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«Unlike the Riemannian manifolds the quantum mechanical unit spheres do not differ
one from another: they are all isomorphic. The worlds of the present-day quantum
mechanics thus present a picture of structural monotony: they are all ‘painted’ on the
same standard ideally symmetric surface. The formalism of the quantum theory of
infinite systems and quantum field theory is not very different from that. (...) the basic
structural framework of the theory is conserved at the cost of quantitative multiplication:
when meeting a new level of physical reality the quantum theory responds by simply
producing infinite tensor products of its basic structure. (...) It may be that present day
quantum theory still represents a relatively primitive stage of development and lacks some
essential evolutionary steps leading towards structural flexibility. If this were so, further
development would involve a programme opposite to the ‘quantization of gravity’:
instead of modifying general relativity to fit quantum mechanics one should rather modify
quantum mechanics to fit general relativity.»

Bogdan Mielnik, 1976, Quantum logic: is it necessarily orthocomplemented?
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Plan

1 Nonlinear generalisation of quantum dynamics

I Geometric structures on quantum states: relative entropies & Poisson brackets
I Lüders’ rules → constrained relative entropy maximisations
I Unitary evolution → nonlinear hamiltonian flows

2 Geometric framework for quantum information theories
beyond quantum mechanics

I Quantum states = integrals on W ∗-algebras
I Quantum theoretic kinematics = a generalisation of probability theory
I Quantum theoretic dynamics = a generalisation of causal statistical inference
I Reconstruction of QM and probability theory
I Quantum theoretic semantics beyond spectral theory, probabilities, and Born rule
I Intersubjective bayesian coherence

3 Emergence of space-time theories

I Space-time geometry = geometry of local correlations and causality
I Emergent QFTs?

Ryszard Paweł Kostecki (Perimeter Institute) Quantum information geometric foundations 3 / 32



Quantum information models and quantum information distances

trace class operators: T (H) := {ρ ∈ B(H) | ρ ≥ 0, trH|ρ| <∞}
we will consider arbitrary sets of denormalised quantum states: M(H) ⊆ T (H)+

Quantum information distances D :M(H)×M(H)→ [0,∞]s.t. D(ρ, σ) = 0 ⇐⇒ ρ = σ.

E.g.
I D1(ρ, σ) := trH(ρ log ρ− ρ log σ) [Umegaki’62]
I D1/2(ρ, σ) := 2

∣∣∣∣√ρ−√σ∣∣∣∣2
G2(H)

= 4trH( 12ρ+ 1
2σ −

√
ρ
√
σ) (Hilbert–Schmidt norm2)

I DL1(N )(ρ, σ) := 1
2 ||ρ− σ||T (H) = 1

2 trH|ρ− σ| (L1/predual norm)
I Dγ(ρ, σ) := 1

γ(1−γ)
trH(γρ+ (1− γ)σ − ργσ1−γ); γ ∈ R \ {0, 1} [Hasegawa’93]

I Dα,z (ρ, σ) := 1
1−α log trH(ρα/zσ(1−α)/z )z ; α, z ∈ R [Audenauert–Datta’14]

for ran(ρ) ⊆ ran(σ), and with all D(ρ, σ) := +∞ otherwise.

Various “quantum geometries” will arise from different additional conditions imposed on
pairs (M(H),D):

I Different choices ofM(H) reflect different assumptions on the available possible
knowledge (description of experimental situation).

I Different choices of D reflect different assumptions regarding the convention of
“best/optimal” estimation/inference.

I Both choices are case-to-case-dependent and should be operationally justified.
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Quantum entropic projections

Let Q ⊆ T (H)+ be such that
for each ψ ∈M(H)
there exists a unique solution

PD
Q(ψ) := arg infρ∈Q {D(ρ, ψ)} .

It will be called an entropic projection.

