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We quantify the consequences of a private key leakage and private randomness generated during quantum
key distribution. We provide simple lower bounds on the one-way distillable key after the leakage has been
detected. We also show that the distributed private randomness does not drop by more than twice the number
of qubits of the traced-out system. We further focus on irreducible private states, showing that their two-way
distillable key is nonlockable. We then strengthen this result by referring to the idea of recovery maps. We
further consider the action of a special case of side channels on some of the private states. Finally, we connect
the topic of (non-)Markovian dynamics with that of hacking. In particular, we show that an invertible map is
non-CP-divisible if and only if there exists a state whose the key witnessed by a particular privacy witness
increases in time. This complements the recent result of J. Kołodyński et al. [Phys. Rev. A 101, 020303(R)
(2020)] where the log-negativity was connected with the (non-)Markovianity of the dynamics.
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I. INTRODUCTION

While the security of quantum key distribution is proven
in theory, it usually lacks in practice. This is mainly because
of (i) the imperfections in the production of the quantum key
distribution (QKD) equipment and/or (ii) the active attacks
of the eavesdropper known as Trojan horse attacks (THAs)
[1,2]. The latter attacks, such as active inspection of the inner
workings of the honest parties’ device, can lead to a leakage
of the secret key. Recently there has been taken effort to study
the performance of QKD, which takes into account particular
examples of the leakages [3,4] in the case of quantum key
distribution as well as the measurement-device independent
quantum key distribution.

In this paper, we consider a more drastic version of THA,
according to which eavesdropper gets access to the very raw
key of the honest parties’ device. We then note that most of the
up-to-date QKD protocols are using in practice one-way com-
munication. (We consider here both device dependent [5] and
independent [6,7] cases, see Ref. [8] and references therein.)
Their performance is further based on protocols originating
from the Devetak–Winter protocol [9]. We, therefore, focus
on the lower bounds on the drop of the raw key that can be
obtained via the latter protocol. It is a practically relevant
problem since the raw key should be destroyed properly after
key generation. Indeed, the part of the raw key, which does not
form the final key, can be a source of potential leakage and
thus should be irreversibly destroyed. Hence, we study how
the incorrectly destroyed raw key can influence the security of
the key.

Our findings are related to the lockability of a resource:
the problem of how much a given resource drops down under
action on (e.g., erasure of) a subsystem of a bipartite quan-
tum state. There are two variants of the nonlockability of a
resource. According to one of it, the resource should go down
by less than the S(a) upon the erasure of system a, where S is
the von Neumann entropy. We will call it a strong nonlocka-
bility. A weaker version states that there exists constant c > 0,
independent of the dimension of the state under consideration,
such that the resource does not go down by more than cS(a)
(or c log2 |a|). We will call it a nonlockability.

Violation of the strong nonlockability was proven in
Ref. [10] for the so called accessible information. The lock-
ability of entanglement measures has been first considered in
Ref. [11], where entanglement cost EC [12] was shown to be
lockable, while the relative entropy ER of entanglement was
shown to be nonlockable with c = 2. In Ref. [13], lockability
of the squashed entanglement Esq was shown.

a. Motivation. Before showing the main results, we dis-
cuss three possible ways in which the eavesdropper can
arrange local leakage, which come as a motivation for further
studies.

It is known that the eavesdropper can monitor power con-
sumption or the electromagnetic radiation of a working device
[3]. One can also consider a drastic hardware THA. Every
device which performs quantum key distribution, no matter
how shielded, has an incoming fiber. This implies a hole in
the shielding. It is then enough to set up a sufficiently strong
radioactive source with an open-close mechanism. The bits
of generating key can be stored in local memory and further
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leaked by an open-close mechanism outside via the presence
of radiation (1) or lack of it (0) in a given slot of time.
Monitoring the radioactivity implies directly the leakage of
the key. Constant monitoring of radioactivity outside of the
device could be a countermeasure to it.

Another attack can be considered in the case of device
independent quantum key distribution. It was noticed in
Ref. [14] that such a device can be used only once. If used
twice, it can leak the key from its previous use by means,
e.g., of the accept-abort mechanism. Hence, a device should
be destroyed after a single use. This applies not only to
the electronics or memory but also to the shielding. This is
because shielding can contain a small memory that stores the
data. Such an attack can be easily refuted by destroying of the
device in the enough irreversible way.

The easiest way of attack is to set up software that copies
the output of the device (a raw key) and distributes it to the
eavesdropper. This can be noticed if the system hosting soft-
ware is constantly monitored. However, noticing the attack
does not always mean that it can be stopped, as exempli-
fied by an important variant of this attack: a theft of data.
The erasure of classical data happens when the ransomware
(malicious software aimed at ransom) is used by the hackers.
Ransomware encrypts the data, which are therefore practically
lost unless the (former) owner pays a tribute.

The question is: how much of the security is still at hand
after the leakage of the raw key has happened? The bounds
obtained in the form of the order of leakage (denoted by con-
stant c) considered in the introduction can help in estimation
of the loss of data and lead to further shortening of the raw key
to obtaining smaller yet still secure key. For example, in the
case of a cloud-storage device exposed for a certain period of
time, τ seconds, to an uncontrolled connection with a certain
speed, v megabits per second, one can conclude that no more
than cvτ of megabits were exposed to the attack. (To detect
which of the data happened to be copied or erased, one can
use the trapdoor mechanism [15]).

b. Main results. We first consider one of quantum cryp-
tography’s fundamental resources, which is the randomness
private against a quantum adversary. It is used, e.g., by proto-
cols of generation of the secure key when the honest parties
choose settings of measurements (see, e.g., Ref. [16] for re-
view). We focus on a bipartite case introduced in Ref. [17].
There, two mutually trusting honest parties are distilling pri-
vate randomness for each of them separately from many
copies of a bipartite state ρAB in the form of an ideal state
1A
|A| ⊗ 1B

|B| ⊗ ρE , where ρE is the purifying system of ρAB. The
operations which they use in this resource theory are (i) local
unitary operations and (ii) sending quantum states via dephas-
ing channel to the other party (this choice assures that the
operations are free, i.e., do not create private randomness).

As the first main result, we show a lower bound on the drop
of private randomness distillable in this scenario. Namely, for
a bipartite state, under action of (local) unitary transformation
followed by partial trace of a subsystem a, private randomness
does not drop down by more than S(a) + log2 |a|, where |a| is
the dimension of a. In this scenario, one can also consider the
rate of randomness obtained without operation (ii) and with
or without borrowing local noise [17]. Our bound holds in all
these cases.

Before turning to the problem of (non)lockability of the
key secure against a quantum adversary, let us recall basic
facts about the states containing ideal key, called private states
[18,19]. A private state has two subsystems: system AB is
called the key part while system A′B′ is called a shield [19].
By definition, one can draw log2 |AB| of the key via direct
von-Neumann measurement on its key part. To test how much
key drops down for a given private state, we need to control
how much key it contains from the beginning. However, a
private state can have the potentially large key contained in
its shielding system A′B′. To avoid this problem, we focus
on the so-called irreducible private states that have log2 |AB|
of key—exactly as much as it is directly accessible via the
von-Neumann measurement on their key part.

As the first result related to the secure key, we show that
the key of private states is nonlockable. Precisely, it cannot
drop down by erasing system a on one side of it, by more
than 2S(a). In that, we partially address the open problem of
whether the distillable key can be locked, as presented on the
IQOQI list of open problems [20].

We then provide first simple bounds on the loss of the
raw one-way distillable key secure against quantum adversary
under erasure of data. By one-way distillable key, we mean the
one obtained by utilizing one-way classical communication
from Alice to Bob. By the raw key, we refer to the key
generated via measurement on Alice’s side on a quantum state
shared by the honest parties. The raw key then is the bit string
that the honest parties share before applying error correction
and privacy amplification [21].1

As one of the main results, we show that the considered
type of key is strongly nonlockable (see theorem 4). More
precisely, it does not drop down by more than α upon the
erasure of a system a. Similar results are obtained for the drop
of the system at Bob’s site: it does not drop down by more than
4α upon the erasure of a system b with its entropy scaling with
the number of the raw key bits as nα.

It is also natural to consider copying of the data by an ad-
versary, which is a much easier attack than the one described
above. In that case, we also observe the nonlockability of
the one-way distillable key. It does not drop down by more
than 2α.

Employing simple properties of the smooth min and max
entropies [22], we also provide an alternative lower bound
on the drop of the one-way key which reads, in the case
considered above, log2 |a|.

Bounds on the leakage of two-way distillable key for gener-
alized private states via the fidelity of recovery. The bounds
presented above do not consider the fact that the system a
(or b for Bob) can be almost uncorrelated with the rest of
the state of the honest parties. In that case, the drop of the
key should be less than the entropy of the copied or erased
system. In particular, when the system a is a product with the
rest of the system, the drop of the key should be equal to zero.

1We note here that in this paper by (ideal) key, we mean the key for
the one-time pad, i.e., uniformly random, perfectly correlated pair of
bit-strings shared by two honest parties, known only to them. It can
be represented by a state

∑d−1
i=0

1
d |ii〉〈ii|AB ⊗ ρE , where ρE represents

the total knowledge of the quantum adversary.
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To address this case, we use the concept known as fidelity of
recovery [23], FR. For arbitrary tripartite state ρaAB, fidelity of
recovery is the maximum quantum fidelity of ρaAB with the
state ρ̃ABã = �A→Aã(ρAB) recovered by a local quantum map
� acting on system A, after erasure of the system a. It has
been shown [23] that FR is lower bounded from below by a
function 2−I (a:B|A), where the conditional mutual information
reads I (a : B|A) := S(aA) + S(BA) − S(A) − S(ABa). While
the latter relation is often treated as (in fact, suboptimal) lower
bound on the quantum conditional mutual information, we
focus here on the operational meaning of the fidelity of recov-
ery. The conditional mutual information I (a : B|A) quantifies,
to some extent, how much the system a is correlated with
the remaining systems. The lower it is, the tighter bound we
obtain.

