arXiv:2511.14873v2 [math.FA] 16 Feb 2026

Vainberg-Brégman relative entropy
and quasinonexpansive operators

Ryshard-Pavel Kostecki

Research Center for Quantum Information, Slovak Academy of Sciences
Dibravskd cesta 9, 84511 Bratislava, Slovakia

kostecki@fuw.edu.pl

18 November 2025*
to the memory of Yurit I. Manin

Abstract

We review the theory of Vainberg—Brégman relative entropies and quasinonexpansive operators
on reflexive Banach spaces, and obtain several new results. We also develop an extension of this
theory to nonreflexive Banach spaces, which is a joint generalisation of the reflexive Banach space
approach and the finite-dimensional information geometric approach. In the reflexive case, we
study generalised pythagorean inequality, as well as norm-to-norm, uniform, and Lipschitz—Ho6lder
continuity, of (left and right) entropic projections, proximal maps, and resolvents. We also pro-
vide a detailed study of a special (‘gauge’) family of Vainberg-Brégman geometries and operators
that is tightly related with the geometric properties of the underlying Banach space norm. The
extended theory belongs to the intersection of convex theoretic and homeomorphic approaches to
nonlinear analysis. Its models are constructed, using integration theory on order unit spaces, via
nonlinear embeddings into reflexive rearrangement invariant spaces. E.g., we compute the expo-
nent parameters of Lipschitz—Holder continuity of the extended entropic projections and resolvents,
and establish composability of a suitable class of nonlinear quasinonexpansive operators, over nor-
mal state spaces of JBW- and W*-algebras, determined by ‘gauge’ Vainberg—Brégman geometries
over, respectively, nonassociative and noncommutative L, spaces, and extended via Mazur embed-
dings. Other examples of extended Vainberg—Brégman geometries feature the (commutative and
noncommutative) Lozanovskil factorisation map, generalised spin factors, finite dimensional base
normed spaces, and convex spectral functions on unitarily invariant ideals of compact operators.
We also discuss several categories of entropic projections and quasinonexpansive operators naturally
appearing in this framework.
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1 Introduction

1.1 Vainberg—Brégman geometry...

A property of a Banach space will be said to be linear norm-geometric iff it is invariant under a
linear isometry into another Banach space. For any Banach space (X, |-|y), both [-|5x and |-|3 are
convex functions. Various linear norm-geometric properties of a Banach space (X, |-| ) which quantify
convexity (resp., differentiability) of its norm are dual to the corresponding linear norm-geometric
properties quantifying differentiability (resp., convexity) of a norm of a Banach dual space (X*, || ).
One of the key features of nonlinear convex analysis on Banach spaces is a generalisation of these
relationships from the pairs (|-| y, || x«) of Banach dual norms to the Mandelbrojt—Fenchel dual pairs
(¥, UF) of convex functions, acting, respectively, on (X, || ) and (X*,[-] x+)-

A special role in a passage from norm geometry to convex geometry on a Banach space (X, || y)
is played by the convex functions W, (x) := f(]”x"X dt p(x) YV € X (with ¢ positive, strictly increasing,
continuous, p(0) = 0, and limy . ¢(t) = 0o; such ¢ is called a gauge)!, which are generating duality
mappings j, through their subdifferential: 0V, =: j, : X — 2X". The functions ¥, can be seen as a
generalisation of %||||_2X (= ¥, with ¢(t) = t), allowing to characterise linear norm-geometric properties
of an underlying Banach space in terms of properties of ¥, (instead of properties of |-| ). In general,
the following triad is equivalent: convexity (resp., differentiability) properties of || y, convexity (resp.,
differentiability) properties of W, monotonicity (resp., continuity) properties of j, (see Proposition
2.26). Since linearity of j, for ¢(t) =t is equivalent with (X, |-| y) being a Hilbert space [154, Prop. 2|,
Jo can be seen as a generically nonlinear map. For Banach spaces (X, |-| y) with Gateaux differentiable
|-| x» the corresponding duality mappings j, are functions (i.e. singleton-valued maps), and take the
particularly useful form j, = @G\I&p 1 X — X* (with D denoting Gateaux derivative).

In essence, the Vainberg-Brégman geometry on a reflexive Banach space (X, || ) takes two further
steps: moving from the specific Gateaux differentiable convex function ¥, : X — R™ to any Gateaux
differentiable convex function ¥ : X — | — 00, 00|, and moving from the (symmetric) metric distance
dp (#,y) == |z — ylx Vz,y € X to the (asymmetric) Vainberg-Brégman functional [333, Eqn. (8.5)]

Dy (z,y) = ¥(x) — U(y) — [[x — 4,00 W)]] v, x. V(z,9) € X x int(efd(P)), (1)

with Dy(z,y) = oo Vy € X \ int(efd(V)), [-,] x«x+ denoting the Banach space duality, efd(¥)
denoting a domain of finiteness of ¥, and int denoting a topological interior operator on the subsets
of X with respect to the topology of |-|y. (Due to this asymmetry, most of objects in the Vainberg-
Brégman geometry exist in two, left and right, versions.) As a result, it provides an alternative setting
of geometric properties on X, quantified in terms of a convex function V¥ instead of || y. In particular
(see Table 1): Dy acts as an analogue of (dH.||X)2; left and right Dy-projections (onto left and right
Dy-Chebyshév sets K, respectively),

Y= %2“/ (y) := argei?f {Dg(z,y)} and y~— %g‘l’ (y) := ar%?f {Dy(y,x)}, (2)

respectively, act as analogues of metric projections (onto Chebyshév sets K)
d. .
y = P ¥ (y) = arginf {Jz — ylx}; (3)
zeK
left and right Dy-(quasi)nonexpansive operators act as analogues of |-| y-(quasi)nonexpansive oper-

ators, etc. For (X, |-|y) given by a Hilbert space and ¥ = %”H%( one has Dy(z,y) = %]z — ul%
hence metric and Vainberg—Brégman geometry coincide in this case, however it is no longer so in more

!Statements of this paragraph hold also for a more general class of quasigauges, defined as nondecreasing functions
@ : RT — [0, 0] such that ¢ # 0 and 3s > 0 lim,_, +, (t) < co. However, in this case, each of the linear norm-geometric
properties of || requires to impose some additional conditions on ¢ (see Proposition 2.29), so it is more straightforward
to discuss the key ideas of W, while assuming that ¢ is a gauge.



general cases.? BEach choice of ¥ provides a specific “probing” of the structure of a Banach space, and
it also establishes a particular convention of statistical inference on it (e.g., ¥ = %HH%( corresponds to
Dy-projections encoding the optimal estimation on (X, |-|y) in the sense of least squares). The class
of Vainberg-Brégman geometries determined by ¥ = W, provides thus an intermediate stage between
the Banach space norm geometry (characterised by the properties of ¥,,) and the Vainberg-Brégman
geometry in general. Beyond the realms of ¥ = W, the properties of Vainberg-Brégman geometry
are no longer directly related to linear norm-geometric characteristics of the Banach space. However,
it remains a rich geometric theory on its own, with a deep role played in convex nonlinear analysis
on Banach spaces, since the formula (1), defining Dy, essentially encapsulates the first order Taylor
expansion of the convex function ¥ (and, thus, the knowledge about the global minimum of ¥).3
Brégman and Chencov have independently discovered a characteristic geometric property of addi-
tive decomposition of a certain family of relative entropies under entropic projection onto a (suitably
understood) affine (resp., convex) closed subset K C M, called a generalised pythagorean equation

(resp., inequality). Chencov [99, Eqns. (11), (15), Thm. 1] discovered it for D; and

Di(w, ) > Do(w, B2 (w)) + Dy (B2 (w), 6) ¥(w,d) € M x K. (4)

where Di(w,¢) := [ (¢ — w + wlog ¢) is the Kullback—Leibler information [215, Eqn. (2.4)], w,¢ €
(L1 (X, )", (X, p) is a localisable measure space, M = (S(L1(X,p),|-];))" is a (not necessarily
finite-dimensional) set of probability densities, and K is given by the finite-dimensional convex set of

exponential families, i.e. for m € N, a convex closed subset © C R™ po(x) € M, and ¢;(x) € M
Vie{l,...,m},

po(x) exp(D 7% qi(x)0:)
Jx mpo(x) exp(3oiL, i(x)0:)

On the other hand, Brégman [67, Lem. 1] (=[68, Lem. 1, §2.2]) discovered it for Dy and %2‘1’,

K—{p( ,0) € M : p(x,0) = 9_(01,...,9m)e@}. (5)

Dy(w,6) > Dy(w, B2 () + Du(F2%(6),6) V(w, ) € K x M, (6)

where Dy is a Vainberg—Brégman functional, and K is a convex closed subset of M = R™. In both
cases, the passage from convex to affine K implies replacing > by =. The fact that D; belongs to the
family Dy for atomic finite (X, 1) was established in [67, p. 1021] (=[68, p. 15]). A generalisation of

right pythagorean inequality (4) for Dy and

Dy (w, ) > Dy(w, B2¥ () + Do (F2¥ (), ¢) Y(w,d) € M x K, (7)

where M is a reflexive Banach space (X, ||y ), and K C X is such that D%W(K) is convex and closed
in X*, has been obtained in [245, Prop. 4.11|. Under some suitable conditions on W, left (resp., right)
pythagorean inequality characterises left (resp., right) Dy-projections, cf. Proposition 2.8 (resp., 3.1).

Given the nonlinearity of D‘I’ and 2‘1’, as well as asymmetry and nonquadraticity of Dy, the
left and right generalised pythagorean equations are a highly remarkable generalisation of the ancient

equation a? + b = ¢?, as well as its cartesian and hilbertian analogues,

e~ 913 = o~ B )+ [ )~ V) e K x )

for any convex closed subset K of a Hilbert space H. As shown in Table 1, this generalisation extends
to a wide range of structures.

2Strictly speaking, the Vainberg-Brégman theory on reflexive Banach spaces is a generalisation of the theory of metric
projections and norm-nonexpansive operators on Hilbert spaces, and is analogous to (and is generally better behaved,
see [8, §§4-5, §§7—8], than) a corresponding theory of metric projections and norm-nonexpansive operators on Banach
spaces. In particular, while metric projections on Hilbert space as well as left and right Dy-projections on reflexive
Banach spaces satisfy the pythagorean theorem (see Table 1), it is not so for metric projections on reflexive Banach
spaces.

3 According to [63, p. 69]: «[t]his is perhaps the most important property of convex functions, and explains some of
the remarkable properties of convex functions and convex optimization problemsy.



geometry norm Vainberg—Brégman

domain Hilbert space (H, (-, )4) reflexive Banach space (X, || x)
convex function %""H )

orthogonality Gy [2Cw()] X

functional

relative ()., (@ y)? =z —y |3 Yo,y e H Dy(z,y) Yo,y € X
quantification

cosine equation

2 2 2
lz — 215 = lz —yl3 + ly — 2% —
2(x —y,z —y)y Vr,y,2 €H

D\I/(er) = D\I’(Zry) +D\I’(yrx) -

[z — v, 29¥(z) — DET(y)]] Vo,y,z € X

XxXX*

d.
projection ‘BK“ I .= arg infaer {lz— %} %ID(‘I’ = arginf cp {Dw(z, -)} Vz € X,
=arginf, {Hz - H%} Ve eH ?2‘1’ =arginf o {Dy(-,2)} Ve € X
d. d. -
Pl 4 p I =y %DW + DG\I/)_‘ oPYE 0 DCW = idy
orthogonal d D A oF
decomposition <y PLUH( )> =0V(z,y) e H XL, [[g ¥ (2), BRo 0 DU (2 )]]XXX* =0Vz € X,
H
a. d. O Dy _j
ol optldn 1, P ocu(cy)e +¥ idx
dy. G F D\II _
<q@K" 1% (2), 1 ( )> =0VzEH, (@) o FE* W) Bocuicne )]]XXX* 0Ty e,
. for convex closed cone K C X, convex closed cone
f(fr hgear sul;(spgc:t L C H, convex @G\I/(C’) C X*,
closed cone
=Th Ke:={ye X* : [, « <0Vzx € K},
Lt={yeH : (x,y),, =0Va € L}, o oF ly ] [ y]]XXif - } .
K°:={yeH: (x,y) <0Vze K} BYo(y) = arginf, g0 {¥F(y — 2)} Vy € X*; if K (resp.,
DCEW(C)) is replaced by a linear subspace L C X (resp.,
DGW(L) C X*), then (-)° is replaced by (-)*, where
ML ={yeX* : [z,y]lxyx» =0Vz € M}
D D
pythagorean =~ yl5, = Dy(a,y) > Dy(a, ¥ (1) + Da(F ¥ (4),0)
theorem for LI 2 i1y 2 V(z,y) € K x X V left Dg-Chebyshév K,
projections T — Py (y)HH + ‘mx W) -y " Dy(z,y) > Dy (z, agw () + Dy (igw (z),y)
V(z,y) € K X H V Chebyshév K V(z,y) € X x K V right Dy-Chebyshév K
completely IT(z) =Ty < Iz —yly Yo,y € K| Dy(T(2),T(y) < Dy(x,y) Yo,y € K
nonexpansive maps
quasinonexpansive || 12— Tl < 7 — vl Da (&, T(3)) < D (#,9) V(@) € Fix(T) x K,
maps Y(z,y) € Fix(T) x K Dy (T(z),y) < Dg(z,y) Y(z,y) € K x Fix(T)

proximal maps

d
[ [
prox, " =

arginf, o) { /(@) = 32— 1}

ﬁrOX?‘If = arginf, cofa(f)nefa(w) 1f(®) + ADw (=, -)},
pro % = arginfocoracp)nintefacwy) {f (@) + ADw (-, 2)}

pythagorean
theorem for
proximal maps

2
lz —yly 2

V(z,y) € le(proxAH Iy 1,

- :
x—prox/\,fﬂ(y)H +
’ H

2

dj.
prOXA‘jJ'HH (y) -y

Fix(prox HfHH) = arginf,ceqpy {f(2)}

Dy(z,y) > Dy (x W??( )) + Du (Prox3, % (y), )
Y(z,y) € Fix m ) X int(efd(¥)),

Fix m{A ) mt(efd( )) Narginf, coeacry {F(2)}

Dy (,y) > Dy (@, proky % (z)) + Du (proky % (), y)
¥(z,y) € int(efd(¥)) x le(mf};),

V(z,y) € Fix(resar) X H,

Fix(resy7) = T7'(0)

. D
le(prozD‘I’) = @G\PF(ﬁroxfo‘I;G\PF)
resolvents resyr = (idx + A7)~ f_s)\T (DCT 4+ AT) 0 DCEY,
fes¥, := (idx+ + AT 0 DG WF)~!
pythagorean le =yl > Dy (z,y) > Dy (z, ey (y)) + D\P(ﬁfT(y),y) V(z,y) €
theolrem for lz = resxr(y)13, + Iresar(y) — yl%, Fix(fes),) x int(efd(¥)), Fix(fes}y) = int(efd(¥)) N T7'(0),
resolvents

Dyr (2,y) > Dyr (2, 78V, () + Dyr (7Y (), y) V(. y) €
int(efd(TF)) x Fix(re¥,),
Fix(te$¥,,) = D% W(int(efd(¥)) N T7'(0))

Table 1: Comparison of metric geometry on a Hilbert space and Vainberg-Brégman geometry on a reflexive
Banach space. For interpretation of [[7©G\I!()ﬂ vy x+ as orthogonality in a Gateaux differentiable reflexive
Banach space (X, |-|y) for ¥ = ¥, see Remark 3.37.(xv). For comparison of characterisations of metric
projections in Hilbert and Banach spaces with characterisations of left and right Dg-projections, including
their respective continuity properties, see Remark 3.37.(iii). For Z € {H, X} and T : X — 2%, Fix(T) := {x €
Z : T(x) = z}. We denote le”'”” = ‘13(2”'”” for a linear subspace L C H, since in such case &Bi”'”” coincide
with the bounded linear projection operators on .



1.2 ...and quasinonexpansive operators

Let (X,|-|yx) be a reflexive Banach space. In general, a map T : K — int(efd(¥)) with @ # K C
int(efd(¥)) C X is said to be left (resp., right) Dyg-quasinonezpansive on Fix(T) :={zx € K : T(z) =
x} iff

D
D

D\I/ (1,‘, T(y))
(resp., Dy (T'(x),y)

(x,y) V(z,y) € Fix(T) x K 9)

<
< Dy(z,y) V(z,y) € K x Fix(T)). (10)

v
v
Let A €]0,00[. An important example of left (resp., right) Dg-quasinonexpansive maps is provided
by left (resp., right) Dy-resolvents of monotone operators W : X — 2X" [133, Lem. 1] [41, Def. 3.7]
(resp., [245, Def. 5.3]),

fesyy i= (D9W + AW) 0 DU, (11)
(resp., tedyyy = (idx+ + AW 0 DEWF)™), (12)

Their special case,* given by the left (resp., right) Dyg-proximal maps for suitable f : X —] — oo, o0]
[95, Eqn. (13)] [41, Def. 3.16] (resp., [43, Def. 3.7] [218, Def. 3.3]),

ﬁroxf} = arginf  {f(z) + ADgy(z, )} (13)
’ zeefd(f)Nefd(P)
(esp., FroRPY = arginf  {f(z) + ADa(-,2)}), (14)
zeefd(f)Nint(efd(¥))

generalises left (resp., right) Dy-projections. Quite noticeably, it turns out that the left Dy-resolvents
(resp., left Dg-proximal maps) also satisfy the generalised pythagorean theorem [133, Lem. 1] [41,
Props. 3.3.(i), 3.13.(iv).(b), 3.21.(vi), 3.22.(ii).(b), 3.23.(v).(b), Cor. 3.25]

Dy (x,y) > Dy(z,fesyy (1) + Dy (tesiy (y),y) V(x,y) € Fix(fesyy,) x int(efd(¥)); (15)
(resp., Da(z,y) > Du(x, $roxP%(y)) + Du (1o (4), y) ¥(z,y) € Fix(5roxD%) x int(efd(¥))). (16)

In Proposition 3.4 (resp., 3.3) we complete this theoretical landscape, establishing the generalised
pythagorean theorem for right Dy-resolvents (resp., right Dg-proximal maps)

For @ # K Cint(efd(¥)) C X, T : K — int(efd(¥)), and cl denoting a topological closure operator
on the subsets of X with respect to the topology of |-| s, consider a topological generalisation of Fix(7")
given by [293, p. 313]

ﬂ(T) ={zx ec(K): Hzx, € K : n €N}, z, converges weakly to z, ILm |lzn — T(xn)| x - (17)

T : K — int(efd(¥)) such that

Dy(z,T(y)) < Dy(z,y) ¥(z,y) € Fix(T) x K (18)
(vesp., Dy(T(z),y) < Dy(z,y) Y(z,y) € K x Fix(T)) (19)

and, for any y € ﬂ(T) and any bounded {z,, € K : n € N}, [94, Def. 3.2] [293, pp. 313-314] (resp.,
[245, Def. 2.3.(iv)])

i (Du(, ) - Da(y T@) =0 = lim Da(Tn).ea) =0 (20)
(resp., nh_fgo(D\Il(linay) - D\II(T(xn)ay)) =0 = nh—gio DlIf(xnaT(:En)) = O)a (21)

4Strictly speaking, pﬁf‘jﬁ is a map X — 2%, while ﬁ}l\’w is a map X* — 2%, so the former cannot be a special case
of the latter. However, under some mild conditions on W, (84) and (85) allow for the above conceptual simplification.
Apart from simplification of terminology, this perspective proves to be useful in applications. E.g., in Proposition 3.32.(iv)
we show that pro f? and Eéfw, for v =V exhibit exactly the same value t of t-Lipschitz—Holder continuity. On

the other hand, while the generalised pythagorean theorem for pro%f"}’ features Dy, its variant for ﬁfw features Dyr.