E.g.

for D1/2(ρ, σ) = 4trH( 12ρ+ 1
2σ −

√
ρ
√
σ),

consider the entropic projections P
D1/2
Q

where Q are images of closed convex subspaces Q̃ ⊆ K+ := G2(H)+

under the mapping Q̃ 3 √ρ 7→ ρ ∈ Q.
They coincide with the ordinary projection operators in B(K) ∼= B(H⊗H?).

for D1(ρ, σ) = trH(ρ log ρ− ρ log σ)
andM(H) = T (H)+

1 , ψ ∈ T (H)+
1 , h ∈ B(H)sa, then [Araki’77, Donald’90]

∃! ψh := arg inf
ρ∈T (H)+

1

{D1(ρ, ψ) + trH(ρh)} .
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Quantum measurement, bayesianity, and maximum relative entropy

Lüders’ rules:
ρ 7→ ρnew :=

∑
i

PiρPi (‘weak’)

ρ 7→ ρnew :=
PρP

trH(Pρ)
(‘strong’)

Bub’77’79, Caves–Fuchs–Schack’01, Fuchs’02, Jacobs’02: Lüders’ rules should be
considered as rules of inference (conditioning) that are quantum analogues of

the Bayes–Laplace rule: p(x) 7→ pnew(x) :=
p(x)p(b|x)

p(b)
.

Williams’80, Warmuth’05, Caticha&Giffin’06: the Bayes–Laplace rule is a special
case of

p(x ) 7→ pnew(x ) := arg inf
q∈Q

{D1(q, p)} ; D1(q, p) :=

∫
X
µ(x )q(x ) log

(
q(x )

p(x )

)
.

Douven&Romeijn’12: the Bayes–Laplace rule is also a special case of

p 7→ arg inf
q∈Q

{D1(p, q)} = PD0
Q (p),

where D0(p, q) = D0(q, p).

Ryszard Paweł Kostecki (Perimeter Institute) Quantum information geometric foundations 6 / 32



Quantum bayesian inference from quantum entropic projections

RPK’13’14, F.Hellmann–W.Kamiński–RPK’14:

1 weak Lüders’ rule is a special case of

ρ 7→ arg inf
σ∈Q

{D1(ρ, σ)}

with
Q = {σ ∈ T (H)+ | [Pi , σ] = 0 ∀i}

2 strong Lüders’ rule derived from

ρ 7→ arg inf
σ∈Q

{D1(ρ, σ)}

with
Q = {σ ∈ T (H)+ | [Pi , σ] = 0, trH(σPi ) = pi ∀i}

under the limit p2, . . . , pn → 0.
3 hence, weak and strong Lüders’ rules are special cases of quantum entropic projection

PD0
Q based on relative entropy D0(σ, ρ) = D1(ρ, σ).

Bayes–Laplace and Lüders’ conditionings are special cases of entropic projections
⇒ “quantum bayesianism ⊆ quantum relative entropism”.
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Quantum Jeffrey’s rule

Caticha&Giffin’06: under more general constraints, one can derive also Jeffrey’s rule
(generalising the Bayes–Laplace rule):

p(x |η) 7→ pnew(x |η) :=
n∑

i=1

p(x |bi )λi =
n∑

i=1

p(x ∧ bi |η)

p(bi |η)
λi ,

where n ∈ N,
I {b1, . . . , bn} is a set of exhaustive and mutually exclusive elements of boolean algebra,
I λi = pnew(bi |η) ∀i ∈ {1, . . . , n},
I p(bi |η) 6= 0.

RPK’14: derivation of a quantum analogue of Jeffrey’s rule:

T (H)+
1 3 ρ 7→ ρnew := arg inf

σ∈Q
{D1(ρ, σ)} =

n∑
i=1

PiρPi

trH(ρPi )
λi ∈ T (H)+

1 ,

where n ∈ N,
I {P1, . . . ,Pn} ⊆ Proj(B(H)),

∑n
i=1 Pi = I, PiPj = δijPi ,

I λi = trH (ρnewPi ) ∀i ∈ {1, . . . , n},
I trH(ρPi ) 6= 0.

It generalises Lüders’ rule.
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Quantum Poisson structure

Consider the space of self-adjoint trace-class operators: T (H)sa := T (H) ∩B(H)sa.