The above relationship allows us to show that the one-way
distillable key achieved by i.i.d. operations can not drop down
too much if I (a : B|A) is low. By i.i.d., we mean that it is
achieved by identical measurement operation and classical
preprocessing on each copy of the input state, followed by
error correction and privacy amplification [9]. Although such
a quantity may be much lower than the distillable key for a
general state, it is equal to the distillable key for certain gen-
eralization of private states called irreducible Shmidt-twisted
pure states. Before stating the results, let us discuss this gen-
eralization. A private state can be seen as “twisted” singlet
state |�+〉: γABA′B′ = U |�+〉〈�+| ⊗ σA′B′U †, where σA′B′ is an
arbitrary state and U = ∑

i |ii〉〈ii| ⊗ Ui is a control unitary
transformation called twisting. We generalize this, by insert-
ing a pure state |	〉 in place of the singlet, and allow the
unitary U to control the Schmidt basis of |	〉 that is a basis
in which it can be written as |	〉 = ∑

i

√
λi|ii〉. The obtained

state γ ′
ABA′B′ we call the irreducible Shmid-twisted pure state,

when KD(γ ′) = S(A)	 that is the amount of key equals the
entropy of the subsystem of the state |	〉〈	|.

The following result encapsulates our findings: for any
irreducible Schmidt-twisted pure states γ̃ABA′B′ , after action
AA′ → A′′a and partial trace of system a, there is

KD(γ̃A′′BB′ ) � KD(γ̃aA′′BB′ ) − (8δ log2 dA + 4h(δ)) (1)

with δ = √
1 − 2−I (a:B|A) (see proposition 3), where h(x) =

−x log2 x − (1 − x) log2(1 − x) is the binary Shannon en-
tropy. Note that the bound (1) generalizes result for pure states
that the key is not lockable (see theorem 3). These and other
results are presented in a unified way in Fig. 1.

Attacks on private states. It has been recently proposed [24]
that certain private states can serve as a resource for the so
called hybrid quantum networks (a variant of quantum net-
work secure against unauthorized key generation). Therefore
we also study special attacks on a particular class of private
states. We consider several side channels, such as depolarising
and amplitude-damping, acting on a shield of a private state.
We focus on the private state that can be constructed from
an operator X being a (normalized) swap gate [see Eq. (8) in
Sec. II]. The main insight is that the key drops down by the
same amount, no matter how large the system shielding the
key is. Therefore the larger the shield is, the more vulnerable
to noise this particular private state becomes.

FIG. 1. Summary of the main results. For either private random-
ness or private key and a given class of states, we provide lower
bounds on the operation (unitary U composed with partial trace,
partial trace, and copying of a system, respectively) on system a with
the von-Neumann entropy S(a) and dimension |a|. I (a : BB′|A′′) is
the conditional mutual information.

(Non)-Markovianity meets hacking. We connect two topics,
which are usually considered as quite far from each other:
the leakage of the private key and the (non)-Markovianity of
quantum dynamics. We consider states of the form ρABA′B′ =
p+|ψ+〉〈ψ+|AB ⊗ ρA′B′

+ + p−|ψ−〉〈ψ−|AB ⊗ ρA′B′
− , and let X =

1
2 (p+ρA′B′

+ − p−ρA′B′
− ). We argue that the distillable key of the

so called privacy squeezed state of ρABA′B′ exposed to hacking
reads

KD([(ρABA′B′ )]psq) = 1 − h
(

1
2 + ||(A′ ⊗ 1B′ )X ||1

)
, (2)

where (ρABA′B′ ) = A′ ⊗ 1ABB′ (ρABA′B′ ), and A′ is a CPTP
map acting on the system A′ of ρABA′B′ , which corresponds
to action of hacking. Moreover [·]psq is the so called privacy
squeezing [19] [defined in Eq. (11)]. The privacy squeezing
operation is considered here only as a mathematical tool rather
than a physical map (although it can be physically realized).
It allows to place a lower bound on the distillable key of a
given quantum state. Indeed, we have KD(ρ) � KD([ρ]psq)
[19]. The result presented in Eq. (2) allows us not only to
study the power of leakage of certain quantum channels, but
also to connect the behavior of ||X ||1 due to leakage under
hacking with non-Markovianity of quantum dynamics. (We
identify Markovianity with CP divisibility [25,26]). Using the
results of Refs. [27,28], and in analogy to [29], we show that
the non-Markovianity of (invertible or image nonincreasing)
dynamics, given by a family {t | t � 0} of CPTP maps act-
ing on A′, is equivalent with

d

dt
KD([t (ρ)]psq) > 0. (3)

II. FACTS AND NOTATIONS

In this section, we invoke important facts and notation used
throughout the paper. By S(ρX ) and S(ρXY ), we will mean the
von Neumann entropy of systems X and XY , respectively. We
will also write S(X ) and S(XY ) if the state is understood from
the context. A bipartite state is called a maximally correlated
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state (MCS) if it is of the form

ρAB =
∑
i, j

ci j |ii〉〈 j j|AB, (4)

where ci j are arbitrary complex numbers. The classical-
quantum (cq) state is any state of the form

ρcq =
∑

i

pi|i〉〈i| ⊗ ρi. (5)

It is straightforward to check that

S(ρcq) = H ({pi}) +
∑

i

piS(ρi ), (6)

where H denotes Shannon entropy of a distribution {pi}.
The private states [18,19] have the form

γABA′B′ =
∑
i, j

1

d
|ii〉〈 j j|AB ⊗ UiσU †

j , (7)

where σ is an arbitrary state on A′B′ system. The private
state γ is called irreducible if KD(γ ) = log2 d , where d is the
dimension of the system AB called the key part.

The class of irreducible private states is not characterized
due to the fact that there can possibly exist states that have
zero distillable key but are entangled [30]. Hence we also con-
sider a well characterized, possibly strict subset of irreducible
private states, called in [31] strictly irreducible private states.
The operational meaning of this class is the following. Con-
ditionally on measuring the key part of a strictly irreducible
state in a standard basis, there always appears a separable
state on their shielding system. Formally, the state (7) is called
strictly irreducible iff the conditional states UiσU †

i in Eq. (7)
are separable (i.e., they are mixtures of product states) for
all i. This feature assures that KD(γ ) = log2 d where d is the
dimension of the key part [32]. In the case of a private bit, i.e.,
d = 2, the private state can be represented by a single operator
X with trace norm ||X ||1 = Tr

√
XX † equal to 1/2:⎡⎢⎢⎣

√
XX † 0 0 X
0 0 0 0
0 0 0 0

X † 0 0
√

X †X

⎤⎥⎥⎦. (8)

In Ref. [31], it is shown how to use a one-way local operation
and classical communication to transform any private bit rep-
resented by X into a one represented by Hermitian X̃ . Hence,
in our considerations, we can focus on hermitian X .

The action of leakage via the map acting on the shielding
system returns the following matrix:⎡⎢⎢⎣

A′ ⊗ IABB′
√

XX † 0 0 A′ ⊗ IABB′X
0 0 0 0
0 0 0 0

A′ ⊗ IABB′X † 0 0 A′ ⊗ IABB′
√

X †X

⎤⎥⎥⎦. (9)

To express the connection of the leakage of the key and (non)-
Markovianity, we will need to broaden the class of the interest
to states of the form

ρblock := p+|ψ+〉〈ψ+| ⊗ ρ+ + p−|ψ−〉〈ψ−| ⊗ ρ− (10)

(where |ψ±〉 = 1√
2
(|00〉 ± |11〉)), which are private states

when ρ+ ⊥ ρ−. Following Ref. [31], we will call them the
block states. An important operation on them is the one that
outputs the privacy squeezed state ρpsq, i.e., the two-qubit
bipartite state of the form

ρpsq :=

⎡⎢⎢⎣
p++p−

2 0 0 ||p+ρ+−p−ρ−||1
2

0 0 0 0
0 0 0 0

||p+ρ+−p−ρ−||1
2 0 0 p++p−

2

⎤⎥⎥⎦. (11)

There is [19]

KD(ρblock ) � KD(ρpsq ), (12)

where KD is a key distillable by LOCC operations, defined
rigorously in Sec. II D. Due (12), the secure key content of the
state ρpsq can be treated as a (nonlinear) witness of privacy for
the state ρ [33].

For a given pure state |	〉AB let us consider its Schmidt
decomposition |	〉AB = ∑

i λi|ei〉 ⊗ | fi〉, where λi � 0, and∑
i λi = 1. A twisting operation in the Schmidt basis of a state

|	〉AB is given by

U =
∑
i, j

|ei f j〉〈ei f j |AB ⊗ U (i j)
A′B′ , (13)

where for each (i j), U (i j)
A′B′ is some unitary operation. This leads

to a concept of the Schmidt-twisted pure state γ̃ABA′B′ , which
is defined as

γ̃ABA′B′ := U (|	〉〈	|AB ⊗ σA′B′ )U †

=
∑
i, j

λiλ j |ei fi〉〈e j f j | ⊗ UiσU †
j ,

(14)

where σ is defined on systems A′ and B′ (for clarity, we sup-
pressed subsystem indices). The Schmidt-twisted pure state
γ̃ABA′B′ is called irreducible if it satisfies KD(γ̃ABA′B′ ) = S(A)	.
This means that its whole security content is accessible by a
direct von Neumann measurement on its key part system AB.

Finally, for self-consistence of this manuscript, we define
the Uhlmann fidelity [34,35] for two quantum states ρ and σ :

F (ρ, σ ) := (tr
√√

ρσ
√

ρ )2. (15)

This expression can be written in equivalent form ||√ρ
√

σ ||21,
where || · ||1 denotes trace norm.

A. Entanglement measures

Here, we introduce entanglement measures that are em-
ployed in this manuscript—the relative entropy of entangle-
ment, distillable entanglement, and squashed entanglement.

Definition 1. The relative entropy of entanglement for an
arbitrary density operator ρ is defined as

ER(ρ) := inf
ω∈SEP

D(ρ|ω), (16)

where the infimum runs over the set of separable states
SEP , and D(·|·) denotes relative entropy, i.e., D(ρ|σ ) :=
trρ log2 ρ − trρ log2 σ , for an arbitrary density operators ρ, σ .

052422-4



UPPER BOUNDS ON THE LEAKAGE OF PRIVATE DATA … PHYSICAL REVIEW A 104, 052422 (2021)

Definition 2. For all bipartite states ρAB, we define one-
way distillable entanglement

E→
D := lim

ε→0
lim

n→∞ sup
A→B

{E : (ρ⊗n) ≈ε 	AB(2nE )}, (17)

where maps A→B are restricted to one-way LOCC, and
	AB(2nE ) is maximally entangled state between A and B of
Schmidt rank 2nE .

