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It is in the world of operator algebras that the forefront is dark and behind
is a twinkling constellation.

Masamichi Takesaki, 2003, Entrance to operator algebras.

Ryszard Paweł Kostecki (KCIK/UG) Optimal quantum inference 3 / 1



Probability theory:
Underlying structure: measure space (X , µ)
Main spaces: Probabilistic models: normalised subsets of:

M(X , µ) ⊆ L1(X , µ)+ := {p : X → R |
∫
X
µ|p| <∞, p ≥ 0}

e.g. Gaussian models: {p(x , (m, s)) = 1√
2πs

e−
(x−m)2

2s2 | (m, s) ∈ Θ ⊆ R× R+}.
Observables: functions f : X → R
The mapping L1(X , µ)× L∞(X , µ) 3 (p, f ) 7→

∫
X µpf ∈ R determines Banach

space duality L1(X , µ)? ∼= L∞(X , µ).
convergence of integration:

∫
X µp supi (fi ) = supi (

∫
X µpfi )

Quantum mechanics:
Underlying structure: Hilbert space H
Main spaces: Spaces of density matrices: normalised subsets of:

M(H) ⊆ T (H)+ := {ρ ∈ B(H) | trH(|ρ|) <∞, ρ ≥ 0}

e.g. Gibbs states: {e−βH | β ∈ ]0,∞[}, for a fixed self-adjoint H.
Observables: self-adjoint operators x : H → H
The mapping T (H)×B(H) 3 (ρ, x) 7→ trH(ρx) ∈ C determines Banach space
duality T (H)? ∼= B(H).
convergence of integration: trH(ρ supi xi ) = supi trH(ρxi ).

Is there a joint generalisation of the above two settings?
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W∗-algebras and integration

Yes.

A W∗-algebra N [von Neumann’29, Sakai’56]:
I a (noncommutative) algebra over C with unit I,
I with ∗ operation s.t. (xy)∗ = y∗x∗, (x + y)∗ = x∗ + y∗, (x∗)∗ = x , (λx)∗ = λ∗x∗,
I that is also a Banach space,
I with ·, +, ∗ continuous in the norm topology (implied by the condition ||x∗x || = ||x ||2),
I such that there exists a Banach space N? satisfying the Banach space duality:

(N?)? ∼= N ,
Special cases:

I if N is commutative
then ∃ a measure space (X , µ) s.t. N ∼= L∞(X , µ) and N? ∼= L1(X , µ)

I if N is “type I”
then ∃ a Hilbert space H s.t. N ∼= B(H) and N? ∼= T (H).

Hence, the element φ ∈ (N?)+ provides a joint generalisation of probability density
and of density operator.

By means of embedding of N? into N ?, it is also an integral on N .

Hence, the subsets of N+
? can be considered as generic quantum state spaces.
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Noncommutative integration on W∗-algebras
state is a function ω : N → C s.t. ω ∈ N+

?

faithful normal semifinite weight is a function ω : N+ → [0,+∞] s.t.
ω(0) = 0, ω(x + y) = ω(x) + ω(y), λ > 0⇒ ω(λx) = λω(x),
∀x ∈ N+∃N+ \ {0} 3 y ≤ x ω(y) < +∞
ω(supF) = supx∈F ω(x) ∀ directed filters F ⊆ N+,
ω(x∗x) = 0⇒ x = 0∀x ∈ N
trace is a weight s.t. ω(u∗xu) = ω(x) ∀ unitary u ∈ N
every (faithful) state is a finite (faithful) normal weight.
von Neumann–Murray[’36-’43] classif. of W∗-algebras: every N is a direct product of:

I type In: isomorphic with B(H), dimH = n ∈ N ∪ {+∞}, so (B(H), trH) by default
I type II : not of type I , yet admitting f.n.s. trace τ (II1 if finite, II∞ otherwise)
I type III : neither of the above (always admits f.n.s. weight ψ but not f.n.s. trace)

Commutative integration:

spatial representation (in general case) algebraic formulation (general)
underlying object localisable measure space: (X ,f(X ), µ) localisable boolean algebra: A

Lp-spaces Lp(X ,f(X ), µ) Lp(A)

states q ∈ M(X ,f(X ), µ) ⊆ L1(X ,f(X ), µ)+ φ ∈ M(A) ⊆ L1(A)+

expectations of observables L∞(X ,f(X ), µ) 3 f 7→
∫
X µqf ∈ R φ ∈ L∞(A) 3 f 7→ φ(f ) ∈ R

Noncommutative integration:
spatial representation (in type I case) algebraic formulation (general)

underlying object Hilbert sp. with std. trace: (H,B(H), trH) W∗-algebra: N
Lp-spaces Gp(H) = Lp(B(H), trH) Lp(N )

states ρ ∈ M(H) ⊆ G1(B(H), trH)+ ∼= B(H)+
? φ ∈ M(N ) ⊆ L1(N )+ ∼= N+

?
expectations of observables B(H) = G∞(B(H), trH) 3 x 7→ trH(ρx) ∈ C N = L∞(N ) 3 x 7→ φ(x) ∈ C
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GNS representation: from C∗-algebras to Hilbert spaces
A representation of a C∗-algebra A is a pair (H, π), where π : N → B(H) is a
∗-homomorphism: π(λ1x + λ2y) = λ1π(x) + λ2π(y), π(xy) = π(x)π(y), π(x∗) = π(x)∗.
Gel’fand–Năımark’43–Segal’47 theorem: Every pair of C∗-algebra A and φ ∈ A?+

determines a unique representation (Hω, πω,Ωω) where Ωω ∈ Hω is cyclic:

Hω = {πω(x)Ωω | x ∈ A}
||·||Hω . Proof goes by explicit construction:

I 〈x , y〉ω := ω(x∗y) ∀x , y ∈ A
I kerω = {x ∈ A | ω(x∗x) = 0}
I Hω := A/ kerω〈·,·〉ω
I [·]ω : A 3 x 7→ [x]ω ∈ A/ kerω
I πω(x) : [y ]ω 7→ [xy ]ω
I Ωω := [I]ω
I ω(x) = 〈Ωω , πω(x)Ωω〉ω ∀x ∈ A

Every representation of A can be decomposed as a countable or noncountable direct
product of representations that are unitarily equivalent to GNS representation.
If ω is faithful, then πω is a ∗-isomorphism, and Ωω is separating: πω(x)Ωω = 0 ⇒
πω(x) = 0 ∀x ∈ A.
If ψ is a n.s. weight on W∗-algebra N , then the construction of (Hψ, πψ) is the
same, just with A replaced by the ideal nψ := {x ∈ N | ψ(x∗x) <∞}. There is no
corresponding construction of a cyclic vector Ωψ. If ψ is also faithful, then πψ is
∗-isomorphism.
If N = B(K) and ψ = trK then Hψ ∼= G2(K, trK), with 〈x , y〉ψ = trK(x∗y), and
πψ(x) = Lx (left multiplication).
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Noncommutative Lp(N , τ) spaces
GNS representation of a W∗-algebra is called a von Neumann algebra [v.N.’29].
A closed densely defined linear operator x : dom(x)→ H with polar decomposition
x = v |x | is called to be affiliated with a von Neumann algebra N (acting on H) iff
v ∈ N and all spectral projections of |x | belong to N . [v.N.–Murray’36]
x : dom(x)→ H (as above) is called τ -measurable [Nelson’74] iff ∃λ > 0
τ(π−1

τ (P |x|([λ,∞[))) <∞ for a f.n.s. trace τ on a W∗-algebra N .
[Nelson’74, Yeadon’75]: M (N , τ) := the space of all τ -measurable operators on Hτ
affiliated with πτ (N ) for any W∗-algebra N with f.n.s. trace τ .
[Segal’53] has introduced a more broad definition of measurability of operators.
τ -measurable operators are always Segal-measurable.
τ can be extended from N+ to M (N , τ)+ by

τ̃ : aff(πτ (N ))+ 3 x 7→ τ̃(x) := sup
n∈N

{
τ ◦ π−1

τ

(∫ n

0
Px(λ)λ

)}
∈ [0,∞].

[Segal’53, Ogasawara–Yoshinaga’55, Kunze’58, Nelson’74, Yeadon’75]: The map
||·||p : M (N , τ) 3 x 7→ ||x ||p := (τ̃(|x |p))1/p ∈ [0,∞], p ∈ [1,∞[ is a norm
determining the Banach spaces:

Lp(N , τ) := {x ∈M (N , τ) | ||x ||p <∞}.
Lp(N , τ) provide the concrete operator-theoretic model of abstract noncommutative
Lp spaces, defined by Dixmier’53 as topological completions of the spaces
{y ∈ {x ∈ N+ | τ(x) <∞} | ||x ||p <∞} in the norm ||x ||p := τ(|x |p))1/p.
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Noncommutative Lp(N , τ) spaces (II)

For all γ ∈ ]0, 1]: (x , y) ∈ L1/γ(N , τ)× L1/(1−γ)(N , τ) ⇒ xy ∈ L1(N , τ),

The duality L1/γ(N , τ)× L1/(1−γ)(N , τ) 3 (x , y) 7→ [[x , y ]] := τ(xy) ∈ R determines
an isometric isomorphism of Banach spaces L1/γ(N , τ)? ∼= L1/(1−γ)(N , τ).

The noncommutative analogue of the Rogers–Hölder inequality reads
||xy ||1 ≤ ||x ||1/γ ||y ||1/(1−γ) ∀(x , y) ∈ L1/γ(N , τ)× L1/(1−γ)(N , τ).

The space of finite rank operators over a Hilbert space,

Gfin(H) := {x ∈ B(H) | dim ran(x) <∞},

allows to define: the space of Riesz’1917–Schauder’30 (= compact) operators over a
Hilbert space H,

G0(H) := Gfin(H)
||·||B(H) ;

For any p ∈ [1,∞[, the spaces Gp(H) of (von Neumann’37–Schatten’50)’46’47
p-class operators over a Hilbert space H are defined as

Gp(H) := {x ∈ G0(H) | ||x ||p := trH((x∗x)p/2)1/p <∞},

and they are Banach spaces with respect to the norm ||·||p for p ∈ [1,∞[. In
addition, one sets G∞(H) := B(H) with ||x ||∞ := ||x ||B(H).

Gp(H) = Lp(B(H), trH).
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Commutative/measure-theoretic Orlicz spaces
A function Υ : R→ [0,∞] is called Young[’1912’26] iff Υ(0) = 0, Υ(−x) = Υ(x),
0 6≡ Υ 6≡ ∞ on ]0,∞[, Υ is convex on ]− bΥ, bΥ[ and limx→−bΥ

Υ(x) = Υ(bΥ),
where bΥ := sup{t > 0 | Υ(t) <∞}.
Υ is (sometimes) called Orlicz iff it is Young, continuous and nondecreasing on R+.
Every Orlicz function Υ defines a Banach space [Orlicz’32’36]

LΥ(X ,f(X ), µ;R) = {f ∈ L0(X ,f(X ), µ;R) | ∃λ > 0
∫
X
µΥ(λ|f |) <∞}

with the norm [Morse–Transue’50, Nakano’51, Luxemburg’55]

||x ||Υ := inf{λ > 0 |
∫
X
µΥ(λ−1x) ≤ 1} ∈ R+

Zaanen’49–Luxemburg’55: Extension to any Young function.
The spaces Lp(µ̃) for p ∈ [1,∞[ can be defined as Orlicz spaces LΥ(µ̃) with Υ(x)

given by the Orlicz functions: |x|
p

p or |x |p.
The space L∞(µ) can be determined as an Orlicz space LΥ∞(µ), where
Υ∞ : R→ [0,∞], defined by Young function which is not an Orlicz function:

Υ∞(x) :=


0 : x ∈ [0, 1[
+∞ : x > 1
Υ∞(−x) : x < 0.
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Noncommutative Orlicz spaces
Rao’71: Υ is an Orlicz function, Υ(|x |) for x ∈ B(H) is understood in terms of the
spectral representation, the n.c. Orlicz space is defined as

GΥ(H) :=
{
x ∈ B(H) | ||x ||Υ := inf

{
λ > 0 | trH

(
Υ
(
λ−1|x |

))
≤ 1
}
<∞

}
.

Hardy–Littlewood’30 (resp., Grothendieck’55–Sonis’71/Ovchinnikov’70–Yeadon’75):
The rearrangement of f ∈ L0(X , µ)+ (resp., x ∈M (N , τ)+) is defined as:

Rµf : [0,∞[3 t 7→ inf{s ≥ 0 | µ{λ | f (λ) > s} ≤ t} ∈ [0,∞],

Rτx : [0,∞[3 t 7→ Rτx (t) := inf{s ≥ 0 | τ(Px(]s,+∞[) ≤ t} ∈ [0,∞].

Muratov’78’79: Construction of Orlicz spaces LΥ(N , τ) of Segal-measurable
operators affiliated with (type I and) II1 W∗-algebras N (i.e., with f.n. finite traces
τ), using Rτx , with Orlicz Υ satisfying limt→∞

Υ(t)
t =∞, limt→0

Υ(t)
t = 0.

Muratov’79, Kosaki’81, Ciach’83, Fack–Kosaki’86: Rτf (x)(t) = f (Rτx (t)) ∀t ∈ R+ for
any continuous increasing f on [0,∞[ with f (0) ≥ 0.
Fack–Kosaki’86 (τ̃ denotes an extension of τ from N to M (N , τ)):

τ̃(f (x)) =

∫ ∞
0

dt f (Rτx (t)).