It can be equipped with a following real Banach smooth manifold structure:

I tangent spaces: Tφ(T (H)sa) ∼= T (H)sa

I cotangent spaces: T~
φ (T (H)sa) ∼= (T (H)sa)? ∼= B(H)sa

Bóna’91,’00: a Poisson manifold structure on T (H)sa is defined by a commutator of
an algebra:

{h, f }(ρ) := trH (ρ i[dh(ρ), df (ρ)]) ∀f , h ∈ C∞(T (H)sa;R) ∀ρ ∈ T (H)sa.

So, ifM(H) ⊆ T (H)+ is a smooth submanifold of T (H)sa,
then every f ∈ C∞(M(H);R) determines a hamiltonian vector field:

Xf (ρ) = −{·, f }(ρ) = trH(ρ i[d(·), df (ρ)]).

More generally, we can choose arbitrary real Banach Lie subalgebra A of B(H) such
that: (i) it has a unique Banach predual A? in T (H); (ii) there exists at least one
M(H) ⊆ T (H)+ which is a smooth submanifold of A?.
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Nonlinear quantum hamiltonian dynamics

For each hamiltonian vector field, the corresponding Hamilton equation reads

d
dt

f (ρ(t)) = {h, f }(ρ(t)) = i trH ([ρ(t), dh(ρ(t))]df (ρ(t))) .

The above equation is equivalent to the Bóna equation [’91’00]

i d
dt ρ(t) = [dh(ρ(t)), ρ(t)].

Hence,

The Poisson structure {·, ·} induced by a commutator of B(H) allows to introduce various
nonlinear hamiltonian evolutions on spacesM(H) of quantum states, generated by arbitrary
real-valued smooth functions onM(H).

The solutions of Bóna equation are state-dependent unitary operators U(ρ, t).
They do not form a group, but satisfy a cocycle relationship:

U(ρ, t + s) = U((Ad(U(ρ, t)))(ρ), s)U(ρ, t) ∀t, s ∈ R.

In a special case, when h(ρ) = trH(ρH) for H ∈ B(H)sa,
the Bóna equation turns to the von Neumann equation:

i
d
dt
ρ(t) = [H, ρ(t)].
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Quantum causal inferences by entropic-hamiltonian dynamics

Two elementary geometric structures:
I D(·, ·) represents the convention of “best estimation/inference”
I {h, ·} represents a convention of causality (“internal dynamics”)

Two elementary forms of quantum dynamics:
I entropic projections PD

Q generated by quantum distances D(·, ·)
I hamiltonian flows wh

t generated by nonlinear hamiltonian vector fields {h, ·}

A general form of quantum dynamics is defined as a causal inference PD
Q ◦ w

h
t .

It generalises unitary evolution followed by a “projective measurement”.

Postulate: consider the setting of causal inferences PD
Q ◦ w

h
t as an alternative to the

paradigm of semigroups of CPTP maps.

Basic idea: every CPTP map can be decomposed into:

1) tensor product of initial state with uncorrelated environment,
2) unitary evolution,
3) projective measurement,
4) partial trace.

It remains to prove that 4 and 3+4 are entropic projections
(ongoing work with M.Munk-Nielsen).
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Towards new foundations

Idea:
consider spacesM(H) as fundamental

allow any nonlinear functionsM(H)→ R as observables

define geometry ofM(H) by means of D(·, ·) and {·, ·}
define dynamics ofM(H) by means of PD

Q(·, ·) and w{h,·}t

Questions:
what’s up with Hilbert spaces? (are they necessary? if not, then what?)

what’s up with spectral theory, probability, Born rule, etc?