In the above expressions, we use the notation ρ ≈ε σ for
||ρ − σ ||1 � ε to compress the definitions.

Definition 3. The squashed entanglement [36] for an arbi-
trary bipartite sate ρAB is defined as

Esq(ρAB) := inf
ρABE

{
1
2 I (A; B|E ) | ρABE extension of ρAB

}
. (18)

The infimum is taken over all extensions of ρAB, i.e., over all
density operators ρABE with ρAB = trEρABE . By I (A; B|E ) :=
S(AE ) + S(BE ) − S(ABE ) − S(E ) we denote the quantum
conditional mutual information of ρABE [37]. S(A) := S(ρA)
is the von Neumann entropy of the underlying state.

B. Min and max entropies and their smoothed versions

We begin from defining the min and max entropies (see
Refs. [21,22,38] for the details). For a given bipartite state
ρAB, they are given by

Hmin(A|B)ρ := sup
σB

sup{λ ∈ R : ρAB � 2−λ1A ⊗ σB},

Hmax(A|B)ρ := max
σB

log2 F (ρAB, 1A ⊗ σB),
(19)

where F (ρ, σ ) = ||√ρ
√

σ ||1 denotes fidelity between quan-
tum states ρ and σ . The ε-smooth min and max entropies of
A conditioned on B of the state ρAB read, respectively,

H ε
min(A|B)ρ := max

ρ̃AB∈Bε (ρAB )
Hmin(A|B)ρ̃ ,

H ε
max(A|B)ρ := min

ρ̃AB∈Bε (ρAB )
Hmax(A|B)ρ̃ ,

(20)

where Bε (ρAB) is ε-ball of states ρ̃AB which are ε-close to ρAB.
For the further considerations, let us also remind here that the
smooth entropies of the i.i.d. product state ρAnBn = ρ⊗n

AB con-
verge to conditional Shannon entropy Hρ (A|B) for n → ∞.
More precisely,

lim
n→∞

{
1

n
H ε

min(An|Bn)ρ

}
� H (A|B)ρ,

lim
n→∞

{
1

n
H ε

max(An|Bn)ρ

}
� H (A|B)ρ. (21)

C. Key distillable by LOPC operations

For further purposes, we remind here the idea of the LOPC,
local (quantum) operations, and public classical communi-
cation, with corresponding distillable key CD for tripartite
quantum state ρ = ρABE . In this scenario, three parties, Al-
ice, Bob, and Eve, hold many systems in the same tripartite
state ρ. Alice and Bob can process input states by quantum
operations, each in their respective laboratory, and they com-
municate publicly classical messages, with copies also sent
to eavesdropper Eve. For a more formal definition of LOPC
operations, see definition 4.2 in Refs. [32,39]. Historically,

its one-way version was defined first in Ref. [9], in a way
equivalent to the following one, where ρ ≡ ρABE ,

K→(ρ) := inf
ε>0

lim sup
n→∞

sup
�∈LOPC→

{
log2 d

n

∣∣∣∣�(ρ⊗n) ≈ε τd

}
,

(22)

where LOPC→ denotes the LOPC operations, in which the
classical communication goes from A to B only, while τd =
(1/d )

∑d−1
i=1 |ii〉〈ii| ⊗ ρE is a ccq-state with log2 d secure bits,

and ≈ε denotes ε-closeness in the trace norm || · ||1.
The (two-way) distillable classical key between Alice and

Bob from a quantum tripartite state ρ ≡ ρABE utilizing LOPC
operations is given as [39]

CD(ρ) := inf
ε>0

lim sup
n→∞

sup
�∈LOPC

{
log2 d

n

∣∣∣∣ �(ρ⊗n) ≈ε τd

}
.

(23)

There is no closed formula known for CD for a general
state. However, when one restricts the one-way LOCC com-
munication in the distillation process, then there is a formula
for the distillable key, called a one-way distillable key, given
by Devetak and Winter [9]. We invoke here the theorem which
encapsulates this rather complicated formula.

Theorem 1 ([9], in formulation of [40]). For every state
ρABE , K→ = limn→∞ K (1) (ρ⊗n )

n , with K (1) = maxQ;T |X (I (X :
B|T ) − I (X : E |T )), where the maximization is over all
POVMs Q = (Qx )x∈X and channels R such that T = R(X ),
while the information quantities refer to the state ωTABE =∑

t,x R(t |x)P(x)|t〉〈t | ⊗ |x〉〈x| ⊗ TrA(ρABE (Qx ) ⊗ 1BE ). The
range of the measurement Q and the random variable T may
be assumed to be bounded as follows: |T | � d2

A and |X | � d2
A

where T can be taken as a (deterministic) function of X .
We have then, by definition that K→(ρABE ) � CD(ρABE ),

for any tripartite state ρABE . This is by the fact that the class
of protocols in definition of K→ is strictly less than in the
case of CD. In what follows, we will need a lower bound on
K→, which bases on restricting operations in its definition to
be identical on each copy of ρABE . Namely, we define the
one-way i.i.d. version of a one-way secure key, K iid, with
{Qx}x∈X in the form Q̂⊗n

x and T in the form T̂ ×n. That is,
the measurement on Alice’s side is performed identically and
independently on each copy of the state, rather than globally,
and further classical information comes from a variable T̂ that
is identical on each copy.

Definition 4. For every state ρABE , a one-way i.i.d. secure
key reads

K iid (ρABE ) = lim
n→∞

1

n
max
Q̂;T̂ |X

KDW([Q̂x(ρABE )]⊗n), (24)

where KDW(ρXBE ) := I (X : B|T̂ )ρ − I (X : E |T̂ )ρ , and the
maximum in (24) is taken over POVMs of the form {Q̂⊗n

x }x∈X ,
and channels R, such that T̂ ×n = R(X ).

We have introduced the K iid, as it is easier to study its
behavior than that of K→. While, as we show further, K iid is to
some extent nonlockable, K→ still can be lockable. We have
finally K iid (ρABE ) � K→(ρABE ) � CD(ρABE ), for any tripartite
quantum state ρABE .

052422-5



KAROL HORODECKI et al. PHYSICAL REVIEW A 104, 052422 (2021)

D. Key distillable by LOCC operations

Distillable key KD between Alice and Bob from a quantum
bipartite state ρ by means of two-way LOCC operations is
given as [18,19]

KD(ρ) := inf
ε>0

lim sup
n→∞

sup
�∈LOCC

{
log2 d

n

∣∣∣∣�(ρ⊗n) ≈ε γd

}
,

(25)
where γd is a d-dimensional private state with log2 d secure
bits, and ≈ε denotes ε-closeness in the trace norm || · ||1.

KD quantifies the amount of key secure against a quantum
adversary who holds a purification of the state ρAB can be
obtained from asymptotically many copies of this state, in the
form of a private state. Importantly, it can be shown [19,32]
that for a pure tripartite state ψABE with corresponding state
ρAB = trEψABE , one has

CD(ψABE ) = KD(ρAB). (26)

Therefore, in the worst case, that is when the adversary Eve
holds a purifying system of ρAB, considering distillation of
private states by LOCC operations or the ideal key states τ

by LOPC operations yields the same rate. This allows us to
interchange the use of CD and KD if needed.

III. BOUND ON THE LEAKAGE OF PRIVATE
RANDOMNESS

In this section, we focus on distributed scenario of private
randomness distillation [17]. In this scenario, two honest par-
ties share n copies of a bipartite state ρAB. They use local
unitary operations and dephasing channel to produce indepen-
dent randomness private against Eve, who holds the purifying
system and the environment of the dephasing channel. De-
pending on whether free or no local noise (in the form of
a maximally mixed state) and free or no communication are
allowed, we have four different settings for the distributed
private randomness distillation. Theorem 2 in Ref. [17] shows
the achievable rate regions (of private randomness distillable
locally for each of the parties). For convenience and self-
consistency of the paper, we restate it in the following. Here
RG(ρAB) := log2 |A| + log2 |B| − S(ρAB) stands for global pu-
rity, while RA is private randomness localizable by party A in
respective scenario (similarly for B).

Theorem 2. The achievable rate regions of ρAB are the
following:

(1) for no communication and no noise, RA � log2 |A| −
S(A|B)+, RB � log2 |B| − S(B|A)+, and RA + RB � RG,
where [t]+ = max{0, t};

(2) for free noise but no communication, RA � log2 |A| −
S(A|B), RB � log2 |B| − S(B|A), and RA + RB � RG;

(3) for free noise and free communication, RA � RG, RB �
RG, and RA + RB � RG;

(4) for free communication but no noise, RA � log2 |AB| −
max{S(B), S(AB)}, RB � log2 |AB| − max{S(A), S(AB)}, and
RA + RB � RG.

Further the rate regions in settings (1), (2), and (3) are tight.
We consider then a local leakage at Alice’s side, by a side

channel consisting of local unitary UA→A′a transformation of a
system A into a system A′a, followed by partial trace operation
on system a, which implies leakage of this system to Eve.

Before we get the proposition, we need an auxiliary technical
fact.

Fact 1. For any two numbers x and y,

max{0, x} − max{0, y} � |x − y|. (27)

This can be checked directly by considering the two cases
of y � 0 and y > 0. Now we are in position to formulate and
prove the main result for this section.

Proposition 1. For a bipartite state ρAB subjected to a side
channel tra ◦ UA→A′a, there is

RA(ρAB) − RA(ρA′B) � log2 |a| + S(a), (28)

in the four settings presented in theorem 2.
Proof. Setting (1) is reduced to setting (2) by noticing

auxiliary fact 1. Then we have

RA(ρAB) − RA(ρA′B) (29)

= log2 |A| − max{0, S(A|B)}
−[log2 |A′| − max{0, S(A′|B)}] (30)

= log2 |a| + max{0, S(A′|B)} − max{0, S(A|B)} (31)

� log2 |a| + |S(A′|B) − S(A|B)| (32)

= log2 |a| + |S(A′B) − S(A′aB)| (33)

� log2 |a| + S(a), (34)

where the first inequality comes from the auxiliary fact 1 and
the last inequality from the subadditivity of entropy [41].

The proof for setting (3) is straightforward.