Kunze’90: For any W∗-algebra N with f.n.s. trace τ (i.e. N is type I or type II):

LΥ(N , τ) = {x ∈M (N , τ) | ∃λ > 0 τ̃(Υ(λ|x |)) <∞}

with ||·||Υ : M (N , τ) 3 x 7→ inf{λ > 0 | τ̃(Υ(λ−1|x |)) ≤ 1} and Orlicz Υ.
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Symmetric (≡ rearrangement-invariant) operator spaces
Semënov’64: A Banach space (L, ||·||L) which is a linear subspace of L0(X , µ) is
called a symmetric function space iff

(f ∈ L, g ∈ L0(X , µ),R|g| = R|f |) ⇒ (g ∈ L, ||g ||L = ||f ||L).

Ovchinnikov’70’71 & Yeadon’75: consider a topological *-subalgebra C0(N , τ) of
M (N , τ), consisting of τ -compact operators:

C0(N , τ) := {x ∈M (N , τ) | ∀λ > 0 τ(π−1
τ (P |x|([λ,∞[))) <∞}.

Ovchinnikov’70’71: A symmetric operator space is defined as a Banach space
(L(N , τ), ||·||L(N ,τ)), which is a linear subspace of C0(N , τ) and satisfies

(f ∈ L(N , τ), g ∈ C0(N , τ),Rτ|g| = Rτ|f |) ⇒ (g ∈ L(N , τ), ||g ||L(N ,τ) = ||f ||L(N ,τ)).

This includes completely the theory of symmetrically normed ideals of compact
operators in B(H), as developed by (von Neumann’37–Schatten’46’50’60)’46’47,
Macaev’61, Gokhberg–Krĕın’61’65’67, Russu’69.
Yeadon’80: a bit different definition of symmetric operator space, starting from
interpolation spaces.
Medzhitov’87: General case: replace C0(N , τ) [∀λ > 0] by M (N , τ) [∃λ > 0].
Theorem: [Kalton–Sukochev’08] (earlier versions: [Yeadon’80, Dodds⊗2–de
Pagter’89, Sukochev–Chilin’90]): Given a symmetric function space (L, ||·||L),

L(N , τ) := {x ∈M (N , τ) | Rτx ∈ L}, with a norm x 7→ ||Rτx ||L
is a symmetric operator space.
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N.c. Orlicz spaces as symmetric operator spaces
In this sense, Dodds⊗2–de Pagter’89 & Sukochev–Chilin’90 allow (“implicitly
contain”) a definition of noncommutative Orlicz spaces which is equivalent to
Kunze’90: for any Orlicz Υ:

LΥ(N , τ) := {x ∈M (N , τ) | Rτx ∈ LΥ(R+,fBorel(R+), dλ)}
Arazy’81 (type I)/Sukochev’86 (type II1)/Dodds⊗2–de Pagter’93’14 (II∞, if L is
strongly symmetric, i.e.

∫ t
0 dtRµx (r) ≤

∫ t
0 drRµy (r) ∀t ≥ 0 ⇒ ||x ||L ≤ ||y ||L ∀x , y ∈ L):

L is reflexive ⇒ L(N , τ) is reflexive.
Krygin–Sukochev–Chilin’91: L is uniformly convex ⇒ L(N , τ) is uniformly convex.
There are further theorems relating correspondingly other geometric properties of L
and L(N , τ) (also in the opposite direction).
Burkill’28: Υ is said to satisfy 42 condition iff ∃λ > 0 ∀x ≥ 0 Υ(2x) ≤ λΥ(x).
Luxemburg’55: For nonatomic (X , µ) with µ(X ) =∞, LΥ(X , µ) is reflexive iff both
Υ and ΥY satisfy 42 condition, where

ΥY(y) := sup
x≥0
{x |y | −Υ(x)}.

Kamińska’82: For nonatomic (X , µ) with µ(X ) =∞, (LΥ(X , µ), ||·||Υ) is uniformly
convex iff both Υ and ΥY satisfy 42 condition and are uniformly convex.
The characterisation of uniform convexity (and other geometric properties) of
commutative (resp., noncommutative) Orlicz spaces differs dependently on:
(1) whether (X , µ) is atomic (resp., type I), nonatomic finite (resp., type II1), or

nonatomic infinite (resp., type II∞);
(2) the choice of norm (apart from ||·||Υ, there are also Orlicz, p-Amemiya, and other...).
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KMS states: a generalisation of Gibbs states to any W∗-algebra
For a W∗-algebra N , a group homomorphism α : R 3 t 7→ αt ∈ Aut(N ) is called
weakly-? continuous iff t 7→ φ(αt(x)) is continuous ∀(x , φ) ∈ N ×N+

? .
Nα
∞ := {x ∈ N | ∃! extension of α to an analytic function C 3 z 7→ αz(x) ∈ C} is

a ∗-subalgebra of N .
Kubo’57–Martin–Schwinger’59, Haag–Hugenholtz–Winnink’67,
Kastler–Pool–Poulsen’69: given (N , α) as above, with Nα

∞ 6= ∅, the state ω ∈ N+
?

is said to be: KMS w.r.t. α at β iff β ∈ R \ {0} and

ω(yαz+iβ(x)) = ω(αz(x)y) ∀x ∈ Nα
∞ ∀y ∈ N ∀z ∈ C,

or β = 0 and ω(xy) = ω(yx) and

ω(αt(x)) = ω(x) ∀x ∈ N . (1)

every KMS state satifies (??)
The set of all KMS states for fixed (α, β) is convex and compact in the weak-?
topology of N ?

The KMS condition makes sense also for n.s. weights ψ on N , just under constraint
of the domain from N to nψ ∩ n∗ψ.
If N = B(H), dimH <∞, αt = eith(·)e−ith, t ∈ R, h ∈ B(H)sa, then ω ∈ N+

?

satisfies KMS for α and β iff ω = trH(ρ · ) with ρ = e−βh:

trH(ρxy) = trH(e−βhxeβhe−βhy) = tr(e−βhyαiβ(x)) = tr(ρyαiβ(x)).
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Tomita–Takesaki modular theory
Tomita’67 theorem: Every W∗-algebra N and f.n.s. weight ψ uniquely determines:

I a weakly-? continuous group homomorphism σψ : R→ Aut(πψ(N )),
I an antilinear ∗-isomorphism jψ : πψ(N )→ [πψ(N )]•,

such that
I σψt : x 7→ ∆it

ψx∆−itψ , where {∆it
ψ | t ∈ R} is a strongly continous group of unitaries in

B(Hψ),
I jψ : x 7→ JψxJψ , where J∗ψ = J−1

ψ = Jψ and J2
ψ = IHψ ,

I Jψ∆
1/2
ψ [x]ψ = [x∗]ψ .

The group σψ : t 7→ ∆it
ψ(·)∆−itψ is called the group of modular automorphisms.

∆ψ =: e−Kψ is a positive unbounded linear operator on Hψ, and defines unbounded
modular hamiltonian Kψ = K∗ψ.
If ψ is a faithful normal state, then ∆it

ψΩψ = Ωψ and KψΩψ = 0.
Winnink’70–Takesaki’70 theorem:

I ω is a unique element of N+
? that satisfies the KMS condition for π−1

ω ◦ σω and β = 1,
I π−1

ω ◦ σω is the unique strongly continuous 1-parameter group for which ω satisfies the
KMS condition with β = 1.

Under notational redefinition of π−1
ω ◦ σω ◦ πω as σω, the KMS condition implies

ω(x) = ω(σω(x)) ∀x ∈ N and

Nσω := {x ∈ N | σωt (x) = x} = {x ∈ N | ω(xy) = ω(yx) ∀x , y ∈ N}.
The W.-T. thm. holds also for f.n.s. weights. Also: ψ is f.n.s. trace iff ∆ψ = πψ(I).
Hence, modular theory characterises nontraciality of a weight, and plays a
fundamental role in the structure of type III W∗-algebras.
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Tomita–Takesaki modular theory: type In example

Even for type In case the modular automorphism of nontracial states is
nontrivial.
If N?0 6= ∅ (=: N is countably finite), then modular theory can be
equivalently stated in terms of a von Neumann algebra A on a Hilbert space
H, together with a vector Ω ∈ H that is cyclic and separating for A, where
(H,A,Ω) = (Hω, πω(N ),Ωω) and ω ∈ N?0.
Let N = B(Cn), ψ = tr, and consider representation π := L of N on Hψ.
For any faithful ω(·) = tr(ρ · ) = tr(

√
ρ · √ρ), the vector

√
ρ is cyclic and

separating for π(N ) on Hψ, so π is unitarily equivalent to the GNS
representation πω.
Assuming that αt := eiht(·)e−iht ∈ Aut(N ) implements the action of the
modular automorphism of N w.r.t. ω, we will find the explicit form of ∆it

ω .
Representation of αt by u(t) := eiπ(h)t does not satisfy u(t)

√
ρ =
√
ρ.

This condition holds for ∆it√
ρ = ei(π(h)−Jπ(h)J)t = ei(Lh−Rh)t , with

Rx : y 7→ yx∗.
Hence, given a strictly positive ρ assumed to satisfy KMS condition w.r.t.
eiht(·)e−iht at β = 1, its modular hamiltonian is Kω = Lh −Rh.
In particular, for ρ = e−βh: ∆ρ = ∆tr(ρ · ) = Lρ(Rρ)−1 = LρRρ−1 .
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Relative modular theory
Tomita’s theorem relies on the following fact: if N is a W∗-algebra, and ω is a f.n.s.
weight on N , then ∃! densely defined closeable antilinear operator

Rω : [nω ∩ n∗ω]ω 3 [x ]ω 7→ [x∗]ω ∈ Hω = nω.

Its closure Rω has a unique polar decomposition Rω = Jω∆
1/2
ω = ∆

−1/2
ω Jω.

Araki’73–Connes’73’74–Digernes’75 relative modular theory: For any W∗-algebra N ,
n.s. weight φ and f.n.s. weight ω (both on N ), the map

Rφ,ω : [x ]ω 7→ [x∗]φ ∀x ∈ nω ∩ n∗φ

is a densely defined, closable antilinear operator. Its closure has a unique polar
decomposition Rφ,ω = Jφ,ω∆

1/2
φ,ω. From definition: ∆ω,ω = ∆ω, Jω,ω = Jω.

∆φ,ω is positive self-adjoint unbounded, with supp(∆φ,ω) = supp(ω)Hφ, called a
relative modular operator. It can be seen as a general form of noncommutative
Radon–Nikodým quotient of two weights. (The condition φ� ω follows from
faithfulness of ω.) Araki’73: relative modular hamiltonian Kφ,ω := − log∆φ,ω.
The ultrastrongly-? continous 1-parameter family of partial isometries

R 3 t 7→ [φ : ω]t := ∆it
φ,ω∆−itω ∈ supp(φ)N

is called the Connes’ cocycle.
If N = B(H), φ = trH(ρ · ), ω = trH(σ · ), then ∆φ,ω = LρRσ−1 ,
Kφ,ω = − log(LρRσ−1).
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Natural cone [Woronowicz’72’74, Connes’72’74, Haagerup’73’75, Araki’74]

Motivation: generalise ρ 7→ √ρ to arbitrary W∗-algebra N and n.s.f. weight ω.

H\ω =
⋃

x∈nω∩n∗ω

{πω(x)Jω[x ]ω}
Hω

satisfies:

H\ω is closed, convex, and self-polar: H\ω = {ζ ∈ Hω | 〈ξ, ζ〉Hω ≥ 0 ∀ξ ∈ H\ω},
hence: it is pointed (H\ω ∩ −H\ω = {0}), spanCH\ω = Hω, and determines a partial
order on Hsa

ω := {ξ ∈ Hω | Jωξ = ξ} by: ξ ≤ ζ ⇐⇒ ξ − ζ ∈ H\ω ∀ξ, ζ ∈ Hsa
ω ,

∀φ ∈ N+
? ∃!ζω(φ) ∈ H\ω ∀x ∈ N φ(x) = 〈ζω(φ), πω(x)ζω(φ)〉Hω ,

the map N+
? 3 φ 7→ ζω(φ) ∈ H\ω is order preserving,

the map ζ\ω : H\ω → N+
? , defined by the condition

ζ\ω(ξ)(x) = 〈ξ, πω(x)ξ〉Hω ∀x ∈ N ∀ξ ∈ H\ω,

is a bijective norm continuous homeomorphism with (ζ\ω)−1 = ζω,

ω ∈ N+
?0 6= ∅ ⇒ ζω(ω) = Ωω; if ω is also tracial, then H\ω = πω(N )+Ωω

Hω ,
if N = B(K) and ω = trK, then πω = L, H\ω = G2(K)+, Jω(ξ) = ξ∗,
ζω : G1(K)+ 3 ρ 7→ ρ1/2 ∈ G2(K)+.
Haagerup’75: The notion of standard representation, axiomatically characterising
the above properties independently of the choice of n.s.f. weight.
Kosaki’80: canonical representation/cone, given by a positive cone L2(N )+ for an
arbitary W∗-algebra N , so that ζ : N+

?
∼= L1(N )+ 3 φ 7→ φ1/2 ∈ L2(N )+.
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Kosaki’80: Noncommutative Lp(N ) spaces
The approach of Kosaki is based on the use of polar decomposition of elements of N? in terms of
relative modular operator. For φ1, φ2 ∈ N? with polar decompositions φ1 = |φ1|( · u1) and
φ2 = |φ2|( · u2), p ∈ [1,∞[, and λ = eir |λ| ∈ C with r ∈ [0, 2π[, consider the addition,
multiplication and ∗ operations on N? given by

1) φ1/p
1 + φ

1/p
2 := (ϕ( · u))1/p , where ϕ ∈ N+

? and a partial isometry u with supp(ϕ) = u∗u
are determined by

u∆
1/p
ϕ,|φ1|+|φ2|

:= u1∆
1/p
|φ1|,|φ1|+|φ2|

+ u2∆
1/p
|φ2|,|φ1|+|φ2|

,

2) λ · φ1/p
1 := (|λ|p |φ1|( · eiru))1/p ,

3) (φ
1/p
1 )∗ := (ϕ( · u))1/p , where ϕ ∈ N+

? and a partial isometry u with supp(ϕ) = u∗u are
determined by

u∆
1/p
ϕ,|φ1|

:= (u1∆
1/p
|φ1|

)∗.