$1,8°



will be called a left (resp., right) strongly Dy-quasinonexpansive map, while the set of all such maps
will be denoted by LSQ(¥, K) (resp., RSQ(¥, K)). Condition (20) (resp., (21)) is essentially a topo-
logical version of the left (resp., right) generalised pythagorean theorem. Under some conditions on
U, cf. Definition 2.14 and Proposition 2.16.(i)—(ii), the suitable finite subsets of LSQ(V, K) (resp.,
RSQ(V¥, K)) admit composition [293, Lems. 1, 2| [246, Prop. 3.3] (resp., [246, Props. 4.4, 6.6]): for
any set {T;: K — K : T; € LSQ(V, K) (resp., RSQ(¥, K)), i € {1,...,m},m € N},

NP Fix(T) # @ # Fix(T o+ 0T1) = Tpo---oT € LSQ(V,K) (resp., RSQ(V, K)),  (22)

with F&(Tm o---0T) C N, ﬁ(TZ) Such ¥ will be called LSQ-compositional (resp., RSQ-
compositional). Under some additional conditions on LSQ-compositional (resp., RSQ-compositional)
VU, cf. Proposition 2.16.(iii)—(iv), %g‘l’ : K — int(efd(¥)) belongs to LSQ(¥, K) with @@g@) =
Fix(P2%) = C, and fe% € LSQ(Y, X) (resp., BL¥ : K — int(efd(¥)) belongs to RSQ(V, K) with
ﬂ(%gq’) = Fix(ggp) = C, and te8% € RSQ(PF, X*)). Such ¥ will be called LSQ-adapted (resp.,
RSQ-adapted)?.

In the context of information theory (or statistical inference), Dy (w, @) can be interpreted as a
quantification of relative information content of the information state w with respect to the information
state ¢. Hence, the generalised pythagorean equation (6) can be interpreted as a nonlinear additive
decomposition of quantification Dy (w, ) of an “information gain” (or an “uncertainty loss”) from ¢

to w into D¢(§§W(¢)7¢), interpreted as quantification of an “information gain due to learning of

constraints” K, and Dy (w, 2‘1’ (¢)), interpreted as quantification of an “uncertainty loss within the
constraints”. Analogous interpretation holds for right Dy-projections, left and right Dy-proximity
maps, as well as left and right Dy-resolvents. Thus, left and right pythagorean inequalities allow for
an additive decomposition of information contained in “data” into “signal” plus ‘“noise” under a vast
range of nonlinear quasinonexpansive operators. Due to (20)—(21), the quasinonexpansive maps in
LSQ(¥, K) and RSQ(¥, K) can be seen as a suitable topological generalisation of such inferences.

1.3 New results

Our work has five interconnected layers: 1) new results for Dy on reflexive Banach spaces (X, || y);
2) construction of suitable categories of left and right Dg-projections as well as of LSQ(V¥, K) and
RSQ(¥, K) maps; 3) new results for Dy, on reflexive Banach spaces (X, |-|y); 4) developing the
theory of extended Vainberg-Brégman functionals Dy g and quasinonexpansive maps over nonreflexive
Banach spaces, together with the corresponding categories; 5) deriving a range of results for Dy and
Dy in particular models, with a main focus on (nonreflexive) preduals of W*- and JBW-algebras.

1.3.1 Reflexive setting

We contribute to the general theory of Dy on reflexive Banach space (X, |-|y) with several new
results, including an extension of a characterisation of right Dg-projections by means of generalised
pythagorean inequality to not necessarily finite ¥ (Proposition 3.1.(i)), proving a generalised pythagore-
an inequality for right Dy-proximal maps (Proposition 3.3) and right Dy-resolvents (Proposition 3.4),
providing the right version of Al'ber’s generalised orthogonal decompositions (Proposition 3.11.(ii)),
and establishing sufficient conditions for: norm-to-norm continuity of right Dy-projections (Proposition
3.5.(iii)—(iv)) and right Dg-proximal maps (Proposition 3.7.(ii)); Lipschitz—Holder continuity of left
and right Dg-resolvents (Proposition 3.8), left and right Dg-proximal maps (Proposition 3.8), as well
as left and right Dg-projections (Corollary 3.9).

1.3.2 Categories

Under some restrictions, the sets of left and right Dy-projections, as well as the sets LSQ(V, K') and
RSQ(¥, K), can be transformed into suitable categories (Definitions 3.43 and 3.47). Taking closed

5More precisely, the abstract notion of an RSQ-adapted ¥ is not sufficient for Eé% € RSQ(TF, X*), however the
latter property is implied by all of the known sufficient conditions for RSQ-adaptedness of V.



convex sets in (X, |-| ) as objects, left Dy-projections onto such sets as morphisms, and defining
the composition of morphisms as a left Dg-projection onto the intersection of constraint sets of the
composed left Dy-projections, we obtain the category 1Cvx(¥). By restriction of objects to affine
closed sets, we obtain the category 1Aff(W). By taking objects given by DG T-convex DCV-closed
sets in (X, |-|y) (i-e. sets such that their images in (X*,||y.) under the map D¢W¥ : X — X* are
convex and closed), morphisms given by their right Dg-projections, and defining composition of two
morphisms as a right Dg-projection onto the intersection of the constraint sets of these morphisms, we
obtain the category ¥Cvx(¥). Its restriction to DCU-affine DG W-closed sets is denoted TAf£(¥). These
categories are well defined provided that we admit an empty set as an object and an empty arrow,
@7, as a morphism available between any two objects. The superscript & will denote a restriction
of the above categories to the case when the composition of morphisms is different from "@" only
when the codomain of second projection is a subset of the codomain of first projection. Assuming
analogous conditions on the Fix(T') sets of left strongly Dy-quasinonexpansive maps, and restricting
them to be convex and closed, gives rise to the category LSQS,,. An analogous construction for right
strongly Dy-quasinonexpansive maps gives a category RSQC%X. Hence, LSQ-compositionality (resp.,
RSQ-compositionality) of ¥ is a condition allowing to define the category LSQS,, (resp., RSQS,,). If ¥
is LSQ-adapted (resp., RSQ-adapted), then there is an embedding functor from 1Cvx&(¥) to LSQS,,
(resp., from £CvxS(U) to RSQS,,), as well as a functor right adjoint to it, which assigns to each T
its fixed point set Fix(T") (Definition 3.48.(iii)—(vi) and Proposition 3.49.(ii)—(iii)). The categories
1Cvx(0) and £Cvx(V) are equivalent, and the same is true for LSQS, (¥) and BSQS, (W), since the

second element of each of these pairs is defined by means of the first one, through the Euler-Legendre
transformation implemented by %W (Propositions 3.45.(i) and 3.49.(i)).

1.3.3 Gauges and quasigauges ¢

For Dy with ¥ = ¥, and a gauge ¢, we provide the first systematic study of the properties of this func-
tional, obtaining an array of new results, including the sufficient conditions on linear norm-geometric
properties of (X, |-|y) for: zone consistency and characterisation of left and right Dy -projections
by a generalised pythagorean inequality (Proposition 3.17); norm-to-norm continuity of left and right
Dy -projections (Proposition 3.27), left and right Dy -proximal maps (Proposition 3.30), and left and
right Dy _-resolvents (Proposition 3.31), as well as uniform continuity and Lipschitz-Hélder continuity
of left and right Dy, -projections (Proposition 3.33) and of left and right Dy -proximal maps and
Dy -resolvents (Proposition 3.32); LSQ-compositionality, LSQ-adaptedness, RSQ-compositionality,
and RSQ-adaptedness of W, (Proposition 3.28). (See Table 2 for more detailed discussion of, and
structural view on, these notions and results.) Furthermore, we characterise the Euler-Legendre prop-
erty of W, by strict convexity and Gateaux differentiability of (X, |-|y) (Proposition 3.14). We also
deliver several new results for ¥ = W, with a quasigauge ¢, which has never been considered before
in the context of Dy, including a characterisation of the Euler—Legendre property of ¥, (Proposition
3.23) and sufficient conditions on ¢ for a characterisation of left and right Dy -projections by the
respective generalised pythagorean theorem (Proposition 3.24). Taken together, these results establish
a strong bridge between the Vainberg—Brégman and norm geometries of reflexive Banach spaces. They
also play a key role in providing nontrivial functional analytic and operator algebraic models of the
(reflexive and extended) Vainberg-Brégman geometry in Section 4.

1.3.4 Extension /¢

While the generalised pythagorean equation (7) has the same form as, and is completely analogous to,
(6), the original result (4) of Chencov is more subtle, containing an additional layer of abstraction.
More specifically, (7), provided in [245, Prop. 4.11] and Proposition 3.1, deals with M given by the
reflexive Banach space (X, ||y ), with convexity and closure specified, via D, in terms of structure
of (X*,|-|¢+), and it is also applicable to a special case of D; defined on R™. On the other hand,
Chencov’s result deals with Dy over (Li(&X,p),|-|;), which is a nonreflexive Banach space, and it
specifies convexity not in terms of the linear structure of L; (X, 1), but in terms of exponential families
(5): for a fixed n € N, it uses a nonlinear exponential coordinate map from an n-dimensional subset



of L1(X, ) to a convex closed subset of a reflexive space R™. The same issue of a “suitable definition”
of convexity and closure of the sets for a generalised pythagorean theorem over a nonreflexive Banach
space appeared in [183, Prop. 8.1, Prop. 8.2], for a family D, of relative entropies over (nonreflexive)
preduals (N, ||y, ) of arbitrary W*-algebras N: in order to establish the generalised pythagorean
theorem for left D,-projections on subsets K of (N, ||, ), the convexity and closure of K was
specified in terms of the structure of (reflexive) noncommutative (Ly ., (N), |-|; /) space with v €]0, 1,
via Mazur maps £, : Ny — Ly, (N) (cf. Corollary 4.3.(ii) and Remark 4.9.(i) for details).

In order to extend applicability of the Vainberg—Brégman geometry beyond the class of reflex-
ive Banach spaces (X, |-|y), we generalise the above observations, and consider a bijective map ¢
from a subset U of a (generally not reflexive) Banach space (Y, |-|y-) to a subset £(U) of X. In this
sense, ¢ establishes a global nonlinear coordinate system on U, modelled in X. Given £ and ¥, the
extended Vainberg-Brégman functional on U is defined by Dy w(¢,v) := Dw(4(¢),€(¢)). The suit-
able properties of the subsets of U become expressed in terms of the corresponding properties of
their f-embeddings into (X, |-| ), with the convex analytic results proved for Dy on (X, |-|y) pulled
back into the corresponding results for Dyy. Hence, consideration of convexity (resp., affinity; clo-
sure; DY W-convexity; DY U-affinity; DY W-closure) of sets in (X, |-|y) leads us to consideration of
(-convexity (resp., f-affinity; (-closure; (DSW o £)-convexity; (DG o ¢)-affinity; (DEW o ¢)-closure) of
sets in (Y, -]y ), and dealing with the left D, y-projections onto ¢-convex ¢-closed sets, right Dy y-
projections onto (DGW o £)-convex (DT o £)-closed sets, sets LSQ(Y, ¥, C) and RSQ(¢, ¥, C) of left
and right strongly Dy y-quasinonexpansive maps, respectively, etc. (In particular, we obtain categories
1Cvx(¢, ¥) and TCvx(¢, ¥) (as well as their affine and S- subcategories), LSQS, (¢, ¥) and RSQS,, (¢, ),
and the corresponding functorial relationships between them.)

In other words, each choice of (¢, ¥) sets up a specific way of probing the relationship between
quantitative and geometric properties of a subset U of (Y, |-|y) in terms of the Vainberg-Brégman
geometry of £(U) in (X, |-| ), i.e. as perceived through the lenses of a nonlinear embedding (‘coordinate
system’) ¢ : U — X and a convex function ¥ : X —] — 0o, 00] (‘loss/bias criterion of statistical
discrimination’). This way, by moving from Dy to Dy g = Dyo(¢,¢), we provide a partial reconcilliation
between (arbitrary dimensional) Chencov’s and Vainberg—Brégman approaches by means of a setting,
which we call the extended Vainberg—Bregman geometry.

While the results on uniqueness and existence of Dg-projections can be pulled back without any
additional topological assumptions on ¢ (since bijectivity of ¢ allows to use the topology induced by
the norm topology of (X, |-|y)), providing sufficient conditions for the stability of Dy y-projections,
expressed in terms of their norm-to-norm continuity or uniform continuity, requires to impose the
corresponding continuity conditions on £. As a result, the best behaved sector of the extended Vainberg—
Brégman geometry (which we identify as ‘well adapted models’) belongs to an intersection of the convex
analysis on reflexive Banach spaces with the nonlinear homeomorphic theory of (arbitrary) Banach
spaces. In particular, if £ is norm-to-norm continuous, then the ¢-closed sets in (X, |-| y) coincide with
the sets closed with respect to the topology of |-|y. Hence, the only inevitable price to pay for the
extension from Dy to Dy y is the replacement of convexity by ¢-convexity.

1.4 Models

A pair (¢,¥) will be called a model of an extended Vainberg-Brégman geometry iff it satisfies the
following axioms: Dy is an information (i.e. Dy(z,y) =0 <= z =y), left and right Dy-projections
(onto, respectively, left and right Dy-Chebyshév subsets of (X, |-|y)) exist, and they satisfy the cor-
responding generalised pythagorean inequalities. For W = W, further strengthening of the model
(allowing more axioms to be satisfied) is implemented by strengthening of the geometric properties of
the corresponding norm |-| y, as shown in Table 2.

While the definition of an extended Vainberg-Brégman model does not impose any additional
conditions on a bijection ¢ : U — £(U) C X, this is not longer so for its further refinements. Borrowing
a terminology from [131, p. 231], we will call a model (¢, V), not necessarily with ¥ = ¥, to be well
adapted (resp., uniformly well adapted; Lipschitz—Hdolder well adapted) iff it satisfies all axioms of case
IV (resp., V; VI) and /¢ is a norm-to-norm (resp., uniform; Lipschitz—Hélder) homeomorphism. For
(¢, ¥ = ¥,) with a gauge ¢ it turns out that the properties of case I-IV models do not depend on



geometry of (X, || x)
case properties of the Vainberg—Brégman geometry (satisfied in a given case) for ¥ =¥,
I Dy and Dgr are informations, left and right Dyg-projections are single-
valued and are characterised by the respective generalised pythagorean in-
equalities, left and right Dy-resolvents are single-valued and satisfy the
respective generalised pythagorean inequalities SCNGNR
11 left and right Dg-projections are norm-to-norm continuous + all of above | SCNRRSNFNR
i
Ik (norm-to-norm continuity of right Dg-resolvents + LSQ- and RSQ-compo- | SC N RRS N UF/
JIIY | sability /norm-to-norm continuity of left Dy-resolvents) + all of above JUCNF
I\Y RSQ-adaptedness + all of above UCNUF
VL /VR | left /right Dg-projections and left /right Dyg-resolvents are uniformly con- %—UC N UF/
tinuous on bounded subsets + all of above /ucCn %—UF
VI left and right Dg-projections and Dyg-resolvents are Lipschitz—Holder con- %—UC N %—UF
tinuous + all of above
IIb LSQ-adaptedness + all of case I SCNUF
Table 2: Different cases of Vainberg-Brégman geometric axioms, and the corresponding conditions on the

Banach geometry of (X, |-|y) which are sufficient for these axioms to hold for ¥ = W, with a gauge ¢.
Notation: SC := strict convexity, G := Gateaux differentiability, R := reflexivity, RRS := the Radon—Riesz—
Shmul’yan property, F := Fréchet differentiability, (%—)UF = (%—)uniform Fréchet differentiability, (%—)UC =
(%—)uniform convexity. These results are obtained in Propositions 3.17, 3.27, 3.28, 3.31, 3.32, and 3.33. While
for any model (¢, ¥) we require left and right Dg-projections to satisfy the respective generalised pythagorean
inequalities, case I strengthens this to a requirement of characterisation. Case II is included in case IIIR, but
not in case III".

the choice of ¢, but (essentially due to Proposition 2.26.(vii)—(viii)) such dependence appears for case
VL /VR (s0, also for case VI) models (Propositions 3.32 and 3.33). Hence, a passage from norm-to-norm
continuity of left and right Dy -projections, Dy, -proximal maps, and Dy -resolvents to their uniform
continuity includes becoming sensitive to the properties of a particular ¢. More specifically, case V¥
and case V! models are specified only for the particular family of o, given by p(t) = o1 5(t) := /-1,
Furthermore, since uniform homeomorphy of unit balls of two Banach spaces does not imply uniform
homeomorphy of these spaces, a passage to uniformly well adapted models amounts, in practice (and
for W = W), to restriction of considerations to the extended Vainberg-Brégman geometry of a unit ball
(and its subsets). On the other hand, under generalisation from gauges to quasigauges, there is already
a split of case I models into left and right cases (I*/I®), dependently on the particular properties of a
quasigauge (Proposition 3.24).