RA(ρAB) − RA(ρA′B) (35)

= log2 |AB| − S(AB) − [log2 |A′B| − S(A′B)] (36)

= log2 |a| + [S(A′B) − S(A′aB)] (37)

� log2 |a| + S(a). (38)

The proof for setting (4) can be reduced to setting (1) by
noticing

RA(ρAB) − RA(ρA′B) (39)

= log2 |AB| − max{S(B), S(AB)}
−[log2 |A′B| − max{S(B), S(A′B)}] (40)

= log2 |a| + max{0, S(A′|B)} − max{0, S(A|B)} (41)

� log2 |a| + S(a). (42)

Distillable key of maximally correlated states is strongly
nonlockable

In the following theorem, we show that distillable key of
a MCS is strongly nonlockable. A pure bipartite state is a
special MCS in its Schmidt basis.

Theorem 3. For a maximally correlated state ρAB defined
through expression (4), after leakage of system a from Alice
to Eve the distillable key KD decreases by no more than S(a).

Proof. For a MCS ρAB, we have that KD(ρAB) =
ED(ρAB) = Er (ρAB) = S(B) − S(AB). Suppose an isometry
U : A → A′a, and after the leakage of subsystem a to Eve,
then the shared state between Alice and Bob is ρA′B. By the
Devetak-Winter protocol, we have KD(ρA′B) � S(B) − S(A′B)
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(this is the other direction of DW protocol). Therefore the loss
of the distillable key can be upper bounded as follows,

KD(ρAB) − KD(ρA′B) (43)

� S(B) − S(AB) − [S(B) − S(A′B)], (44)

= S(A′B) − S(A′aB), (45)

� S(a), (46)

where we use S(A′aB) = S(AB) since U is an isometry, and
subadditivity of the von Neumann entropy.

Corollary 1. The BB84 protocol [5], realized by means of
the CSS codes, has a nonlockable rate.

Proof. In Ref. [42], it is shown, that such a protocol, if
applied coherently, is equivalent to distillation of maximally
entangled states. Hence, if the prepare-measure version of
BB84 was lockable, i.e., the key upon tracing out some system
a would drop down by more than S(a), so would be the drop
of it for the coherent version. The latter is however forbidden
by the theorem 3. �

In the next section, we generalize theorem 3 to Schmidt-
twisted pure states γ̃ABA′B′ introduced in Eqs. (13) and (14).

IV. LOWER BOUND FOR THE DROP OF GENERATED
KEY UNDER LEAKAGE OF A SYSTEM

In this section, we investigate how much the generated key
drops after leakage of a system. We start from Sec. IV A where
we prove how much is the key rate drops for an irreducible
private state when the system leaks from the shield part of
Alice to Eve. Next, in Sec. IV B, we generalize the proof
technique to all states and different types of leakage, such as
erasure of a system or copying of a system. In turn, we prove
the main result contained in theorem 4, saying that the raw
key of a one-way Devetak-Winter protocol is nonlockable. In
Sec. IV C by exploiting the concept of smooth min and max
entropy, we show that the single-shot key rate is nonlockable.
Finally, in Sec. IV D, we derive a lower bound on the loss
of the two-way distillable key for the irreducible Schmidt-
twisted pure states.

A. Bound on the key drop by leakage from
a irreducible private state

In this section, we provide a simple lower bound on the
distillable key in the presence of leakage of subsystem a from
irreducible private states defined in Sec. II from the shield
part, as well as from Alice’s side in general. In all cases, we
show that the key drops by no more than 2S(a). We start our
considerations from the case of the leakage from the shield
part.

Observation 1. For an irreducible private state γAA′BB′ ,
with A′ = aA′′, there is

KD(γAA′′BB′ ) � KD(γAA′BB′ ) − 2S(a). (47)

Proof. The distillable key of an irreducible private state
γAA′BB′ reads log2 dk . Let us then divide system A′ into Âa. The
Devetak-Winter protocol applied to the key part (from Bob to
Alice) reads

I (A : B)ρ − I (B : Ea)ρ = log2 dk − I (B : E ) − I (B : a|E ),
(48)

where I (B : a|E ) = S(BE ) + S(aE ) − S(E ) − S(BaE ) is the
conditional mutual information, which follows from the
chain rule. From I (X : Y ) � 2 min{S(X ), S(Y )} and the chain
rule, we conclude that I (B : a|E ) � 2 min{S(a), S(B), S(aE ),
S(BE )} � 2S(a) � 2 log2 |a| [43]. This, due to I (B : E ) = 0,
as the state is the private state, proves our observation. �

Now, we will extend the statement of observation 1 to the
leakage from the irreducible private state in a general way, not
necessarily from its shield part. To do so, let us first prove the
following technical lemma.

Lemma 1. For a cqq state ρXAaE = ∑
pi|i〉〈i|X ⊗ ρ i

AaE , af-
ter the leakage of system a from Alice to Eve, the following
holds:

[I (X : Aa) − I (X : E )] − [I (X : A) − I (X : aE )] � 2S(a).
(49)

Proof. The proof goes by straightforward calculations and
strong subadditivity.

[I (X : Aa) − I (X : E )] − [I (X : A) − I (X : aE )] (50)

= I (X : a|A) + I (X : a|E ) (51)

= S(a|A) − S(a|AX ) + S(a|E ) − S(a|EX ) (52)

= S(a|A) + S(a|E ) −
∑

i

pi[S(a|E )i + S(a|A)i] (53)

� 2S(a), (54)

where the inequality comes from the facts that S(a|A) �
S(a), S(a|E ) � S(a), and S(a|E )i + S(a|A)i � 0 for each
index i which follows from the strong subadditivity.
Namely, considering purification of ρaAE to |ψρ〉aAEE ′ we
can write S(a|EE ′) + S(a|A) = 0, since S(aEE ′) = S(A),
and S(EE ′) = S(aA). But using strong subadditivity we
write S(a|EE ′) � S(a|E ), so S(a|E ) + S(a|A) � S(a|EE ′) +
S(a|A) = 0. This argumentation holds for every index i in
expression (50). �

Proposition 2. For an irreducible private state γAA′BB′ , with
AA′ = aÃ, after the leakage of system a from Alice to Eve,
there is

KD(γÃBB′ ) � KD(γAA′BB′ ) − 2S(a). (55)

Proof. Denote γAA′BB′E as the purification of γAA′BB′ when
Eve’s system E is included. Consider then this state mea-
sured on B in computational basis, producing a random
variable X . Further notice that we have the following chain
of (in)equalities:

KD(γAA′BB′ ) = I (X : A) − I (X : E ) (56)

� I (X : AA′) − I (X : E ) (57)

= I (X : Ãa) − I (X : E ) (58)

� I (X : Ã) − I (X : aE ) + 2S(a) (59)

� KD(γÃBB′ ) + 2S(a). (60)

The first equality is due to the fact that γ is irreducible, hence
KD(γABA′B′ ) = log2 dk = I (X : A) = I (X : A) − I (X : E ), as
I (X : E ) = 0 due to privacy from Eve of the system B under
measurement. The first inequality is due to data processing
inequality [44] implying I (X : A) � I (X : AA′). We next ob-
serve that the unitary transformation does not change the
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mutual information, hence I (X : AA′) = I (X : Ãa). Finally
we note that

I (X : Ãa) − I (X : E ) − [I (X : Ã) − I (X : aE )] � 2S(a),
(61)

where the inequality is due to lemma 1 by identifying A with
Ã. This finishes the proof. �

The upper bounds on the key in observation 1 and propo-
sition 2 are tight, which implies that KD is not strongly
nonlockable in general. The example comes from a variant
of the superdense coding protocol.

Example 1. Consider the private state γAA′B where B′ is a
trivially one-dimensional subsystem and the purification of
the state with Eve’s system E is of the form

1√
4

3∑
i=0

|ii〉AB ⊗ (
σ i

A′ ⊗ IE
) |	〉A′E , (62)

where σ i
A′ are the Pauli unitary operators acting on the

subsystem A′ and |	〉A′E = 1√
2
(|00〉A′E + |11〉A′E ). A simple

observation is that KD(γAA′B) = 2 and after the leakage of the
shielding qubit A′ to Eve, KD = 0.

The same holds if the leakage takes place on system B′,
unless it is given to Eve. Hence, given that the leakage hap-
pens only on the shielding system of an irreducible private
state, the key drops down by at most twice the entropy of the
system, and in some cases, it can equal to 2.

B. The raw key of a one-way Devetak-Winter
protocol is nonlockable

We now generalize the result from Sec. IV A to all states
that are the output of key-generation protocol. In practice, they
differ from private states considered above. This is because the
process of key generation is usually not coherent. In that we
also narrow to one-way key distillation. We will first need the
following observation.

Observation 2. For a cq state ρx(XY ),

I (x : Y |X ) � H (x). (63)

Proof. It is convenient to rewrite I (x : Y |X ) as

I (x : Y |X ) = S(x|X ) − S(x|Y X ). (64)

The state ρx(XY ) is separable in cut x : (XY ), hence S(x|Y X ) �
0 [12]. We can thus neglect this term, obtaining an upper
bound

I (x : Y |X ) � S(x|X ). (65)

Since ρx(X ) is also a cq state, we can further expand S(x|X ) as

S(x|X ) = H (x) +
∑

x

p(x)S(ρX |x )

−S

(∑
x

p(x)ρX |x

)
� H (x), (66)

where the last inequlity is due to concavity of the von Neu-
mann entropy.

Lemma 2. For a state ρaABET , there is

I (A : B|T ) − I (A : Ea|T )

� I (Aa : B|T ) − I (aA : E |T ) − cS(a), (67)

with c = 2. Moreover, when state ρa(ABET ) is a cq state, then
the bound holds for c = 1.

Proof. The first part of the lemma is obtained by direct
calculations. Namely, we have the following:

I (Aa : B|T ) − I (Aa : E |T ) − [I (A : B|T ) − I (A : Ea|T )]

= −S(a|ABT ) + S(a|ET ) � 2S(a). (68)

To show the second part of the statement, when we deal with
a cq state, it is enough to notice that S(a|ABT ) � 0. �

We have considered above a drop of a system on the side
of a sender of one-way communication during key distillation
via Devetak-Winter protocol [9]. We now show that similar
result holds for the party who, in their protocol, receives only
the data.

Corollary 2. For a state ρABbET , there is

I (A : B|T ) − I (A : Eb|T )

� I (A : Bb|T ) − I (A : E |T ) − cS(b), (69)

with c = 4. Moreover, if the state ρb(ABET ) is a cq state, then
the bound holds for c = 2.