φ1/p is understood here as a symbol referring to the element φ of N? subject to the above
operations. The set N+

? equipped with the above structure becomes a vector space with
involution ∗, and will be denoted by M p(N ). The map

||·||p : M p(N ) 3 φ1/p 7→
∣∣∣∣∣∣φ1/p

∣∣∣∣∣∣
p

:= (|φ|(I))1/p = ||φ||1/pN?

defines a norm on M p(N ), with respect to which M p(N ) is Cauchy complete. The Banach
spaces (M p(N ), ||·||p) are denoted by Lp(N ). Kosaki shows that Lq(N ) is a Banach dual of
Lp(N ) for 1

p + 1
q = 1 with p ∈ [1,∞[, and L∞(N ) := N . The space L2(N ) is a Hilbert space.

L1(N ) is isometrically isomorphic to N?.
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Non-commutative integration: Falcone&Takesaki’01
Completion of canonical theory of integration on arbitrary W∗-algebras N .
The relationship between Kosaki’80 and Falcone–Takesaki’01 is analogous to
Dixmier’52 vs Segal’53 constructions of noncommutative Lp spaces with respect to
f.n.s. traces: the former defined the spaces abstractly, as completions of vector
spaces with respect to Banach norms, while the latter defined the spaces concretely,
by the families of unbounded operators satisfying additional (quite nontrivial!)
properties, allowing to define (very nontrivial) notion of noncommutative integral

∫
.

Functorially associated full range of non-commutative Lp spaces N 7→ Lp(N )

L1(N ) ∼= N∗, L∞(N ) ∼= N , L1(N )? ∼= L∞(N ).
The generic elements of Lp(N ) have the form xφ1/p.
L2(N ) can be naturally equipped with the Hilbert space structure

L2(N )× L2(N ) 3 (x , y) 7→ 〈x , y〉L2(N ) :=

∫
y∗x ∈ C

there is a bilinear Banach space duality pairing for 1
p + 1

q = 1, p ∈]1,∞[,

Lp(N )× Lq(N ) 3 (x , y) 7→ [[x , y ]]Ñ :=

∫
xy ∈ C

For any two f.n.s. weights on N , ψ, φ ∈ W0(N ), the equivalence relation
(x , ψ) ∼t (y , φ) ⇐⇒ y = x [ψ : φ]t defines Banach spaces
Li/t(N ) := (N ×W0(N ))/ ∼t , with elements denoted by xφit .
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Absolute integration theories in historical context
measure and integral equivalent:

Integration on Rn: Borel’1898, Lebesgue’19(01,04,10), Young’19(04,09,10), Radon’1913
Integration theories on abstract commutative (function) spaces:

1 abstract measure theory on countably additive algebras of subsets
Fréchet’1915, Sierpiński’27’28, Nikodým’30, Kolmogorov’33, Maharam’42, Segal’51

2 abstract measure theory on countably additive boolean algebras
Carathéodory’38, Wecken’40, Loomis’47, Sikorski’48

3 abstract integral theory on vector lattices
Young’1911, Daniell’1919,20’21, Riesz’28’40, Kakutani’41, Stone’48’49

measure and integral are not equivalent, integration theory is strictly more general:
Integration theories on noncommutative (operator) spaces:

1 type I and II1 W∗-algebras
von Neumann–Murray’36–’43, von Neumann–Schatten’46’47’50

2 semi-finite W∗-algebras with fixed n.s.f. trace
Dye’52, Segal’53, Dixmier’53, Ogasawara–Yoshinaga’55, Kunze’58, Stinespring’59,
Ovchinnikov’70’71, Nelson’74, Yeadon’73’75’80, Muratov’78’79, Fack–Kosaki’86,
Dodds–Dodds–de Pagter’89’93, Sukochev–Chilin’90, Kunze’90, Kalton–Sukochev’08,...

3 arbitrary W∗-algebras with fixed n.s.f. weight
Haagerup’79–Terp’81, Connes’80–Hilsum’81, Masuda’83, Terp’82, Zolotarëv’83’85’88,
Labuschagne’14,...

4 arbitrary W∗-algebras (without a choice of a fixed weight)
Woronowicz’79, Kosaki’80, Yamagami’92, Falcone’00, Falcone–Takesaki’01

Integration theory on semi-finite nonassociative JBW-algebras:
Ayupov’79–’86, Berdikulov’82’86, King’83, Abdullaev’83’84, Iochum’84’86,
Haagerup–Hanche-Olsen’84, Trunov’85, Tadzhibaev’85’86, Ayupov–Abdullaev’85’90,...
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Key takeout messages
Main question: what are the points of state spaces? Pascal–Fermat ’1654:
probabilities. Huygens ’1657: expectations. Integration theory on function
spaces (1914–1951): both approaches (based on, respectively, measure and
integral) are equivalent.
Key fact: The setting of n.s.f. weights on W∗-algebras allows to develop a
full-fledged integration theory, which generalises wide range of objects and
theorems of integration theory on measure spaces/vector lattices (e.g. partial
integration, conditional expectations, Lp(N ) spaces, Orlicz spaces, etc...).
Key fact #2: The noncommutative measure theory, focused on measures on
the orthomodular lattices of projection operators (in any W∗-algebra) is not
equivalent, and has essentially less structure (e.g. it does not even allow to
construct noncommutative Lp spaces).
Hence, in noncommutative case Huygens wins with Fermat–Pascal:
expectation/integral is more fundamental than probability measure.
Key fact #3: Non-(type I) W∗-algebras are indispensable generalisation of the
setting of ordinary quantum mechanics in several important cases, e.g., to
define the generalisation of maximum entropy states in thermodynamical limit
(known as Kubo–Martin–Schwinger states), which are (in turn) required for
the exact mathematical derivations of Fulling–Unruh and Hawking effects
[Sewell’80, Sewell’82, Fredenhagen–Haag’90].

Ryszard Paweł Kostecki (KCIK/UG) Optimal quantum inference 22 / 1



Objects = quant. information models = sets of quantum integrals
For any W∗-algebra N ,M(N ) will be defined as an arbitrary subset of a
positive part of a Banach predual space of N ,M(N ) ⊆ N+

? .

Special cases:
N is commutative ⇒ M(N ) =M(X , µ)
N is type I ⇒ M(N ) =M(H).

We do not assume that:
M(N ) is convex (⇐⇒ probabilistic mixing)
M(N ) is smooth (⇐⇒ asymptotic estimation)
M(N ) is normalised (⇐⇒ frequentist interpretation)
elements ofM(N ) are decomposable into tensor products (⇐⇒ no
initial correlations)
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What are the morphisms?

commutative probability theory:
Bayes’1763–Laplace’1774 rule
Kolmogorov’33: conditional expectations
Wald’39: markovian ( = normalised positive linear) maps
quantum theory:
von Neumann’32–Lüders’51 ’projective state reduction’ rule
Umegaki’54: conditional expectations
Stinespring’55: completely positive maps (“quantum markovian”)

all those mappings can be viewed as inductive inference, e.g. change
state due to change of information
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T?: markovian maps = coarse grainings

Let N1 and N2 be arbitrary W∗-algebras.
A function T : N1 → N2 is called:
1) positive iff T (N+

1 ) ⊆ N+
2 ;

2) n-positive iff

T ⊗ idMn(C) : N1 ⊗Mn(C) 3 x ⊗ y 7→ T (x)⊗ y ∈ N2 ⊗Mn(C)

is positive for n ∈ N;
3) completely positive (CP) iff it is n-positive ∀n ∈ N [Stinespring’55].

In the commutative case, a coarse graining is defined as a positive linear function

T? : L1(X1,f1(X1), µ1)→ L1(X2,f2(X2), µ2)

such that ||f || = ||T?(f )|| ∀f ∈ L1(X1,f1(X1), µ1)+.

In the noncommutative case, a coarse graining (CPTP) is defined as a positive linear
function

T? : (N2)? → (N1)?

such that:
1) There exists a completely positive map T : N1 → N2 such that

(T?(φ))(x) = φ(T (x)) ∀φ ∈ N2 ∀x ∈ N1

2) ||T?(φ)|| = ||φ|| ∀φ ∈ N+
2 (⇐⇒ T (I) = I)
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Quantum maps: why complete positivity?

According to Stinespring’55 theorem, trace preserving (e.g. tr(T (ρ)) = tr(ρ))
completely positive maps are characterised among all positive maps
T : G1(H)+

1 → G1(H)+
1 by the condition

∀ρ ∈ G1(H)+
1 ∃Henv ∃ρenv ∈ G1(Henv)+

1 ∃ unitary U on H⊗Henv s.t.

T (ρ) = trHenv (U(ρ⊗ ρenv)U∗) .

So, one is restricted to CP(TP) maps iff one subscribes to the following paradigms:
1 All quantum evolutions arise from unitary evolutions
2 A nonunitary evolution arises iff:

I it is possible to specify the Hilbert space and a quantum state of the “environment”,
I the quantum state subjected to unitary evolution is a tensor product of “system” and

“environment” quantum states.

But:
1 do we always need to postulate a global unitary evolution?
2 do we always have a situation that the initial state of a system is

noncorrelated/disentangled from an initial state of enviroment? (Reeh–Schlieder’61
theorem: this is generally never true for the vacuum state in (algebraic) QFT!)

Other reasons why CP maps are not necessary: Pechukas’94’95, Shaji&Sudarshan’04, ...
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Quantum information theory: a summary of departure point

positive trace class operators
T (H)+ := {ρ ∈ B(H) | ρ ≥ 0, trH|ρ| <∞} replaced by the positive
cone N+

?

general state spaces: arbitrary sets of denormalised quantum states:
M(N ) ⊆ N+

?

usually one assumes a priori that the morphismsM1(N1)→M2(N2)
should be given by some CPTP maps, however there are seriously
limiting assumptions behind it
our main motivation is to find a reasonable class of (quantum,
postquantum) state spaces and morphisms between them which would
not be linear and would not be CPTP, yet would provide a consistent
description of suitable quantum information processing tasks ⇒
approach based on relative entropies D instead of tensor products ⊗
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Quantum information informations/relative negentropies

Quantum information D :M(H)×M(H)→ [0,∞]
s.t. D(ρ, σ) = 0 ⇐⇒ ρ = σ.

E.g.
D1(ρ, σ) := trH(ρ log ρ− ρ log σ) [Umegaki’61]

D1/2(ρ, σ) := 2
∣∣∣∣√ρ−√σ∣∣∣∣2

G2(H)
= 4trH(12ρ+ 1

2σ −
√
ρ
√
σ)

(Hilbert–Schmidt norm2)
DL1(N )(ρ, σ) := 1

2 ||ρ− σ||T (H) = 1
2trH|ρ− σ| (L1/trace norm)

Dγ(ρ, σ) := 1
γ(1−γ)trH(γρ+ (1− γ)σ − ργσ1−γ); γ ∈ R \ {0, 1}

[Hasegawa’93]
Dχ2(ρ, σ) := trH((σ − ρ)σ−1(σ − ρ)) (quantum χ2)

Dα,z(ρ, σ) := 1
1−α log trH(ρα/zσ(1−α)/z)z ; α, z ∈ R

[Audenauert–Datta’14]
Df(ρ, σ) := trH(

√
ρ f(LρR

−1
σ )
√
ρ); f operator convex, f(1) = 0

[Kosaki’82, Petz’85’86]
for ran(ρ) ⊆ ran(σ), and with all D(ρ, σ) := +∞ otherwise.

Ryszard Paweł Kostecki (KCIK/UG) Optimal quantum inference 28 / 1



Df: Quantum informations nonexpansive under coarse grainings
A function f : R+ → R is called operator convex [Kraus’36] iff

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y) ∀x , y ∈ B(H)+ ∀t ∈ [0, 1].

A class of quantum informations [Kosaki’82,Petz’85] Df : N+
? ×N+

? → [0,+∞] s.t.

Df(ω, φ) :=

{
〈ζ(φ), f(∆ω,φ)ζ(φ)〉L2(N ) : ω � φ

+∞ : otherwise,

for operator convex f with f(0) ≤ 0 and f(1) = 0, was shown by Petz’85 to satisfy

Df(ρ, σ) ≥ Df(T?(ρ),T?(σ)) ∀ρ, σ ∈ N+
? ∀T? s.t. dom(T?) = N+

? (2)

for f bounded from above, and any 2-positive (hence also any CPTP) T , with =
attained iff T is a normal ∗-isomorphism.
Tomamichel–Colbeck–Renner’09: proof of (??) for type I N without boundedness
assumption, and CPTP T . Hiai–Mosonyi–Petz–Bény’11: (??) with no boundedness,
for type I N and any Schwarz (hence 2-positive, hence CPTP) T .
In particular, for f(t) = t log(t)− (t − 1), this gives Araki’76’77 information (its
nonexpansivity for any Schwarz T was proved by Uhlmann’77)

D1(ω, φ) =

{
(φ− ω)(I) + 〈ζ(ω), log(∆ω,φ)ζ(ω)〉L2(N ) : ω � φ

+∞ : otherwise.