The examples of well adapted case IV models are given by (¢, V,), with an arbitrary gauge ¢
and the Mazur map ¢, (¢) := ¢?, for v €]0,1[, mapping preduals of arbitrary W*-algebras N and
semifinite JBW-algebras A into the corresponding L/, spaces over these algebras (Propositions 4.1
and 4.7). The resulting extended Vainberg—Brégman geometries over the respective preduals of W*-
and JBW-algebras depend only on the choice of v and . From the perspective of elementary differ-
ential and convex geometric properties of the Banach space norm, the structure of (L;,,(N),[-[; /fy)

and (Ly/, (A, 7),[[;,,) spaces does not exhibit major variability in the range of v €]0, 1\{3}, and
does not depend on the type of NV and A.5 In consequence, some qualitative differences between

In comparison, as we show in the sequel work [212] (cf. [211] for an announcement of some of its main results), the
extended Vainberg-Brégman geometries (v, V,,), induced over preduals N, of semifinite W*-algebras A/, via Kacz-
marz maps fr, from the geometry of p-Amemiya norm on noncommutative Orlicz spaces, (Ly(N,7), |y ,) with
p € [1,00], exhibit variability over the type of A/, over the geometric properties of the Orlicz function YT, and over
p € {{1}, ]1, 0], {co}}. In this context, two main virtues of providing an independent analysis for noncommutative and
nonassociative Ly, spaces in the current paper are: to have the range of results available for type III (i.e. not semifinite)
W*-algebras and for semifinite JBW-algebras.



the extended Vainberg-Brégman geometries for different choices of (v, ) show up only at the level
of case VI/VR and case VI models, through dependence of the uniform and Lipschitz-Holder con-
tinuity of j, and £, on the available values (p,q) of p-uniform convexity and g-uniform Fréchet dif-
ferentiability of (Ly/,(N),[l,/,) and (L1/4(A,7), |]y,,). Case VL (resp., V®) models are given by
(£y,W,) with L; /., spaces over arbitrary W*-algebras and semifinite JBW-algebras for ¢ = ¢; g with
(7, 8) € (10, 5] J0.9) U ([3, 1[x]0, 5]) (vesp., (v, 8) € (10, 5] x [3, 1)) U([3, 1[x[7,1[)), cf. Proposition
4.4 and Corollary 4.8. Among the case VI and case VR models we specify a class of uniformly and
Lipschitz-Hoélder well adapted models, by restriction of £, to a unit ball of the respective predual. For
case VI models we calculate the modulus of continuity (more specifically, the value of ¢ for ¢-Lipschitz—
Holder continuity) of left and right Dg%\pwlﬁ—projections, as well as left Dg%q,wm—resolvents.

We give also three different examples of models with ¥ = W, for a gauge ¢, but with ¢ dif-
ferent from the Mazur (as well as Kaczmarz) map. Proposition 4.10 provides well adapted (resp.,
uniformly and Lipschitz-Hélder well adapted) case VI and VR models, with (X, [-|y) given by uni-
formly convex and uniformly Fréchet differentiable (resp., p-uniformly convex and g-uniformly Fréchet
differentiable) Banach function space over a localisable measure space (X, ), with ¢ given by an in-
verse x of the Lozanovskii factorisation map £x ', and the domain of £x given by the unit sphere
S(L1(X, ), ||)- Proposition 4.11 provides an analogue of this result for (X, |-| ) given by uniformly
convex and uniformly Fréchet differentiable (resp., p-uniformly convex and g-uniformly Fréchet dif-
ferentiable) noncommutative rearrangement invariant Banach space over type I, W*-algebra A/ with
n €N (le. N = B(H) for dimH = n, and (X, |-|y) is a space M, (C) of n x n matrices over C,
equipped with a unitary invariant matrix norm). Proposition 4.13 provides case I model for preduals
of generalised spin factors (X* @ R, || y+gg), With £ given by a mapping ¢/ from a base of a base
normed space (X @ R, [-|xgr) into a unit ball of a reflexive Banach space (X, ||y ). This result goes
beyond the realms of W*- and JBW-algebras (since a generalised spin factor is a JBW-algebra iff
(X, ]| x) is a Hilbert space), and provides an example of application of our framework to the general
base normed spaces (in particular, Proposition 4.13 characterises the presence of Alfsen—Shultz spectral
duality between (X @ R, |-|xqr) and (X* @ R, || x+qr) by the condition that W, is Euler-Legendre,
which is equivalent to Gateaux differentiability and strict convexity of (X, || y))-

Finally, we specify also some examples of case I models featuring ¥ # W¥,. Proposition 4.15
deals with self-adjoint parts of preduals of arbitrary W*-algebras and with preduals of semifinite
JBW-algebras using ¢ = ;5 (with a codomain H denoting, respectively, either a self-adjoint part
of a noncommutative Ly space or a nonassociative Ly space) with ¥(z) := & (T, z),,, where T is
a continuous linear map satisfying I\ > 0 Va,y € H (Tx — Ty,y — x)5, > Az —y|3,. Proposition
4.16 deals with preduals of type I,, W*-algebras, with n € N, using ¥ given by a spectral convex
Euler-Legendre function on the space of finite dimensional self-adjoint matrices (with three formerly
known examples of such functions given in Example 2.3.(i)—(iii), and two new examples given in
Corollary 4.17.(iv)—(v)). Proposition 4.20 provides an extension of this approach to Schatten classes
(&(H))** of self-adjoint compact operators on a separable Hilbert space H (with ((&(H))**, || (e (2())s)
uniformly convex and uniformly Fréchet differentiable and £ given by the inverse £(¢(7())sa of Lozanovskir
factorisation map), resulting in models (¢, ¥) on N,** = ((B(H))**), such that ¥ is Euler-Legendre,
while it is not assumed to be W,,. (However, while this construction is a natural extension of already
established results, we are currently missing examples of ¥ # W, at this level of generality.)

1.5 Plan of the paper

Section 2 covers background definitions and properties that are extensively used in the rest of this
paper. Section 2.1 introduces key notions from convex analysis on Banach spaces. Section 2.2 presents
the properties of left and right Vainberg—Brégman projections and quasinonexpansive maps, used in
Section 3.1. Section 2.3 discusses the properties of Banach norm geometry as characterised by V¥,
which will be used in Section 3.2.

Section 3 contains new results in the Vainberg—Brégman theory on reflexive Banach spaces together
with the theory of extended Vainbeg—Brégman geometries on arbitrary Banach spaces. In Section 3.1
we establish results applicable to arbitrary Vainberg—Brégman functionals on reflexive Banach spaces.
Section 3.2 is concerned with the special case, when W is given by an integral of a gauge (or quasigauge)
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function ¢, i.e. W = W,. Section 3.3 encapsulates the results of Sections 3.1 and 3.2 into the general
setting of extended Vainberg—Brégman geometry, based on composition of Dy on reflexive Banach
space (X, |-| y) with a nonlinear homeomorphism ¢ from a subset of an arbitrary Banach space (Y, |-|).
Section 3.4 provides construction of suitable categories of left and right Dy y-projections, as well as
categories of left and right strongly D, y-quasinonexpansive maps, together with some elementary
results about functors between them.

Section 4 applies the results of Section 3 to the case when (Y, |-|y-) is (in principle) a base normed
space, and (X, |-|y) is a suitable reflexive space constructed over (Y,|-|y-). Nearly all of results
in Section 4 are obtained in a setting when (Y, |-|y-) is a predual of an arbitrary W*-algebra or of a
semifinite JBW-algebra and (Y, |-|y-) is, respectively, noncommutative or nonassociative rearrangement
invariant space over this algebra. In particular, in Section 4.1 we consider ¥ = W, with (X, |-|y)
given by noncommutative and nonassociative (Ly ., |-|; /V) spaces for v €]0,1[, and ¢ given by the
corresponding Mazur maps ¢,. To show the flexibility of the framework (and its applicability for the
general statistical theory on base normed spaces), in Section 4.2 we provide an example beyond JBW-
algebraic setting, with (Y, |-|,-) given by preduals of generalised spin factors. Apart from this, Section
4.2 contains also an example of £ given by the Lozanovskii uniform homeomorphism ¢x, which goes far
beyond the realms of Mazur (resp., Kaczmarz) maps into L, (resp., Orlicz) spaces, and is applicable to
embedding of S(L1 (X, p), |-|;) into any uniformly convex and uniformly Fréchet differentiable function
space over a localisable measure space (X, ). We also provide an analogue of this result for preduals
of type I,, W*-algebras A/. While the results of Sections 4.1-4.2 rely on an assumption ¥ = ¥, in
Section 4.3 we provide few examples of models with ¥ # W,

There is essentially no new results in Section 2,7 yet we provide some new definitions, which package
formerly known properties into suitable objects (e.g., the notions of left/right pythagorean Dy and
LSQ/RSQ-adapted/compositional ¥). Contrary to that, all definitions and propositions/corollaries
in Sections 3 and 4 are new, either completely or in their (extended) range of generality (with the
exception of Propositions 3.7.(i), 3.11.(1)+(iii), 3.33.(i), 4.10.(i), 4.11.(i), 4.12.(iv), 4.15.()~(iv), and
equivalence of 1) and 2) in Proposition 4.13). The detailed discussion of relationships with the formerly
known results is provided in the remarks at the end of each subsection.

2 Background definitions and properties

In what follows, (X, |-|y) will denote a Banach space over K € {R,C} [37, §1|, B(X,|-|y) := {z €
X i z|xy <1} SX |Hly) ={z e X : |z|xy =1} EAXeRand Z C X, then \Z := Uzez{Az}.
(X, || x+) will denote a Banach space of continuous linear functions X — K, equipped with a norm
Yl x« = sup{|y(z)| : |z|x <1} Vy € X* [164, p. 62|, and will be called a Banach dual of (X, || y)
(with respect to a bilinear duality [z,y] v, v+ = y(z) € KVz € X Vy € X*). (X,||yx) is called
reflexive [157, pp. 219-220] iff Jx : X > z — [z, -]y, x« € X** is an isometric isomorphism.
By default, unless stated otherwise, all references to continuity and closure/openness of sets will be
understood in the sense of the norm topology of an underlying Banach space. In particular, given
(X, ]lx), for any Y C X, int(Y") (resp., cl(Y')) will denote a topological interior (resp., closure) of Y
with respect to the topology of |-|y. If (X,|-|y) and (Y, |-|y) are Banach spaces, then (X, |-|y) C
(Y, |-ly) will denote a continuous embedding X C Y. (In more general situation, the reference to a
particular norm will be provided in a subscript of cl and int.) Given Banach spaces (X, |-|y) and
(Y, |-ly), Z € X, W CY, afunction f:Z — W is said to be: uniformly continuous on Z iff

Ver >03ea >0V, y € Z |z —y|y <e = |f(z)— fw)ly < e (23)
t-Lipschitz—Hélder continuous® on Z for t €]0,c0[ (called an exponent of f) iff

3> 0 Vo, € Z |f(2) = fW)ly < cle —ylx; (24)

"With a possible exceptions of Corollaries 2.22 and 2.27, which are quite straightforward, but we have not found them
in the literature.

8This condition, both for t = 1 and ¢ < 1 has been introduced first by Lipschitz, respectively, in [233, Eqn. (2)] and
[233, Eqn. (27)], published 6 years before Holder’s [168, pp. 17-18].
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Lipschitz continuous on Z iff it satisfies (24) with ¢ = 1. If ¢ €]0,1] and f is ¢-Lipschitz—Holder
continuous on Z, then it is uniformly continuous on Z and r-Lipschitz-Hélder continuous on Z Vr €
10,t[. For any Banach spaces (X, |-|y) and (Y, ||y ), any uniform homeomorphism « : S(Y,|-|y-) —
S(X, || ) extends to a uniform homeomorphism [270, Prop. 2.9

BY.|y) 22 { e (Ff7) € BOE ) " € B\ () -

Conversely [49, p. 197, for any uniform homeomorphism « : B(Y, |-|y) = B(X, || y) there exists a
corresponding uniform homeomorphism
a(z)

S IHy) 3@ = ——<— € S(X, [-]x)- (26)
le(@)] x

If a:SY,||y) = SX,||x) (xesp., a : B(Y,|-|y) = B(X,|-|y)) is t-Lipschitz—Holder continuous,
then the map (25) (resp., (26)) is ¢-Lipschitz—Holder continuous [3, Lem. 3.1].

U : X —]— o00,00] will be called: proper iff efd(¥) := {z € X : ¥(x) # oo} # J; coercive iff
limy) o0 U(z) = oo; supercoercive iff limyz) oo % = oo; lower semicontinuous iff {x € X :
U(x) < A}is closed VA € Riff f(z) <liminf,,, f(y); convex iff

rZ£y = YAz + (1—-Ny) < AV(z) + (1 - \)U(y) Va,y € efd(V) VA €]0,1] (27)

(this is equivalent to the definition based on the same inequality, with quantifiers changed to Vz,y €
X VA € [0,1], with the conventions oo + co = o0, 000 = oo, and without  # y assumption);
strictly convez iff (27) holds under the same quantifiers and with < replaced by <. The set of all
proper, convex, lower semicontinuous functions ¥ : X — ] — 00, 00] will be denoted by I'(X, || y). If
U e I'(X, || x), then ¥ is continuous on int(efd(¥)) [302, Cor. 7C|. For any K C X, an indicator
0 :xekK
o g K
closed, then 1 € T'(X, |-| ) [260, p. 2897] [301, p. 23].

For convenience of notation, from now on, and until the end of Section 2 (as well as in entire Section
3), we will assume that K = R (all results and formulas of those Sections are applicable for the case
K = C under replacement of [-,-] v, x« by re [-,-] x, x«). Conventions inf @ = oo and 0 ¢ N will be
applied everywhere. For any set Z, 2% will denote the set of all subsets of Z.

function of K on X is given by v (z) := Ve € X. If K is nonempty, convex, and

2.1 Convex analytic preliminaries
2.1.1 Differentiability and Mandelbrojt—Fenchel duality

For any T : X — 2%, efd(T) := {x € X : T(z) # @}. The subdifferential of a proper ¥ : X —
| — 00, 00] is [301, Def. 2-GJ [263, Eqn. (1)] [258, Def. 4]

0V(z) ={ye X" : U(z) —V(z) > [z — 2,y yyx+ V2 € X} VzeX. (28)

Hence, 0¥ (z) = @ Vo € X \ efd(V) and efd(0¥) = {z € efd(¥) : 0¥(z) # @}. f ¥ : X —] — 00, 0]
is proper, then the right Gateaux derivative of ¥ at x € efd(¥) in the direction h € X reads [25,
p. 53|

efd(V) x X o (x,h) — @E\P(x, h) := lirfo(\lf(az +th) — ¥(x))/t €] — o0, 0], (29)

t—

and it exists Vh € X. If ¥ € I'(X,||x), then D¢W¥(x, -) is Lipschitz continuous and finite Vz €
int(efd(W)) (cf., e.g., [86, Cor. 1.1.6]). ¥ € I'(X,|-|y) is called Gateaux differentiable at x €
int(efd(W)) [151, p. 311] iff DV (z,y) = —D¢¥(z, —y) Yy € X. In such case DGV (z, -) is linear,
so it defines a bounded linear operator D¢V (z,y) =: [[y,@G\I/(:L’)]]XXx* Vy € X (332, Def. 3|. (If
n€Nand z € X =R", then DU (z) = grad¥(z) := (-2, ..., 5% )¥(x).) Asetof all U € T'(X, ||y)

Ozl "7 Ozm

that are Gateaux differentiable on int(efd(¥)) # @ will be denoted T'%(X, || ). If ¥ € D(X, || y) is
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Gateaux differentiable at = € int(efd(¥)), then 0¥ (z) = {DCV(2)} [262, p. 20]. Combined with (28),
this gives
U(z) — U(y) — [[z - y,@G\I/(y)]]XXx* >0 VY(z,y) € X x int(efd(¥)). (30)

U e I'(X, || x) will be called: Fréchet differentiable at x € int(efd(¥)) iff [148, p. 808| [146, p.
309] it is Gateaux differentiable at x and D% W (z) is uniformly continuous on S(X, |-|y); uniformly
Gateaux differentiable on @ # K C efd(¥) [316, p. 4] (=[317, p. 643]) [34, Def. 1] [367, p. 207] iff
there exists ¢ : [0, 00[ — [0, 00] with ¢(0) = 0 and lim;_,+¢ @ = 0 such that

Vee KVye X VA e€l]0,1] ¥(z)+ A1 -Ng(lylx) > 1 =X)¥(z—Ay) + Az + (1 - N)y); (31)

essentially Gateauz differentiable [40, Def. 5.2.(i), Thm. 5.6] iff int(efd(¥)) # @ and 0¥ (z) = {*}
Vz € efd(0V); essentially strictly convex [40, Def. 5.2.(ii)] iff U is strictly convex on every convex
subset of efd(0¥) and

Je >0 Vo €efd((00)) sup{]|(0¥) (z + )|y veX Jylx <1} < oo, (32)

where (00)™(y) := {z € X : y € 0¥(z)}; Euler—Legendre [40, Def. 5.2.(iii)] iff it is essentially
Gateaux differentiable and essentially strictly convex. If ¥ € I'(X, |-|y) and efd(¥) = X, then ¥
will be called: uniformly Fréchet differentiable on X (resp., on @ # K C X) [316, p. 4] (=[317,
p. 643]) [367, Thm. 3.5.6] iff ¥ is Fréchet differentiable at any z € X (resp., x € K), and DV is
uniformly continuous on X (resp., D W(z)(h) exists in uniform convergence V(z,h) € K x S(X, |-|x));
uniformly Fréchet differentiable on bounded subsets of X [367, p. 221] iff ¥ is uniformly Fréchet
differentiable on AB(X, |-| x) VA > 0. If ¥ € I'(X,, |-| ) and efd(¥) # {x}, then ¥ is called uniformly
conver at x € efd(V) (resp., on X; on bounded subsets of X) [26, p. 231] [365, Def. 2.1] (resp., [224,
p. 997] [339, Def. 1]; [367, p. 221])? iff

vt €]0,00[ inf {3U(z) + 12U (y) — U () : y € efd(P), |y — 2|y =t} >0 (33)

(resp., with = € efd(¥) replaced by: y,z € efd(V); y € efd(¥), x € AB(X, || y) (together with YA > 0
condition stated outside of inf{...})).