Proof. The proof follows from the following chain of in-
equalities:

I (A : B|T ) − I (A : Eb|T ) ± I (b : A|BT ) (70)

= I (A : Bb|T ) − I (A : Eb|T ) − I (b : A|BT ) (71)

� I (A : Bb|T ) − I (A : Eb|T ) − 2S(b) (72)

= I (A : Bb|T ) − I (A : E |T ) − I (b : A|ET ) − 2S(b) (73)

� I (A : Bb|T ) − I (A : E |T ) − 4S(b). (74)

We first focus on the case c = 4. The first equality comes from
the chain rule, while the first inequality from bound on I (b :
A|BT ). Similarly, the second equality follows from the chain
rule, and following inequality from bounding the term I (b :
A|ET ). Regarding the case c = 2, we note that when system b
is classical, then both terms I (b : A|ET ) and I (b : A|BT ) are
bounded by S(b) by observation 2, which proves the thesis.�

Owing to the fact that the raw key is classical, it is also
realistic to assume that the leakage will be through copying
rather than the theft of data. We therefore consider this case
below.

Corollary 3. For a state ρAaBET , there is

I (Aa : B|T ) − I (Aa : Ea|T )

� I (Aa : B|T ) − I (Aa : E |T ) + cS(a),
(75)

with c = 2.
Proof. To prove expression (75), we write the following

chain of inequalities:

I (Aa : B|T ) − I (Aa : Ea|T ) ± I (Aa : E |T ) (76)

= I (Aa : B|T ) − I (Aa : E |T ) − I (a : Aa|ET ) (77)

� I (Aa : B|T ) − I (aA : E |T ) − 2S(a). (78)

The first equality follows from the chain rule, and further we
bound the term I (a : Aa|ET ). �
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To conclude about the nonlockability of the raw key ob-
tained in the one-way protocol we base on the main result of
Devetak and Winter in Ref. [9], invoked in Sec. II C.

Let P be a part of the protocol of one-way key distillation
after Alice have performed measurement Qx, i.e., after
producing a state of the form Qx(ρ⊗n

ABE ) = ω
(n)
TABE =∑

t,x R(t |x)P(x)|t〉〈t | ⊗ |x〉〈x| ⊗ TrA(ρABE (Qx ) ⊗ 1BE ). It
consists of an error correction and a privacy amplification
operations applied to the state ωT XBE [21] and P is the part
of total protocol, which generates the key from the raw key
at Alice’s side. Let also the rate of P be denoted as κ . In
the above theorem, the state of the raw key is represented by
ω

(n)
T XBE . We assume also that system of Alice is represented

by A ≡ Xx, where x will be given to Eve in the process of
leakage. We have then an immediate result.

Theorem 4. The raw key of a one-way Devetak-Winter
protocol is nonlockable: for any state ω

(n)
T (Xx)BE gener-

ated by measurement Qx on n copies of ρAaBE , and for
any random variable T = R(X ), there is κ (P (ω(n)

T (Xx)BE )) �
κ (P (ω(n)

T XB(Ex) )) − H (x)/n.
Proof. Let us denote the states where the raw key is pre-

sented, in both cases, when the system x is with Alice and
Eve by ω

(n)
T XxBE and ω

(n)
T XB(Ex), respectively. Denoting by P the

one-way key distillation protocol applied to both states, we
evaluate its rates κ as

κ
(
P

(
ω

(n)
T XxBE

)) = 1

n
[I (Xx : B|T ) − I (Xx : E |T )], (79)

κ
(
P

(
ω

(n)
T XB(Ex)

)) = 1

n
[I (X : B|T ) − I (X : Ex|T )]. (80)

Applying the statement from lemma 2, and using the fact that
x is classically correlated with the rest of the systems, we can
write

κ
(
P

(
ω

(n)
T XB(Ex)

))
� κ

(
P

(
ω

(n)
T XxBE

)) − H (x)

n
. (81)

Hence, whenever entropy H (x) scales linearly with number of
copies n, i.e., when H (x) = αn, where α is a constant, the raw
key drops by constant factor. However, when the dependence
is sublinear in n, the resulting raw key does suffer from the
leakage. �

The same statement as in theorem 4 can be made in the
case of system leakage b from Bob to Eve, or of copying the
system a from Alice to Eve. Denoting by (ω(n)

T X (Bb)E , ω
(n)
T XB(Eb) )

and (ω(n)
T XxBE , ω

(n)
T XxB(Ex) ) the pairs of states containing the raw

key in the case of leakage of Bob’s system and of copying,
respectively, we formulate the following.

Observation 3. The raw key of a one-way Devetak-Winter
protocol is nonlockable in the case of system leakage from
Bob to Eve and of copying a system from Alice to Eve. In
particular, the raw key rates before and after the process of
leakage (copying) satisfy, respectively:

κ
(
P

(
ω

(n)
T X (Bb)E

))
� κ

(
P

(
ω

(n)
T XB(Eb)

)) − 4S(b)/n, (82)

κ
(
P

(
ω

(n)
T (Xx)BE

))
� κ

(
P

(
ω

(n)
T XxB(Ex)

)) − 2S(x)/n. (83)

Whenever entropies S(x) and S(b) scale linearly or sublinearly
with n the raw key drops down by a constant factor or does not
change in the limit of large n.

C. Single-shot key rate approach after leakage system to Eve

By the result of Ref. [22], one can deduce how much
smooth min entropy H ε

min drops after the leakage of system
x to Eve (see Sec. II B for definitions).

Lemma 3 (Adaptation of lemma 5 from Ref. [22]). A The
smooth min entropy H ε

min is nonlockable. It means that after
leakage of a system x to Eve, the following inequality holds:

H ε
min(Xx|E ) � H ε

min(X |Ex) + log2 |x|, (84)

where |x| denotes dimension of the system x.
Using the above result, one can show that the single-shot

key rate is nonlockable. Namely, before and after leakage of a
system x to Eve, the key rates are respectively:

K (1)(ρ(Xx)BE ) = H ε
min(xX |E ) − H ε

max(xX |B),

K̃ (1)(ρXB(Ex) ) = H ε
min(X |Ex) − H ε

max(X |B). (85)

Applying data processing theorem [22] to the expression of
(85) we have that H ε

max(xX |B) � H ε
max(X |B). Thanks to this,

we conclude that the key drops by no more than log2 |x|.
Finally, by observing that, in the limit n → ∞, the min and

max entropies converge to the conditioned Shannon entropy
(21), we can conclude that the right-hand side of (84) gives
n log2 |x|. Whenever system x is of n qubits, and S(x) > 1

4 n
holds, this bound is smaller than the bound 4S(x) discussed in
observation 3.

D. Lower bound on the loss of the distillable key for the
irreducible Schmidt-twisted pure states

The bounds shown in the previous sections are independent
of the correlations of the erased system a with the rest of the
system. However, it is intuitive that the less a is correlated
the smallest should be drop of the key upon loss of a. This
motivates us to search for a bound which is dependent on these
correlations.

To show that the key sometimes does not leak too fast,
we propose a particular strategy to be taken after erasure of
subsystem of the state. It is based on the so called fidelity of
recovery [23,45].

As we will see, this approach will lead us to a bound on
a two-way distillable key for private states. Namely, after the
loss of a subsystem a of a system Aa, Alice is applying the
best map �A→Ãa that recovers a in some form ã. She then
applies the same one-way protocol on system Aã. Denoting by
F (ρAaBE , ρ̃ÃaBE ) the Uhlmann fidelity between quantum states
[46], the fidelity of recovery reads

FR(a; BE |A) := sup
�A→Ãa

F (ρAaBE , �A→Ãa(ρABE )), (86)

where ρAaBE with ρABE = traρAaBE , and we suppressed iden-
tity 1BE in the action of recovery map �A→Ãa(ρABE ) ≡ (1BE ⊗
�A→Ãa)(ρABE ) = ρ̃ÃaBE . We will call ρÃaBE a recovered state.
It is proven that there is an appealing lower bound on the
formula (86) in terms of the conditional mutual information
[23,45]:

FR(ρAaBE ) � 2−I (a:BE |A). (87)

This allows us for estimating closeness of single copy one-
way secure key K (1)

→ between state ρAaBE and its recovered
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version ρ̃ÃaBE . In what follows, we use lemma V.3 of Ref. [40]
for the case of triparite states (for biparite states it needs
correction, see lemma 4 presented in Appendix).

Observation 4. For any state ρAaBE and its recovered
version ρ̃ÃaBE = �A→Ãa(ρABE ), where ρABE = traρAaBE , and
�A→Ãa is recovery map, the following relation holds:

|K (1)
→ (̃ρÃaBE ) − K (1)

→ (ρAaBE )| � 8δ log2 dAa + 4h(δ), (88)

with δ = √
1 − 2−I (a:BE |A) and h(·) denoting the binary Shan-

non entropy.
This observation follows directly from the Fuchs–van de

Graaf inequality [47], which for two arbitrary states ρ, σ reads
1
2 ||1ρ − σ || � √

1 − F (ρ, σ ), and the fact that (not regular-
ized) one-way distillable key is asymptotically continuous
(see lemma V.3 in Ref. [40]). We use fidelity which is cal-
culated for a map �A→Ãa maximising the fidelity of recovery
in (86).

The above considerations hold for one copy of the state
ρÃaBE . Now we shall discuss and find an upper bound for
the regularized version, K→ = limn

1
n K (1)

→ (ρ⊗n). The above
reasoning cannot be applied straightforwardly to this case,
because the closeness of ρ and σ in trace norm 1

2 ||ρ − σ ||1
does not imply their closeness after taking many copies, when
one considers 1

2 ||ρ⊗n − σ⊗n||1.
Nevertheless, we can extend the above result to a class of

Schmid-twisted irreducible private states. Let us recall that
the one-way i.i.d. version of a secure key, K iid, is the key
distillable by one-way communication via first measuring and
postprocessing it in an i.i.d. way on Alice’s side. That is, the
measurement Qx on Alice’s side is performed identically and
independently on each copy of the state, rather than globally,
and further classical information comes from a variable T̂ that
is identical on each copy (see Sec. II C for a full definition).

We can now prove the result inspired by observation 4 in
the case of K iid.

Theorem 5. Let K iid be one-way i.i.d. version of secure
key, as in definition 4. Denoting the original state by ρaABE ,
the following inequality holds:

K iid (ρABE ) � K iid (ρaABE ) − (4δ log2(dadAd2
B) + 4h(δ)),

(89)

where δ = √
1 − 2−I (a:BE |A), I (a : BE |A) is a conditional mu-

tual information calculated on respective systems, and h(·)
denotes the binary Shannon entropy.

