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Motivation

«Unlike the Riemannian manifolds the quantum mechanical unit spheres do not differ
one from another: they are all isomorphic. The worlds of the present-day quantum
mechanics thus present a picture of structural monotony: they are all ‘painted’ on the
same standard ideally symmetric surface. The formalism of the quantum theory of
infinite systems and quantum field theory is not very different from that. (...) the basic
structural framework of the theory is conserved at the cost of quantitative multiplication:
when meeting a new level of physical reality the quantum theory responds by simply
producing infinite tensor products of its basic structure. (...) It may be that present day
quantum theory still represents a relatively primitive stage of development and lacks some
essential evolutionary steps leading towards structural flexibility. If this were so, further
development would involve a programme opposite to the ‘quantization of gravity’:
instead of modifying general relativity to fit quantum mechanics one should rather modify
quantum mechanics to fit general relativity.»

Bogdan Mielnik, 1976, Quantum logic: is it necessarily orthocomplemented?

«Perhaps the habitual linear structures of quantum mechanics are analogous to the
inertial rest frames in special relativity and the geometric description summarized here,
analogous to Minkowski’s reformulation of special relativity.»

Abhay Ashtekar & Troy Schilling, 1997, Geometrical formulation of quantum mechanics
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Plan

0. Brief review of Kähler geometrisation of quantum mechanics of pure states

1. Global geometric theory for spaces of general quantum states:
I state spaces: sets of normal states on W∗-algebras
I geometry: Brègman relative entropies & Lie–Poisson structures
I causal dynamics: nonlinear hamiltonian flows
I statistical dynamics: constrained relative entropy maximisation

2. Local theory:
I spaces of local configurations/effects as tangent/cotangent spaces
I relative entropies inducing local Codazzi and Weyl structures
I Brègman relative entropies inducing local hessian structure
I effective dynamics: geometric path integral with generalised hamiltonian

and entropic connection terms, weighted by the metric-dependent
measure
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Kählerian geometrisation of von Neumann’s QM (I)
[Strocchi’66, Kibble’79, Heslot’85, Anandan–Aharonov’90,
Cirelli–Manià–Pizzocchero’90, Hughston’95, Ashtekar–Schilling’97, and
others...]:

Given a complex Hilbert space H, the scalar product 〈·, ·〉H on H determines
a symplectic form Ω, a riemannian metric G , and a complex structure J:

〈ξ, ζ〉H =:
1
2
G (ξ, ζ) +

i
2

Ω(ξ, ζ), i 〈ξ, ζ〉H =: 〈ξ, Jζ〉H

satisfying the relationship G (ξ, ζ) = Ω(ξ, Jζ), turning H into a Kähler
manifold.

observables determine vector fields: XA(ξ) := −JAξ which are Killing
w.r.t. G
Schrödinger equation ξ̇ = −JHξ is Hamilton’s equation: ξ̇ = XH(ξ)

expectation values are real valued functions f (ξ) := 〈ξ,F ξ〉H,
f : H → R
Poisson brackets are induced from commutator:
{f , k}Ω(ξ) = Ω(XF ,XK )(ξ) =

〈
ξ, (1i [F ,K ])ξ

〉
H
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Kählerian geometrisation of von Neumann’s QM (II)

PH is also a Kähler manifold:
H is a tangent space at each point
all above properties of (G ,Ω, J) on H hold for induced (g , ω, j) on PH
g is a Fubini–Study metric
ω = dθ, where θ is a U(1)-connection 1-form, with holonomy equal to
the Aharonov–Anandan/geometric phase
observables are characterised as Killing hamiltonian vector fields
for any p, p0 ∈ PH: the ‘state vector reduction’ due to measurement
corresponds to projection p0 7→ p along a geodesic of g
the transition probability of p0 7→ p reads cos2(dg (p0, p)/

√
2), where dg

is a geodesic distance of g
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1. Global theory
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Beyond pure states
density matrices are trace class operators:
T (H) := {ρ ∈ B(H) | ρ ≥ 0, trH|ρ| <∞}
we will consider arbitrary sets of denormalised quantum states:
M(H) ⊆ T (H)+

more generally, given any W∗-algebra [i.e., a C∗-algebra N that is a
Banach dual to some Banach space N?; (N?)? = N ]:

I quantum states are given by the elements of the positive part of N?,
M(N ) ⊆ N+

? (i.e., normal positive linear functionals on N )
I the pair (N+

? ,N ) is a generic setting of a noncommutative integration
theory, with N? = L1(N ), N = L∞(N ), and other noncommutative
Lp(N ) spaces available

I T (H) = B(H)? is just a special case of this setting, providing a
noncommutative generalisation of `1(N) space.