Hence, D1(ω, φ) of normalised states is an L2(N )-expectation value of a relative
modular hamiltonian. (Another curious relationship, after every faithful state being
Gibbs state w.r.t. modular automorphism.)
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Df: Properties, special cases and commutative analogue
Characterisation of Df by means of nonexpansivity under T? is not known.
Df(ω, φ) is lower semi-continuous on N+

? ×N+
?0 with product of norm topologies.

If f(0) = 0 then Df(ω, φ) is jointly convex in ω and φ.
For N = B(H): Df(ρ, σ) := trH(ρ1/2f(LρR

−1
σ )ρ1/2) if ran(ρ) ⊆ ran(σ) and = +∞

otherwise [Petz’86]. E.g.:
I f(λ) = λ log λ ⇒ Df(ρ, σ) = trH(ρ log ρ− ρ log σ) [Umegaki’61; monot.: Lindblad’74]
I f(λ) = (λ− 1)2 ⇒ Df(ρ, σ) = trH((σ − ρ)σ−1(σ − ρ)) (quantum χ2)

For a commutative N Kosaki–Petz Df becomes a special case of:
Let f : R+ → R be convex on ]0,∞[ with f(1) = 0, strictly convex at 1, and
f(0) := limλ→+0 f(λ) > −∞. Let µω � υ � νφ. Then the Csiszár’63–Morimoto’63
f-information is defined as Df : L1(X , υ)+ × L1(X , υ)+ → [0,∞] s.t.

Df(ω, φ) :=

∫
νφf

(
µω
νφ

)
for µω � νφ and +∞ otherwise.

E.g.: Pearson’1900–Kagan’63 χ2-distance: f(λ) = (λ− 1)2 ⇒
∫
νφ
(
µω
νφ
− 1
)2

,

Hellinger’1909–Kakutani’48 distance: f(λ) = (1−
√
λ)2 ⇒

∫
(
√
µω −

√
νφ)2,

Kullback–Leibler’51 information: f(λ) = λ log(λ) ⇒ D1(ω, φ) =
∫
µω log µω

νφ
.

Csiszár’78 characterised Df for finite sample spaces by the conditions of: 1)
nonexpansivity under coarse grainings T?, 2) invariance for Radon–Nikodým
quotient invariance under T?, 3) joint convexity, 4) additive decomposability of T?
under all exclusive–and–exhaustive partitions of sample space.
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Duality of Df

Csiszár’75:

fc(λ) := λf(
1
λ

) for λ > 0

fc(0) := lim
λ→∞

1
λ
f(λ) ∈ ]−∞,+∞],

then fc : R+ → R is convex on ]0,∞[, and fcc = f.
Vajda’72:

Df(ω, φ) = Dfc(φ, ω) ⇐⇒ ∃t ∈ R ∀λ ∈ ]0,∞[ f(λ)− fc(λ) = (λ− 1)t,

Df(ω, φ) = Df(φ, ω) ⇐ f(λ) = fc(λ) ∀λ ∈ ]0,∞[ .

For example,

fγ(t) =


1
γ

+ 1
1−γ t − 1

γ(1−γ)
tγ : γ ∈ ]0, 1[

t log t − (t − 1) : γ = 1
− log t + (t − 1) : γ = 0,

fcγ(t) =


1

γ(1−γ)
(1− t1−γ) + 1

γ
(t − 1) : γ ∈ ]0, 1[

t log t − (t − 1) : γ = 0
− log t + (t − 1) : γ = 1.

f0(t) = lim
γ→+0

fγ(t) = fc1(t), f1(t) = lim
γ→−1

fγ(t) = fc0(t).
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Dγ
This gives [Jenčová’03–Ojima’03]:

Dfγ (ω, φ) =

〈
ζ(φ),

(
1
γ

+
1

1− γ
∆ω,φ −

1
γ(1− γ)

∆γ
ω,φ

)
ζ(φ)

〉
L2(N )

In particular [Hasegawa’93]: Dγ(ρ, σ) :=
1

γ(1− γ)
trH(γρ+(1−γ)σ−ργσ1−γ) for γ ∈ R\{0, 1}

as well as [Araki’76’77]: D0(ω, φ) =
〈
ζ(φ),

(
− log(∆ω,φ) + ∆ω,φ − I

)
ζ(φ)

〉
L2(N )

= (ω − φ)(I)−
〈
ζ(φ), log(∆ω,φ)ζ(φ)

〉
L2(N )

,

D1(ω, φ) =
〈
ζ(φ),

(
∆ω,φ log(∆ω,φ)−∆ω,φ + I

)
ζ(φ)

〉
L2(N )

= (φ− ω)(I) +
〈
ζ(φ),

(
∆ω,φ log(∆ω,φ)

)
ζ(φ)

〉
L2(N )

= (φ− ω)(I) +
〈
ζ(ω), log(∆ω,φ)ζ(ω)

〉
L2(N )

.

Hence, φ� ω � φ ⇒ Dγ(ω, φ) = D1−γ(φ, ω) ∀γ ∈ [0, 1],

Dγ(ω, φ) = Dγ(φ, ω) ⇐⇒ γ =
1
2
,

D1/2(φ, ψ) = 2(φ+ ψ)(I)− 4
〈
ζ(φ),∆

1/2
ψ,φζ(φ)

〉
L2(N )

= 2(φ+ ψ)(I)− 4 〈ζ(φ), ζ(ψ)〉L2(N )

= 2||ζ(φ)− ζ(ψ)||2L2(N ),

D1/2(ρ, σ) := 2
∣∣∣∣√ρ−√σ∣∣∣∣2

G2(H)
= 4trH(

1
2
ρ+

1
2
σ −√ρ

√
σ).
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RPK’11: Canonical form of Dγ
Liese–Vajda’87, Zhu–Rohwer’95 (independent of representing measure):

Dγ(ω, φ) =

∫
γµω + (1− γ)νφ − µγων1−γ

φ

γ(1− γ)
,

Jenčová’03–Ojima’03 (dependent on representing weight):

Dγ(ω, φ) =
γω(I) + (1− γ)φ(I)− re

[[
uω∆γ

ω,ψ, uφ∆1−γ
φ,ψ

]]
ψ

γ(1− γ)
,

RPK’11: Using Falcone–Takesaki integral, two above formulations became unified
into a general form:

Dγ(ω, φ) :=

∫ (
γω + (1− γ)φ− ωγφ1−γ

γ(1− γ)

)
and, including boundary terms, γ̃ ∈ [0, 1]:

Dγ̃(ω, φ) :=

∫
lim
γ→γ̃

(
γω + (1− γ)φ− ωγφ1−γ

γ(1− γ)

)
.

This includes Petz’85 (representing weight independent):

D1(φ, ω) = i lim
t→0

φ

t

((
Dω
Dφ

)
t
− I
)
.
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Entropic paradigm: absolute and relative

Gibbs’1902, Elsasser’37, Jaynes’57, Jaynes’62–Zubarev’62,...:

constrained maximisation of absolute entropy
(e.g., SvN(ρ) = −D1(ρ, ψ) + log dimH, with a fixed prior ψ = I/ dimH)
as a method of model construction:

ρ(constraints) := arg sup{SvN(ω) | constraints(ω)}

selecting a specific class of modelsM with elements parametrised by
allowed values of constraints’ parameters and maximally noninformative
with respective to anything else.

Kullback’59, Good’63, Hobson’69,...:

minimisation of D1(ρ, ψ) as a method of state transformation
(estimation, learning, updating,...) from ψ into an element of the
set that satisfies given constraints and is maximally noninformative with
respective to anything else.
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Max.Ent. approach to foundations of statistical mechanics I
Ordinary approaches (kinetic, ergodic) to foundations of stat. mech. are based on frequentist
interpretation of probability. They are unable to deal with nonequilibrium stat. mech.

Elsasser’37–Jaynes’57 approach:
1 Use bayesian interpretation of probability
2 Specify constraints C describing your knowledge (theoretic assumptions and experimental

data)
3 The predictive probability density p is determined by the maximum of

Gibbs[’1902]–Shannon[’49] information entropy SGS under these constraints,

p := arg sup
q∈C

−∑
j

q(xj ) log q(xj )

 ≡ arg sup
q∈C

{SGS(q)} , (3)

which exists uniquely if C is a closed and convex set of probabilities.

For example: assuming:
discrete sample (=phase) space X ,
some linearly independent functions (“observables”) {fi : X → R | i ∈ {1, . . . , n}},

constraints C =
{∑

j q(xj )fi (xj ) = θi

}
, where θi ∈ R can be defined e.g. as arithmetic

averages of experimental data measured in experiment,

the solution of (??) reads p(x) = exp
(
−
∑n

i=1 λi fi (x)
)
, with Lagrange multipliers λi uniquely

determined by the constraints.
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Max.Ent. approach to foundations of statistical mechanics II
For nonequilibrium case:

let (X , µ) be a measure space,

let αt : X → X be a family of µ-preserving automorphisms with t ∈ R,
let θ1, . . . , θm be parameters with the ranges Θ1, . . . ,Θm,

let observables be given by f1(x , t), . . . , fm(x , t), with fk(x , t) := fk(αt(x ), 0)

let experimental data be provided by quantities a1(θ1, t), . . . , am(θm, t), which are
incorporated by the constraints

C :=

{∫
X
µ(x )q(x , θk , t)fk(x , t) = ak(θk , t)

}
.

Then the solution of constrained entropy maximisation reads

q(x , t) = exp

(
−

m∑
k=1

∫
Θk

dθk
∫ t

t0
dt̃ λk(x , θk , t̃)fk(x , t̃)

)
,

with Lagrange multipliers λk determined by the constraints.

For finite dimensional quantum case: use density matrices ρ, linearly independent
self-adjoint operators fi , and von Neumann entropy −ρ log ρ. [Jaynes’62, Zubarev’62,
equivalence proved in: Zubarev–Kalashnikov’70]
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Segal entropy
The procedure of constrained maximum Gibbs–Shannon/von Neumann entropy
works very well (e.g., characterises classical/quantum Gibbs states) for dimX <∞
/ dimH <∞ (i.e., for commutative and noncommutative type In<∞ W ∗-algebras).
Segal’60 proposed a joint generalisation of both entropies, that includes type II
W∗-algebras: SSeg(ω) := −τ(ρ log ρ), where ρ is a noncommutative
Radon–Nikodým quotient of ω ∈ N+

? w.r.t. f.n.s. trace τ on N .
This allowed him to extend maximum entropy characterisation of Gibbs states to
include type II1 W∗-algebras.
However, for types I∞ and II∞, for every φ ∈ N+

? , the open neighbourhood of φ
w.r.t. dN?(φ, ω) := 1

2 ||φ− ω||N? (i.e., L1(N ) norm distance) contains a dense set of
SSeg(ω) = +∞.
(Yet, if ρ := e−βH with τ(ρ) <∞, then τ(σH) < τ(ρH) ⇒ SSeg(σ) <∞.)
Question 1: how to generalise max.ent./Gibbs/thermodynamic equilibrium states to
continuous (type I∞, II∞, III) case? Answer: Use KMS states. Main idea: KMS
condition generalises the property: If N = B(H), dimH <∞, αt = eith(·)e−ith,
t ∈ R, h ∈ B(H)sa, then ω = trH(ρ · ) ∈ N+

? with ρ = e−βh satisfies:

trH(ρxy) = trH(e−βhxeβhe−βhy) = tr(e−βhyαiβ(x)) = tr(ρyαiβ(x)).

Question 2: How to generalise max.ent. nonequilibrium states? Answer: Use
constrained relative entropy maximisation, because it is well defined for any
W∗-algebras. (In finite-dimensional commutative case such approach to
nonequilibrium thermodynamics was proposed and developed by Schlögl’66–75.)
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Quantum entropic projections

Let Q ⊆ N+
? be such that

for each ψ ∈M(N )
there exists a unique solution

PD
Q(ψ) := arg infρ∈Q {D(ρ, ψ)} .

It will be called an entropic projection.

for D1/2(ρ, σ) = 4trH( 1
2ρ+ 1

2σ −
√
ρ
√
σ), and Q defined as images of closed convex

subsets Q̃ ⊆ G2(H)+ under the mapping Q̃ 3 √ρ 7→ ρ ∈ Q

for Q̃ given by the closed linear subspaces of the Hilbert–Schmidt (GNS) space G2(H), the

entropic projections P
D1/2
Q coincide with the ordinary linear projection operators on G2(H).

for D1(ρ, σ) = trH(ρ log ρ− ρ log σ)
andM(H) = T (H)+

1 , ψ ∈ T (H)+
1 , h ∈ B(H)sa, then [Araki’77, Donald’90]

∃! ψh := arg inf
ρ∈T (H)+

1

{D1(ρ, ψ) + trH(ρh)} .

Here the codomains of PD1
Q are the hypersurfaces of the fixed expectation value of h, which

is a direct generalisation and relativisation of maximum Gibbs–Shannon/von
Neumann/Segal entropy principle to Umegaki/Araki D1.
All of the above holds for arbitary W∗-algebra N , not only B(H).
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Bayes–Laplace rule and maximum relative entropy

Fundamental principle of statistical inference in the bayesian statistics:

the Bayes’1763–Laplace’1774 rule: p(x) 7→ pnew(x) := p(x |b) =
p(x)p(b|x)

p(b)
.

Williams’80, Warmuth’05, Caticha&Giffin’06: the Bayes–Laplace rule is a special
case of

p(x ) 7→ pnew(x ) := arg inf
q∈Q

{D1(q, p)} ,

where D1 is the Kullback–Leibler information

D1(q, p) :=

∫
X
µ(x )q(x ) log

(
q(x )

p(x )

)
.