Proof. Let Q̂∗
x be the optimal measurement realizing

K iid (ρAaBE ), where ρAaBE = |ψAaBE 〉〈ψAaBE |, and let ρ̃ãABE be
the state after application of the recovery map �A→Ãa to the
state ρABE = traρaABE . As we have argued below observa-
tion 4, there is ||̃ρãABE − ρAaBE ||1 � δ, and the same holds for
this pair of states after application of the measurement Q̂∗

x ,
so ||̃ρ ′

ãABE − ρ ′
XABE ||1 � δ, where ρ ′

XABE = Q̂∗
x (ρaABE ), with

X denoting the outcome of the measurement. Now, applying
definition 4 to our case, one has

K iid (ρaABE ) = lim
n→∞

1

n
max
T̂ |X

KDW([Q∗
x (ρaABE )]⊗n) (90)

= lim
n→∞

1

n
max
T̂ |X

(I (X : B|T̂ )ρ ′⊗n − I (X : E |T̂ )ρ ′⊗n )

(91)

= max
T̂ |X

(I (X : B|T̂ )ρ ′ − I (X : E |T̂ )ρ ′ ) (92)

= I (X : B|T̂ ∗)ρ ′ − I (X : E |T̂ ∗)ρ ′ . (93)

To obtain the second line, we use KDW(ρXBE ) = I (X :
B|T̂ )ρ − I (X : E |T̂ )ρ . To obtain the third line, we exploit the
additivity of the conditional mutual information. To get the
last line, we introduce the quantity T̂ ∗ attaining the maximum
value of T̂ . On the other hand, by similar lines, there is

K iid (̃ρãABE ) � I (X : B|T̂ ∗)ρ̃ ′ − I (X : E |T̂ ∗)ρ̃ ′ , (94)

where T̂ ∗ is the value of T̂ that attains maximum in the
formula for K iid (ρaABE ), and X is the outcome of measurement
Q̂∗

x on ρ̃ãABE . Finally, to prove expression (89), we write the
following chain of inequalities:

K iid (ρABE ) � K iid (ρ̃ãABE ) (95)

� I (X : B|T̂ ∗)ρ̃ ′ − I (X : E |T̂ ∗)ρ̃ ′ (96)

� I (X : B|T̂ ∗)ρ ′ − I (X : E |T̂ ∗)ρ ′ − (4δ log2 dB

+ 4δ log2(dadAdB) + 4h(ε)) (97)

� K iid (ρaABE ) − (8δ log2 dB

+ 4δ log2(dadA) + 4h(δ))

= K iid (ρaABE ) − (4δ log2 (dadAd2
B) + 4h(δ)). (98)

The first inequality follows from the fact that the operation of
recovery, since it is local, does not increase the amount of the
key. To obtain the third line we use the fact that closeness
of states ρ̃ ′ and ρ ′ in the trace norm implies closeness of
the corresponding conditional mutual information. First, we
expand I (X : B|T̂ ∗)ρ̃ ′ and I (X : B|T̂ ∗)ρ ′ with respect to Bob,
using mutual entropies:

|I (X : B|T̂ ∗)ρ̃ ′ − I (X : B|T̂ ∗)ρ ′ | = |S(B|T̂ ∗)ρ̃ ′ − S(B|T̂ ∗)ρ ′ |
+ |S(B|XT̂ ∗)ρ̃ ′ − S(B|XT̂ ∗)ρ ′ | � 4δ log2 dB + 2h(δ).

(99)

For functions I (X : E |T̂ ∗)ρ̃ ′ and I (X : E |T̂ ∗)ρ ′ , we expand
with respect to Eve’s system,

|I (X : E |T̂ ∗)ρ̃ ′ − I (X : E |T̂ ∗)ρ ′ | � |S(E |T̂ ∗)ρ̃ ′ − S(E |T̂ ∗)ρ ′ |
+ |S(E |XT̂ ∗)ρ̃ ′ + S(E |XT̂ ∗)ρ ′ | � 4δ log2 dE + 2h(δ).

(100)

The state ρaABE is pure, which implies that the dimension dE

is upper bounded by dadAdB. This follows from observation
that, in the cut aAB : E , the Schmidt decomposition cannot
have more terms than rank(ρaAB) � dim(Ha ⊗ HA ⊗ HB) =
dadAdB. This allows us to rewrite (100) as

|I (X : E |T̂ ∗)ρ̃ ′ − I (X : E |T̂ ∗)ρ ′ | � 4δ log2(dadAdB) + 2h(δ)

= 4δ log2 dB + 4δ log2(dadA) + 2h(δ). (101)

Now, combining expressions (99) and (101), we get (98) fin-
ishing the proof.

Observation 5. Inequality (89) in theorem 5 can be rewrit-
ten in terms of dimension dX of the space of measurements X :

K iid (ρABE ) � K iid (ρaABE ) − (8δ log2 dX + 4h(δ)), (102)

where X is generated from aA via iid measurement
Q̂∗

x :aA → X .
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One can prove this statement by writing expressions (99)
and (100) with respect to space of outcomes X , and by similar
lines as in the proof of theorem 5 one gets the statement. As
we will see, this observation is of the great importance when
one considers private states with dX = dA, since considered
measurements are the von Neumann measurements, which do
not increase respective dimension. This significantly reduces
the value of the factor in Eq. (89).

We know that any Schmidt-twisted pure state γ̃ABA′B′ can
be written as U (ψAB ⊗ σA′B′ )U †, where its explicit form is
presented in (14). In this class, one can consider a subclass
of irreducible Schmidt-twisted pure states. The whole secret
content of these states is accessible via systems A and B.
Irreducible private states [30] are a special case of these states.
An irreducible private state γ with 2k ⊗ 2k dimensional key
part satisfies KD(γ ) = k. From theorem 5 and observation 5
we have the following proposition:

Proposition 3. For an irreducible Schmidt-twisted pure
state γ̃ABA′B′ with AA′ = aA′′, there is

KD(γ̃A′′BB′ ) � KD(γ̃aA′′BB′ ) − [8δ log2 dA + 4h(δ)], (103)

with δ = √
1 − 2−I (a:BB′ |A′′ )γ .

Proof. We apply the statement of observation 5 to a pure
state γ̃aA′′BB′E with measurement Q∗

x , which is composition of
the unitary U : aA′′ → AA′ with the von Neumann measure-
ment on system A in the computational basis, obtaining

K iid
D (γ̃A′′BB′E ) � K iid

D

(
ψγ̃aA′′BB′E

) − [8δ log2 dA + 4h(δ)].
(104)

The following chain of equalities holds:

K iid
D

(
ψγ̃aA′′BB′E

) = K iid
D

(
ψγ̃ABA′B′E

)
= CD

(
ψγ̃ABA′B′E

) = KD
(
γ̃ABA′B′

) = KD
(
γ̃aA′′BB′

)
. (105)

The first equality holds since the unitary operation produc-
ing different cut of the Alice’s systems AA′ ↔ aA′′ does not
change the amount of the key. Furthermore,

K iid
(
ψγ̃ABA′B′E

)
� CD

(
ψγ̃ABA′B′E

) = S(A)ψ, (106)

where CD denotes the rate of key distilled by means of LOPC
operations, see Sec. II C and Ref. [9] (ψ denotes ψγ̃ABA′B′E ).
The inequality in (106) is obtained because we work with
a restricted class of protocols, while the equality follows
from the fact that from irreducible private state we obtain
exactly S(A)ψ of the key. Next, we notice that, for irreducible
Schmidt-twisted pure states, the inequality (106) is saturated,
K iid (ψγ̃ABA′B′E ) = CD(ψγ̃ABA′B′E ), because one achieves rate of
CD(ψγ̃ABA′B′E ) = S(A)ψ via the measurement, which is tensor
power of the von Neumann measurement on the key part A,
while variable T is null here (no communication is needed
for obtaining the key). Due to Ref. [32], CD(ψγ̃ABA′B′E ) =
KD(γ̃ABA′B′ ). Applying the unitary producing different cut of
the Alice’s systems AA′ ↔ aA′′, we obtain the last equality in
(105). To prove the left-hand side of (103), we observe that

CD
(
ψγ̃A′′BB′E

)
� K iid

D

(
γ̃A′′BB′E

)
. (107)

Finally, using expression (26) from Sec. II C, stating that,
for a pure tripartite state ψABE with corresponding state
ρAB = trEψABE , one has CD(ψABE ) = KD(ρAB), we obtain the
statement. �
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FIG. 2. A comparison of the bounds given in theorem 5, with δ =√
1 − 2−I (a:B|A), and in observation 1. The blue region corresponds

to the case when 8δ log2 dA + 4h(δ) � 2S(a) with dA = 2. However,
the quantities S(a), I (a : B|A) are not independent, so not all pairs
(I (a : B|A), S(a)) in the blue region are achievable. In other words,
if a point is achievable, then it has to satisfy plotted relation, and
otherwise we do not take it into account.

It is tempting to ask how the bound from theo-
rem 5 compares with the bound from proposition 2. In
Fig. 2, we ask whether 8δ log2 dA + 4h(δ) � 2S(a), with δ =√

1 − 2−I (a:BB′ |A′′ )γ .

V. PARTIAL NONLOCKING FOR PRODUCT
OF TWO STATES

As we have mentioned earlier, it is an open problem if a
two-way distillable key drops down by more than S(CD) upon
the erasure of subsystems CD of some bipartite state ρAC:BD.
An easy subcase of this problem is when the subsystem CD is
a product with the rest of the system AB. That is, we consider
the consequences of the following transformation:

ρAB ⊗ σCD → ρAB. (108)

It looks at first that the drop of a key should be KD(σCD).
However, it need not be the case. The problem that arises here
stems from the fact that KD may be superadditive on tensor
product (this is known for the private capacity of quantum
channels [48]). This is why it is not clear how much the key
of ρAB increases upon adding auxiliary system σCD.