Answers:
replace Hilbert spaces by W ∗-algebras

replace density matrices by positive integrals on W ∗-algebras

this setting is an exact generalisation of Kolmogorov’s measure theoretic setting for
probability theory

build up all remaining semantics for quantum theory
in the analogy to semantics of probability theory and statistical inference
(hence: no Born rule, no probabilities, no spectral theory)
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Probability theory:
Underlying structure: measure space (X , µ)

Main spaces: Probabilistic models:

M(X , µ) ⊆ L1(X , µ)+ := {p : X → R |
∫
X
µ|p| <∞, p ≥ 0}

e.g. Gaussian models: {p(x , (m, s)) = 1√
2πs

e−
(x−m)2

2s2 | (m, s) ∈ Θ ⊆ R× R+}.
Observables (estimators): functions f : X → R
The mapping L1(X , µ)× L∞(X , µ) 3 (p, f ) 7→

∫
X µpf ∈ R determines Banach

space duality L1(X , µ)? ∼= L∞(X , µ).

Quantum mechanics:
Underlying structure: Hilbert space H
Main spaces: Spaces of density matrices:

M(H) ⊆ T (H)+ := {ρ ∈ B(H) | trH(|ρ|) <∞, ρ ≥ 0}

e.g. Gibbs states: {e−βH | β ∈ ]0,∞[}, for a fixed self-adjoint H.

Observables: self-adjoint operators x : H → H
The mapping T (H)×B(H) 3 (ρ, x) 7→ trH(ρx) ∈ C determines Banach space
duality T (H)? ∼= B(H).
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W ∗-algebras and integration

A W ∗-algebra N :
I an algebra over R or C with unit I,
I with ∗ operation s.t. (xy)∗ = y∗x∗, (x + y)∗ = x∗ + y∗, (x∗)∗ = x , (λx)∗ = λ∗x∗,
I that is also a Banach space,
I with ·, +, ∗ continuous in the norm topology (implied by the condition ||x∗x || = ||x ||2),
I such that there exists a Banach space N? satisfying the Banach space duality:

(N?)? ∼= N ,
Special cases:

I if N is commutative
then ∃ a measure space (X , µ) s.t. N ∼= L∞(X , µ) and N? ∼= L1(X , µ)

I if N is “type I factor”
then ∃ a Hilbert space H s.t. N ∼= B(H) and N? ∼= T (H).

Hence, the element φ ∈ (N?)+ provides a joint generalisation of probability density
and of density operator. By means of embedding of N? into N ?, it is also an
integral on N .

Key fact: The above setting allows to develop full-fledged integration theory on
noncommutative W ∗-algebras, which generalises integration theory on measure
spaces (with partial integration, conditional expectations, Lp(N ) spaces,...).
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New kinematics: quantum models and observables
General quantum information models:

For any W ∗-algebra N ,M(N ) will be defined as an arbitrary subset of a positive part of
a Banach predual space of N ,M(N ) ⊆ N+

? .

Special cases:
N is commutative ⇒ M(N ) =M(X , µ)

N is type I factor ⇒ M(N ) =M(H).

We do not assume that:
M(N ) is convex (⇐⇒ probabilistic mixing)

M(N ) is smooth (⇐⇒ asymptotic estimation)

M(N ) is normalised (⇐⇒ frequentist interpretation)

Observables:

Observables are defined as arbitrary functions f :M(N )→ R.

Hence: smooth observables define hamiltonian vector fields.

Each “observable in the old sense” x ∈ N sa determines a corresponding “observable
in the new sense” by fx(φ) := φ(x).
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New kinematics: quantum information geometry

Main change: Consider expectation values as more fundamental than eigenvalues
⇒ foundational role of spectral theory replaced by quantum information geometry
Kinematic setting:
(1) spaces: Hilbert spaces H of eigenvectors
→ spacesM(N ) of denormalised expectation functionals on W ∗-algebras N .

(2) observables: linear functions H → H that have real eigenvalues
→ nonlinear real valued functionsM(N )→ R.

(3) geometry: geometry of Hilbert spaces H defined by scalar product 〈·, ·〉
→ geometry of spacesM(N ) defined by quantum relative entropies D(·, ·) and
quantum Poisson structures {·, ·}.