Douven&Romeijn’12: the Bayes–Laplace rule is also a special case of

p 7→ arg inf
q∈Q

{D1(p, q)} = PD0
Q (p),

where D0(p, q) = D1(q, p).

Ryszard Paweł Kostecki (KCIK/UG) Optimal quantum inference 39 / 1



Caticha–Giffin’06’08 derivation
for p, q ∈M := L1(X ,f(X ), µ̃)+

1 , dimM =: n <∞, with parametrisation θ :M→ Θ ⊆ Rn

allowing to consider a measure space (Θ,fBorel(Θ), dθ) as well as a product measure space
(X ×Θ,f(X ×Θ), µ̃× dθ), consider a constrained minimisation of D1:

p(x , θ) 7→ pnew(x , θ) := arg inf
q(x ,θ)∈M

{∫
X
µ̃(x )q(x , θ) log

(
q(x , θ)

p(x , θ)

)
+ F (q(x , θ))

}
, (4)

F (q(x , θ)) = λ1

(∫
X
µ̃(x )

∫
Θ

dθq(x , θ)− 1
)

+ λ2(x )

(∫
Θ

dθq(x , θ)− δ(x − b)

)
, (5)

where λ1 and λ2(x ) are Lagrange multipliers, and δ(x − b) is Dirac’s delta at b ∈ X . The
posterior probability selected as a unique solution of this variational problem is given by

pnew(x , θ) =
p(x , θ)eλ2(x )∫

X µ̃(x )
∫

Θ dθp(x , θ)eλ2(x )
, (6)

where λ2(x ) is determined via
∫

Θ dθp(x ,θ)eλ2(x )∫
X µ̃(x )

∫
Θ dθp(x ,θ)eλ2(x ) = δ(x − b). Hence,

pnew(x , θ) =
p(x , θ)δ(x − b)∫

Θ dθp(x , θ)
=

p(x , θ)δ(x − b)

p(x )
=: δ(x − b)p(θ|x ), (7)

which leads to the Bayes–Laplace rule on Θ,

p(θ) 7→ pnew(θ) =

∫
X
µ̃(x )δ(x − b)p(θ|x ) = p(θ|b), (8)

whenever µ is such that
∫
X µ̃(x )δ(x − b)h(x ) = h(b) (for example, if µ̃(x ) = dx ).
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Jeffrey’s rule from maximum relative entropy

Caticha–Giffin’06’08:

If the second constraint in (??) is replaced by a more general form,

F (q(x , θ)) = λ1

(∫
X
µ̃(x )

∫
Θ

dθq(x , θ)− 1
)

+ λ2(x )

(∫
Θ

dθq(x , θ)− f (x )

)
, (9)

corresponding to a condition q(x ) =
∫

Θ
dθq(x , θ) = f (x ) with a given probability density

f ∈M(X ,f(X ), µ̃), then the entropic projection (??) reproduces Jeffrey’s rule on Θ,

pnew(x , θ) =
p(x , θ)

p(x )
f (x ) =: p(x |θ)f (x ) = p(x |θ)pnew(x ), (10)

p(θ) 7→ pnew(θ) =

∫
X
µ̃(x )f (x )

p(x , θ)

p(x )
=

∫
X
µ̃(x )p(θ|x )f (x ) =

∫
X
µ̃(x )p(θ|x )pnew(x ).

(11)

Ryszard Paweł Kostecki (KCIK/UG) Optimal quantum inference 41 / 1



Lüders’ rules

Lüders’ rules [von Neumann’32, Lüders’51] provide the basic paradigm
for the description of quantum state change due to measurement of an
observable x =

∑
i λiPi :

ρ 7→ ρnew :=
∑

i

PiρPi (‘weak’ = ‘nonselective’),

ρ 7→ ρnew :=
PρP

trH(Pρ)
(‘strong’ = ‘selective’)

Bub’77’79, Caves–Fuchs–Schack’01, Fuchs’02, Jacobs’02: Lüders’ rules
should be considered as rules of inference (conditioning) that are
quantum analogues of the Bayes–Laplace rule.
Yet, no mathematically exact relationship was provided.
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Quantum bayesian inference from quantum entropic projections

F.Hellmann–W.Kamiński–RPK’14:

1 weak Lüders’ rule is a special case of ρ 7→ arg infσ∈Q {D1(ρ, σ)}
with

Q = {σ ∈ T (H)+ | [Pi , σ] = 0 ∀i}
2 strong Lüders’ rule derived from ρ 7→ arg infσ∈Q {D1(ρ, σ)} with

Q = {σ ∈ T (H)+ | [Pi , σ] = 0, trH(σPi ) = pi ∀i}
under the limit p2, . . . , pn → 0.

3 hence, weak and strong Lüders’ rules are special cases of quantum
entropic projection PD0

Q based on relative entropy
D0(σ, ρ) = D1(ρ, σ).

Bayes–Laplace and Lüders’ conditionings are special cases of entropic
projections
⇒ “quantum bayesianism ⊆ quantum relative entropism”.
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Quantum Jeffrey’s rule
Jeffrey’65: proposed another rule for probabilistic bayesian inference, generalising
the Bayes–Laplace rule:

p(x |η) 7→ pnew(x |η) :=
n∑

i=1

p(x |bi )λi =
n∑

i=1

p(x ∧ bi |η)

p(bi |η)
λi ,

where n ∈ N,
I {b1, . . . , bn} is a set of exhaustive and mutually exclusive elements of boolean algebra,
I λi = pnew(bi |η) ∀i ∈ {1, . . . , n},
I p(bi |η) 6= 0.

Caticha&Giffin’06: under more general constraints Q, one can derive Jeffrey’s rule
as a special case of PD1

Q
F.Hellmann–W.Kamiński–RPK’14: derivation of a quantum analogue of Jeffrey’s
rule:

T (H)+
1 3 ρ 7→ ρnew := arg inf

σ∈Q
{D1(ρ, σ)} =

n∑
i=1

PiρPi

trH(ρPi )
λi ∈ T (H)+

1 ,

where n ∈ N,
I {P1, . . . ,Pn} ⊆ Proj(B(H)),

∑n
i=1 Pi = I, PiPj = δijPi ,

I λi = trH (ρnewPi ) ∀i ∈ {1, . . . , n},
I trH(ρPi ) 6= 0.

It generalises Lüders’ rule.
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Quantum measurements from quantum entropic projections

Hence: the rule of maximisation of relative entropy (entropic projection on the
subset determined by constraints) can be considered as a nonlinear
generalisation of the dynamics describing elementary “quantum measurement”.
F.Hellmann–W.Kamiński–RPK’14: also quantum analogue of Jeffreys’ rule
follows
M.Munk-Nielsen’15: partial trace is also entropic projection (at least for
strictly positive states)
more measurements and more general results: RPK–M.Munk-Nielsen’20
(under construction)
these results are for D0 and/or D1; however there are many more Ds...

Earlier results (obtained exclusively for symmetric information functionals):

Herbut’69: weak Lüders’ rule is a special case of Pd2
Q , with

d2(ρ, σ) =
〈√

ρ−
√
σ,
√
ρ−
√
σ
〉
G2(H)

.

Hadjisavvas’81: strong von Neumann rule is a special case of Pd1
Q with

d1(ρ, σ) = 1
2 trH|ρ− σ|.

Raggio’84: strong von Neumann rule is a special case of maximum
Cantoni–Uhlmann transition probability ⇐⇒ P

D1/2
Q .
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Quantum entropic projections: towards general setting
How general class of nonlinear state transformations/updating (“due to
measurement/information gain”) can be derived from entropic projections,
allowing both D and Q to vary?
The choice of the class of sets Q for which ∃!PD

Q depends very strongly on
the structure of D (and vice versa!): the choice of discrimination functional
(D) defining the principle of inference (PD

Q) determines the accepted data
types (Q), and conversely.
Considering Q as objects and PD

Q as candidates for morphisms, this leads to a
question of general conditions on families (Q,D) guaranteeing the existence
and uniqueness of PD

Q, together with good composition properties of
subsequent projections ⇒ the general problem is to define (and eventually
characterise) the categories of entropic projections.
In analogy to (nonexpansivity under coarse grainings determining the structure
of Df), we need some principle constraining D/Q that would guarantee
existence, uniqueness, and good composition properties of D-projections.
This principle will be provided by: (1) the generalised pythagorean inequality,
which will be equivalently expressed in terms of (2) the local–to–global
property of convex functions, and in terms of (3) the Young–Fenchel
inequality for the Legendre case of Fenchel duality.
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Generalised pythagorean inequality/equation

We say that D satisfies a generalised pythagorean inequality at Q iff
[Brègman’67–Chencov’68]

D(φ, ψ) ≥ D(φ,PD
Q(ψ)) + D(PD

Q(ψ), ψ) ∀(φ, ψ) ∈ Q×M.

In particular, in the case of equality, information decomposes additively under
a projection onto a suitable subspace, hence we have a nonlinear, yet additive
(!), decomposition: data = signal + noise

Goal: introduce the class of relative negentropies D, for which
1 ∃!PD

Q iff Q is convex and closed (in a suitable sense!)
2 generalised pythagorean inequality always holds
3 generalised pythagorean equality holds iff Q is affine (in a suitable sense!)
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Generalised pythagorean equation: examples

Example 1: If Q forms an affine subset of L1(X , µ)+, then
[Brègman’67–Chencov’68], and D1 is the Kullback–Leibler information, then

D1(φ, ψh) + D1(ψh, ψ) = D1(φ, ψ) ∀(φ, ψ) ∈ Q× L1(X , µ)+.

Example 2: If Q forms an affine subset of G2(H), then:∣∣∣∣∣∣x −P
D1/2
Q (z)

∣∣∣∣∣∣2
G2(H)

+
∣∣∣∣∣∣PD1/2
Q (z)− z

∣∣∣∣∣∣2
G2(H)

= ||x − z ||2G2(H).

Example 3: If Q := {φ ∈ N+
? | φ(I) = 1, φ(h) = const}, i.e., if it is an affine

subset of N+
?1, and D1 is the normalised Araki information, then [Donald’90]

D1(φ, ψh) + D1(ψh, ψ) = D1(φ, ψ) ∀(φ, ψ) ∈ Q×N+
?1.

Observation: Convexity and affinity in these examples are defined w.r.t. to
different linear structure (Ex.1: L1(X , µ) space, Ex.2: L2(N ) space, Ex.3:
L1(N ) space).
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Convexity: local vs global
A function f : C → R, with convex C ⊆ Rn, is called convex iff

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) ∀x , y ∈ C ∀λ ∈ [0, 1].

If C ⊆ Rn is convex and open, and if f : C → R is differentiable, then f is convex iff

f (y) ≥ f (x) + [∇f (x)]>(y − x) ∀x , y ∈ C , (12)

where ∇ ≡ grad.

r.h.s. of (??) = first order Taylor approximation of f near x = supporting
hyperplane through (x , f (x)) = linear witness.
In other words, r.h.s. of (??) is a local approximation of [“information about”] f
which is a global underestimator of [“information about”] f .
Boyd S., Vandenberghe L., Convex optimization (2004): «This is perhaps the most
important property of convex functions (...) and convex optimization problems».
E.g., ∇f (x) = 0 ⇒ f (y) ≥ f (x) ∀y ∈ C , i.e. x is a global minimum of f .
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Brègman’67: D̃Ψ: first idea
Let Ψ : Rn → ]−∞,∞] be proper (i.e., efd(Ψ) := {x ∈ Rn | Ψ(x) 6=∞} 6= ∅),
strictly convex and differentiable on int(efd(Ψ)). Then D̃Ψ : Rn × Rn → [0,+∞],

D̃Ψ(y , x) :=

{
Ψ(y)−Ψ(x)−

∑n
i=1(y − x)i [(∇Ψ)(x)]i : x ∈ int(efd(Ψ))

+∞ : otherwise

Properties:
D̃Ψ(y , x) is convex in y

D̃Ψ(y , x) ≥ 0, with = 0 iff x = y

D̃Ψ+λΦ = D̃Ψ + λD̃Φ for λ ≥ 0

in general: D̃Ψ(y , x) 6= D̃Ψ(x , y)

given a convex closed Q ⊆ int(efd(Ψ)),

D̃Ψ(y , x) ≥ D̃Ψ(y ,PD̃Ψ
Q (x)) + D̃Ψ(PD̃Ψ

Q (x), x),

with equality iff Q is affine (⇐⇒
generalised pythagorean equation).

Al’ber–Butnariu’97, Butnariu–Iusem’00,...: D̃Ψ is characterised by the generalised
pythagorean inequality (for projections onto closed convex sets), or, equivalently,
by generalised pythagorean equality (for projections onto closed affine sets)
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D̃Ψ: examples

X = (Rn)+, Ψ(x) =
∑n

i=1 xi log(xi ), ∇Ψ(x) = log(x),

D̃Ψ(x , y) =
n∑

i=1

(yi − xi + xi (log(xi )− log(yi ))) = D1(x , y)

X = H (Hilbert space with dimH <∞), Ψ(x) = 1
2 ||x ||

2
H, ∇Ψ = idH,

D̃Ψ(x , y) =
1
2
||x − y ||2H = 4D̃1/2(x , y)

X =]0,∞[n, Ψ = −
∑n

i=1 log(xi ) (Burg’67’75), ∇Ψ(x) = − 1
x , then

[Pinsker’60/Itakura–Saito’68]:

D̃Ψ(x , y) =
n∑

i=1

(
− log

xi

yi
+

xi

yi
− 1
)
∀(x , y) ∈ ]0,∞[2n.
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D̃Ψ: towards dimX =∞
How to generalise to dimX =∞?