Geometric structures on spacesM of quantum states:
relative entropies D(·, ·) & Poisson brackets {·, ·}
Linear operators on Hilbert spaces → real-valued functions onM
Unitary evolution → nonlinear hamiltonian flows onM
Evolution due to measurement → constrained relative entropy
maximisations onM
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Quantum Poisson structure

Consider the space of self-adjoint trace-class operators:
T (H)sa := T (H) ∩B(H)sa.
It can be equipped with a following real Banach smooth manifold structure:

I tangent spaces: Tφ(T (H)sa) ∼= T (H)sa

I cotangent spaces: T~
φ (T (H)sa) ∼= (T (H)sa)? ∼= B(H)sa

Bóna’91,’00: a Poisson manifold structure on T (H)sa is defined by a
commutator of an algebra:

{h, f }(ρ) := trH (ρ i[dh(ρ),df (ρ)]) ∀f , h ∈ C∞(T (H)sa;R) ∀ρ ∈ T (H)sa.

So, ifM(H) ⊆ T (H)+ is a smooth submanifold of T (H)sa,
then every f ∈ C∞(M(H);R) determines a hamiltonian vector field:

Xf (ρ) = −{·, f }(ρ) = trH(ρ i[d(·),df (ρ)]).

More generally, we can choose arbitrary real Banach Lie subalgebra A of
B(H) such that: (i) it has a unique Banach predual A? in T (H); (ii) there
exists at least oneM(H) ⊆ T (H)+ which is a smooth submanifold of A?.
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Nonlinear quantum hamiltonian dynamics
For each hamiltonian vector field, the corresponding Hamilton equation reads

d
dt

f (ρ(t)) = {h, f }(ρ(t)) = i trH ([ρ(t),dh(ρ(t))]df (ρ(t))) .

The above equation is equivalent to the Bóna equation [’91’00]

i d
dt ρ(t) = [dh(ρ(t)), ρ(t)].

Hence,

The Poisson structure {·, ·} induced by a commutator of B(H) allows to in-
troduce various nonlinear hamiltonian evolutions on spacesM(H) of quantum
states, generated by arbitrary real-valued smooth functions onM(H).

The solutions of Bóna equation are state-dependent unitary operators U(ρ, t).
They do not form a group, but satisfy a cocycle relationship:

U(ρ, t + s) = U((Ad(U(ρ, t)))(ρ), s)U(ρ, t) ∀t, s ∈ R.

In a special case, when h(ρ) = trH(ρH) for H ∈ B(H)sa,
the Bóna equation turns to the von Neumann equation:

i
d
dt
ρ(t) = [H, ρ(t)].
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Quantum relative entropies

D :M(H)×M(H)→ [0,∞] s.t. D(ρ, σ) = 0 ⇐⇒ ρ = σ.

E.g.
D1(ρ, σ) := trH(ρ log ρ− ρ log σ) [Umegaki’62]

D1/2(ρ, σ) := 2
∣∣∣∣√ρ−√σ∣∣∣∣2

G2(H)
= 4trH( 1

2ρ+ 1
2σ −

√
ρ
√
σ)

(Hilbert–Schmidt norm2)
DL1(N )(ρ, σ) := 1

2 ||ρ− σ||T (H) = 1
2 trH|ρ− σ| (L1/predual norm)

Dγ(ρ, σ) := 1
γ(1−γ) trH(γρ+ (1− γ)σ − ργσ1−γ); γ ∈ R \ {0, 1}

[Hasegawa’93]
Dα,z(ρ, σ) := 1

1−α log trH(ρα/zσ(1−α)/z)z ; α, z ∈ R [Audenauert–Datta’14]

Df(ρ, σ) := trH(
√
ρ f(LρR

−1
σ )
√
ρ); f operator convex, f(1) = 0

[Kosaki’82,Petz’85]
for ran(ρ) ⊆ ran(σ), and with all D(ρ, σ) := +∞ otherwise.