Two fundamental geometric structures on M(N ):
a) Quantum distances D(·, ·)

F large variety of choices
F allows to derive riemannian geometry (via ∂i∂jD)

and Hilbert space projective geometry (via PD
Q for D = D1/2)

as special cases
b) Quantum Poisson structures {·, ·}

F depend on the choice of a real Banach Lie subalgebra of N
F generalises symplectic geometry

No Hilbert spaces, no probability theory in foundations (derived as special cases)
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New dynamics: information geometric causal inference

Main change: Consider nonlinear state changes defined by geometric structures on
quantum models as more important than unitary evolution with
no-initial-correlations assumption
⇒ linear CP maps replaced by nonlinear entropic-hamiltonian maps
Two fundamental dynamic structures on M(N ):
a) Inference: Entropic projections φ 7→ arg infω∈Q(η) {D(ω, φ)}

F nonlinear and nonlocal
F requires convexity
F allows to encode experimental constraints
F reduces in special cases to Lüders’ rules

b) Causality: Hamiltonian flows φ 7→ wh
t (φ), where d

dt f (wh
t (φ)) = {h, f (wh

t )}(φ) ∀f
F nonlinear and local
F requires smoothness
F allows to encode theoretical symmetries
F reduces in a special case to the von Neumann equation.

Dynamic setting:
I entropic projections composed with hamiltonian flows: φ 7→ PD

Q(η) ◦ wh
t (φ)
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Backwards compatibility
1 Reconstruction of quantum mechanics:

I N : type I W ∗-algebras
I M(N ): normalised states
I D: D1/2 or D0
I {·, ·}: generated by Banach Lie algebra N sa

I observables: affine functions onM(N )
2 Reconstruction of probability theory:

I N : commutative algebras
I M(N ): normalised states
I D: arbitrary
I {·, ·}: trivialises for commutative algebras
I observables: arbitrary or affine functions onM(N )
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Smooth quantum information geometries
Under some conditions, D induces a generalisation of smooth riemannian geometry onM(N ).

Jenčová’05: a general construction of smooth manifold structure on the space of all strictly
positive states over arbitrary W ∗-algebra.

E.g. M(H) := {ρ(θ) ∈ T (H) | ρ(θ) > 0, θ ∈ Θ ⊆ Rn open, θ 7→ ρ(θ) smooth}
Eguchi’83/Ingarden et al’82/Lesniewski–Ruskai’99/Jenčová’04:
Every smooth distance D with positive definite hessian determines
a riemannian metric gD and a pair (∇D ,∇D†) of torsion-free affine connections:

gφ(u, v) := −∂u|φ∂v|ωD(φ, ω)|ω=φ,

gφ((∇u)φv ,w) := −∂u|φ∂v|φ∂w|ωD(φ, ω)|ω=φ,

gφ(v , (∇†u)φw) := −∂u|ω∂w|ω∂v|φD(φ, ω)|ω=φ,

which satisfy the characteristic equation of the Norden[’37]–Sen[’44] geometry,

gD(u, v) = gD(t∇
D

c (u), t∇
D†

c (v)) ∀u, v ∈ TM(N ).

A riemannian geometry (M(N ), gD) has Levi-Civita connection ∇̄ = (∇D +∇D†)/2.

E.g.,M(N ) = T (H) ∩ {ρ > 0, trH(ρ) = 1} and D1(ρ, σ) = tr(ρ log ρ− ρ log σ) give
Mori[’55]–Kubo[’56]–Bogolyubov[’62] gD1 and Nagaoka[’94]–Hasegawa[’95] (∇D1 ,∇D1†):

gD1
ρ (x , y) = tr

(∫ ∞
0

dλx
1

λI + ρ
y

1
λI + ρ

)
, t∇

D1
ρ,ω (x) = x − tr(ωx), t∇

D1 †

ρ,ω (x) = x .
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Quantum mechanics as a local theory

Apart from tangent bundle
⋃
φ TφM(N ), there is also a bundle of complex (GNS)

Hilbert spaces HM(N )→M(N ).

Vectors in TφM(N ) are defined by self-adjoint operators, which can be represented
uniquely as elements of (HφM(N ))R.