If ¥ € T'(X,|]y) is Fréchet differentiable at = € int(efd(¥)), then D9 ¥(z) will be denoted by
DFW(z). If ¥ € T'(X,||y) is essentially Gateaux differentiable, then ¥ € T'9(X, |-|y) [40, Thm.
5.6.(iv)—(v)]. If @ # C C X is open and convex, and ¥ : C' — R is convex, continuous, and Gateaux
differentiable on C, then (¥ is Fréchet differentiable on C iff ®4¥ is norm-to-norm continuous) [279,
Prop. 2.8].

For a proper ¥ : X — | — 00, 0],

X 2y \IlF(y) = ig)%{[xvy]]XxX* - \Il(x)} G] - 00700}7 (34)

which will be called the Mandelbrojt—Fenchel dual of ¥ [244, Eqn. (1)] [143, p. 75] [261, p. 8],°
satisfies UF € T(X*, || x.) [169, Thm. 5] [261, p. 9] (cf. also [72, Thm. 3.6]). If ¥ € I'(X, ||y ), then
(OF)F| ) (x) = ¥ [143, Thm. (p. 75)] [72, Thm. 3.13]. Furthermore, by (34), Fenchel inequality
holds [143, p. 75] [72, p. 13]:

lIl(x) + \I/F(y) - [[xay]]XxX* Z 0 V(w,y) € X X X*7 (35)
with = attained iff y € 9¥(x). If ¥ € TY(X, ||y) then DV : int(efd(¥)) — DU (int(efd(V))) is

a bijection, with (D9W)™ = J! o DCUF. If (X, || y) is reflexive, and ¥ € I'(X, ||y) is essentially
Gateaux differentiable, then DV (int(efd(¥))) = int(efd(¥¥)) and (W)™ = DETF,

For equivalence of different formulas used in these definitions, see [365, Rem. 2.1] and [87, Lem. 2.2].

19[244, Eqn. (1)] considered convex ¥ : R — R and X = R, while [143, p. 75| considered convex and lower
semicontinuous ¥ : K — [0, co] with lim, ., ¥(z) = oo Vy € cl(K)\int(K), as well as sup,¢ i {. . .} instead of supc x {. . .},
for a convex @ # K C R". [244, Thm. (p. 977)] contains an error, asserting that U" is a convex real valued function for
any convex function ¥ : R — R (cf. [143, Footn. 1]). [261, p. §] introduced (34) in a full form. In subsequent references
we list first Fenchel’s result for K C R™ (if available), and then its generalisation to (X, |- ).
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If (X, || ) is reflexive, then ¥ € T'(X, || y) is essentially Gateaux differentiable iff U¥ is essentially
strictly convex [40, Thm. 5.4, hence [40, Cor. 5.5| ¥ is Euler-Legendre iff UF is Euler-Legendre. Fur-
thermore, if (X, || y) is reflexive, and ¥ € T'(X, ||y ), then ¥ is Euler-Legendre iff ¥ € T'C (X, || ),
efd(DCV) = int(efd(V)), UF € TG(X*, || ), efd(DCUF) = int(efd(PF)) [294, §2.1]. ¥ € T'(X, ||x)
is uniformly Gateaux differentiable (resp., uniformly convex) on X iff UF is uniformly convex (resp.,
uniformly Gateaux differentiable) on X* [34, Cor. 2.8]. If (X, || y) is reflexive, ¥ € T'(X, || y), and
int(efd(¥)) # @ (resp., int(efd(¥¥)) # @), then ¥ is uniformly Fréchet differentiable on int(efd(¥))
(resp., uniformly convex on X) iff ¥¥ is uniformly convex on X* (resp., uniformly Fréchet differentiable
on int(efd(¥¥)) [365, Thm. 2.2].

2.1.2 Vainberg—Brégman functional

Dependently on a purpose, the Vainberg—Brégman functional on (X, || ) is defined either as [85,
Eqn. (2)]

U(z)—U(y) —DGU(y;z —y) :y € efd(V)

00 : otherwise

D&,“:XxXB(z,y)H{ € [0, 00}, (36)

for any ¥ € T'(X, || y), or as [333, Eqn. (8.5)]

U(x) — U(y) — [[x — y,DG\I/(y)ﬂXXx* : y € int(efd(P))

00 : otherwise

D\p:XxXB(x,y)'—){ € [0, 0], (37)

for any ¥ € (X, |-| ). (Nonnegativity of a codomain of DJ, and Dy follows from convexity of ¥.)
Definition (37) implies V¥, W1, ¥y € TS (X, ||y) Y2,y € int(efd(¥)) Vz,w € X VA1, A2 > 0
VA3, 4 €R

\Ifg(x) =3 r+ N = D/\1q11+>\2\1;2+\p3 = >\1D\pl + )\QD\I;Q [68, p- 16], (38)
Dy(2,9) + Du(y,z) = [z = 3, 2%0(@) = D“W(y)] v, . 192, p. 328, (39)
Dy(z,x) = Dy(z,y) + Du(y,z) — [z — y, D% (z) — ’DG\IJ(y)]]XXx* [101, Lem. 3.1],
(40)
Dy(z, %) + Dy(w,y) = Dy(z,y) + Dy(w,z) — [z — w, D4 (z) — @G\Il(y)]]XXx* [44, Rem. 3.5].
(41)

Equations (38)-(41) hold also for Dy (resp., [[-,@G\Il(y)ﬂXXx*) replaced by Dy, (resp., D¢U(y, -)).
Equation (39) implies the formula for the class of Vainberg—Brégman functionals that are symmetric
with respect to interchange of variables: Vz,y € int(efd(¥))

Comparison of (37) with (30), while applying the equality case of (35), gives
Dy(z,y) = ¥(z) + UF (@C0(y)) - [[x,”DG\IJ(y)]]XXx* V(z,y) € X x int(efd(¥)). (43)

When equipped with an additional condition, Dy (z,y) = oo V(z,y) € X x (X \ int(efd(¥))), (43) be-
comes a definition of Dy equivalent to (37). If ¥F is Gateaux differentiable on @ # DS (int(efd(¥))) C
int(efd(¥F)), then [40, Lem. 7.3] [240, Lem. 3.2

Dy(x,y) = Dgr (D% (y), 09U (z)) Va,y € int(efd(P)). (44)

Dy is said to be jointly convex (39, §1| iff (z,y) — Dy(z,y) is convex on int(efd(¥)) x int(efd(V)).
U eI'(X, || ) is called: totally convex at x € efd (W) iff [84, 2.2] [85, p. 62]

ve(z,t) == inf{D} (y,2) : y € efd(¥), |y — x|y =t} >0 Vt €]0,00], (45)
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or, equivalently [298, Prop. 2.2], iff

lim D$(yn,x) =0 = 1i_>m lyn — x| x =0 V{y, € efd(¥) : n € N}; (46)

n—00

totally convex on bounded subsets of X [86, Lem. 2.1.2] iff
inf{vy(z,t) : z €Y Nefd(¥)} >0 Vit €]0,00] ¥V bounded @ #Y C X. (47)

If efd(W) # {x}, then (47) is equivalent [87, Prop. 4.2| to sequential consistency of U, defined as
[92, Def. 2.1.(vi)] [85, Cor. 4.9.(iii)] V{y,, € efd(¥) : n € N} V bounded {z,, € efd(¥) : n € N}

lim Dy (yn,zn) =0 = le lym — zn| x = 0. (48)

n—o0

2.1.3 Monotone maps

If (X,||x) is a Banach space, then the graph of T : X — 2% is given by graph(T) := {(z,y) €
XxX*:yeT(X)}, while T (y):={z € X : y e T(x)}Vy € X*. If, furthermore, @ # K C efd(T),
then 7' is called: monotone on K iff [338, Thm. 7| [187, Eqn. (1)] [361, p. 0] [257, p. 341]

[z —y,v—w]y,x« >0Vz,y e KVveT(x)VweT(y); (49)
strictly monotone on K iff
r#y = [r—y,v—w]y,x« >0Vz,y € K YveT(x)VweT(y); (50)
strongly monotone on K iff [361, p. 12] IA >0
[z =y v —wlxuxe = Mz =yl Yo,y € K Vo € T(2) Yw € T(y); (51)

f-uniformly monotone on K iff [334, p. 203| there exists a strictly increasing f : RT — RT with
f(0) = 0 such that

[t —y,v —w]lxux+ > |2 —ylx f(lz —ylx) Yo,y € K Vv € T'(x) Yw € T(y); (52)

maximally monotone on K iff it is monotone on K and its graph is not contained in the graph of any
other map from X to 2X” that is monotone on K. For any Banach space (X, || ), if f € T'(X, || ),
then df is maximally monotone [304, Thm. 4| [306, Thm. A].

2.1.4 Remarks and examples

Remark 2.1. (i) Transformation d(z(x,y)—pr—qy) = —zdp—ydg, with p = % and ¢ = %xy’y),

was introduced by Euler [138, Probl. 11 (Part I)] and Legendre [221, p. 347]. Since Legendre’s
work appeared 17 years later then Euler’s, it seems to be quite adequate to include Euler in the
terminology. Under generalisation to R™ with n € N, the Fuler—Legendre transformation
(U, 0) — (TL n) of a strictly convex and differentiable function ¥ : R® — R is defined by

{ n = grad¥(0) V6 € R" (53)
(1) = [0, O)gnmn — C(0) = [0, (grad®) ™" ()] g gn — P((grad®)™)(n)) ¥y € R",
with its inverse given by .

-

If one restricts the domain of ¥ to an open set U C R"™ and allows ¥ to take infinite values, there
appears a question about the optimal conditions to be imposed on ¥ to guarantee uniqueness
of transformation in both directions, while preserving structural symmetry between ¥ and Wl
Following a remark in [143, p. 77|, Rockafellar [301, Thm. C-K] [303, Thm. 1] showed that if
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(if)

@ # U C R" is open and convex, while ¥ : U — | — 00, 00] is strictly convex, differentiable on U,
and satisfies
lim & (tz + (1—t)y) = —co Y(z,y) € U x (cl(U) \U), (55)

t—10

then grad¥ is a bijection on U, grad(¥F) = (grad¥) ' on grad¥(U), and ¥ satisfies on grad(U)
the same conditions as ¥ on U. The notion of (Euler—)Legendre function introduced in [40, Def.
5.2.(iii)] reduces to Rockafellar’s for X = R™ [40, Thm. 5.11.(iii)]. See [60, §3] for an extension of
essentially Gateaux differentiable and Euler—Legendre functions to nonreflexive Banach spaces,
as well as to other types of differentiability. On the other hand, strengthening to essential Fréchet
differentiability and, correspondingly, to Fréchet—(Euler—)Legendre functions was developed in
[62, 323, 343].

For y € int(efd(¥)), the function (37) was introduced by Vamnberg in [333, Eqn. (8.5)]!!, already
at the Banach space level of generality (and, as such, it was further discussed in a series of works
by Vainberg [335, Lem. 1| [336, Lem. 6.1] [337, Eqn (0.1)] and Kachurovskii [188, Thm. 3]).
For X = R, (37) appeared independently in [80, Eqn. (4.1)], in the context of the problem of
minimisation of

D (,y) = / () Dy ((x). y(x)). (56)
X

for z,y : X - R with X C R"™ and n € N, over a measure space (R", Uporel(R™), 1), considered
in [80, Thm. 4.2|. Independently, (37) appeared in |67, p. 1021| and [69, Eqn. (1.4)] (=[68,
Eqn. (2.1)]) for X = R"™ (with a convex set @ # C C R", and with ¥ : C' — R differentiable on
C and strictly convex), where it was used in the context of minimisation of Dy. Attribution of
the name ‘Brégman’ to Dy and D\JI,r goes back to [92, §2]. Correspondingly, it is fair to call D{I‘,
the Brunk—Ewing—Utz functional. It has been further investigated in [186, 185], and, under
generalisation to any countably finite measure space, in [111, 112, 113, 114, 115].

The function (37), and its related properties, can be further generalised to Dg, by replacing
DSV by a function D9¥, defined as a selection from the set O¥ ranging over efd(¥) (instead of
assuming that this set is globally a singleton). See [199, 200, 196, 83, 321] for further discussion
of this direction.

If keN, ¥, :R" -] — 00,00] is Euler-Legendre (resp., totally convex with ﬂle efd(¥;) # )
Vn, e NVie{l,...,k} and \; >0 Vi e {l,...,k}, then U : HleR"i — ] — 00, 0], defined by
U =%\, is Euler-Legendre [38, Cor. 5.13] (resp., totally convex |86, Prop. 1.2.7]). In
such case Dy = Zle AiDy, [91, Lem. 3.1]. Examples 2.2.(i)—(v) provide special cases of both
these theorems in action, while ¥ in Example 2.2.(vi) is both Euler—Legendre and totally convex,
but not decomposable into a weighted sum of ¥;.

Example 2.2. Let n € N.

(i)

Let ¥(z) = Z?:lﬂm\lh =: 7”1‘”%1 on X = efd(¥) = R", v €]0,1[. This implies ¥F(y) =

(1= )lyly/ -7 1305, p. 106] [133, Ex. 2|. W is BulerLegendre [38, Ex. 6, Cor. 5.13]. From

grad¥(z) =1 sgn(a;)|zi| /771 outside of the points where xzj =0 for some j € {1,...,n}, it
follows that Vo € R" Vy € R" \ {(y1,...,yn) € R : i € {1,...,n}y; =0}

Dy(a,y) = (il = il = (@i = yi)lal /" sen(u) ) - (57)
i=1
Dy is jointly convex only for v €]0, 3] [39, Ex. 4.2].
Let W(z) = > | (z;log(z;) — ;) if ® > 0 and ¥(z) = oo otherwise (with 0log0 = 0). This
implies int(efd(¥)) = (R")§ == {z € R* : 2; > 0Vi € {1,...,n}}, grad¥(x) = log(x), and
UF(y) = exp(y) (cf., e.g., [305, p. 105]). ¥ is Euler-Legendre [38, Ex. 6.5, Cor. 5.13]. Dy
is equal to [67, p. 1021] (=68, p. 15]) the finite dimensional denormalised Kullback—Leibler
information (215, Eqn. (2.4)],

Dy(z,y) = { Yo (v — i + xi(log(zi) — log(yi))) & (z,y) € (R™)T x (R 5

00 : otherwise.

"' Numbered as Eqn. (8.4) in the English translation of this book.
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Dy is jointly convex (cf., e.g., [39, p. 34]) and satisfies Dy (Az, A\y) = ADg(z,y) VA > 0. ¥
is totally convex on int(efd(¥)) [84, Prop. 2.5.(i)] [59, Prop. 9| and supercoercive. For any

nonempty, closed, convex K C int(efd(V)), Il?‘p is continuous [84, Lem. 3.1].'2 Convex closed

subsets C' C R™ with C N int(efd(¥)) are right Dy-Chebyshév [46, Ex. 2.16.(ii)]. For n = 2,
C = {(e*,e*) : XA €0,1]} is a nonconvex right Dy-Chebyshév set with convex (grad¥)(C) [47,
Ex. 7.5].
(iii) Let U(z) = — >, log(z;) on efd(¥) = (R")4 and ¥(z) = oo otherwise.!® This gives grad¥(z) =
—L and UF(y) = — 3% log(—vi) — n on efd(¥F) =] — 00,0[", and thus [93, Equ. (57)] Dy is

T

equal to the Pinsker information [280, Eqn. (4)] [281, Eqn. (10.5.4)]'4,

Dyl =3 (— log 2 2 1) V(z.y) € RV x (RS (59)

U is Euler-Legendre [38, Ex. 6.7, Cor. 5.13| [291, §8.1]. Dy is not jointly convex [39, Thm.
3.11.(1), Ex. 3.14]. It satisfies Dy (Ax, \y) = Dy(z,y) YA > 0.

(iv) Let ¥(x) = > 1" (wilog(xi) + (1 — ;) log(1 — x;)) on efd(¥) = [0,1]" and ¥(x) = oo otherwise
[193, Eqn. (60)]. ¥¥(y) = log(1 + exp(y)) on efd(¥F) = R”, and (grad¥(y)); = log(lf"yi). v
is Euler-Legendre [38, Ex. 6.6, Cor. 5.13| and totally convex [59, Prop. 11|. The resulting
Vainberg—Brégman functional reads [197, p. 142]

Dy(z,y) = zn: <m log @) + (1 — ;) log C — x)) , (60)

i=1 — Y

and it is jointly convex [39, Ex. 3.5]. Convex closed subsets C' C X with C N int(efd(¥)) are
right Dg-Chebyshév [46, Ex. 2.16.(iii)].