Various “quantum geometries” will arise from different additional conditions
imposed on pairs (M(H),D)
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Quantum entropic projections

Let Q ⊆ T (H)+ be such that
for each ψ ∈M(H)
there exists a unique solution

PD
Q(ψ) := arg infρ∈Q {D(ρ, ψ)} .

It will be called an entropic projection.

E.g.

for D1/2(ρ, σ) = 4trH( 1
2ρ+

1
2σ −

√
ρ
√
σ),

and Q given by any closed convex subspace of the positive cone of the
(GNS/Hilbert–Schmidt) Hilbert space K ∼= G2(H) via the embedding
T (H) 3 ρ 7→ √ρ ∈ G2(H)+.

Then the entropic projections P
D1/2
Q coincide with the ordinary projection operators

P√Q in B(K) ∼= B(H⊗H?).
for D1(ρ, σ) = trH(ρ log ρ− ρ log σ)
andM(H) = T (H)+

1 , ψ ∈ T (H)+
1 , h ∈ B(H)sa, then [Araki’77, Donald’90]

∃! ψh := arg inf
ρ∈T (H)+

1

{D1(ρ, ψ) + trH(ρh)} .
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Quantum measurement, bayesianity, and maximum relative entropy
Lüders’ rules:

ρ 7→ ρnew :=
∑

i

PiρPi (‘weak’)

ρ 7→ ρnew :=
PρP

trH(Pρ)
(‘strong’)

bayesian view on quantum measurement: [Bub’77’79, Caves–Fuchs–Schack’01,
Fuchs’02, Jacobs’02]: Lüders’ rules should be considered as rules of inference
(conditioning) that are quantum analogues of

the Bayes–Laplace rule: p(x) 7→ pnew(x) :=
p(x)p(b|x)

p(b)
.

Williams’80, Warmuth’05, Caticha&Giffin’06: the Bayes–Laplace rule is a special
case of entropic projection:

p(x ) 7→ pnew(x ) := arg inf
q∈Q

{D1(q, p)} ; D1(q, p) :=
∫
X
µ(x )q(x ) log

(
q(x )
p(x )

)
.

Douven&Romeijn’12: the Bayes–Laplace rule is also a special case of another
entropic projection:

p 7→ arg inf
q∈Q

{D1(p, q)} = PD0
Q (p),

where D0(p, q) = D0(q, p).
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Quantum bayesian inference from quantum entropic projections

Herbut’69: weak Lüders’ rule is a special case of P
dL2(B(H))

Q (ρ) with
Q = {σ ∈ T (H)+ | [Pi , σ] = 0 ∀i}.
F.Hellmann–W.Kamiński–RPK’14:

1 weak Lüders’ rule is a special case of ρ 7→ arg infσ∈Q {D1(ρ, σ)} with
Q = {σ ∈ T (H)+ | [Pi , σ] = 0 ∀i}

2 strong Lüders’ rule derived from ρ 7→ arg infσ∈Q {D1(ρ, σ)} with
Q = {σ ∈ T (H)+ | [Pi , σ] = 0, trH(σPi ) = pi ∀i} under the limit p2, . . . , pn → 0.

3 hence, weak and strong Lüders’ rules are special cases of quantum entropic projection
PD0
Q based on relative entropy D0(σ, ρ) = D1(ρ, σ).

4 more general (“quantum Jeffreys”) rule has been also derived, providing a quantum
analogue of a standard bayesian generalisation of the Bayes–Laplace rule.

Bayes–Laplace and Lüders’ conditionings are special cases of entropic projections
⇒ “quantum bayesianism ⊆ quantum relative entropism”.

