/GA* in T1_jo0p J
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further aspects

harmonic embedding Agx? = 0 leads to

analog of Friedmann equations

2

H*=% = —pPa'+d?at- L.
2 = -—3d%a®+4pPal.

xc 0.0

largely independent of detailed matter/energy content
aslongas A* > p

k = —1 (negative spatial curvature) most interesting
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further aspects

Implications:

1) early universe:

@ big bounce: a=0fora=au, ~b'/*
(3 bound for energy density p vs. vacuum energy A%)
@ inflation-like phase a(t) ~ t2, ends at a(t.;) = \/gg
geometric mechanism (no scalar field required),
no fine-tuning

1.57
1 15
10; 10
at) | H()
] 5
0.57
B LI 1 Ot REEEEEREE) T 1
0.4 0.0 0.4 00  0.05 0.1 0.15

H. Steinacker Non-commutative geometry and matrix models Il



further aspects

2) late evolution (now):  a—1

approaches Milne-like universe (k = —1, spatial curvature),

ag - ACDN
aff] - Mile Universe p—

Scakfactor - aft)

in remarkably good agreement with observation
(age 13.8 - 10° yr, type la supernovae)
different physics for early universe (recombination etc.)
A. Benoit-Levy and G. Chardin, [arXiv:0903.2446]
CMB acoustic peak argued to be at correct scale (?)

no fine-tuning of cosm. const., no need for dark energy ! J
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