(v) Let
LS (@ —1) xe0,00 ae]0,1]
V() = Wa(z) =4 5530, (@ —1) : 2 €]0,00[", a €] —00,0[ [291, Eqn. (37)]. (61)
o0 : otherwise

U, is Euler-Legendre [291, §7.2|, and gives [291, Eqn. (38)]

F ST (et (L= a)y® + oyt ) s (zy) € (RY) T x (R, a€]0,1]
Dy, (z,y) =3 5 Y (—af + (1 —a)y? + ayf ™ 'z) = (z,y) € R x (R")F, a €] — 00,0
00 : otherwise.

(62)
—%(a — 1)¥, with @ > 0 (resp., —¥, with @ € R) was introduced in [163, Thm. 1]
(resp., [329, Eqn. (1)]). Denoting by Dy, the first case in (62), aT_lD\i;a with @ > 1 (resp.,
(1-a)Dyg_for a €] —00,0[U]0,1[; Dy _ for a €]0,1[) was introduced in [186, Eqn. (7)] (resp.,
[110, Thm. 4] and [111, Eqns. (1.7), (1.8), (1.12)]; [325, Ex. 3.1.3]). Since Dy is invariant
under addition of affine function to ¥, and scales linearly under positive linear scaling of W,
there are several closely related functions ¥, giving rise to the same Dy, (or D\i,a), up to a
positive scaling. For example, ¥ (z) = ﬁ S (¥ —axi+a—1) [228, Eqn. (2.1)] or ¥(z) =
LS (2@ —am;) [325, Ex. 3.1.3]. In particular, ¥(z) = ﬁ Son, x® is Euler-Legendre for
(z,a) € (R"x ]1, 00JU((R™)Tx]0, LU((R™) x -0, 0)U(—(R™)*x ]0, 1[)U(—(R")g x ] 00, 0])
349, Thm. 5].

12For the notions of left Dg-projection %2‘1’ and right Dg-Chebyshév set, see Definition 2.6.(i)—(ii).

13The works of Burg, often referenced in this context, consider only the continuous analogue of this ¥, given by
@ — — [ dtlog(x(t)), t1,t2 € R [81, Slide 6] [82, p. 1].

14 As opposed to Pinsker’s [280, Eqn. (4)] and [281, Eqn. (10.5.4)], which are featuring (59) explicitly, the paper by
Ttakura and Saito, published 8 years later and often referenced for introduction of this Dy, contains only a formula
2log(2m) + 5= [7_dt(log(y(t)) + =My (174, Equ. (7)].

y(t)
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2
(vi) Let ¥(z) = |2, = 1 (ZL |xi|1/7) " on efd(W) = R” for v € [L,1] [267, Bqn. (I11.2.2)] [48,

§8]. This gives (grad¥(y)); = Sign(yi)‘yi‘l/w_l”yH?/_Vl/A’ outside the points where y; = 0, and thus

[198, p. 1784] ¥(z,9) € R™ x (R™\ {(y1,...,ys) ER® : Fic {1,...,n} y; = 0})

Du(a,y) = Sl3,, = Syl — Iyl S0 (s — ya)sign(yo) il (63)

U is strictly convex [48, Lem. 8.1] (and this implies total convexity), as well as supercoercive
and Euler-Legendre [291, §11.3].

Example 2.3. Given a Hilbert space H with dimH € N, £ = (&3(H))®™ = {z € B(H)
Viry(z*z) < oo, x = x*} with dimK =: n, equipped with an inner product (z,y); = try(zy)
Vz,y € KC, becomes a real Hilbert space of n x n self-adjoint matrices. Let S, denote the group of all
n X n permutation matrices R” — R™ (representing the group of all bijections of the set {1,...,n}
into itself), called a symmetric group, and let U, denote the group of all n X n unitary matrices
K — K, called a unitary group. For x € K, let A(x) := (A1(x),..., A (x)) € R™ denote the vector of
eigenvalues of = ordered nonincreasingly. For any n x n matrix x (resp., for x € R™), let diag(x) denote
the diagonal matrix with elements given by a diagonal of = (resp., by elements of z). Given C' C R",
A(CO):={x € K : X(z) € C} is called a spectral set. If s(C') = C Vs € S, then A7/(C) is closed
(resp., convex) iff C' is closed (resp., convex) [226, Thm. 8.4]. A function f : R"™ —] — oo, oo] will be
called symmetric, and fo X : K — ] — oo, 00] will be called spectral, iff f(s(x)) = f(x) Vs € S,,. For
any symmetric f, fo X is convex iff f is convex [117, Thm. (p. 276)]. Furthermore, for any symmetric
£ [225, Thm. 2.3, Cors. 2.4, 3.2, 3.3] [226, Thms. 8.1, 5.4] [38, Fact 7.14, Prop. 7.19.(ii)]:

1) f¥ is symmetric;

2) fe(R")iff foXeT(K); (foX)(u*zu) = (foA)(z) Vo € H Yu € Uy;

3) (fol)F =fFoX
) efd(f o A) = X(efd(f));
)
)
)

W

5) int(efd(f o X)) = X7 (int(efd(f)));

6) if f € T'(R™), then f o A is differentiable at z iff f is differentiable at A(z);
7) f is essentially strictly convex (resp., essentially Gateaux differentiable; Euler—Legendre) iff fo A
is essentially strictly convex (resp., essentially Gateaux differentiable; Euler-Legendre);

8) if f € T'(R™) and f o A is differentiable at y € int(efd(f o X)) then grad(f o A)(y) =
v(diag(gradf(A(y))))v* Yv € U, such that v*yv = diag(A(y)), and grad(f o A)(u*yu) =
u*grad(f o A)(y)u Yu € U,

In consequence, Dy(x,y) = Dy (u*zu, u*yu) Vo € K Vy € int(efd(¥)) Vu € U, for all spectral Euler—
Legendre ¥ [38, Cor. 7.21].

The examples of symmetric Euler—Legendre functions are:

1) flx) = S ylaVT = fy||x”m on efd(f) = int(efd(f)) = R" for v €]0, 1], which gives [225,
p. 171] spectral Euler-Legendre (f o A)(§) = 7||)\(§)H1Lﬂ = Z?:lfy])\i(gﬂl/'y = fytrH(|§\1/'y) =
'yHﬁHiﬂ on efd(f o A) = ®2(H). Under a restriction of a domain of ¢ to (G2(H))§ = {r € K :

x is positive definite}, the corresponding Vammberg—Brégman functional reads

Dyoa(€,C) = trp (W€ — ¢ — (6 = OCTTH V(E, Q) € (Ba(H))*™ x (Ba(H))S;  (64)

(i) f(x) = >0 (wilog(x;) — ;) if @ > 0 and f(x) = oo otherwise, which gives [38, Ex. 7.29]
spectral Euler-Legendre (f o A)(§) = try(flogé — &) with efd(f o A) = (G2(H))T = {z €
K : z is positive semi-definite}, int(efd(f o A)) = (&2(H))g, and grad(f o X)(§) = log(£). The
corresponding Vainberg-Brégman functional reads [330, Def. 1]

Dyox(&,¢) = tr(§(log €& —log¢) — & = ¢) V(&,) € (G2(H))" x (S2(H))g; (65)

(iii) f(z) = — > log(z;) on efd(f) = (R")§ and f(z) = oo otherwise, which gives [225, pp.
170-171] spectral Euler-Legendre (f o A)(§) = —logdet(€§) V€ € efd(f o A) = (G2(H))¢ and
(f o A)(€) = oo otherwise (cf., e.g., [268, Thm. 3.2.(iv)]). It satisfies grad(f o A)(¢) = —¢~ L
Its Mandelbrojt-Fenchel dual is (f o A)¥(¢) = —n — logdet(—¢) on efd((f o A)F) = —(2(H))§
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[225, p. 171], and satisfies grad((f o A)¥)(¢) = —¢~1. The corresponding Vainberg-Brégman
functional reads [178, §5]

Dypea(€,€) = (6,C71) — logdet(6¢™Y) —n = h(C™V2e¢™1/2) —m, (66)
for h(§) := trc(§) — log det(€).

2.2 Vainberg-Brégman projections and quasinonexpansive maps
2.2.1 Projections

Definition 2.4. For any set Z, D : Z x Z — [0,00] will be called an information on Z (and —D
will be called a relative entropy on Z) iff D(xz,y) =0 <= x =y Vz,y € Z.

Proposition 2.5. Let ¥ € I'(X, || x). Then:
(i) if W € TS(X,||x), then Dy is an information on X iff U is strictly convex on int(efd(¥)) [86,
Prop. 1.1.9|;
(11) if (X, || x) is reflexive and V is essentially strictly convez, then D$ is an information on X [40,
Lem. 7.3.(vi)].

Definition 2.6. Let ¥ € T9(X, ||y), y € int(efd(¥)), and K C X with @ # K N int(efd(¥)).

(1) If the set arginf, cp {Dw(x,y)} is a singleton, then its element will be denoted g‘l’ (y), and
called a left Dy-projection of y onto K [67, p. 1019] [68, §1.11, §2.2] [69, p. 620]|, while K will
be called a left Dy-Chebyshév set [41, Def. 3.28].

(1) If K C int(efd(¥)) and the set arginf . {Dw(y,x)} is a singleton, then its element will be

denoted 32‘1’ (y), and called a right Dy-projection of y onto K [46, Def. 3.1, Lem. 3.5|, while
K will be called a right Dy-Chebyshév set [45, Def. 1.7].

(1i1) %2@ (resp., %2‘1’) will be called zone consistent (with respect to the class of sets K
which are under consideration) [92, Def. 3.1.(1)] iff %IQ‘I’(int(efd(\I’))) C int(efd(¥)) (resp.,
%2‘1’ (int(efd(V))) C int(efd(V))) for any K (in the given class).

Definition 2.7. Let ¥ € T9(X, || y), @ # K C X. Dy will be called:

a) left pythagorean on K iff K is left Dy -Chebyshév and, for any x € int(efd(¥)) and any w € K,
the following conditions are equivalent:

- D
(i) w =P ();
(i) w is the unique solution of the variational inequality

[z — v, 2°U(z) - DCW(2)] >0 Vy € K; (67)

X xX*

(11i) w is the unique solution of the variational inequality

b) right pythagorean on K iff K is right Dy-Chebyshév and, for any x € int(efd(¥)) and any
w € K, the following conditions are equivalent:

, D
(i) w=Pr"(x);
(i) w is the unique solution of the variational inequality

[z —2,2%¥(z) - DU (Y)]| 1, x. =0 Vy € K; (69)
(11i) w is the unique solution of the variational inequality

Proposition 2.8. Let (X, |-|y) be reflezive, ¥ € T9(X,|-|y) and @ # K C X be closed and convez.
Then:
(i) K is left Dg-Chebyshév, and Dy is left pythagorean on K if any of (generally, inequivalent)
conditions holds:
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a) U is totally conver on efd(¥), K C int(efd(V¥)) [86, Prop. 2.1.5]+[89, Prop. 4.1.(i)](=[89,
Cor. 4.4]); or
b) ¥ is strictly convex on efd(V) and supercoercive, K Nint(efd(¥)) # @ [14, Prop. 2.2|+[89,
Prop. 4.1.(ii)|; or
c) ¥ is Euler-Legendre, K N int(efd(¥)) # @ (38, Prop. 3.16/+[40, Thm. 7.8](=[41, Cor.
3.35]);
(ii) if any of the conditions (i).a)—(i).c) holds, and K is affine, then

(2, B2 (1)) + Do (F2% (1), 9) = Dy (1) ¥(x,y) € K x int(efd(T)); (71)

(111) if (condition (i).c) holds), or (condition (i).a) or condition (i).b) holds, and K C int(efd(¥))),
then [[2‘1’ is zone consistent [40, Cor. 7.9].

Corollary 2.9. If any of the conditions a)—c) in Proposition 2.8.(i) holds, then Dy is an information
on X.

Proof. The condition of strict convexity on efd(¥) in Proposition 2.8.(i).b) implies Proposition 2.5.(i).
The condition of 2.8.(i).c) implies Proposition 2.5.(ii), which in turn implies that Dy is an information
on X. Since total convexity on efd(¥) implies strict convexity on int(efd(¥)) [85, Prop. 3.1.(i)], the
condition of Proposition 2.8.(i).a) implies Proposition 2.5.(1). O

Proposition 2.10. [240, Lem. 3.2] If ¥ € TS(X,|-|y), YF is Gateauzr differentiable on & #
DG (int(efd(V))) C int(efd(TF)), K C int(efd(V)), and DU (K) is convex and closed, then

PO (1) = o DOUF o ot 0 DCW(x) Vi € int(efd(V)). (72)

Remark 2.11. (i) The notion of a Chebyshév set, deﬁned as a subset K of a Banach space

(X, || ) such that arginf . {|z —y|x} = {*} = {Px ) X ()} Yy € X, was introduced in [201,
§A2| (implicitly) and [134, p. 17] (explicitly). This name refers to Chebyshév’s paper [98], where
first nontrivial examples of such sets were considered. See Remarks 3.37.(iii), 3.37.(viii), and
3.37.(x) for further discussion.

(ii) In principle, Definitions 2.6 and 2.7 could be formulated more generally, by dropping an assump-
tion U € I'“(X, |-| y) and with Dy (resp., DSV; int(efd(V))) replaced either by D (resp., DG ¥;
efd(¥)) or by DY (resp., D?W; efd(V)). (This is the reason for putting Gateaux differentiability
into brackets in the third paragraph of Section 1.) While this is a tempting possibility in the con-
text of a general axiomatic scheme, as well as in the light of references listed in Remark 2.1.(iii),
there are currently no substantial geometric results available for such a degree of generality.

(iii) Both left and right Dy-projections are idempotent: if K is left (resp., right) Dg-Chebyshév, then
PR o PR = PR (vesp, WP o Ry = ).

(iv) The naming convention of Definition 2.4 follows Wiener’s dictum that the «amount of information
is the negative of the quantity usually defined as entropy» [347, p. 76|, and agrees with: Rényi’s
«measure of the amount of information» [297, p. 554|, Umegaki’s definition of «information» on
state spaces of type I W*-algebras as D1(p, ) = try(p(log p —log o)) [330, Def. 1] [331, Def. 1],
Csiszar’s definition of «relative information» Dj in [107, p. 86|, as well as with the sign, ordering,
and naming conventions used throughout [65]. It also avoids terminological confusions: when,
e.g., both —try(plog p) and Di(p, o) are called an ‘entropy’ (sign ambiguity); when both D(p, o)
and D(p,0) + D(o,p) are called a ‘divergence’ (both [215, p. 81| and [331, Def. 2] explicitly
distinguish between D; and «divergence», the latter defined as a symmetrisation Dj(p,0) +
Dy (o, p) [182, Eqn. (1)])!%; when any D as well as only a symmetric D satisfying triangle
inequality are called a ‘distance’. Mathematically, our definition of «information» coincides with
the definition of a «contrast functional» in [135, p. 794] and of a «distance» in [111, p. 161],
with the property (I) of D in [67, p. 1019] (=[68, p. 5|), and can be seen as turning (92, Lem.
2.1 into an axiom.

5Furthermore, the notion of «divergence» has already other meanings in differential calculus and in renormalisation.
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(v) First special case of left Dg-projection for nonsymmetric Dy, with Dy given by the Kullback—
Leibler information (i.e. Dg on R" x R™ with W(x;) = Y I (z;log(x;) — ;) and n € N),
was independently introduced in [310, p. 32| and [214, Ch. 3.2]. First special case of right
Dyg-projection for nonsymmetric Dy, with Dy given by the Kullback—Leibler information, was
introduced in |99, Eqn. (16)] (cf. also [100, Def. 22.2|). First instance of a right pythagorean
(in)equality (70), together with its interpretation as «nonsymmetrical analogue of the theorem
of Pythagoras», was established in [99, Thm. 1] for the Kullback-Leibler information. The
corresponding special case of (68) was first considered implicitly in [67, p. 1021| and explicitly
in [108, Thm. 2.2].

2.2.2 Quasinonexpansive maps

Definition 2.12. For any (X, |-|x), let @ # K C X, T : K — X. Then:
(i) © € K is called a fized point of T iff T(x) = x; a set of all fized points of T will be denoted
Fix(T);
(i) © € cl(K) is called an asymptotic fixed point of T iff there exists {x, € K : n € N} which
converges weakly to x, and limy,_o |2, — T(zp)|x = 0 [293, p. 313]. The set of all asymptotic
fized points of T will be denoted ﬁ(T)

Definition 2.13. Let @ # K C int(efd(¥)), ¥ € T9(X, || y), T : K — int(efd(¥)) will be called:
(i) completely nonexpansive with respect to ¥ and K iff (86, 2.1.7]

Dy(T(x),T(y)) < Dy(z,y) Va,y € K; (73)

(ii) left strongly quasinonexpansive with respect to ¥ and K, iff (94, Def. 3.2] [293, pp. 313-314]
@ # Fix(T) C efd(V),

Da(y, T(x)) < Du(y,x) ¥y, ) € Fix(T) x K, (74)
and, for anyy € ﬂ(T) and any bounded {z, € K : n € N},

lim (Dy(y,zn) — Dy (y, T(x,))) =0 = lim Dg(T(x,),z,) = 0; (75)

n—oo n—oo

(1ii) right strongly quasinonexpansive with respect to ¥ and K iff [245, Def. 2.3.(iv)] @ #
Fix(T') C int(efd(¥)),

Dy(T(x),y) < Du(z,y) ¥(z,y) € K x Fix(T), (76)
and, for anyy € @(T) and any bounded {x, € K : n € N},
li_>m (Dy(zpn,y) — Dy(T(xn),y)) =0 = li_)m Dy (xp, T(xy)) = 0; (77)

(iv) left firmly nonexpansive with respect to U and K iff |71, Def. 3] [41, Def. 3.4, Prop. 3.5.(iv)]
Ve,y € K

Dy(T(2),T(y)) + Du(T(y), T(x)) + Du(T'(x), ) + De(T(y),y) < Du(T(x),y) + D\P(T(y),(x);)
78
(v) right firmly nonexpansive with respect to ¥ and K iff [245, Def. 2.3.(i*)| Vz,y € K

Dy(T(2),T(y)) + De(T(y), T(x)) + Du(x,T(x)) + Du(y, T(x)) < Dy(z,T(y)) + Du(y, T (z)).