Under some (mild) conditions: TφM(N ) v (HφM(N ))R.
Thus, as opposed to C∗-algebraic approach:

I Spaces of quantum states are equipped with rich geometric structure, allowing for
model construction, state estimation, and nonlinear dynamics.

I Quantum mechanics is reconstructed not only as a global special case of a framework,
but also is present locally at each point of a manifold, as an extension of a tangent
space.

I Our framework allows also for a geometric description of renormalisation procedures
(see Cedric Bény’s talk).

SR
GR

=
QM

Quantum information geometric QT
?
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Semantics I

Orthodox quantum mechanical paradigm:

Some key observations:
Probability theory is just a special case of integration theory on W ∗-algebras, and quantum
states are just integrals, so there is no a priori reason why “general” quantum theory
(beyond QM) should depend on probabilities.

Quantum states (and structures over them) can be associated directly with the epistemic
data by generalising the methods of associating epistemic data with probabilities (and with
structures over them).
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Semantics II

New paradigm:

Basic object of interest: spacesM(N ) ⊆ N+
? of states over W ∗-algebras N .

1) Quantum theoretic kinematics generalises and replaces probability theory.

2) Quantum theoretic dynamics generalises and replaces causal statistical inference.

3) Nonlinear information geometry of spaces of quantum states replaces (linear) spectral
theory of quantum mechanics.

4) But if probability theory disappears from the framework, then...

Main question:
What is the measurement theory of nonlinear observables and nonnormalised states?
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What is the predictive content of semantics of probability theory?
Consider:

Θ: a space of possible configurations
Θ 3 θ = (θ1, . . . , θn): average values of n types of experimental configuration
variables
Ξ: a space of registrations

MaxEnt + entropic projections (or Bayes’ rule) + prediction:

configurations & registrations
model construction // beliefs & updatings
predictive verification
oo

Θ
θi =trH(ρhi ) //

Ξ

��

{ρ(θ) = e−
∑

i β(θi )hi | θ ∈ Θ}

P
D1
Q(Ξ)

��

oo

Θ̃
θ̃i =trH(ρ̃hi ) //

Ξ̃

��

{ρ̃ = PD1
Q(Ξ)(ρ(θ)) | θ ∈ Θ}

P
D1
Q(Ξ̃)

��

oo

Θ̂
θ̂i =trH(ρ̂hi ) // {ρ̂ | . . .}oo

Ryszard Paweł Kostecki (Perimeter Institute) Quantum information geometric foundations 23 / 32



Towards new semantics
One can use other model construction principles
There is no need to use linear expectation type constraints
This what we should care about is the relationship between model construction
(information encoding), inference (information processing), and predictive
verifiability (information decoding).

f =`Θ(fΘ(θ)) //

Ξ

��

({ρ(θ) = proc(f ,Θ) | θ ∈ Θ}, f )

PD
Q(Ξ)

��

oo

... //

Ξ̃

��

({ρ̃ = PD
Q(Ξ)(ρ(θ)) | θ ∈ Θ}, f )

PD
Q(Ξ̃)

��

oo

...
... // ...oo
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Adjointness in the foundations (of inductive inference)
We can relax the condition of bijectivity of arrows between models to one that makes the
relationship between encoding and decoding to be optimal in the following sense:

The method of encoding (model construction) should be the most effective solution of
the problem provided by the given decoding (prediction).

Let TheorMod be a category of theoretical models as objects and inferences as arrows.
Let ExpDes be a category of experimental designs as objects and registrations as arrows.
Model construction is defined as a functor ModConstr : ExpDes→ TheorMod.
Predictive verification is defined as a functor PredVer : TheorMod→ ExpDes.

Mutual consistency condition: ModConstr a PredVer

This means: there is a natural bijection
homExpDes(X ,PredVer(Y )) ∼= homTheorMod(ModConstr(X ),Y )

X

���� ��

ModConstr(X )

���� ��

ExpDes
ModConstr+3

PredVer
ks TheorMod

PredVer(Y ) Y
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Intersubjective bayesian coherence

Personalistic bayesianism does not address intersubjective scientific practice of
construction and verification of experiments and theories:

1 they depend on each other,
2 they are based not on personal betting preferences, but on the socially shared beliefs

and thought styles
(see Ludwik Fleck, 1935, Genesis and development of a scientific fact for more).