X will be assumed to be a Banach space, while the gradient ∇ will be
generalised to Gateaux derivative.
If X is a topological vector space over K, t ∈ R, and Ψ : X →]−∞,+∞] is
proper then the Gateaux’1914 derivative of Ψ at x ∈ X in the direction h ∈ X
reads

X × X 3 (x , h) 7→ DGΨ(x ; h) := lim
t→0

Ψ(x + th)−Ψ(x)

t
∈ [−∞,∞]. (13)

If x is fixed and (??) exists for all h ∈ X , and is (linear and bounded) in h,
then Ψ is called Gateaux differentiable at x .
If X is a Banach space and Ψ is Gateaux differentiable at x ∈ X , then

DGΨ(x ; y) =:
[[
y ,DG

x Ψ
]]

X×X? ∀y ∈ X (14)

defines the Gateaux derivative DG
x Ψ.

Mazur’33: Given a Banach space X with a unit ball X≤1, ||·||X is Gateaux
differentiable at x ∈ X \ {0} iff ||x ||X ·X≤1 has a unique supporting hyperplane
at x .
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D̃Ψ: reflexive case [Bauschke–Borwein–Combettes’01]
Let X be a reflexive Banach space (X ∼= X ??), let Ψ : X → ]−∞,∞] be Legendre ( =
convex, proper, lower semi-continuous, Gateaux differentiable on int(efd(Ψ)) 6= ∅ with
some additional conditions [see next slide]). Then, D̃Ψ : X × X → [0,∞],

D̃Ψ(x , y) :=

{
Ψ(x)−Ψ(y)−

[[
x − y ,DG

y Ψ
]]

X×X? : y ∈ int(efd(Ψ))

+∞ : otherwise
(15)

satisfies:
D̃Ψ(x , y) = 0 ⇐⇒ x = y (information)
D̃Ψ(x , y) + D̃Ψ(y , z) = D̃Ψ(x , z) +

[[
x − y ,DG

z Ψ−DG
y Ψ
]]

X×X?

(generalised cosine theorem)
if C ⊆ X is convex and closed then

∀y ∈ int(efd(Ψ)) ∃!PD̃Ψ
C (y) := arg inf

x∈C

{
D̃Ψ(x , y)

}
if C is furthermore also an affine subset of X then

D̃Ψ(x ,PD̃Ψ
C (y)) + D̃Ψ(PD̃Ψ

C (y), y) = D̃Ψ(x , y) ∀(x , y) ∈ C × X

If X = H, Ψ1/2 = 1
2 ||·||

2
H, then DGΨ1/2 = idH, D̃Ψ1/2(x , y) = 1

2 ||x − y ||2H
If X = reflexive Banach space with ||·||X Gateaux differentiable at unit sphere X1,
Ψ = 1

2 ||·||
2
X , then DGΨ = j : X → X ?, i.e. a duality map

j(x) := {y ∈ X ? | y(x) = ||y ||X? ||x ||X , ||y ||X? = ||x ||X} = {∗} .
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Fenchel duality, subdifferential, and Legendre functions

Given a proper function Ψ : X → [−∞,∞], and a duality pairing
(X ,X d, [[·, ·]] : X × X d → K), the Fenchel’49 dual ΨF : X d → [−∞,∞] reads

ΨF(ŷ) := sup
x∈X
{re [[x , ŷ ]]X×X d −Ψ(x)} ∀ŷ ∈ X d.

efd(Ψ) 6= ∅ ⇒ ΨF(ŷ) > −∞ ∀ŷ ∈ X d

ΨF and ΨFF are always convex.
ΨFF|X = Ψ if (X ,X d) are dual pair of locally convex topological vector spaces
with weak-? and weak- topologies, respectively, and Ψ is weakly lower
semi-continuous and convex.
The Fenchel’49 subdifferential of a proper Ψ : X →]−∞,∞] at x ∈ efd(Ψ) is

∂Ψ(x) := {ŷ ∈ X d | Ψ(z)−Ψ(x) ≥ re [[z − x , ŷ ]]X×X d ∀z ∈ X}. (16)

For x ∈ X \ efd(Ψ), ∂Ψ(x) := ∅.
If X is a reflexive Banach space, then a proper, convex, lower semi-continuous
Ψ : X →]−∞,∞] is called Legendre iff int(efd(Ψ)) 6= ∅, int(efd(ΨF)) 6= ∅,
∂Ψ is single valued on efd(∂Ψ) := {x ∈ efd(Ψ) | ∂Ψ(x) 6= ∅}, and ∂ΨF is
single valued on efd(∂ΨF) := {x ∈ efd(ΨF) | ∂ΨF(x) 6= ∅} [Rockafellar’67:
Rn case, Bauschke–Borwein–Combettes’01: reflexive Banach space case].
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Brègman functional from Young–Fenchel inequality [B–B–C’01]
If Ψ : X →]−∞,∞] is convex and ŷ ∈ X d, then the Young–Fenchel inequality holds

Ψ(x)−ΨF(ŷ)− re [[x , ŷ ]] ≥ 0,

with equality iff ŷ ∈ ∂Ψ(x).
If X is a Banach space, and Ψ is proper, convex, lower semi-continuous, and
Gateaux-differentiable at x ∈ X , then ∂Ψ(x) = {DG

x Ψ}.
If Ψ is Legendre, then it is (Gateaux differentiable and strictly convex) on
int(efd(Ψ)) = efd(DGΨ) and ΨF is (Gateaux differentiable and strictly convex) on
int(efd(ΨF)) = efd(DGΨF).
If Ψ is Legendre, then

DGΨ : int(efd(Ψ))→ int(efd(ΨF))

is a bijection, with DGΨ−1 = DGΨF.
So, for Legendre Ψ, the one-sided Fenchel duality becomes a two-sided Legendre
duality.
Two key consequences:

D̃Ψ(x , y) = Ψ(x)−Ψ(y)−
[[

x − y ,DG
y Ψ
]]

= Ψ(x) + ΨF(DG
y Ψ)−

[[
x ,DG

y Ψ
]]

D̃Ψ(x , y) = D̃ΨF(DG
y Ψ,DG

x Ψ).

Hence, the Brègman functional D̃Ψ(x , y) can be seen as an information functional
characterising the content of the Young–Fenchel inequality in the Legendre case of
Fenchel duality.
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DΨ: Postquantum Brègman informations [RPK’17]

Let X be a reflexive Banach space, Ψ : X →]−∞,∞] a Legendre function,
let U be (a subset of) a positive generating cone of a base norm space Y ,
let ` : U → `(U) ⊆ int(efd(Ψ)) ⊆ X be a bijection.
We define a postquantum Brègman information as:

DΨ(φ, ω) := D̃Ψ(`(φ), `(ω))

where D̃Ψ is a Brègman functional on X .
The bijectivity of ` allows to induce a topology from X onto U.
The existence and uniqueness of the projections onto Q ⊆ U is guaranteed by
requiring `(Q) to be convex and closed.
One can think of ` as a (nonlinear) coordinate system on U, and X as the
linear parameter space used for specification of the data required for the
entropic projection.
As a result, all postquantum Brègman informations DΨ satisfy generalised
pythagorean inequality/equality for sets Q that are (closed and convex/affine)
under `-embeddings.
If Y is given by a self-adjoint part of a predual of W∗-algebra, then DΨ is a
quantum Brègman information.
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Quantum Brègman informations: Dγ as example

Jenčová’03/’05 (very inspiring paper): U = N+
? for a W∗-algebra N ,

X = L1/γ(N , ψ): noncommutative Lp space w.r.t. f.n.s. weight ψ on N ,
p = 1

γ ∈ ]1,∞[, `γ(φ) = 1
γ∆γ

φ,ψ, Ψγ(x) = 1
1−γ ||γx ||

1/γ

Dγ(ω, φ) =
1

1− γ
ω(I) +

1
γ
φ(I) +

1
γ(1− γ)

[[
∆γ
ω,ψ,∆

1−γ
ω,ψ

]]
ψ

(17)

For γ ∈ ]0, 1[ one has [Jenčová’05]: ∃! P
Dγ
Q (ψ) := arg infφ∈Q {Dγ(φ, ψ)}:

Dγ(ω, ψ) ≥ Dγ(ω,P
Dγ
Q (ψ)) + Dγ(P

Dγ
Q (ψ), ψ) ∀(ω, ψ) ∈ Q×N+

?

if the following conditions are satisfied:
1) Q is nonempty,
2) `γ(Q) ⊆ L1/γ(N , ψ) is convex,
3) Q is closed in the topology induced on N+

? by `−1
γ from the weak topology of

L1/γ(N , ψ).

The proof of above theorem as given in Jenčová’05 does not use the theory of
Brègman functionals on Banach spaces, however the Brègman functional
structure of Dγ = DΨγ ◦ (`γ , `γ) is discussed there explicitly.
Weak and norm closures of convex sets coincide for reflexive Banach spaces.
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Quantum Brègman informations: Dγ as example (II)

RPK’11/’13/’17: given γ ∈ [0, 1], X = L1/γ(N ), `γ(φ) = 1
γφ

γ ,

Ψγ(x) = 1
1−γ ||γx ||

1/γ , D̃Ψγ (`γ(·), `γ(·)) gives
N+
? ×N+

? 3 (ω, φ) 7→ Dγ(ω, φ) ∈ [0,∞] s.t.
∫ 1
γ(1−γ)

(
γω + (1− γ)φ− ωγφ1−γ) : γ ∈ ]0, 1[, ω � φ∫

limγ̃→±γ
1

γ̃(1−γ̃)

(
γ̃ω + (1− γ̃)φ− ωγ̃φ1−γ̃) : γ ∈ {0, 1}, ω � φ

+∞ : otherwise,

with γ̃ →+ γ for γ = 0 and γ̃ →− γ for γ = 1.
DΨ ∩ Df = Dγ : characterisation, in finite dimensional case, under some
conditions:

I commutative: Amari’09 (γ ∈ R),
I quantum: RPK’13 (conjecture) ’19 (proof) (γ ∈ [−1, 2]).

Under further restriction to φ(I) = 1, the characterised class restricts to
{D0,D1}:

I proved by Csiszár’91 in commutative case
I remarked (without proof) by Petz’07 in noncommutative case.
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Quantum Brègman informations: Dγ as example (III)

Dγ(ω, φ) =

∫
1

γ(1− γ)

(
γω + (1− γ)φ− ωγφ1−γ)

˜̀
γ : N? 3 φ = |φ|( · uφ) 7→ 1

γ uφ|φ|
γ ∈ L1/γ(N ) is a bijection

Ψγ : L1/γ(N ) 3 x 7→ Ψγ(x) := 1
1−γ

∫
(γx)1/γ = 1

1−γ ||γx ||
1/γ
1/γ

||·||1/γ : φγ 7→ ||φγ ||1/γ := (|φ|(I))γ = ||φ||γN?
DG

x ||·||1/γ(y) = ||x ||−1
1/γre

[[
y , j1/γ(x)

]]
,

because j = (f 2)′ = 2f · f ′ ⇒ f ′ = 1
2f · j ,

(DG
x Ψγ)(y) =

(
DG

(
1

1−γ ||γx ||
1/γ
1/γ

))
(y) =

(
1

1−γ ||γx ||
1/γ−1
1/γ DG||x ||1/γ

)
(y)

DGΨγ = ˜̀1−γ ◦ ˜̀−1
γ : L1/γ(N ) 3 1

γ uφ|φ|
γ 7→ 1

1−γ uφ|φ|
1−γ ∈ L1/(1−γ)(N )

ΨF
γ = Ψ1−γ

D̃Ψγ (x , y) = Ψγ(x) + Ψ1−γ(DG
y Ψγ)− re

[[
x ,DG

y Ψγ

]]
DΨγ (ω, φ) = D̃Ψγ (`γ(ω), `γ(φ)) = Ψγ(`γ(ω)) + Ψ1−γ(`1−γ(φ))− re [[`γ(ω), `1−γ(φ)]]

= 1
1−γ

∣∣∣∣∣∣γ 1
γ |ω|

γ
∣∣∣∣∣∣1/γ
1/γ

+ 1
γ

∣∣∣∣∣∣(1− γ) 1
1−γ |φ|

1−γ
∣∣∣∣∣∣1/(1−γ)

1/(1−γ)
− 1

γ(1−γ)

[[
ωγ , φ1−γ]]

= 1
1−γω(I) + 1

γφ(I)− 1
γ(1−γ)

∫
ωγφ1−γ .
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DΨ: (Post)quantum Brègman informations: examples (IV)

(2) [RPK’19]: a generalisation of Dγ to nonassociative L1/γ(A, τ) spaces over
JBW-algebras A with f.n.s. trace τ (with explicit calculation of all properties
naturally generalising from the L1/γ(N ) case thanks to
Iochum’84’86/Aupov’86 proof of uniform convexity and uniform Fréchet
differentiability of L1/γ(A, τ)).

(3) [RPK’20]: a family DΨ over reflexive Orlicz ideals of self-adjoint compact
operators GΥ(H)sa over countably dimensional Hilbert spaces H, with Υ
given by an invertible Orlicz function such that both Υ and ΥY satisfy 42
condition, ` = `Υ : G1(H)+ 3 ρ 7→ Υ−1(ρ) ∈ GΥ(H)+, and Ψ given by any
spectral Legendre function Ψ = f ◦ λ, where f : lΥ →]−∞,∞] is any
rearrangement-invariant (i.e., symmetric) Legendre function on the Orlicz’36
sequence space lΥ, while λ : GΥ(H)sa → lΥ is a spectral map introduced in
Borwein–Read–Lewis–Zhu’99.