(79)

The set of all left (resp., right) strongly quasinonexpansive maps with respect to ¥ and K will be denoted

LSQ(¥, K) (resp., RSQ(¥, K)). The set of all left (resp., right) firmly nonexpansive maps with respect

to ¥ and K will be denoted LEN(¥, K) (resp., REN(V, K)). The set of all completely nonexpansive
maps with respect to ¥ and K will be denoted CN(¥, K).
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Definition 2.14. If (X, || y) is reflezive, then ¥ € T'S(X, || ) will be called LSQ-compositional
(resp., RSQ-compositional) on @ # K C int(efd(V)) iff, for any set {T; : K — K : T; €
LSQ(¥, K) (resp., RSQ(¥,K)), i € {1,...,m},m € N} such that (-, Fix(T)) # @:

(i) Fix(Tp 0 -0 T) € N, Fix(T3);

(ii) if Fix(Typ o -+ 0Ty) # @, then Ty, 0 --- o Ty € LSQ(T, K) (resp., RSQ(T, K)).
The set LSQ(V, K) (resp., RSQ(Y¥, K)) will be called composable iff ¥ is LSQ-(resp., RSQ-)composi-
tional on K. W will be called LS Q-compositional (resp., RSQ-compositional) iff it is LSQ-(resp.,

RSQ-)compositional on any K C int(efd(¥)).

Definition 2.15. If (X, || y) is reflezive, then ¥ € TG (X, || ) will be called:
(i) LSQ-preadapted on a set & # K C int(efd(V)) iff T € LFN(V,K) = (T € LSQ(V,K),
ﬁ(T) = Fix(T), and Fix(T) is conver and closed);
(i) RSQ-preadapted on a set @ # K C int(efd(¥)) iff T € RFN(V,K) = (T € RSQ(V, K),
ﬁ(T) = Fix(T), and %V (Fix(T)) is convex and closed).

Proposition 2.16. If (X, ||y) is reflevive and ¥ € TS(X, || ), then:
(i) U is LSQ-compositional if any of (generally, inequivalent) conditions holds:
a) ¥ : X — R is uniformly convex on X, DV is (bounded and uniformly continuous) on
bounded subsets of X [293, Lems. 1, 2|; or
b) ¥: X — R is (bounded, uniformly Fréchet differentiable, totally convex) on bounded subsets
of X, G (UF) is bounded on bounded subsets of efd(WF) = X* [246, Prop. 3.3];

(ii) ¥ is RSQ-compositional if any of (generally, inequivalent) conditions holds:

a) ¥: X — Ris (bounded, uniformly Fréchet differentiable, totally convex) on bounded subsets
of X [246, Prop. 4.4]; or

b) efd(V¥) = X*, U is Euler-Legendre, UF is totally convex on bounded subsets of X*, DCW is
(bounded and uniformly continuous) on bounded subsets of int(efd(¥)), DEUF is (bounded
and uniformly continuous) on bounded subsets of X* [246, Prop. 6.6];

(1ii)) ¥ : X — R is LSQ-preadapted on any convexr closed @ # K C X if ¥ is Fuler—Legendre
and (bounded and uniformly Fréchet differentiable) on bounded subsets of X [295, Lems. 15.5,
15.6]+[309, Rem. 2.1.3];

(iv) ¥ is RSQ-preadapted on any @ # K C X if U : X — R is Euler—Legendre, and any of (generally,
inequivalent) conditions holds:

a) U is uniformly continuous on bounded subsets of X, DSV is weakly sequentially continuous
[245, Props. 3.3, 3.6]; or
b) WY is (uniformly Fréchet differentiable and bounded) on bounded subsets of int(efd(W¥)) #
@, DGV is uniformly continuous on bounded subsets of X (245, Prop. 3.3, Rem. 3.7];
(v) if U is Euler-Legendre, @ # K C int(efd(¥)), T : K — int(efd(¥)), DU and DCUF are
(uniformly continuous and bounded) on bounded subsets of int(efd(¥)) and int(efd(¥F¥)) # &,
respectively, then T € RSQ(¥, K) iff %W o T 0 DG TF ¢ LSQ(¥, DCW(K)) [246, Fact 6.5].

Definition 2.17. Let (X, || y) be a Banach space, ¥ € TS (X, || x), A €]0, oc[.
(i) If T : X — 2% and graph(T) # @, then the left (resp., right) Dy-resolvent of AT is defined
as [133, Lem. 1] [41, Def. 3.7] (resp., [245, Def. 5.3])

16

fesyy := (DCU + AT) 0 ©CT : X — 2% (80)
(resp., Te8Yp == (idx~ + AT 0 DCWF) 1. x* 5 2X7), (81)

(i) If f+ X —] — 00,00] is proper, then the left (resp., right) Dy-proximal map of index \ is
defined as [95, Eqn. (13)] [41, Def. 3.16] (resp., [43, Def. 3.7] [218, Def. 3.3|)

§roxf? X >y~ arginf  {f(z) + ADy(z,9)} € 2% (82)
' zeefd(f)Nefd(W)
(resp., proz)[j‘; X2y~ arg inf {f(z) + ADy(y,z)} € 2%), (83)

z€efd(f)Nint(efd(T))

“For any Banach space (X, | y), f: X — X* is called weakly sequentially continuous iff a weak convergence of
{zn € X : n € N} to z € X implies a weak convergence of {f(zn) : n € N} to f(z).
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whenever the argument of inf{...} is finite.

Proposition 2.18. Let (X, || y) be reflezive and let ¥ € TC(X,|-|y) be Euler-Legendre. Then:
(i) if T: X — 2%, then
redy = D9 o fesp 0 DO TF (84)

with efd(red%) = DC U (efd(fesy)) and ran(red¥) = DG (ran(tesy)) [245, Lem. 5.4[;
(ii) if f: X —]— 00,00] is proper and satisfies efd(f) Nint(efd(V)) # @, then [218, Lem. 3.4]+[41,
Prop. 3.23.(v).(b)]*"

proxy ¥ (z) = DEUT o frox, ¥ ¢ e 0 DO () Var € int(efd(¥)). (85)

Proposition 2.19. Let (X, ||y) be a Banach space, let ¥ € T9(X, || ), and let @ # K C X be such
that K Nefd(¥) # @ and (K Nefd(¥) C int(efd(V)) or K Nefd(0¥) C int(efd(V)) or K C int(efd(¥))
or efd(W) is open or (int(efd(¥)) N K # & and V¥ is essentially Gateauz differentiable)).
(i) If X €]0,00, f € T(X,|-|x), and K = efd(f), then proxy % = fes¥y, [41, Props. 3.22.(ii).(a),
3.23).
(ii) If K is closed and conver, and K N int(efd(¥)) # @, then %2‘1’ = roxff’K = f?sg’bK with
Fix(fes), ) = K Nint(efd(¥)) [41, Props. 3.32, 3.33].

Proposition 2.20. Let (X,|-|y) be a Banach space, let ¥ € T9(X, || y), and let T : X — 2% be
monotone. Then:
(i) tes¥, € LEN(W, X) with efd(fesly) C int(efd(¥)) D ran(fesyy) and Fix(tes¥,) = int(efd(¥)) N
T7'(0) [41, Prop. 3.8.(i)—(iii),(iv).(a)]*®;
(i4) if ran(DEW) C ran(DEW+T) and ¥ is strictly convex on int(efd(V)), then [41, Prop. 3.8.(iv).(b)-
(c)] fesy. is single-valued on efd(fesy.), Fix(fesy) is conver, and [133, Lem. 1] [41, Prop. 3.3.(i)]

Dy(z,y) > Dy(x,fes7(y)) + De(Fest(y),y) V(z,y) € Fix(fesy) x int(efd(¥));  (86)

(1it) if (X,||y) is reflexive, X €]0,00[, T is mazimally monotone with efd(T") C int(efd(¥)), ¥ is
Euler-Legendre, and efd(V¥) = X*, then f_e_s;I’T is single-valued on efd(¥esyy), and (86) holds for
fest. replaced by fesyy [41, Prop. 3.13.(iv).(b)];

(w) if (X,|-|x) is reflexive, A €]0,00[, f € I'(X,|-|x), ¥ is Euler-Legendre, and int(efd(¥)) N
efd(f) # @, then ﬁrox)[:‘}' is single-valued on efd(ﬁroxfj) = int(efd(¥)) and satisfies (86) with
tesy replaced by ﬁroxﬁ?, and with Fix(ﬁroxi‘;) = int(efd(¥)) Narginf, . {f(z)} [41, Props.
3.21.(vi), 3.22.(ii).(b), 3.23.(v).(b), Cor. 3.25;

(v) if (X,||y) is reflexive, X €]0,00[, int(efd(¥)) N efd(T) # @, ¥ is strictly convex on
int(efd(¥)) and Euler-Legendre, then efd(@}\l’T) C int(efd(¥F)) D ran(ted}y), Fix(r‘e%t\I’T) =
DEY (int(efd(¥)) NT(0)), @fT is single-valued on efd(l?ng), and r@fT € RFEN(UF, X*) [245,
Lem. 5.4, Prop. 5.5]'%.

Definition 2.21. For reflerive (X, |- x), ¥ € T9(X, || x), and @ # K C int(efd(¥)), ¥ will be called:
(i) LSQ-adapted on K iff, for any convex and closed & # C C K, g‘l’ : K — int(efd(W)) belongs
to LSQ(W, K), with Fix(P2¥) = Fix(PL¥) = C;
(ii) RSQ-adapted on K iff, for any @ # C C K such that @G\IJ(C’) s convex and closed, ig‘l’ :
K — int(efd(D)) belongs to RSQ(V, K), with Fix(F2¥) = Fix(PL¥) = C.

Corollary 2.22. Let (X, |-|y) be reflezive, ¥ € T¢(X, || y), @ # K C int(efd(¥)).
(i) If ¥ is LSQ-preadapted on K, then:
a) ¥ is LSQ-adapted on K;
b) if K =X, then @% € LSQ(V, X) for any monotone T : X — 25",

'"While [218, Lem. 3.4] is stated and proved for X = R", its extension from R" to reflexive (X, |-| ) is straightforward,
with exactly the same proof, due to [41, Prop. 3.23.(v).(b)].

8This reference assumes A = 1, however the proofs of the corresponding properties do not change under generalisation
to A €]0, 0], since if T : X — 2% is monotone, then AT is monotone, efd(T) = efd(AT), and (AT)'(0) = T7'(0).
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(ii) If ¥ is RSQ-preadapted on K, then:
a) if DGV is bounded on bounded subsets of int(efd(V)), and DETUF is bounded on bounded
subsets of int(efd(UF)), then ¥ is RSQ-adapted;
b) if K=X,T:X — 2% is monotone, int(efd(¥)) Nefd(T) # @, ¥ is strictly convex on
int(efd(®)) and Euler—Legendre, then tes%: € RSQ(TF, X*).

Proof. (i) Follows from Propositions 2.20.(i) and 2.19.(ii).
(ii) Follows from (i), Proposition 2.10, [246, Fact 6.2]'?, and Proposition 2.20.(v).
O

Definition 2.23. If (X, |-|y) is reflezive, and ¥ € T9(X,|-|y) together with @ # C C K C

int(efd(¥)) satisfy the conditions of Corollary 2.22.(i).a) (resp., 2.22.(ii).a)), then gg‘l’ (resp., 33‘1’)
will be said to be adapted.

Remark 2.24. (i) In general, without some additional conditions, neither 2‘1’ nor Bg‘l’ will be-

long to CN(¥, K). Consider ¥ given in Example 2.2.(ii). If (R")] = {z € (R")" : |z|, = 1},

and xr,y € (Rn)(-)ﬁ- such that H$||1 = Hy”1 < 1; then D‘IJ(§(DR\I;)I+(‘$)7 (DR\I;)T(Z/)) > D\y(x,y),

which implies that %g{‘i)ﬂ; is not an element of CN(W) [86, 2.1.7]. Furthermore, there is no
1

¥ : R" —] — 00,00] such that Dg(z,y) = Dy (y,z) Vz,y € int(efd(¥)) [46, Prop. 3.3], hence
left and right Dg-projections not only do not coincide, but also have to be considered as a priori
independent notions.

(ii) The difference in the strength of assumptions imposed to obtained analogous behaviour of left
and right Dyg-projections/proximal maps/resolvents is caused by the limitation of the current
knowledge about right Dg-projections: in practice, all of known results in the reflexive Banach
space setting are obtained by the Euler—-Legendre transformation of the corresponding proper-
ties of their left Dy variants. The most blatant manifestation of this approach is the use of
Euler—Legendre transformation of ﬁ%’T for the purpose of a definition of 1@:\1}. However, it is
important to remember, that the above approach does not cover the whole possible range of the
right Vainberg-Brégman theory. (Cf. also Remarks 3.12.(v), 3.51.(i), and 3.51.(v) for a further
discussion of this theme.)

(ili) For (X,|-|y) given by the Hilbert space, and ¥ = %H”g(, fest = rest = (T + idx)™" was

d
introduced in [361, Lem. 2| and [257, Cor. (p. 344)], ﬁrox?}’ = pro%?}’ = p1rox1"J;"H Dy
arg inf,cqpq( ) { fl@)+ 3z — y||§(} was introduced in [260, p. 2897] [264, p. 1069, while the

d.
corresponding prox)\" f""" = ﬁroxf‘; = prozf? for A €]0,00[ appeared in [30, p. 539|. For a
Banach space (X, |-|y) and ¥ = %||||§(7 ﬁsz was introduced first in [194, Eqn. (1)].

iv) For (X, |- given by the Hilbert space (H, (-,-),,), and ¥ = |- 2 the definition of LFN U, K
X H 21"l
operators takes the form [76, Def. 6]

(@ =y, T(@) = T(y)y = () = T(Y)l3 Yoy € K. (87)

2.3 Quasigauge functions and Banach space geometry
2.3.1 Banach space geometry

A Banach space (X, || ) is said to satisfy the Radon—Riesz—Shmul’yan property?® [286, p. 1363]
[300, p. 182] [318, Thm. 5] iff, for any {x,, € X : n € N}, convergence of z,, to x € X in weak topology

9This result disproves an earlier claim in [245, Prop. 2.7.(iv)], which stated the same consequence, but without
assuming that ¥ (resp., D¢ ¥F) is bounded on bounded subsets of int(efd(¥)) (resp., int(efd(¥F))), and without an
explicit proof.

20In the literature it is usually called either the Radon—Riesz property [223, §3], or an H-property [120, Def. 2
(Ch. 7)], or the Kadec—Klee property [128, p. 119]. It was first considered by Radon [286, p. 1363] and Riesz [300, p.
182] for (L1~ (X, p), |1, /), v €]1,00[. For the general Banach spaces it was first introduced and studied by Shmul’yan
in [318, Thm. 5]. Kadec [191, p. 13] explicitly refers to this work of Shmul’yan, while Klee [202, pp. 25-27] explicitly
refers to this paper of Kadec.
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together with lim, o |zn|y = |z|y implies limy, o |z, — 2|y = 0. A Banach space (X, |-|y) is
called: strictly convex [147, p. 39| [104, p. 404] [213, p. 178] iff

Vo,y € X\{0} |z +ylx =lzlx +lvlx = 3IA>0y=Az, (83)
which is equivalent [308, Thm. 1.(1)] with
Yo,y € S(X, | x) v #y = slo+yly <L (89)

Gateaux differentiable [252, p. 78] iff || is Gateaux differentiable at every z € X \ {0} (or,
equivalently, at every z € S(X, || y)), which is equivalent [252, 253] to each point of S(X, |-| x) having
a unique supporting hyperplane®!, i.e.