Meaning: the rule of maximisation of relative entropy (entropic projection on the
subspace of constraints) can be considered as a nonlinear generalisation of the dynamics
describing “quantum measurement”. [RPK’10’11]

M.Munk-Nielsen’15: partial trace is also a special case of PD0
Q , at least for strictly

positive states.
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DΨ

The choice of the set Q for which the entropic projection PD
Q exists and is

unique depends very strongly on the structure of D: the choice of principle of
inference (D) determines the accepted data types (Q).
What are the general conditions on D that would be sufficient to guarantee
existence and uniqueness of PD

Q, as well as good composition properties of
subsequent projections (to have a category of entropic instruments)?
RPK’17: It turns out that this can be provided by a class of Brègman relative
entropies:

DΨ(φ, ω) := D̃Ψ(`(φ), `(ω))

D̃Ψ(x , y) := Ψ(x)−Ψ(y)−DG
+Ψ(y ; x − y)

` :M→ X

where X is a reflexive Banach space, Ψ : X →]−∞,+∞] is convex and
lower semi-continuous (with some additional technical conditions), and DG

+ is
a right Gâteaux derivative.
The existence and uniqueness of PDΨ

Q is guaranteed for Q such that `(Q) are
convex closed subsets of the spaces X .
One can think of ` as a coordinate system onM, and X as the linear
parameter space used for specification of the data for entropic projection.

Ryszard Paweł Kostecki (KCIK/UG) Geometrisation of quantum theory beyond pure states... 14 / 30



DΨ ⇐⇒ generalised pythagorean equation
A property that is of high importance from information geometric point of view,
and is also crucial geometrically, is a generalised (nonsymmetric, nonlinear)
pythagorean equation.

D satisfies a generalised pythagorean theorem at Q iff [Chencov’68]

D(φ, ψ) = D(φ,PD
Q(ψ)) + D(PD

Q(ψ), ψ) ∀(φ, ψ) ∈ Q×M.

⇐⇒ information distance decomposes additively under a projection onto a
suitable subspace ⇐⇒ a nonlinear data = signal + noise decomposition (!)
It turns out that all DΨ satisfy generalised pythagorean theorem for sets that
are affine under `-embeddings.
Jones–Byrne’90: in commutative case (and under some technical conditions)
DΨ are characterised by g.p.t.
Example 1: If Q forms an affine subset of G2(H)+ under ρ 7→ √ρ, then:∣∣∣∣∣∣x −P

D1/2
Q (z)

∣∣∣∣∣∣2
G2(H)

+
∣∣∣∣∣∣PD1/2
Q (z)− z

∣∣∣∣∣∣2
G2(H)

= ||x − z ||2G2(H).

Example 2: If Q := {φ ∈ G1(H)+
1 | φ(h) = const}, then [Donald’90]

D1(φ, ψh) + D1(ψh, ψ) = D1(φ, ψ) ∀(φ, ψ) ∈ Q×G1(H)+
1 .
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New kinematics: quantum information geometry
Main change: Consider expectation values as more fundamental than eigenvalues
⇒ foundational role of spectral theory replaced by quantum information geometry
(1) spaces:

replace: linear Hilbert spaces H of eigenvectors
by: setsM(N ) of denormalised expectation functionals on W ∗-algebras N .

(2) observables:
replace: linear functions H → H with real eigenvalues
by: nonlinear real valued functionsM(N )→ R.

(3) geometry:
replace: geometry of Hilbert spaces H defined by scalar product 〈·, ·〉 by:

Two fundamental geometric structures on M(N ):
a) Quantum Brègman relative entropies DΨ(·, ·)

F represents the convention of a “global” estimation/loss function
F satisfies generalised pythagorean theorem
F allows to derive as special cases: hessian geometry (via ∂i∂jDΨ, see later

slides) and Hilbert space projective geometry (via P
DΨ
Q for DΨ = D1/2)

b) Quantum Poisson structures {·, ·}
F represents the choice of a specific algebra of locally conserved quantities
F depends on the choice of a real Banach Lie subalgebra of N
F generalises symplectic geometry
F {h, ·} represents the choice of a convention of a “global” causality

No Hilbert spaces, no probability theory in foundations (derived as special cases)
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New dynamics: information geometric causal inference
Two fundamental dynamic structures on M(N ):
a) Inference: Entropic projections φ 7→ arg infω∈Q {DΨ(ω, φ)} [RPK’10]

F nonlinear and nonlocal
F requires convexity
F represents (“active/external”) information dynamics due to

learning/measuring
F allows to encode experimental constraints (e.g., Q can be implemented as
Q(η), with η representing additional external control variables)