The above semantics provides an account for this, while remaining ontically
noncommital, agent based, and compatible with the idea that the values taken by
variables in individual registrations are just observed (not determined by a theory).
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What if space-time and its dynamics
are emergent from quantum theory?
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Jacobson’95: Einstein equations *from* space-time thermodynamics
Consider:

a space-time (M, gab)

a point p ∈M
a small 2-dimensional surface element P
a Killing vector field χa generating local boost orthogonal to P

Define:
a local causal horizon H as a boundary of the past of P, generated
by χa

a heat flow δQ as an energy flux across a local causal horizon:
δQ :=

∫
H dΣaTabχ

b

a temperature T as an Unruh temperature associated with a
uniformly accelerated observer.

Assume:

that entropy S is proportional to the area of H: S = λA

that Clausius’ law holds: δQ = TdS .
Then:

Rab −
1
2
Rgab + Λgab =

2π
λ
Tab.
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Emergent space-times
Basic idea: Consider a principle of equivalence of euclidean QSM with lorentzian
QFT via Wick rotation as a fundamental principle, analogous to mgrav = minert.
Basic mathematical data:

I gD
ρ (·, ·) is a correlation functional, representing a convention of a local (asymptotic)

estimation/inference at ρ.
I {h(ρ), ·} is a dynamical evolution, representing a convention of a local temporal

causality at ρ.
Required assumptions:

I choice of a manifold Σ that is determined by operational parameters of measurement
of “space” and “time”

I splitM(N ) ∼= Σ× M̃(N )
I {h(ρ), ·} is well defined on Σ

Implementation:
I consider a riemannian metric gD

Σ induced by gD on Σ

I “Poincaré–Wick rotation” of gD
Σ to a lorentzian ĝD,h

Σ along a vector field {h, ·}:

gD
Σ = gD

⊥ + eh ⊗ eh 7→ gD
⊥ − eh ⊗ eh =: ĝD,h

Σ ,

where gD
⊥ is a riemannian metric induced by gD

Σ on the submanifolds orthogonal to eh,

while eh :=
gD

Σ ({h,·},·)√
gD ({h,·},{h,·})

is a normalised 1-form of {h, ·}.

An emergent space-time is a triple (Σ, ĝD,h
Σ , eh).
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Emergent space-times: comments

Operational assumptions that may lead to derivation of 4-dimensionality of Σ?
→ see the talk of Markus Müller for very interesting ideas.

Instead of a splitM(N ) ∼= Σ× M̃(N ), one can consider also a nontrivial fibre
bundle with locally (but not globally) defined operational space-times
π :M(N )→ Σ.

Every section of a bundle M̃(N ) over Σ defines a global quantum state φ(ξ) over
space-time, and this determines a bundle HΣ→ Σ of GNS Hilbert spaces Hφ(ξ)Σ,
ξ ∈ Σ.

This allows to use Prugovečki’s approach to defining quantum propagators over a
curved space-time. ⇒ construction of emergent QFTs over curved space-time.
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Overview

1 Nonlinear generalisation of quantum dynamics

I Geometric structures on quantum states: relative entropies & Poisson brackets
I Lüders’ rules → constrained relative entropy maximisations
I Unitary evolution → nonlinear hamiltonian flows

2 Geometric framework for quantum information theories
beyond quantum mechanics

I Quantum states = integrals on W ∗-algebras
I Quantum theoretic kinematics = a generalisation of probability theory
I Quantum theoretic dynamics = a generalisation of causal statistical inference
I Reconstruction of QM and probability theory
I Quantum theoretic semantics beyond spectral theory, probabilities, and Born rule
I Intersubjective bayesian coherence

3 Emergence of space-time theories

I Space-time geometry = geometry of local correlations and causality
I Emergent QFTs?
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