Vo € S(X, [-lx) y(z) € X* (y(@)) () = [y(@)|x Izl x = || x;
uniformly conver 104, Def. 1] iff
Ver >0 32 >0 Yo,y € S(X, |ly) o —ylx 2 e = gle+yly <1-e; (90)

uniformly Fréchet differentiable iff any of the equivalent properties hold:

(i) [266, Thm. 77.1] Ve; > 03ex > 0Va,y € X (Jzlx = 1, [ylx < €) = |z +ylx + |z —ylx <

2+ 1yl

(ii) [119, p. 375] Ve1 > 0 Jea > 0 Va,y € S(X, |-|x) |z —ylx < e1 = 1— F|z+y|x < ez —ylx,

(iii) [319, p. 645] the limit D9 |h|y (z) exists in uniform convergence as x and h vary over S(X, || y);
Fréchet differentiable [253, p. 129| iff ||y is Fréchet differentiable at every z € X \ {0} (or,
equivalently, at every = € S(X,||y)), i-e. for any fixed z € X \ {0} (or z € S(X, || %)) DC|h] ()
exist in uniform convergence Vh € S(X, || y); locally uniformly convex [235, Def. 0.2] iff

Ver >0 Vo € S(X,|-x) e2>0 Yy e S(X,[y) lz—ylxy 2 a1 = glotyly <1-es  (91)
r-uniformly convez for r € [2,00[ [29, Def. 2)] [36, p. 468| iff
3> 0Vr,y € Xz +yly + o -yl = 2020 + A ylly), (92)
or, equivalently, iff 296, Def. 4.1, Thm. 4.3]
IN>0Vzy e X z+yly + Az —yly <277 (lzlx + yly), (93)

or, equivalently [350, Thm. 2.5| [36, Prop. 7|, iff 3¢ > 0 §(X, || y;€) > c€”, where [104, Def. 1] [119,
p. 375]

10,2] 3 €= 6(X, || xi€) :=inf {1 = 5lz +ylx = 2,y € S(X, | x), |z —ylx > €} €10,1);  (94)
r-uniformly Fréchet differentiable for r €]1,2] [29, Def. 1)] [36, p. 468] iff
N>0Vr,ye X Jo+ylx + |z —ylx < 202l + Ml), (95)
or, equivalently [296, Thm. 2.2], iff [328, Def. 1]
IN>0Vr,y € X [ +yly + M -yl =27 (el + lyly), (96)

or, equivalently [167, Thm. 2.4] |28, Lem. 1] [36, Prop. 7|, iff 3¢ > 0 p(X, || x;€) < ce”, where [230,
p. 241]

10,00[> € = p(X, [ xs€) =sup {5(Jlz +ylx +z —plx) 1 : 2y € X, o] =1, Jylx = ¢}
=sup {5(lz +eylx + v —eylx) =1 : 2,y € S(X, [ [x)} eRT. (97)

'More specifically, if € X \ {0}, then D |z, exists iff |z],S(X, |- has a unique supporting hyperplane at z.
X X X
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2.3.2 Quasigauge ¢

A strictly increasing and continuous function ¢ : RT — R* such that »(0) = 0 and lim;_,o ¢(t) = 00
[51, p. 407]*2 will be called a gauge [74, p. 348]. A nondecreasing function ¢ : RT — [0, co] satisfying
@ # 0 and Ju € RT lim;_,+, p(t) < oo 365, p. 367] will be called a quasigauge. For any Banach
space (X, |-|y) and any quasigauge ¢, a duality map on (X, || ) is defined by [27, Def. (p. 200)]
[365, Eqn. (A.4)]

Jo: X 2w {ye X7 s [,y x- = l2lxlylx-,  limo o@) <|yly. < lim o)} € X7, (98)

t=" ]y t=tz|
with the convention lim;_,—q ¢(t) = ¢(0). For any gauge ¢, (98) turns into [51, p. 407]

Jo: X 3w {ye X7t [vylxuxe = l2lxlylxes Wlx- = e(lzlx)} € X7, (99)

which is said to be normalised, and denoted as j, iff ¢(t) = ¢ [201, p. 35| [334, p. 211]. For any
quasigauge ¢, let j% denote a duality map on (X*, |-|x.). Then, for any gauge [123, Prop. 3]

Jo = (G5) "o Jx and (jp) ' = (Jx) 0. (100)
If 1 and @9 are gauges, then [103, Prop. 1.3.1.g)]

pa([]x)der (2) = @1(l]x ). (x) V2 € X. (101)
For any quasigauge ¢,

Xoo—Vy(x):= /le"X dt p(t) € RT (102)

satisfies W, € I'(X, |-| ) [366, p. 281], ¥,(0) = 0 [365, p. 368|, as well as [27, p. 200] [365, Prop.
A3.(1)]
Jo(x) = 0V, (x) Vo € X \ {0} with j,(0) =0. (103)
If ¢ is a gauge, then W, is continuous (cf., e.g., [367, Thm. 3.7.2.(1)]).
As an example, for o €]0,00[ and B €]0,1[, pa () := 2t/ is a gauge. Application of (102)
and (101) gives
1 , 1/8-2 .
Vi s(@) = 211X, o s(o) = 3l X" %5(0) Vo € X. (104)

T

For any nondecreasing function f : RT — [0, 00], its Tight (resp., left) inverse function reads

RY St fY(t) :=sup{s >0 : f(s) <t} =inf{s >0 : f(s) >t} € [0, <] (105)
(resp., RT 2t f(t) :=sup{s >0 : f(s) <t} =inf{s >0 : f(s) >t} € [0, 00)]). (106)

In general, f* < fV (cf., e.g., [204, Eqn. (8)]). If f : Rt — [0, 00] is strictly increasing and continuous
on Rt then f¥Y = f7' = f", where f' is an inverse function in the standard sense, i.e. fo f' =
idg+ = f'o f (cf, e.g., [204, p. 5] and [137, Rem. 1.(1)]).

For any f: R — [0, 00], its Young—Birnbaum—Orlicz dual [357, p. 226] [53, Eqn. (5)] reads

R 3y~ f¥(y) :=sup{aly| — f(z) : © >0} €[0,00]. (107)

If f:RT — [0,00] is proper, convex on efd(f), satisfies f(0) = 0, f # 0, and is left continuous at
sup(efd(f)) (i.e. limy_,—gup(etas)) f(t) = sup(efd(f))), then it is called a Young function [359, §2|. If
f is a Young function, then f¥Y = fY (cf.,, e.g., [161, Prop. 2.4.5]).

22Under a weakening of ‘strictly increasing’ to ‘nondecreasing’, the corresponding function, called a @-function, is
used in the Orlicz space theory since [249, p. 349]. In the context of duality map, this weakening, joined with dropping
the condition lim;—, o ¢(t) = 0o, has been considered in [27, Def. (p. 200)]. All of these functions are special cases of a
quasigauge.

26



2.3.3 Characterisation of Banach space geometry by ¥,

Remark 2.25. In order to stress that the properties of W, depend on a choice of the specific
norm |[-|x on X, while avoiding the notation “¥, ;" (in order to avoid dealing with such terms

Doy w
T va,ﬁ,\\'\lr,p,,)

as , we will sometimes use the notation ¥y, : (X, |-|y) — R*.

Proposition 2.26. Let (X, |-|y) be a Banach space, ¢ a gauge, and U, : (X, |-|x) = RT. Then:
(1) (X,|-|x) ts a Hilbert space iff j is linear |154, Prop. 2|;
(1t) (X, || x) ts strictly convex:
a) iff W, is strictly convex [365, Prop. A.3.(iii)|;
b) iff jo is strictly monotone on X [123, Thm. 1| (¢f. [277, Thm. 1] for ¢(t) =1t);
(iii) (X, || ) is Gateauz differentiable:
a) iff U, is Gateaux differentiable on X [365, Prop. A.3.(ii)];
b) iff j, is single-valued on X [365, Prop. A.3.(ii)] (¢f. [252, Rems. 5, 8] [253, p. 130] [116,
Cor. 4.8| for ¢(t) =t);
() (X, || ) is Fréchet differentiable:
a) iff U, is Fréchet differentiable on X [367, Prop. 3.7.4.(ii)];
b) iff j, is single-valued and norm-to-norm continuous on X [103, Thm. I1.2.9] (cf. [116, Cor.
4.12| for p(t) =t);
(v) (X, || x) is uniformly Fréchet differentiable:
a) iff W, is uniformly Fréchet differentiable on bounded subsets of X [367, Thm. 3.7.4.(iii)|;
b) iff j, is single-valued and uniformly continuous on bounded subsets of X [103, Thm. I1.2.10]
(cf. [116, Cor. 4.12] for p(t) =t);
(vi) (X, || x) is uniformly convex:
a) iff U, is uniformly convex on bounded subsets of X [365, Thm. 4.1.(ii)];
b) iff \Ilg is uniformly Fréchet differentiable on bounded subsets of X* |367, Thm. 3.7.9.(iv)|;
¢) iff (jo)' is single-valued and uniformly continuous on bounded subsets of X* 365, Cor. 4.2|;
d) iff j is f-uniformly monotone on B(X, |-|y) [285, Thm. 1| [353, Rem. 2| 351, Cor. 3.(iii)];
e) iff [90, Thm. 3] Vt €]0, 2]

inf{[ — g0~ wlyyxe 5 2y € S, v € G@), w e ), Jo—gly > 6} > 0
(108)
(vii) (X, || x) is r-uniformly convex for r € [2,00]:
a) iff Oy, with @(t) = rt"=1 is uniformly conver on X [351, Thm. 1|;
b) iff jp with @(t) ="~ is f-uniformly monotone on X with f(t) = @(t) [351, Cor. 1.(ii)].
In particular, (X, || x) is 2-uniformly convex:
c) iff j is strongly monotone on X (353, p. 203] (cf. [283, Prop. 2.11]);
d) iff j* is single-valued and Lipschitz continuous on X* [363, Thm. (p. 62)|;
(viii) (X, || x) is r-uniformly Fréchet differentiable for r €]1,2]:
a) iff Uy, with p(t) = rt"=1 is uniformly Fréchet differentiable on X [316, Thm. 10] (= [317,
Thm. 6.4|) [57, Thm. 2.2|;
b) iff i, with o(t) = rt""' is single-valued and (r — 1)-Lipschitz—Hélder continuous on X [57,
Thm. 2.2|;
c) iff jg with $(t) = t"~1 is single-valued and (r — 1)-Lipschitz—Hélder continuous on X [167,
Thm. 2.4] [353, Rem. 5|;
d) iff, for p(t) =t"~1, [351, Cor. 1]

Je>0Va,y € X Vo € jz(z) Yw € jz(y) [r—vy,v —w]x,x« < clz—yl- (109)

In particular, (X, |-|y) is 2-uniformly Fréchet differentiable:
e) iff j is single-valued and Lipschitz continuous on X [139, Lem. 2.4.(iv)| [363, Thm. (p.
02)];
f) iff 5 is strongly monotone on X [363, Thm. (p. 62)];
(ix) (X, || x) ts locally uniformly convex iff ¥, is uniformly convex at each x € X 365, Thm. 4.1.(i)]

(cf. |26, p. 232] for ¢(t) =t);
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(x) (X, |-|x) is reflexive iff j, is surjective (i.e. X* = |J,cx ran(jy(x))) [121, Thm. IIL7] (cf. also
[365, Prop. A.3.(iv)]);
(zi) if (X, |-|x) is reflexive, then (X, |-|y) is strictly convex and has the Radon-Riesz-Shmul’yan
property) iff Wy, is totally convex) [298, Thm. 3.1, Thm. 3.3|;
(zii) if (X, || x) is locally uniformly convex, then W, is totally convexr on X [298, Thm. 3.1, Cor. 3.4|;
(ziii) (X, |-|x) has the Radon—Riesz—Shmul’yan property iff at least one single-valued section T of j

satisfies
limy oo [T ()l e = 1T@)]xe = oo [, 7)o = [, 7@ e

for every {x, € X : n € N} with x, convergent to x in the weak topology |277, Prop. 1].

Corollary 2.27. (X, || ) is r-uniformly convex for r € [2,00[ iff jo, is f-uniformly monotone with
f(t) = @x(t), where px(t) = Xt"~! and X €]0, o0].

Proof. Follows from Proposition 2.26.(vii), together with (101) giving j,, = Ajz, and cancellation of
1 on both sides of (52). O

Corollary 2.28. For any gauge ¢ and any Banach space (X, || y):
(1) jo is a bijection iff (X, || ) is reflexive, strictly convex, and Gateauzr differentiable [103, Cor.
b) (p. 105)];
(11) jo is a norm-to-norm homeomorphism iff (X,|-|y) reflexive, strictly convex, Fréchet differen-
tiable, and has the Radon—Riesz—Shmul’yan property [205, Lem. 2.(i)] (and, for o(t) = t, [152,
Cor. (p. 189)]).

Proof. By Propositions 2.26.(iii) and 2.26.(x), (X, |-|y) is Gateaux differentiable and reflexive iff j,, is
single-valued and surjective. By reflexivity of (X, |-|y), strict convexity of (X, || y) is equivalent with
Gateaux differentiability of (X™, || y+), which is equivalent with single-valuedness and surjectivity of
j;,‘. By reflexivity of (X,|-|y) and (100), j, = (j;,‘)_‘. Hence, j, is a bijection. Norm-to-norm
homeomorphy of j, follows the same way, by Proposition 2.26.(iv), and the fact [21, Thm. 3.9] that, if
(X, |-l ) is reflexive, then (X*, || x.) is Fréchet differentiable iff ((X,|-|y) is strictly convex and has

the Radon—Riesz—Shmul’yan property). O

Proposition 2.29. For any quasigauge ¢ and any Banach space (X, || x):
(1) (X,]]x) is Gateauz differentiable and ¢ is continuous on [0, sup(efd(y))[) iff j, is single-valued
on int(efd(V,)) = int(sup(efd(¢))B(X, || x)) [365, Prop. A.3.(ii)|;
(1) (X,]|yx) is strictly convex and ¢ is strictly increasing on efd(y)) iff W, is strictly convex on
efd(W,,) [365, Prop. A.3.(iii)] [366, Thm. 2.1.(viii)];
(iii) ((X,||x) is locally uniformly convex and ¢ is strictly increasing on efd(yp)) iff U, is uniformly
convez at any x € int(efd(V,)) = int(sup(efd(¢))B(X, || x)) [365, Thm. 4.1.(i)|;
() (X, || x) is uniformly convex and ¢ is strictly increasing on efd(yp)) iff U, is uniformly convex
on AS(X, || ) VA €]0,sup(efd(y))] [365, Thm. 4.1.(ii)];
(v) (X,|]x) is reflexive and limy_, (t) = 00) iff j, is surjective [365, Prop. A.3.(iv)].

3 Vainberg—Brégman relative entropies, quasinonexpansive maps, and their extensions

3.1 Dy with ¥ € I'9(X, |-|y) and reflexive (X, || )

Proposition 3.1. Let (X, ||y) be reflezive, ¥ € TC(X,||x), YF Gateauz differentiable on @ #
DEU(int(efd(V))) C int(efd(VF)), @ # K C int(efd(V)), DEW(K) closed and conver. If any of the
following (generally, inequivalent) conditions holds:

a) W¥ is totally convexr on efd(¥F); or

b) UF is strictly conver on efd(UF) and supercoercive; or

¢) WY is Euler-Legendre,
then:
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(i) K is right Dy-Chebyshév, and Dy is right pythagorean on K;
(i1) g‘l’ is zone consistent;
(1) Dyr is an information on X* (and, in the case c), Dy is an information on X );

(iv) if DGV (K) is affine, then

Dy(w,y) = Dy(x, T2 (2)) + Dy (F2¥(2),y) V(z,y) € int(efd(¥)) x K. (111)

Proof. (i) Proposition 2.8.(i), by application of (72), implies that K is right Dg-Chebyshév. As for
Dy being right pythagorean, the proof is exactly the same as a proof of [245, Prop. 4.11], with
the following changes, extending the range of its validity: (1) an extension from ¥ : X — R
to ¥ : X —] — 00,00] is provided by using (72) instead of [47, Prop. 7.1, Eqn. (79)] (=245,
Eqn. (28)]), together with imposing the condition D% W (int(efd(¥))) C int(efd(¥F)), instead of
efd(V) = X, as in [245, Prop. 4.11], or instead of the Euler-Legendre property of ¥, as in [47,
Prop. 7.1]; (2) the assumption of total convexity of ¥F on efd(¥¥) is weakened by allowing the
alternative assumptions of the Euler-Legendre property or of (strict convexity on int(efd(¥¥))
and supercoercivity) due to Proposition 2.8.(i).
(i) Alternatively, one may use [240, Thm. 3.12] (relaxing its condition D%W(int(efd(¥))) =
int(efd(¥¥)) to one-sided inclusion from left to right, because we do not require characterisation
of convexity of DG W (K)) and fulfill its condition of right Dy-proximinality by Proposition 2.8.(i)
to obtain equivalence of Definition 2.7.b).(i) and 2.7.b).(ii). (72) gives equivalence of (67) and
(68).
(ii) Follows from the assumption K C int(efd(V)).
(iii) Follows directly from assumptions on ¥F and Corollary 2.9.
(iv) Follows from (70) in the same way as (71) follows from (68).
Ul

Corollary 3.2. Let (X, ||y) be reflevive, W € TS(X,||x), YF Gateaur differentiable on @ #
DEY(int(efd(V))) C int(efd(PF)). If @ # K C int(efd(V)) is conver, DEV-convez, closed, DEV-
closed, and any of the following (generally, inequivalent) conditions holds, then Dy is left and right
pythagorean on K :

a) W is totally convex on efd(¥), ¥ is strictly convex on efd(VF) and supercoercive; or

b) U is strictly conver on efd(¥) and supercoercive, W¥ is totally convex on efd(¥F); or

¢) U is strictly convex on efd(V) and supercoercive, WF is strictly convex on efd(WF) and superco-

ercive; or

d) ¥ is Fuler—Legendre.
Furthermore, if U is Fréchet differentiable on int(efd(¥)), then an assumption of DS W-closure of C' is
obsolete.

Proof. Follows directly from Propositions 2.8 and 3.1. The case of (¥ totally convex on efd(¥) and
UF totally convex on efd(¥F)) reduces to d), because, for reflexive (X, ||y ), total convexity of ¥ on
efd(¥) implies its essential strict convexity [298, Prop. 2.1] [89, Prop. 2.13] (the converse is not true
[298, p. 3|). For norm-to-norm continuity of ®FW¥ on int(efd(¥)) see, e.g., [367, Cor. 3.3.6]. O

Proposition 3.3. Let (X, || y) be reflezive, A €]0,00[, let ¥ € TG(X,|-|y) be Euler-Legendre, let
f:X =] —o00,00] satisfy foDEUF € T(X*,||y.) and int(efd(UF)) Nefd(f o DEUF) £ @. Then
pro%/\D‘JIZ is single-valued on int(efd(V)) and satisfies

Dy(z,y) > Dy (x, proky % (x)) + Dy (proky % (x),y) V(z,y) € int(efd(¥)) x Fix(proky¥),  (112)
where Fix(proxy %) = DEUF o (int(efd(UF)) Narginf,c vo {f 0 DEUF (2)}).

Proof. Follows from Proposition 2.20.(iv), by application of (44), Proposition 2.18.(ii), FiX(prozf’}’) =
@G\I’F(Fix(ﬁroxi‘;’f@(;qu)) (which follows from [245, Prop. 2.7.(iii)]), and efd(ﬁroxi‘}’fggw) =
int(efd(¥¥)) (which follows from [41, Prop. 3.21.(vi)]). O
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Proposition 3.4. If (X, || y) is reflevive and ¥ € TC(X, || y) is strictly convex on int(efd(¥)) and
FEuler-Legendre, then:
() if T : X — 2X" is monotone and ran(®CW) C ran(DCW + T), then te8¥. is single-valued on
efd(red¥) C int(efd(TF)), and

Dyr(z,y) > Dyr(z,168% () + Dyr (te8%(z),y) Y(z,y) € int(efd(TF)) x Fix(red¥), (113)

with Fix(te§%) = DU (int(efd(¥)) N T7(0));
(i) if T : X — 2% is mazimally monotone, efd(T) C int(efd(¥)), efd(¥F) = X*, and X €]0, ],
then 1@31} is single-valued on efd(@t\I’T) C int(efd(¥F)), and

Dyr(z,y) > Dyr (2, 168{7(x)) + Dyr (1e8{7(2),y) ¥(z,y) € int(efd(UF)) x Fix(resyy), (114)
with Fix(fed¥}.) = DO (int(efd(¥)) N T7(0)).