F reduces in special cases to Lüders’, Jeffrey’s, Bayes’ rules, partial trace, etc.
b) Causality: Hamiltonian flows φ 7→ wh

t (φ), d
dt f (wh

t (φ)) = {h, f (wh
t )}(φ) [Bóna’00]

F nonlinear and local
F requires smoothness
F represents (“passive/internal”) information dynamics with no inference
F allows to encode theoretical symmetries
F reduces in a special case to the von Neumann equation

Sequential processing ansatz: consider φ 7→ PDΨ

Q ◦ wh
t (φ) as an alternative

to the paradigm of semigroups of CPTP maps
I generalises unitary evolution followed by a “projective measurement”
I allows for arbitrary correlations between subsystems
I is nonlinear and nonmarkovian
I from the bayesian perspective, wh

t (φ) is a prior for PDΨ
Q -updating
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2. Local theory
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Some smooth geometries (I)
The Norden[’37]–Sen[’44] geometry is a quadruple (M, g ,∇,∇†), whereM
is a C∞-manifold, g is a riemannian metric, while ∇ and ∇† are torsion-free
affine connections s.t.

g(u, v) = g(t∇c (u), t∇
†

c (v)) ∀u, v ∈ TM,

where t·c is a parallel transport along a smooth curve c .
(∇+∇†)/2 is a Levi-Civita connection ∇g of g .
A hessian geometry is a Norden–Sen geometry with flat ∇ and ∇†. In such
case there exists a unique pair of functions Φ :M→ R, ΦL :M→ R such
that g is their hessian metric,

g(ρ) =
∑
i,j

∂2Φ(ρ(θ))

∂θi∂θj dθi ⊗ dθj ,

g(ρ) =
∑
i,j

∂2ΦL(ρ(η))

∂ηi∂ηj dηi ⊗ dηj ,

where: {θi} is a coordinate system s.t. Γ∇ijk(ρ(θ)) = 0 ∀ρ ∈M,

{ηi} is a coordinate system s.t. Γ∇
†

ijk (ρ(η)) = 0 ∀ρ ∈M,
and ΦL is a Fenchel conjugate of Φ.
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Some smooth geometries (II)
The Codazzi geometry is a triple (M, g ,∇), whereM is a C∞-manifold, g is
a riemannian metric, while ∇ is a torsion-free flat affine connection s.t.

(∇ug)(v ,w) = (∇vg)(u,w) ∀u, v ,w ∈ TM.

(M, g ,∇) is Codazzi ⇐⇒ it is hessian (with ∇† := 2∇g −∇).
A Weyl geometry is a quadruple (M, ∇̃, C,Θ), where ∇̃ is a torsion-free affine
connection (called Weyl connection), C is a conformal class of
(semi-)riemannian metrics, and Θ is a class of one-forms s.t.

∇̃g = −2θ ⊗ g ,

where θ ∈ C∞(T ∗M), g is a riemannian metric, C = {e2f g | f ∈ C∞(M)},
Θ = {θ − df | f ∈ C∞(M)}.
Bokan–Galley–Simon’96: Every Codazzi geometry (M, g ,∇) with
dim(M) = n determines a Weyl geometry:

C := ∇g −∇,

T (v) :=
1
n
trace{u 7→ C (u, v)},

g(u,T ) := T (u),

∇̃uv := ∇g
uv +

n
n + 2

{T (u) + T (v)u − g(u, v)T}.
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Smooth quantum information geometries
Taylor expansion of D induces a Norden–Sen geometry onM(N ).

M(H) := {ρ(θ) ∈ T (H) | ρ(θ) > 0, θ ∈ Θ ⊆ Rn open, θ 7→ ρ(θ) smooth} is
a C∞-manifold
Jenčová’05: a general construction of smooth manifold structure on the space
of all strictly positive states over arbitrary W ∗-algebra, with tangent spaces
given by noncommutative Orlicz spaces.
Eguchi’83/Ingarden et al’82/Lesniewski–Ruskai’99/Jenčová’04:
Every smooth relative entropy D with positive definite hessian determines a
riemannian metric gD and a pair (∇D ,∇D†) of torsion-free affine connections:

gφ(u, v) := −∂u|φ∂v |ωD(φ, ω)|ω=φ,

gφ((∇u)φv ,w) := −∂u|φ∂v |φ∂w |ωD(φ, ω)|ω=φ,

gφ(v , (∇†u)φw) := −∂u|ω∂w |ω∂v |φD(φ, ω)|ω=φ,

which are the Norden–Sen geometry.
Eguchi equations applied to Brègman relative entropies DΨ yield hessian
geometries
Consequently, Weyl geometry of quantum state space arises as a natural local
consequence of the Brègman relative entropy.
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Smooth quantum information geometries (II)