We argue now that the increase can be controlled.
Observation 6. For a tensor product of biparite states

ρAB ⊗ ρCD, there is

KD(ρAB ⊗ σAB) − KD(ρAB)

� min{ER(ρAB), Esq(ρAB)} − KD(ρAB)

+ min{S(σC ), S(σD)}, (109)

where ER(ρ) := infσ∈SEP D(ρ, σ ), with D(ρ, σ ) :=
trρ log2 ρ − trρ log2 σ , is the relative entropy of entanglement
[49], while Esq(ρAB) := inf{ 1

2 I (A : B|E ) | ρAB = trEρABE } is
the squashed entanglement [36].
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FIG. 3. A comparison of the bounds given in theorem 5, with δ =√
1 − 2−I (C:D), and through corollary 4. The blue region corresponds

to the case when 8δ log2 dA + 4h(δ) � min{S(σC ), S(σD)} with dA =
2.

Proof. By noticing KD � min{ER, Esq}, we observe that

KD(ρAB ⊗ σAB) − KD(ρAB)

� min{ER(ρAB ⊗ σAB), Esq(ρAB ⊗ σAB)} − KD(ρAB).

(110)

We further note that ER is subadditive and Esq is additive on
tensor product of the state. This leads to

KD(ρAB ⊗ σAB) − KD(ρAB)

� min{ER(ρAB) + ER(σAB), Esq(ρAB)

+ Esq(σAB)} − KD(ρAB). (111)

Finally, we have max{ER, Esq} � EC where EC is an entangle-
ment cost [12], which satisfies EC � min{S(σC ), S(σD)}.

Corollary 4. For a strictly irreducible private state γABA′B′

and any state σCD, there is KD(γABA′B′ ⊗ σCD) − KD(γABA′B′ ) �
min{S(σC ), S(σD)}.

Proof. Follows from the fact that strictly irreducible pri-
vate states satisfy ER(γABA′B′ ) = KD(γABA′B′ ) [30]. �

We note, that similar corollary holds for the maximally
correlated states of the form

∑
i, j bi j |i j〉〈i j|. For these states

ED = KD = ER [12].
The system CD can be viewed as a subsystem of the shield

A′B′. In that case, observation 1 applies. The above bound is
tighter than the latter one, however it holds for a subclass of
private states, and for a special case in which system CD is a
product with ABA′B′.

Furthermore, the bound given in theorem 5 applies in
this case with δ = √

1 − 2−I (C:BB′D|AA′ ) = √
1 − 2−I (C:D). In

Fig. 3, we compare the range of applicability of the latter
bound with the one given in corollary 4.

We now propose a weaker, but more general bound.

Observation 7. For a bipartite state ρA:BC there is

KD(ρA:BC ) − KD(ρAB) � I (A : C|B) + E∞
R (ρAB) − KD(ρAB),

(112)

where E∞
R (ρ) := limn→∞ 1

n ER(ρ⊗n).
Proof. We upper bound KD(ρA:BC ) by E∞

R (ρA:BC ) [18,19].
We then add and subtract E∞

R (ρAB). Lemma 1 of Ref. [50,51]
allows to upper bound the difference E∞

R (ρA:BC ) − E∞
R (ρA:B)

by I (A : C|B), which proves the thesis. �
As an immediate corollary, we have that, for the state ρA:BC

such that the leftover state satisfies ER(ρAB) = KD(ρAB), the
upper bound on the loss of key is I (A : C|B).

VI. EXAMPLES OF ACTION OF SIDE CHANNELS FOR
SOME PRIVATE STATES

A motivation for this section is given by the fact that
certain private states, as well as states with a positive partial
transposition that approximate them, are candidates for the
hybrid quantum network design [24]. This design ensures that
unauthorized key generation will be impossible in quantum
networks. It is therefore important to know how the distillable
key of the latter states behaves under specific side channels.

The findings of Sec. IV ensure us that, upon the erasure of
a single qubit of the shield (and hence upon any channel on
it), the distillable key of a private state does not decrease by
more than twice the entropy of the qubit (see proposition 2).
In this section, we concentrate on upper bounds on the drop of
a key. Namely, we consider special private states and channels
and show the behavior of a key under the latter.

The main result of this section is an observation that the
action on just one qubit of the shield of a certain private state
can decrease the key by half, irrespectively of the dimension
of the shield (which varies in some range). This means that
the protection of the state is not a monotonically increasing
function of the number of qubits in the shield.

We consider attacks on state γV , given by (8) with X =
V = 1

2d2
s

∑ds−1
i=0, j=0 |i j〉〈 ji| being the (normalized to half) swap

operator. Specifically, we consider three values of local di-
mension of the shield: ds = 2, 4, 8, and an attack by the
bit-flip channel, specified as an operation b f (ρ) := α(σ A′

x ⊗
1ABB′ )ρ(σ A′

x ⊗ 1ABB′ ) + (1 − α)ρ, where σ A′
x is the Pauli ma-

trix applied to system A′. We upper bound the value of
key by ER(ρ) [18]. As a specific state σ we choose the
state (1 − p)σatt + p 1

(2ds )2 , where σatt = b f ( 1
2 (|00〉〈00| ⊗

1
ds

+ |11〉〈11| ⊗ 1
ds

)). The minimal value of an upper bound
reached by this operation reads 0.5. The result is shown on
Fig. 4.

For the same state, we consider the action of depolarizing
channel, specified by

dep(·)=
(

1− 3α

4

)
1(·) + α

4
σx(·)σx + α

4
σy(·)σy + α

4
σz(·)σz.

(113)

The maximal drop of the relative entropy of entanglement
(and hence the key) reads 0.18872, for α = 1. Resulting plot
is depicted on Fig. 5.
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FIG. 4. Upper bound on the relative entropy of entanglement
(and hence on KD) of the state γV , after acting with the bit-flip
channel on a qubit of its shield. The same plot is obtained for ds =
2, 4, and 8, hence larger shield is no more shielding than smaller
one.

Next, we check the action of the amplitude damping
channel, Nα (·) = M1(α)(·)M1(α)† + M2(α)(·)M2(α)†, which
is specified by parameter α ∈ [0, 1] and the following two
Kraus operators:

M1(α) =
[

1 0
0

√
1 − α

]
, M2(α) =

[
1

√
α

0 0

]
. (114)

The minimal value reached in this case is also 0.18872, and
the results are the same for ds = 2, 4, and 8. They are plotted
on Fig. 6.

FIG. 5. Upper bound on the relative entropy of entanglement of
the state γV (and hence KD), after acting with depolarizing channel on
a qubit of its shield. The same plot is obtained for ds = 2, 4, and 8.

FIG. 6. Upper bound on the relative entropy of entanglement of
the state γV (and hence KD), after acting with amplitude damping
channel on a qubit of its shield. The same plot is obtained for ds =
2, 4, and 8.

VII. CONNECTION OF LEAKAGE WITH THE
NON-MARKOVIANITY OF DYNAMICS

In this section, we reveal the connection between the prob-
lem of (non)-Markovianity of a quantum dynamics and that
of hacking. We will see that a dynamics is markovian, then
for all block states, their key witnessed by certain nonlinear
privacy witness does not increase in time under the dynamics.

Given a family {t | t � 0} of CPTP maps (interpreted as
a temporal dynamics of a system), there is a range of different
(generally inequivalent) conditions that can be imposed on
this family, to make it called (by, generally, different authors)
a “quantum Markovian dynamics” (see, e.g., Refs. [25,52]
for review and comparison). Among those conditions, CP-
divisibility, introduced in Ref. [25] and further studied in
Ref. [26], is defined as existence of a CPTP map Vt,s such
that t = Vt,ss ∀t � s. In this paper, we fix a terminological
choice, identifying Markovianity with CP divisibility.

In what follows, we will construct an analog of a re-
cent result by Kołodyński et al. [29], who found that an
entanglement measure known as negativity is an indicator of
non-Markovianity. The authors of Ref. [29] provide examples
of tripartite states and show that the invertible map is non-
Markovian iff there exist a specially designed tripartite state
whose negativity increases in time. (The invertibility of t is
understood everywhere here as left invertibility, i.e., ∃! −1

t
such that −1

t ◦ t = 1). More precisely, in Ref. [29], there
were considered block states of the form (using notation of
the latter paper):

τABC
t = p1

(
A

t ⊗ 1B1
)(

ρ
AB1
1

) ⊗ |ψ+〉〈ψ+|B2C

+ p2
(
A

t ⊗ 1B1
)(

ρ
AB1
2

) ⊗ |ψ−〉〈ψ−|B2C, (115)

where ρABC := τABC
t=0 for t=0 = 1. It is shown there that the

negativity EN [53–55], computed in the cut C : B1B2A, wit-
nesses non-Markovianity of dynamics.

Theorem 6 (Theorem 2 of Ref. [29]). For any invertible
non-Markovian evolution {t | t � 0} there exists a quantum
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state ρABC such that

d

dt
EN

AB|C(
τABC

t

)
> 0 (116)

for some t > 0. For single-qubit evolutions t , the statement
also holds for noninvertible dynamics.

We observe that these states, treated as bipartite, are block
states, and in special cases also private states. This motivates
us to study the connection between the topic of privacy and
non-Markovianity.

The proof of a result of Ref. [29] is based on a theorem
in Ref. [27], which states that CP-divisibility for a family
{t | t � 0} of invertible CPTP maps is equivalent to a condi-
tion d

dt ||(t ⊗ 1)X ||1 � 0 ∀X ∈ B(H) ⊗ B(H) with X = X †,
and B(H) denotes space of all bounded operators on H. In
[28] this result has been extended to noninvertible families of
CPTP maps satisfying im(t ) ⊆ im(s) ∀t > s (i.e., image
nonincreasing), and we will use this extension below.

In what follows, we first show the behavior of the privacy
witness under an attack of a hacker. Hacker acts on the system
A′, and her attack is represented by operation A′ . As we
will see, the privacy witness degrades monotonically with the
decrease of ||(A′ ⊗ 1B′ ) 1

2 (p+ρ+ − p−ρ−)||1.
Proposition 4 (Nonlinear privacy witness). Let ρABA′B′ =

p+|ψ+〉〈ψ+|AB ⊗ ρA′B′
+ + p−|ψ−〉〈ψ−|AB ⊗ ρA′B′

− , A′ a CPTP
map acting on system A′ of ρABA′B′ , [(ρ)]psq be the privacy-
squeezed state of (ρ) = A′ ⊗ 1ABB′ (ρABA′B′ ) . Then

KD([(ρ)]psq) = 1 − h
(

1
2 + ||(A′ ⊗ 1B′ )X ||1

)
, (117)

where X = 1
2 (p+ρA′B′

+ − p−ρA′B′
− ).