I for dimH <∞ the map λ is a vector of eigenvalues, listed in nonincreasing order, and
all setting has been developed by Lewis’96

I B–R–L–Z’99 consider only G1/γ(H)sa spaces, but all constructions directly apply to
GΥ(H)sa,

I the proof of f ◦ λ being Legendre iff f is Legendre follows implicitly from the proof of
the analogous statement for Gateaux differentiability in B–R–L–Z’99 (in dimH <∞
case it has been proved explicitly in Lewis’96).

(4) more examples: later in this talk!
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DΨ: (Post)quantum Brègman informations: examples (V)

(5) Any base norm space Y with a weakly compact base (e.g., if dimY <∞, or
if Y is a type I2 JBW-factor) is reflexive, so then the construction of D̃Ψ

applies directly.
(6) Araki information D1 is a quantum Brègman information only in the finite

dimensional (Umegaki) case. In general, it is not associated naturally with any
reflexive Banach space, however it is a limit of a family of quantum Brègman
informations: limγ→+1 Dγ(ω, φ) = D1(ω, φ). It satisfies one-sided version of
the generalised cosine theorem [Donald’90]. For commutative N , it turns to
Kullback–Leibler D1, for which the one-sided (right) generalised cosine and
pythagorean theorems in ∞-dim case were proved by [Chencov’68].
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Df vs DΨ: different preferred morphisms ⇐⇒ different structure
Csiszár–Morimoto/Kosaki–Petz Df:
〈ζ(φ), (·)ζ(φ)〉L2(N ) is a bijective canonical cone representation
L1(N )+ → L2(N )+ of φ(·)
f : R+ → R is operator convex, f(0) ≤ 0 and f(1) = 0, possibly bounded from
above
Df(ω, φ) := 〈ζ(φ), f(∆ω,φ)ζ(φ)〉L2(N )

f↔ fc duality implies Df(ω, φ) = Dfc(φ, ω)

Df(ρ, σ) ≥ Df(T?(ρ),T?(σ)) ∀ρ, σ ∈ N+
? ∀T? s.t. dom(T?) = N+

? ,
with = when T? is a ∗-isomorphism.

Quantum Brègman DΨ:
` : N+

? → `(N+
? ) ⊆ int(efd(Ψ)) ⊆ X is a bijection into (the subset of the

positive cone of) reflexive noncommutative Banach space X
Ψ : X →]−∞,∞] is convex, proper, lower semi-continuous, Legendre
DΨ(ω, φ) := Ψ(`(ω))−Ψ(`(φ))−

[[
`(ω)− `(φ),DGΨ(`(φ))

]]
X×X?

Ψ↔ ΨF duality implies DΨ(`(ω), `(φ)) = DΨF(DGΨ(`(φ)),DGΨ(`(ω)))

DΨ(ω, φ) ≥ DΨ(ω,PDΨ

C (φ)) + DΨ(PDΨ

C (φ), φ) ∀(ω, φ) ∈ C ×N+
? , with

C ⊆ N+
? `-convex `-closed, with = when C is `-affine.
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Chencov’s programme of categorical geometrostatistics (I)
Hotelling’29 (unpublished), Rao’45, Jeffreys’46: independent discoveries that ’Fisher
information matrix’ is a riemannian metric tensor gFR on the space of strictly positive
probabilities over finite dimensional sample space.
Chencov’64: introduced an affine connection (∇γ=0) on statistical manifold. (Acknowledges
his wife, E.Morozova, for the suggestion; Dawid’75: independent rediscovery.)
Chencov’65: paper “Categories of mathematical statistics” with subsets of positive cone of
L1(X , µ) spaces as objects, and coarse grainings as arrows (independently introduced in:
Lawvere’62(unpublished) and Morse–Sacksteder’66).
Chencov’68: generalised pythagorean theorem for Kullback–Leibler relative entropy in
∞-dim (independently: Brègman’67 for finite dim and any DΨ).
Chencov’69: characterisation of all riemannian–affine geometries (gFR,∇γ) on spaces of
probability densities on finite dimensional sample spaces that are nonexpansive under
markovian morphisms. (Amari’80: Independent rediscovery of ∇γ connections)
Araki’74, Donald’90: generalised pythagorean theorem for Araki information.
Ingarden–Janyszek–Kossakowski–Kawaguchi’82: The Taylor expansion of Umegaki D1 gives
Mori’55–Kubo’56–Bogolyubov’61 quantum riemannian metric.
Eguchi’83’85: The Taylor expansion of Csiszár–Morimoto Df gives gf = gFRf′′(1) while ∇f

coincide with ∇γ with 1− 2γ = 2f′′′(1) + 3f′′(1).
Morozova–Chencov’85,’87,’89–Petz’96: characterisation of riemannian geometries of
quantum state spaces that are nonexpansive under quantum markovian morphisms.
Nagaoka’94’95–Hasegawa’95: ∇0 and ∇1 affine connections on quantum state spaces.
Lesniewski–Ruskai’99: Taylor expansion of the Kosaki–Petz Df gives exactly the
Morozova–Chencov–Petz metrics.
Jenčová’03’04: characterisaton of the class ∇f of quantum affine connections which are
nonexpansive under quantum markovian morphisms, and of its dually flat subclass ∇γ .
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Chencov’s programme of categorical geometrostatistics (II)
Chencov’72: monography summarising his ’64–’72 work
(de facto: an extended version of his ’69 habilitation thesis)

On the first page of Introduction:

«The system of all statistical decision rules of all thinkable
statistical problems taken together with a natural operation
of composition forms an algebraic category. This category
gives birth to a homogeneous geometry of families of
probabilistic laws, in which the families play the role of
‘figures’, while decision laws describe ‘movements’. Two
families are congruent if and only if, when they are having
the same statistical properties. The subject of this
monography most exactly could be described by a notion
‘geometrostatistics’.»

Qencov N.N., 1972, Statistiqeskie
rexa�wie pravila i optimal~nye

vyvody, Nauka, Moskva (Engl. transl.
1982, Statistical decision rules and

optimal inference, American
Mathematical Society, Providence)
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Nonlinearity & convexity: outlook
Our main goal: construct the categories of nonlinear (quantum, postquantum)
geometrostatistics, using Brègman relative entropies DΨ, their entropic
projections, and even more general DΨ-well-behaving nonlinear morphisms*,
together with the corresponding brègmannian geometry, instead of markovian
(CPTP, positive linear) maps and corresponding Df-geometries.
⇒ Nonlinear nonmarkovian version of “Chencov programme”.
(*these morphisms will be given by `-embeddings of so-called Brègman strongly
quasi-nonexpansive maps)

Mottos:
«the needed applications of global analysis to calculus of variations or
continuum physics are usually nonlinear. Another unspoken presupposition of
mainstream mathematics seems to be: nonlinear is a generalization of linear
and hence more difficult. But there are important ways in which a nonlinear
category can be simpler than the linear category of vector space objects in it.»

F.W. Lawvere, 1998, Volterra’s functionals and covariant cohesion of space

«In fact the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity»

R.T. Rockafellar, 1993, Lagrange multipliers and optimality
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Categories of postquantum brègmannian entropic projections
The elementary setting:

Cvx(`,Ψ):
I objects: `-closed `-convex subsets of U (e.g., of a positive generating cone of a given

base norm space), including ∅
I morphisms: P

DΨ
Q , including ∅

I composition: P
DΨ
Q2
◦PDΨ

Q1
= P

DΨ
Q1∩Q2

Hence, it can be considered as the category of generalised pythagorean
inequality.
Aff(`,Ψ): as above, but Q restricted to `-affine `-closed sets: the category of
generalised pythagorean equation
Cvx⊆(`,Ψ), Aff⊆(`,Ψ): as two above, respectively, but with composition rule
restricted to Q2 ⊆ Q1 (inclusion of convex/affine sets)
Specific examples of above categories, with (`,Ψ) determined by:
1) spectral Legendre functions over Orlicz spaces of self-adjoint compact

operators on countably dimensional Hilbert spaces
2) noncommutative Lp spaces over arbitrary W∗-algebras
3) nonassociative Lp spaces over semi-finite JBW-algebras
4) any base norm space Y with a weakly compact base and any Legendre

function Ψ on Y
5) more examples later in this talk
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Brègman relative entropy as a functor (I)

Motivation: Baez–Fritz’14: characterisation of D1 relative entropy as a
functor from a suitable category into [0,∞].
The class of Brègman relative entropies DΨ leads naturally to another
functorial structure, arising from the generalised pythagorean theorem.
[0,∞] := a category consisting of one object •, with morphisms given
by the elements of the set R+ ∪ {∞}, and their composition defined by
addition (Lawvere’73).
2 := category consisting of two objects, one arrow between them, and
the identity arrows on each of the objects.
[0,∞]2 has objects given by morphisms of [0,∞], morphisms given by
the commutative squares in [0,∞], and compositions given by
commutative compositions of these squares.
Let Aff⊆Q(`,Ψ) denote a full subcategory of Aff⊆(`,Ψ), determined by
the choice of its terminal object to be given by Q ∈ Ob(Aff⊆(`,Ψ)).
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Brègman relative entropy as a functor (II)
Let K1,K2,K3,K , L ∈ Ob(Aff⊆Q(`,Ψ)), K ⊆ K2 and L ⊆ K3.
For each φ ∈ Q, the generalised pythagorean theorem implies the commutativity of
the diagram

•
DΨ(φ,x) // •

•

0

OO

DΨ(φ,P
DΨ
K (x))

// •

DΨ(P
DΨ
K (x),x)

OO

•

0

OO

DΨ(φ,P
DΨ
L ◦PDΨ

K (x))
// •

DΨ(P
DΨ
L ◦PDΨ

K (x),P
DΨ
K (x))

OO

which implies the commutativity of

x � //
_

P
DΨ
K
��

( •
DΨ(φ,x)

// • )

P
DΨ
K (x)

� //
_

P
DΨ
L
��

( •

0

OO

DΨ(φ,P
DΨ
K (x))

// • )

Df (P
DΨ
K (x),x)

OO

P
DΨ
L ◦PDΨ

K (x)
� // ( •

0

OO

DΨ(φ,P
DΨ
L ◦PDΨ

K (x))
// • ) .

DΨ(P
DΨ
L ◦PDΨ

K (x),P
DΨ
K (x))

OO
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Brègman relative entropy as a functor (III)

This defines a contravariant functor DΨ(φ, ·) : Aff⊆Q(`,Ψ)→ [0,∞]2.

It naturally extends to the functor DΨ(φ, ·) : Aff⊆(`,Ψ) ↓ Q → [0,∞]2,
where Aff⊆(`,Ψ) ↓ Q denotes a slice category of Aff⊆(`,Ψ) over Q.
For any two categories C and D, the cartesian closedness of the category
Cat of all small categories (with natural transformations as morphisms)
implies that any functor C→ D2 corresponds to a natural transformation
in the functor category DC.
Hence, Q parametrises the family of natural transformations DΨ(φ, ·) in
the category of functors Aff⊆(`,Ψ) ↓ Q → [0,∞].
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Resource theoretic view

Given any object Q in Cvx(`,Ψ), the set HomCvx(`,Ψ)( · ,Q) can be
equipped with the structure of commutative ordered monoid via:

I P
DΨ
Q1
∧P

DΨ
Q2

:= P
DΨ
Q1∩Q2

,
I P

DΨ
Q1
≤ P

DΨ
Q2

:= Q1 ⊆ Q2,
I distinguished zero object given by P

DΨ
Q .

Hence, each HomCvx(`,Ψ)( · ,Q) forms a resource theory in the sense of
Fritz’17.
Example: For D1/2 defined by X = Hilbert space H, `(ρ) = ρ1/2,
Ψ = 1

2 ||·||
2
H and under restriction to such Q that correspond to closed

linear subspaces of H, the projections PDΨ
Q are given by the Hilbert

space projection operators, while the operator implementing the finite
join operation PDΨ

Q1
∧ . . . ∧PDΨ

Qn
is given by the

von Neumann’33[’50]–Kakutani’40–Halperin’62 theorem:

lim
k→∞

∣∣∣∣∣∣((PQn · · ·PQ1)k − PQ1∩...∩Qn)ξ
∣∣∣∣∣∣
H

= 0 ∀ξ ∈ H.
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More on convergence of projectors

von Neumann’33[’50]–Kakutani’40 theorem: Let Q1,Q2 ⊂ H be closed
subspaces of a Hilbert space H with Q1 ∩ Q2 6= ∅. Then
slimk→∞(PQ1 ∧ PQ2)k = PQ1∩Q2 , i.e.
limk→∞

∣∣∣∣(PQ1PQ2)k − PQ1∩Q2)ξ
∣∣∣∣
H = 0 ∀ξ ∈ H.

Halperin’62: slimk→∞(PQ1 ∧ . . . ∧ PQn )k = PQ1∩...∩Qn for closed subspaces
Q1, . . . ,Qn of H.
PQ in H is the same as the metric projection PdH

Q , where
dH(x , y) := ||x − y ||H, and it coincides with the Brègman projection PDΨ

Q for
Ψ : H → R+ given by Ψ(x) = 1

2 ||x ||
2
H.