Example: M(N ) = T (H) ∩ {ρ > 0, trH(ρ) = 1}
D1(ρ, σ) = trH(ρ log ρ− ρ log σ)

give Mori[’55]–Kubo[’56]–Bogolyubov[’62] riemannian metric:

gD1
ρ (x , y) = trH

(∫ ∞
0

dλx
1

λI + ρ
y

1
λI + ρ

)
,

and Nagaoka[’94]–Hasegawa[’95] affine connections:

t∇
D1

ρ,ω (x) = x − trH(ωx), t∇
D1 †

ρ,ω (x) = x .
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Smooth generalised pythagorean theorem

Let (M, g,∇,∇†) be a hessian geometry. Then for any Q ⊆M which is:

∇†-autoparallel := ∇†uv ∈ TQ ∀u, v ∈ TQ;
∇†-convex := ∀ρ1, ρ2 ∈ Q ∃! ∇†-geodesics in Q
connecting ρ1 and ρ2;

there exists a unique projection

M3 ρ 7→ P
DΦ
Q (ρ) := arg inf

σ∈Q
{DΦ(σ, ρ)} ∈ Q.

it is equal to a unique projection of ρ onto Q along a
∇-geodesic that is g-orthogonal at Q.
it satisfies a generalised pythagorean equation

DΦ(ω,P
DΦ
Q (ρ))+DΦ(P

DΦ
Q (ρ), ρ) = DΦ(ω, ρ) ∀(ω, ρ) ∈ Q×M.

Hence, for Brègman distances DΦ the local entropic projections are equivalent with
geodesic projections.
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New kinematics: local (operational) view

Consider local embeddings ` : U → X , U ⊆M, as local coordinate systems,
determining X as a local tangent space ofM
Use the dual space X ? as a local cotangent space
resulting structure: locally dually flat information manifoldM
operational local kinematics:

I local states/preparations: vectors of TψM∼= X (φ(θ)→ θ → ∂
∂θi

)
I local effects/observables: vectors of T∗ψM∼= X? (f (φ)→ df (φ))

Dually flat manifolds are nonlinear generalisation of the euclidean and Hilbert
spaces, with the generalised pythagorean theorem playing a key role.
Locally dually flat manifolds introduce the shift analogous to the shift from
Minkowski space to lorentzian manifolds: dual flatness holds only locally, for
tangent (and cotangent) spaces.
If entropic projections are regarded as a form of information dynamics, then
introducing the structure of quantum information manifold based on a
Brègman distance DΨ (equivalently, local dual flatness) amounts to
postulating a “free fall principle”: if there is no additional causal dynamics or
inferential constraints, the local information flows along ∇DΨ -geodesics.
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Local inference, local causality: free falls and BLP localisation?
Is it possible to use these geometric structures to localise the ’dynamic ansatz’
φ 7→ PDΨ

Q ◦ wh
t (φ)?

Optimally, one would like to combine locally the entropic geodesic free falls
with hamiltonian flows in a single formula, describing an effective information
dynamics in which causal and inferential parts are parallely processed:
Given a hamiltonian observable h and a Brègman relative entropy DΨ, the
1-form dhA(φ) + d∇DΨ (φ) would represent a local perturbation of causal
dynamics by the information flow along entropic geodesics (and vice versa).
However, BLP structure and (locally) dually flat structure use different
underlying C∞-manifold structures. This is a serious open problem.
One way to go would be localisation of a causal dynamics requires to replace
a representation of a real Banach Lie algebra A in terms of a dual pair
(N sa