Proof. For the first inequality, we upper bound the amount
of key of [(ρ)]psq via the relative entropy of entanglement.
We note that the state under consideration is Bell-diagonal,
of the form q+|ψ+〉〈ψ+| + q−|ψ−〉〈ψ−|. Thus its relative
entropy of entanglement reads 1 − h(pmax), where pmax

is the maximal probability of a Bell state in the mix-
ture [56]. In our case 1

2 (q+ − q−) = ||(A′ ⊗ 1B′ )X ||1 =: c,
hence q+ = 1

2 + c and q− = 1
2 − c. Since c � 0, q+ � q−,

and so

KD([(ρ)]psq) � ER([(ρ)]psq) = 1 − h
(

1
2 + c

)
. (118)

To see the lower bound we note that

KDW([(ρ)]psq) � KD([(ρ)]psq), (119)

where KDW is the rate of Devetak-Winter protocol [9]. The
lower bound follows then from corollary 1 of Ref. [57], which
states that KDW(ρpsq) � 1 − H (α + γ , α − γ , β, β ), where
α = (p+ + p−)/2 = 1/2, β = 0 and γ = ||(A′ ⊗ 1B′ )X ||1.
Hence the assertion follows. �

Hence, the key of privacy squeezed state of an ρ attacked
by A′ is a privacy witness of A′ (ρ), and is monotonically
strictly decreasing with the decrease of ||(A′ ⊗ 1B′ )X ||1 ∈
[0, 1

2 ], for hermitian X representing the state.
To uncover the connection between hacking and (non)-

Markovianity, we observe the following.
(1) The rate of any protocol of key distillation from a

quantum state ρ quantifies the resource (how much key can
be gained from a given state). Hence, as the time passes,
it can only stay the same (e.g., as a result of local unitary

transformation on ρ), or decrease (e.g., as a result of the action
of the local partial trace of a subsystem of ρ).

(2) The (invertible or image nonincreasing) dynamics {t |
t � 0} (acting on the system A′) is markovian iff the map t ⊗
1B′ either preserves the trace norm of X or decreases it for all
hermitian X and all t > 0 [27,28].

Using proposition 4 and equality of dimensions of A′ and
B′, we can formulate an analog of theorem 2 of [29].

Theorem 7. An invertible or image nonincreasing dynam-
ics {t | t � 0} is non-Markovian iff there exists a block state
(10) and t > 0 such that

d

dt
KD([t (ρ)]psq) > 0. (120)

Proof. From Refs. [27,28], we have an equivalence of CP-
divisibility with d

dt ||(t ⊗ 1B′ )X ||1 � 0 for all X and all t >

0. This, combined with equivalence of d
dt ||(t ⊗ 1B′ )X ||1 > 0

with d
dt h( 1

2 + ||(t ⊗ 1B′ )X ||1) < 0, and with proposition 4,
completes the proof. �

The above theorem establishes a link with an operational
quantity, the witnessed distillable key (WDK), rather than
with a theoretical measure of entanglement, such as the neg-
ativity EN . It can be interpreted as follows: non-Markovian
dynamics implies the flow of privacy from environment to the
system.

Interestingly, WDK is not an entanglement measure. In-
deed, to make WDK zero for a block state, it is enough that
||p+ρ+ − p−ρ−||1 = 0, which is true for X = p+ρ+ − p−ρ−
being a zero matrix. This implies p+ = p− = 1

2 and ρ+ =
ρ− ≡ ρ. In this case the block state takes form 1

2 (|00〉〈00| +
|11〉〈11|) ⊗ ρ. However, if ρ is entangled, then WDK is zero,
while the block state is clearly entangled as a product of sepa-
rable and entangled state. It would be interesting to extend this
result to other operational entanglement measures, possibly
via the approach of [31]. Finally we note, that WDK is the
inherently nonlinear witness of non-Markovianity. In that, this
approach is complementary to that of considered earlier in
[58], where linear witness of a slightly different notion of
non-Markovianity, has been proposed.

VIII. DISCUSSION

We have provided bounds on the leakage of private ran-
domness and private key. We have shown that the private
randomness in distributed setting can not drop down by more
than S(a) + log2 |a| upon unitary transformation followed by
the erasure of a system a. It would be interesting to con-
sider a more general case, in which a POVM is performed
by the hacker. In this case, the difficulty rests in control-
ling the amount of private randomness that can be added to
the system. Indeed, every POVM can be considered as von
Neumann measurement on the embedded system. However,
embedding implies attaching a pure state, i.e., the state with
private randomness, which we would like to avoid in the
resource-theoretic approach.

Regarding private key, we have proved its nonlockability
for the first nontrivial class of mixed states—the class of
irreducible private states. Let us note here that the assumption
that the state is irreducible is not restrictive. Indeed, a nonirre-
ducible private state can have an arbitrary state on the shield.
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Hence nonlocking for the general private state is as hard as the
still open problem of nonlockability of the key for any state.
We have shown that the bound on leakage [that reads 2S(a)]
is tight. We then provided a refinement of this result, which
reflects the fact, that less correlated qubits affect the drop of
key by less amount, dependent on the value of I (a : B|A). We
have done it for generalized private states called irreducible
Schmid-twisted pure states. It is an interesting open problem
if the same would hold for the class of twisted pure states.
Another open problem which arises concerns one-way distill-
able key by means of communication from A to B. Our upper
bounds for the leakage differ in the case when the leakage
affects the system A and from the case when it affects system
B. It is an open problem if they need to differ, that is whether
one-way distillable key from A to B drops down by a different
number for some state when the same leaking channel acts on
system A from the case when it acts on system B.

We have also considered the effect of the leakage via
exemplary side channels. For the considered private state,
we observed that the key drops down by the same amount
irrespectively of the size of the shield. This means that it is
not the case that the larger is shield, the more protected is
the key of this private states. Designing private states which
are immune to the qubit loss on the shield (and having low
distillable entanglement) would be a good step towards the
hybrid quantum network provided in Ref. [24].

Still, however, a major theoretical problem rests in answer-
ing the question of how much the key drops down under the
erasure of a system of an arbitrary quantum state. As we argue,
it remains open even in the case when the system is in tensor
product with the rest of the state under consideration.

Finally, we proved a connection between the (non)-
Markovianity of quantum dynamics and hacking. We have
found an operational quantity which is a nonlinear private
key witness, KD([ρ]psq), the key of a privacy-squeezed state.
In this context, it would be interesting to find an operational
entanglement measure, the behavior of which corresponds
to (non)-Markovianity of dynamics. It is also interesting if
other variants of the definition of (non)-Markovianity can be
connected to a secret key extraction (see Ref. [58] in this
context).
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APPENDIX

Here we partially recover lemma V.3 of Ref. [40]. The
problem with the original statement of this lemma is: when
two states ρAB and ρ̃AB are close in trace norm, it does not
imply that the state ρAE and ρ̃AE are so (here ρABE is an
extension of ρAB to system E ). However this holds true, yet
with a worse factor, given the extension ρABE is pure.

In what follows, we use the fidelity defined by F (ρ, σ ) :=
||√ρ

√
σ ||21. Before showing a restatement of the aforemen-

tioned lemma, we show that if two bipartite states are close,
so are their purifications (this technique was used before in
Ref. [19], which we recall here for the completeness of the
presentation).

Let ||ρAB − ρ̃AB|| � δ. By the Fuchs-van de Graaf inequal-
ity [47], we have √

F (ρAB, ρ̃AB) � 1 − δ

2
. (A1)

On the other hand, by the Uhlmann theorem [34],
F (ρAB, ρ̃AB) = maxφρ̃AB

|〈ψρAB |φρ̃AB〉|2 and |〈ψρAB |φρ̃AB〉|2 =
F (ψρAB , φρ̃AB ), where ψρAB and φρ̃AB are purifications of ρAB

and ρ̃AB respectively. Applying again the Fuchs-van de Graaf
inequality, we obtain

|||ψρAB〉〈ψρAB | − |φρ̃AB〉〈φρ̃AB |||1

�
√

1 −
(

1 − δ

2

)2

�
√

2δ. (A2)

Lemma 4 (below) recovers the content of lemma V.3 of
Ref. [40] for the case of system E purifying systems
AB. (By notation K→(ρAB) we mean K→(|ψρAB〉), where
trE |ψρABE 〉〈ψρABE | = ρAB).

Lemma 4. For bipartite states ρAB and ρ̃AB satisfying
||ρAB − ρ̃AB||1 � δ with δ � 1

2 , there is

|K→(ρAB) − K→ (̃ρAB)| �(4δ + 4
√

2δ) log2 dA

+ 2h(δ) + 2h(
√

2δ). (A3)

Proof. Following Ref. [40], we consider difference of con-
ditional entropies: K→(ρ) = −S(A|BT ) + S(A|ET ), where T
is generated via measurement on system A. Hence,

||ρABT − ρ̃ABT ||1 � δ, (A4)

since the trace norm does not increase under CPTP maps.
Further, from (A2), there is ||ρAE − ρ̃AE ||1 �

√
2δ and, by the

same argument,

||ρAET − ρ̃AET ||1 �
√

2δ. (A5)

We have then

|K→(ρAB) − K→ (̃ρAB)| �|S(Ã|B̃T ) − S(A|BT )|
+ |S(A|ET ) − S(Ã|ẼT )|. (A6)

We further bound the two terms in right-hand side (r.h.s.)
using theorem by Alicki and Fannes [59], which states
that if two states ρAB and σAB satisfy ε = ||ρAB − σAB||1,
then

|S(A|B) − S(Ã|B̃)| � 4ε log2 dA + 2h(ε), (A7)
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where dA is dimension of system A and h(·) is the binary
Shannon entropy. Applying the above inequality to (A6), we
obtain

|K→(ρAB) − K→ (̃ρAB)| � + 4δ log2 dA + 2h(δ)

+ 4
√

2δ log2 dA + 2h(
√

2δ),
(A8)

only if
√

2δ � 1
2 , and hence δ � 1

2 . Here we use the fact
that h(x) is strictly increasing for x ∈ [0, 1

2 ], so that h(||ρAB −
ρ̃AB||1) � h(

√
2δ). �

It is important to note that quantum purification is the
worst extension from the cryptographic point of view because
it allows an eavesdropper to create any other extension by
local operation. Hence, the above result is important from a
cryptographic point of view.
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[29] J. Kołodyński, S. Rana, and A. Streltsov, Phys. Rev. A 101,
020303(R) (2020).
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