Brègman’65: If Q1,Q2 are closed and convex in H, then the von
Neumann–Kakutani algorithm converges weakly. (For finite dimensional H
this implies norm convergence.)
A mapping T : D → H, D ⊆ H is called nonexpansive iff
||T (x)− T (y)||H ≤ ||x − y ||H ∀x , y ∈ D.
A set of fixed points of T : Fix(T ) := {x ∈ D | T (x) = x}.
PdH

Q onto convex closed Q is nonexpansive with Fix(PdH
Q ) = Q.
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More on nonexpansivity

In general Banach spaces X , PdX
Q1∩...∩Qn

may be ill-behaved, and the
convergence of sequence of projections requires quite limiting assumptions.
Two pathways: Brègman DΨ-projections (’67+) and nonexpansive operators
(’65+).
Brègman’67 [Rn]: generate alternating sequence by PDΨ

Qn
◦ . . . ◦PDΨ

Q1
;

Theorem: it converges, under mild assumptions on DΨ.
Browder’65–Göhde’65–Kirk’65: If K is bounded, closed, and convex subset of
a uniformly convex Banach space X , and T : K → K is nonexpansive, then
Fix(T ) 6= ∅.
Bruck–Reich’77: Let X be a Banach space, then T : D → X is called strongly
nonexpansive iff it is nonexpansive (i.e., ||T (x)− T (y)||X ≤ ||x − y ||X
∀x , y ∈ D) and satisfies: if ({xn − yn}n∈N is bounded and
limn→∞(||xn − yn||X − ||T (xn)− T (yn)||X ) = 0) then
slimn→∞((xn − yn)− (T (xn)− T (yn))) = 0.
Bruck–Reich’77 theorem:

1 Composition of strongly nonexpansive (SN) maps is SN.
2 If T is SN and Fix(T ) 6= ∅ then slimn→∞(Tn(x)− Tn+1(x)) = 0.
3 If X is uniformly convex, and {P1, . . . ,Pk} are norm-1 linear projections on X , then

slimn→∞(Pk · · ·P1)n = P, where P is a norm-1 linear projection on X .
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Brègman nonexpansive operators
Let X be a Banach space Ψ : X →]−∞,∞] be proper, convex, lower
semi-continuous, and Gateaux differentiable on int(efd(Ψ)) 6= ∅. Let
∅ 6= M ⊆ int(efd(Ψ)). Then T : M → int(efd(Ψ)) will be called:

I completely DΨ-nonexpansive (CN(Ψ)) iff DΨ(T (x),T (y)) ≤ DΨ(x , y) ∀x , y ∈ M;
I left strongly DΨ-quasi-nonexpansive (LSQ(Ψ)) iff [Censor–Reich’96, Reich’96]:

1 DΨ(x ,T (y)) ≤ DΨ(x , y) ∀(x , y) ∈ F̂ix(T )×M,
2 (p ∈ F̂ix(T ), {xn}n∈N bounded, lim n→∞(DΨ(p, xn)− DΨ(p,T (xn))) = 0) ⇒

limn→∞ DΨ(T (xn), xn) = 0,
3 F̂ix(T ) := {x ∈ M | ∃ a sequence {xn}n∈N such that limn→∞ ||xn − T (xn)||X = 0 and
{xn}n∈N is weakly convergent to x}.

Reich’96–Martín-Marquez–Reich–Sabach’13 theorem: If X is reflexive, Ψ is
Legendre, (bounded, uniformly Fréchet differentiable, and totally convex) on
bounded subsets of X , lim||x||X→∞Ψ(x)/||x ||X =∞, ∅ 6= K ⊆ int(efd(Ψ)),
{T1, . . . ,Tn} are LSQ(Ψ) functions K → K such that
F̂ :=

⋂n
i=1 F̂ix(Ti ) 6= ∅, and T := T1 ◦ . . . ◦ Tn, then:

1 F̂ix(T ) ⊆ F̂ ,
2 if F̂ix(T ) 6= ∅ then T is LSQ(Ψ).

A function f : X →]−∞,∞] on a Banach space X is called totally convex at
x ∈ efd(f ) iff inf{Df (y , x) | y ∈ efd(f ), ||y − x ||X ≥ 0} > 0 ∀t ∈]0,∞[
[Butnariu–Censor–Reich’97].
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RPK’17’19: Cats of nonlinear Brègman nonexpansive operations
As a result, we obtain the following categories of nonlinear Brègman
nonexpansive operators: CN(Ψ), LSQ(Ψ), Cvx(Ψ), Aff(Ψ)
If the defining conditions of LSQ(Ψ) are assumed, and, additionally,
efd(Ψ) = X , then Cvx(Ψ) embeds as a subcategory of LSQ(Ψ), via
F̂ix(PDΨ

Q1
∩PDΨ

Q2
) = Fix(PDΨ

Q1
∩PDΨ

Q2
) = Fix(PDΨ

Q1
) ∩ Fix(PDΨ

Q2
) = Q1 ∩ Q2.

Combining this with embeddings ` : U → `(U) ⊆ int(efd(Ψ)), we obtain the
categories of nonlinear postquantum operations: CN(`,Ψ), LSQ(`,Ψ),
Cvx(`,Ψ), Aff(`,Ψ), with morphisms determined by

T̃ := `−1 ◦ T ◦ ` : U → U.

T̃ is an implementation of Mielnik’69’73 idea of nonlinear transmitter,
although with a key difference, that we deal with `-convex `-closed sets.
Following Chencov’s approach, inner groupoids in the above categories are
interpreted as equivalence of information models, with the corresponding
notion of DΨ-deficiency of two Θ-parametrised models M1 and M2 defined as
δDΨ

(M2,M1) := infT∈Hom(M1, · ) supθ∈Θ DΨ(θ2(θ),T (θ1(θ))).
A composition of the embedding functor ι`,Ψ : Cvx(`,Ψ)→ LSQ(`,Ψ) with
the forgetful functor Fix`,Ψ : LSQ(`,Ψ)→ Cvx(`,Ψ) (defined by attributing
PDΨ

Fix(T ) to each T ∈ Arr(LSQ(`,Ψ))) determines a monad Fix`,Ψ ◦ ι`,Ψ on
the category Cvx(`,Ψ).
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Overview
In our setting, an information state space is given by any set Z which admits a
bijection ` into a subset of some reflexive Banach space X , such that `(Z) is convex
and closed in X .
The objects of our categories are `-closed `-convex sets, which do not need to be
convex (resp., normalised) in terms of the linear (resp., norm) structure of a [base]
normed space.
The good behaviour of inference (information processing) morphisms plays thus a
more fundamental role than the availability of probabilistic interpretation of states.
There is no need to restrict the domain of ` (and thus of DΨ to base norm spaces.
We did it only to show the backwards compatibility and utility of our framework for
the use in the postquantum (“convex operational”/“generalised probabilistic”) setting.
While the shift from commutative to noncommutative and nonassociative
integration theory makes the notion of expectaton/integral more fundamental than
the notion of probability/measure, the shift from linear CPTP maps and Df to
nonlinear LSQ(`,Ψ) maps and DΨ makes the notion of an information processing
(inference) more fundamental than interpretation of an information state as an
integral (or as an element of a generating cone of a base norm space).
This follows a general category-theoretic feature of proritising the objects and
morphisms over the globally defined points and membership relation.
As a result, we obtain a setting for an information theory (and, in particular,
resource theories) which generally does not require spectral theory, probabilities, or
integration.
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Brègman nonexpansive nonlinear resource theories [RPK’19]
Let U = a state space
(e.g., a positive generating cone or a base of a base norm space)
A resource theory of states: a triple (P,Q,R), where

I P := a submonoid of endomorphisms of U = free operations
I Q := {φ ∈ U | ∀ψ ∈ U ∃p ∈ P p(ψ) = φ} = set of free states if

P(Q) ⊆ Q
I R := {r : U → R+ | (r ◦ p)(φ) ≤ r(φ) ∀φ ∈ U} = resource monotones

Usually the free operations are assumed to be linear, and, in quantum case, CPTP.
Here we provide well-defined nonlinear examples:
Ex.1. If T is a monoid of CN(`,Ψ) `-operations
s.t. QT := {φ ∈ U | ∀ψ ∈ U ∃t ∈ T t(ψ) = φ} 6= ∅ is `-closed `-convex
then DT := infφ∈QT {DΨ(φ, · )} is a resource monotone
and (T ,QT , {DT }) is a nonlinear resource theory.
Ex.2. If T is a monoid of LSQ(`,Ψ) `-operations on `-closed `-convex K ⊆ N+

?

s.t.
⋂n

i=1 F̂ix(Ti ) 6= ∅ and F̂ix(T1 ◦ . . . ◦ Tn) 6= ∅ ∀n ∈ N ∀{T1, . . . ,Tn} ⊆ T ,
then DΨ(φ, · ) is a resource monotone for any φ ∈ F̂ix(T )

and (T , F̂ix(T ),
⋃
φ∈F̂ix(T ){DΨ(φ, · )}) is a nonlinear resource theory.

Ex.3. For any fixed choice of L ∈ Ob(Cvx(`,Ψ)), let T be given by the family of all
PDΨ onto `-closed `-convex sets containing L. Then (T , L,

⋃
φ∈L{DΨ(φ, · )}) is a

nonlinear resource theory.
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Dβ-informations on noncommutative Banach spaces [RPK’20]

The function Ψβ(x) = ||x ||1/βX , β ∈]0, 1[, is:
1 totally convex in any uniformly convex X [Butnariu–Iusem–Resmerita’00];
2 Legendre for any uniformly Fréchet differentiable and uniformly convex X

[Bauschke–Borwein–Combettes’01].

Hence: if X is uniformly convex and uniformly Fréchet differentiable, then
Ψ = Ψβ , satisfies conditions for composability of LSQ(Ψ).

Theorem [RPK’20]

Any noncommutative Banach space L(N , τ) determined by the uniformly convex
symmetric function space L s.t. L(N , τ)? is determined by uniformly convex L?:

1 is naturally equipped with a family D̃β of Brègman informations, determined by Ψβ ,
2 induces well defined categories CN(Ψβ), LSQ(Ψβ), Cvx(Ψβ), Aff(Ψβ),

3 for any bijective mapping ` : N+
? → L(N , τ)+ it induces a corresponding family of Brègman

informations on N? together with the corresponding categories.

Proof: Combining the above theorems with Sukochev’86/(Dodds)⊗2–de
Pagter’93’14 and Krygin–Sukochev–Chilin’91 theorems.
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RPK’20: quantum DΥ,β-informations and Jordan Dγ,β-informations
In particular, the conditions of the above theorem hold for noncommutative Orlicz
spaces (LΥ(N , τ), ||·||Υ), where N has type II∞, Υ and ΥY are uniformly convex
Orlicz functions satisfying 42 condition. (For other semi-finite types of N there are
corresponding, slightly different, conditions.)
By introducing noncommutative Kaczmarz map
`Υ : N? 3 φ = uφ|φ| 7→ uφΥ−1(|φ|) = uφΥ−1(∆φ,τ ) ∈ LΥ(N , τ), we obtain a family
of Dβ,Υ informations (and corresponding categories) on preduals of semi-finite
W∗-algebras. (An extension to all predual N? is due to uniqueness of polar
decomposition, combined with replacing [[·, ·]]X×X? with re [[·, ·]]X×X? in the
definition of D̃Ψ.)
Under restriction to Υ(x) = x1/γ , γ ∈]0, 1[, corresponding to noncommutative L1/γ
spaces, the condition of semi-finiteness of W∗-algebras is obsolete, due to uniform
convexity of any L1/γ(N ) [Terp’81, Masuda’83, Kosaki’84]. The corresponding
family of Dβ,γ-informations (as well as the corresponding categories) is well-defined
on preduals of arbitrary W∗-algebras.
By combining B–I–R’00 and B–B–C’01 theorems with uniform Fréchet
differentiability and uniform convexity of L1/γ(A, τ) spaces over semi-finite
JBW-algebras A [Iochum’84’86, Ayupov’86], and introducing the nonassociative
Mazur map `1/γ : L1(A, τ) 3 |φ| ◦ sφ 7→ |φ|γ ◦ sφ ∈ L1/γ(A, τ), s2

φ = I, we obtain a
family of Dβ,γ informations (and corresponding categories) on preduals of semi-finite
JBW-algebras.
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Topics omitted in this talk
Right Brègman projections, right Brègman nonexpansive operators, etc., together
with categorical equivalence of right and left categories [RPK’20].
Smooth information geometric side of the theory:

I D̃Ψ over sets C which are dually affine (i.e., affine in X and DGΨ-affine in X?), gives
naturally rise to doubly (flat, torsion-free, autoparallel) affine geometry (M,∇,∇†)
over `−1(C) [RPK’20],

I DΨ-projections onto dually afine sets coincide with the geodesic projections,
I under additional assumption on DΨ (very strict convexity, i.e. positive definiteness of

hessian of Ψ), third order Taylor expansion of DΨ gives rise to dually flat dually
torsion-free Norden–Sen geometry, known as hessian geometry, which is a special case
of the above geometry,

I these geometries allow to describe the Jaynes–Mitchell approach to source
renormalisation [Favretti’07],

I topos-theoretic algebraisation (and representation, using categories of presheaves of
the Postnikov–Sikorski spaces) of these geometries [RPK’19].

Epistemic adjointness (categorical (co)monadic resource theory) [RPK’12’16’19]:
I Two categories: experimental design ExpDes, inductive inferences/information

processings IndInf. Model construction as semantics functor ExpDes→ IndInf,
predictive verification as syntax functor IndInf. “Epistemic” comonad E on
IndInf→ ExpDes implementing abstractly the above relationship. Monad J on
IndInf implementing free operations. (IndInf,E , J) as a categorical resource theory

I Epistemic comonad E`,Ψ on Cvx(`,Ψ) induced by a `-convex-closure functor on
subsets of underlying set, combined with the forgetful functor.

I A triple (Cvx(`,Ψ),E`,Ψ,Fix`,Ψ ◦ ι`,Ψ) as an example of categorical resource theory
Postjaynesian interpretation of all of this framework [RPK’10+...].
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