? ,N sa) by a representation in terms of a dual pair of real Banach spaces
(X ,X ?). However, it is not clear how to do it in concrete examples, with X is
e.g. a noncommutative Lp space.
Another way, that is not so general, but works, is to give up BLP structure,
and use a Haagerup theorem (extended by Jakšić and Pillet from Hilbert
space to any noncommutative Lp space), that guarantees an existence of a
unique generator of isometries of a positive cone of X that implements the
1-parameter group of automorphisms of a W∗-algebra (an Lp-liouvillean).
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Open problems

Develop a theory of locally dually flat quantum manifolds associated to
Brègman distances (an ongoing work with A.Jenčová).
Construct (or prove impossibility of) local implementation of Banach
Lie–Poisson manifold structure as represented in the pairs (X ,X ?), especially
in the case when X is a noncommutative Orlicz space.
In any case, find a way to give an exact meaning to local dhA(φ) + d∇DΨ (φ)
ansatz.
Find the exact range of (linear and nonlinear) CPTP instruments that can be
modelled with PDΨ

Q ◦ wh
t maps.

Show that one can reconstruct a theory that is locally QM using purely
geometric data (hence, characterise local tangent/cotangent spaces as QM
state/effect dual pairs without assuming thatM consists of states over a
W∗-algebra).
Work out the details of reconstruction of the pure states framework (some
aspects are known, but some are missing).
Investigate in more details the class of quantum Weyl geometries induced by
Brègman relative entropies.
...
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Back to original motivation: some insights
How we could use this framework for ‘gravitating quantum theory’ instead of
‘quantising gravity’?
In principle, the choice of geometry of quantum state space corresponds to a specific
criteria of statistical inference, and may reflect for example the criteria of coarse
graining used in renormalisation procedures.
Generally, the geometries of quantum manifoldsM are encoding the “effective
information geometry”. In particular, in quantum thermodynamics, the curvature =
∞ at critical points.
With the postulate of local dual flatness (hence, local Weyl structure) we leave the
global geometry underdetermined, in analogy to local lorentzianity leaving the global
structure of space-time underdetermined.
The tentative postulate is to determine the global structure by means of a
variational principle, such as δ

∫
M dVol R = 0, in analogy to both GR and Weyl’s

gravito-electromagnetism. Yet, the detailed meaning of this postulate for particular
quantum systems is to be understood.
The shift from riemannian to lorentzian signature can be performed by
Poincarè–Wick rotation of a quantum correlation function g along the vector field of
a causal evolution, at least if the latter is globally determined.
Duch–RPK’2011: Given a choice of a global ’causal’ vector field, and a specific
(Kubo–Mori–Bogolyubov) riemannian metric (corresponding to the Umegaki relative
entropy D1), we have determined analytically the space of quantum states that has
exactly the 3+1 Schwarzschild geometry.
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Orthodox quantum mechanical paradigm (von Neumann, 1926-1932):

a solution of a particular problem (solid mathematical framework providing unifying
foundations for ‘wave mechanics’ and ‘matrix mechanics’)
von Neumann’1935: “I would like to make a confession which may seem immoral: I do not
believe absolutely in Hilbert space anymore.”

Some key observations:
Probability theory is just a special case of integration theory on W ∗-algebras.
From the perspective of this theory, quantum states are just integrals, so there is no a priori
reason why “general” quantum theory (beyond QM) should depend on probabilities.
Quantum states (and structures over them) can be associated directly with the epistemic
data by generalising the methods of associating epistemic data with probabilities (and with
structures over them).
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New paradigm:

Basic object of interest: spacesM(N ) ⊆ N+
? of states over W ∗-algebras N .

Quantum theoretic kinematics generalises and replaces probability theory.

Quantum theoretic dynamics generalises and replaces causal statistical inference.

Nonlinear information geometry of spaces of quantum states replaces the role of (linear)
spectral theory of quantum mechanics.

Replace the use of eigenvalues and expectations of self-adjoint operators on H (or in N ) by
observables f :M(N )→ R. Given any model construction rule
Rn ⊃ Θ 3 θ 7→ ρ(θ) ∈M(N ), and the set of experimental functions fΘ : Θ→ R the set of
observables relevant to the problem is given by {f :M(N )→ R | fΘ = f ◦ θ}
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