Proof. Follows from Propositions 2.20.(ii), 2.20.(iii), and 2.20.(v), by application of (44), Proposition
2.18.(i), and Fix(fe§%) = DG (Fix(fes¥)) (which follows from [245, Prop. 2.7.(iii)]). O

Proposition 3.5. Let (X, ||x) be reflevive, @ # K C int(efd(¥)), and ¥ € TC(X, || y) be Fréchet
differentiable on int(efd(V)). Then:
(i) if K is convex and closed, ¥V is totally convex on efd(¥) and supercoercive, then %ng is norm-
to-norm continuous on int(efd(¥)), while infyex{Dw(y, - )} is continuous on int(efd(¥));

(i) if K is convexr and closed, ¥ is totally convex on bounded subsets of X, supercoercive, and Euler—

Legendre, then 2‘1’ is norm-to-norm continuous on int(efd(¥));

(i4i) if DGV (K) is convex and closed, @ # DU (int(efd(¥))) C int(efd(¥F)), UF is totally conver on
efd(UF), Fréchet differentiable on int(efd(VUF)), and supercoercive, then 2‘1’ is norm-to-norm
continuous on int(efd(¥));

(iv) if DCW(K) is convex and closed, UF is totally convex on bounded subsets of X*, Euler—Legendre,

Fréchet differentiable on int(efd(¥Y)), and supercoercive, then %g“’ is norm-to-norm continuous
on int(efd(V)).

Proof. (i) By [298, Props. 4.2, 4.3], if ¥ € I'(X, |-| ) is totally convex on efd(¥) and Fréchet dif-
ferentiable on int(efd(¥)) # @, and if the set {y € K : Dyg(z,y) < A} is bounded YA €10, o0]
(or, equivalently, by Corollary 2.9, VA € [0,00[) Vy € K, then z — infyex{Dw(y,x)} is contin-
uous on int(efd(¥)) and %2‘1’ : int(efd(¥)) — K is norm-to-norm continuous on int(efd(W¥)).
By [40, Lem. 7.3.(vii)], if ¥ € I'(X,|-|y) is supercoercive, and = € int(efd(¥)) # @, then
D{ (z, +) is coercive, which is equivalent (cf. [38, Defs. 2.10, 4.1.(B3).(ii)]) with boundedness of
{y € int(efd(V)) : D§(z,y) < A} VA € [0,00] Vz € int(efd(P)).

(0) We will use the following fact: the Fréchet differentiability of ¥ € I'“(X, |-|y) on int(efd(¥))
(resp., V¥ € T'Y(X*,|-|x.) on int(efd(¥F))) is equivalent with norm-to-norm continuity of
DEV = DYV (resp., DEUF = DFUF) (279, Prop. 2.8] 367, Cor. 3.3.6].

(ii) By [360, Thm. 3.4.(ii)], if ¥ € T9(X, || y) is totally convex on bounded subsets of X, superco-
ercive, and Euler—Legendre, and @ # K C int(efd(¥)) is convex and closed, then the map [275,
Def. 1]

int(efd(UF)) 5 y - arginf {D\p(x,CDG\IIF(y))} eK (115)
zeK

is norm-to-norm continuous. Setting y = DS W(z) for z € int(efd(¥)), and using Fréchet differen-
tiability of ¥ on int(efd(¥)) together with (0), gives a result, since a composition of norm-to-norm
continuous functions is norm-to-norm continuous.

(iii) Follows from (i) and an application of (72), taking into account (0), so (72) is a composition of
norm-to-norm continuous functions.

(iv) Follows from (ii) in the same way as (iii) follows from (i).

O

Proposition 3.6. If (X,|-|y) is reflevive, ¥ € TG(X,|-|x), V¥ is supercoercive, ¥ is uniformly
Fréchet differentiable on bounded subsets of int(efd(V)), then int(efd(¥)) = efd(¥) = X, and:
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(i) U is LSQ-compositional if any of (generally, inequivalent) conditions holds:
a) ¥ is totally convex on X ; or
b) W is totally convex on bounded subsets of X and is supercoercive;
(ii) ¥ is RSQ-compositional if any of (generally, inequivalent) conditions holds:
a) V¥ is totally convex on bounded subsets of X; or
b) U is Euler-Legendre and supercoercive, WY is (totally convexr and uniformly Fréchet differ-
entiable) on bounded subsets of efd(¥F);

(113) U is LSQ-adapted on any closed and convexr @ # K C X (and %g&“ is adapted for any @ # C C
K with convex and closed C') if VU is Euler—Legendre;

(iv) ¥ is RSQ-adapted on any & # K C X (and %g‘l’ is adapted for any @ # C C K with convex
and closed DSV (C)) if ¥ is supercoercive and Buler-Legendre, and V¥ is uniformly Fréchet
differentiable on bounded subsets of int(efd(UF)) # @;

(v) (T € RSQ(V, K) iff DGV o T 0 DEUF € LSQ(¥, DCW(K))) if ¥ is Euler-Legendre and super-
coercive, @ # K C int(efd(V)), T : K — int(efd(¥)), and WF is uniformly Fréchet differentiable
on bounded subsets of int(efd(¥F)) # @.

Proof.  (0) For any ¥ € I'(X, | ), by [367, Lem. 3.6.1], ¥F is supercoercive iff (efd(¥) = X and ¥
is bounded on bounded subsets). By [86, Prop. 1.1.11], if f : X — R is continuous and convex,
then (Of is bounded on bounded subsets of efd(df) iff f is bounded on bounded subsets of X).
Hence, since int(efd(¥)) = efd(¥) = X and ¥ € T'9(X, |-|y), ¥ is continuous and convex, and
DG is bounded on bounded subsets of efd(DE¥) = X.

(i).a) By [367, Prop. 3.6.3| (cf. [294, Prop. 2.1]), ¥ is (bounded and uniformly Fréchet differentiable) on
bounded subsets iff (¥ is Fréchet differentiable on X = efd(¥) and DSV is uniformly continuous
on bounded subsets). By [87, Prop. 2.3, if z € efd(¥) and ¥ is Fréchet differentiable at x,
then (W is totally convex at x iff ¥ is uniformly convex at x). The rest follows from Proposition
2.16.(i).a), taking (0) into account.

(i).b) Since ¥¥ € I'(X, |'|x), it is (convex and) continuous on int(efd(¥F)) = efd(¥F) = X* [302,
Cor. 7C]. Hence, by (0), applied to ¥F instead of ¥, ®F(¥F) is bounded on bounded subsets of
efd(UF) = X* iff ¥ is supercoercive. The rest follows from Proposition 2.16.(i).b).

(ii)—(v) Follow, respectively, from Proposition 2.16.(ii), 2.16.(iii), 2.16.(iv).b), 2.16.(v), and Corollary
2.22, by the same technique as above.
O

Proposition 3.7. Let A €]0,00], let (X, || x) be reflezive, let ¥ € TG(X, || ) be strictly convex on
int(efd(W)), let f € I'(X, || x) be bounded from below, limy,), oo f(x) = 00, efd(f) Nefd(V) # & and
(efd(f) Nefd(¥) C int(efd(¥)) or efd(¥) is open or efd(f) C int(efd(¥)) or (int(efd(¥)) Nefd(f) # @
and U is essentially Gateaux differentiable)). Then:

(i) mfj 1s single-valued and norm-to-norm continuous on X ;

(ii) if ¥ is Fréchet differentiable on int(efd(¥)) and FEuler-Legendre, and WY is Fréchet differentiable
on int(efd(¥F)), then pro%f‘; is single-valued and norm-to-norm continuous on int(efd(V)).

Proof. (i) Follows from [102, p. 186, Cor. 4.2|, using the criteria for single-valuedness of roxi‘fl’,
provided by [41, Props. 3.22.(ii).(d), 3.23].
(ii) Follows from (i), using Proposition 2.18.(ii) together with the fact (0) in the proof of Proposition
3.5.
O

Proposition 3.8. Let (X, |-|y) be reflexive, A €]0,00, r €]1,00[, s €]0,1], let ¥ € TE(X, | |x),
efd(¥) = X, and UF € TG (X* |- y.)-

() If T : X — 2% is mawimally monotone, f € T(X,||x), and D9V is s-Lipschitz-Hslder con-

tinuous on X and g-uniformly monotone on X with g(t) = rt"~1, then f?s:\I’T and mg} are

s
r—1

Lipschitz—Hoélder continuous on X*.

single-valued and -Lipschitz—Holder continuous on X, while @fT 18 single-valued and ﬁ—
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(i) If f : X —] — 00, 00] satisfies f o DEWEF € T(X* || y.), w €]0,1], DEW is w-Lipschitz—Hélder
continuous on X, and DCUF is s-Lipschitz—Holder continuous on X* and g-uniformly monotone
2
on X* with g(t) = rt"~!, then pro%f‘; is single-valued and =7 -Lipschitz—Holder continuous on
X.

Proof. By [290, Cor. 6.4], (D9W + \T)™" is single-valued and -

Furthermore, we use Proposition 2.18.(i). The result for f?s&’T and ﬁé:\pT follows from the fact that the

composition of ri-Lipschitz—Holder map with ro-Lipschitz—Hélder map, with both maps defined over
v

all space, is ryro-Lipschitz—Holder map Vry,re €]0,1]. For ﬁroxf\) ¥ we use additionally Proposition
2.19.(i), while for pro%AD? we use also Proposition 2.18.(ii). O

-Lipschitz—Holder continuous on X*.

Corollary 3.9. Let (X, ||x) be reflezive, r €]1,00[, s €]0,1], ¥ € T9(X, || ), efd(X) = R, ¥F ¢
TC(X*, || x+), and @ # K C int(efd(V)). Then:

(i) if DG is s-Lipschitz-Hélder continuous on X and g-uniformly monotone on X with g(t) =

rt"1, and K is convex and closed, then % =5 -Lipschitz—Hoélder continuous on X ;

(i3) if w €]0,1], DEW is w-Lipschitz—Hélder continuous on X, DCVY is s-Lipschitz-Holder con-
tinuous on X* and g-uniformly monotone on X* with g(t) = rt"™', @ # D% (int(efd(¥))) C
int(efd(TY)), and DCV(K) C int(efd(¥F)) is conver and closed, then gID{‘I’ i
Hélder continuous on X.

s %—Lz’pschitzf

Proof. (i) Follows from Propositions 3.8.(i) and 2.19.(ii).
(ii) Follows from Propositions 3.8.(ii), 2.18.(ii), and 2.19.(ii).
O

Lemma 3.10. If ¥ € T'(X, || y), as well as efd(¥) = X and efd(VF) #£ {x} (resp., efd(¥F) = X*
and efd(¥) # {x}), then:
(i) W is uniformly Fréchet differentiable (resp., uniformly convex) on X iff ¥ is uniformly convex
(resp., uniformly Fréchet differentiable) on X*;
(ii) if ¥ is uniformly Fréchet differentiable on bounded subsets (resp., uniformly convexr on bounded
subsets) of X, and supercoercive, then ¥ is uniformly convexr on bounded subsets (resp., uni-
formly Fréchet differentiable on bounded subsets) of X*.

Proof. Let ¥ € T'(X, || y)- By [34, Cor. 2.8], if efd(¥) # {x} (resp., efd(¥F) # {x}), then ¥ is uni-
formly convex (resp., uniformly Gateaux differentiable) on X iff U¥ is uniformly Gateaux differentiable
(resp., uniformly convex) on X*. By [367, p. 207] (cf. [316, p. 4](=[317, p. 643])), ¥ is uniformly
Fréchet differentiable on any @ # K C efd(¥) iff ¥ is uniformly Gateaux differentiable on K. Setting
efd(¥) = X gives (i). (ii) follows directly from (i) and [367, Prop. 3.6.2.(i)]. O

Proposition 3.11. Let (X, ||y) be reflevive, @ # K C X, ¥ € TY(X,||y) be supercoercive and
strictly convez, W¥ € T'9(X* |- y.) be supercoercive and strictly convez. For any convex set C C X,
let C°:={ye X" : [z,y] xyx+ <0 Ve € C}. Then:

(i) if U: X - R, TF(0) =0, (D9UF)(0) =0, (DTF)(—y) = - (DT (y) Wwe X*, o £ K C X

s a closed conver cone with a vertex at 0 € X, then

z = (D09) oquo 0 DG () + P 2 ()

Vee X H%D\P O F DCU(x )HXX)(* —o, (116)
where
rBKO( E —argianAGKFo {\DF(y—z)} Yy € X* (117)
mKo OmKo( ) = (431\120 (y) Yy € X*;

(ii) if UF : X* = R, 0(0) = 0, (DCW)(0) = 0, (DCW)(~2) = —(DCW)(x) Vo € X, & # DEU(K) C
X™* is a closed convexr cone with a vertex at 0 € X*, then
Y= ‘13 @G‘II(K + gDW

H(DG\I}F) gg‘l’(y) m‘(%cq,(K))o(y)]]XXX* = 0.

Yy e X (118)
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Furthermore:
(ii) if @ # K C X is a linear subspace instead of a closed convex cone, then (116) holds under

replacement of K° with K+ := {y € X* : [z,y]x, x» =0 Vz € K};

(iv) if @ # DEU(K) C X* is a linear subspace instead of a closed convex cone, then (118) holds

Proof.

(iii)
(ii)+(iv)

under replacement of (D9W(K))° with (DU (K))* .

(i) This is [13, Thm. 3.19].
This is [13, Rem. 3.20].
Follows directly from (i) and (iii) combined with Proposition 2.10.
0

Remark 3.12. (i) Proposition 3.1.(i) is a generalisation of [245, Prop. 4.11], as indicated in the

(i)

(iii)

(vi)
(vii)

(viii)

(ix)

proof.

Regarding Corollary 3.2, left and right projections onto sets which are both convex and DS W-
convex (despite that DGV is not an affine map) were considered earlier in [45, p. 11, Probl.
3.

Proposition 3.5.(i) provides a (new) special case of [298, Props. 4.2, 4.3], which is more suitable
for our purposes, because it allows to derive Proposition 3.5.(iii), as well as Propositions 3.27.(ii)
and 3.27.(1iil). ¥ € I'“(X,|-|y) totally convex on efd(¥), such that Dy(z, -) is coercive on
int(efd(V)) Va € efd(V) is called a Brégman function in 86, Def. 2.1.1], and it provides a Banach
space generalisation (and also a weakening) of the notion of Brégman function introduced in [92,
Def. 2.1] (cf. also [38, §4]). See [291, Def. 4.2] for further generalisation and discussion of this
notion.

The direct relationship between the differing assumptions of Propositions 3.5.(i) (resp., 3.5.(iii))
and 3.5.(ii) (resp., 3.5.(iv)) is not clear at this level of generality. However, in a special case of
U = W, the former variants are essentially more general than the latter, see Remark 3.37.(vii).
Proposition 3.5.(iii) is essentially new in the Banach space setting. For X = R", @ # K C X
convex closed, K Nint(efd(¥)) # @, ¥ Euler-Legendre, ¥ € C?(int(efd(¥))), Dy jointly convex,
Dy(x, -) strictly convex on int(efd(¥)) and coercive Vz € int(efd(¥)), norm-to-norm continuity
of g‘l’ has been established in [46, Cor. 3.7|]. While coerciveness of Dy(z, -) follows from
supercoerciveness of ¥ [40, Lem. 7.3.(viii)], the rest of these conditions is noticeably different
from the assumptions of Proposition 3.5.(iii).

The reason why Proposition 3.6.(iv) omits case a) of Proposition 2.16.(iv) will be explained in
the Remark 3.37.(xii).

Generalised pythagorean equations (111) and (71) are special cases of the generalised cosine
equation (40), obtained for

Hx—ﬁDw ,0%U(y) — DCU (PP (2)) — 0 Y(z,y) € int(efd(¥)) x K, (119)

[

and

o= ¥R ), 20 () - @%(%ﬁ“f(y))ﬂmx* — 0 Y(z,y) € K x int(efd(D)),  (120)

respectively. One can see (119)—(120) as the conditions of orthogonality (at %g‘l’ (z) and %Q‘I’( )
respectively) between a vector joining the projected point with its projection, and a vector ranging
from a projection into an arbitrary point within the constraint set K.

As compared to the original phrasing of [13, Thm. 3.19]|, Proposition 3.11.(i) assumes additionally
strict convexity of UF, since, by the definition of ‘i?‘l’F [13, Def. 3.1], this condition is necessary
for the uniqueness of ﬁg’(i (y). Proposition 3.11.(ii) is new.

For n € N, X = R", Euler-Legendre ¥ € TG (X, || ), f € T(X, || x), efd(f) Nint(efd(¥)) # @,
and some additional conditions on ¥, the (norm-to-norm) continuity of m{f }I’ and pﬁf }’ was
established in [43, Prop. 3.10|.
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3.2 Dy with U =T,
Proposition 3.13. For any gauge ¢ and any Banach space (X, || x), Yo is supercoercive.

Proof. Let ¥ € T'(X, || y)- By [367, Lem. 3.6.1], ¥ is supercoercive iff (efd(¥F) = X* and UF is
bounded on bounded subsets). If int(efd(¥¥)) = X* then UF is continuous on X* [302, Cor. 7C]. If
UF is continuous on X*, then, by [86, Prop. 1.1.11], ¥¥ is bounded on bounded subsets iff 9(¥F) is
bounded on bounded subsets. By [367, Thm. 3.7.2.(ii)],

Iyl x*
(W,)F(y) = /0 a4t ) vy e X7, (121)

so (V,,)F has the same properties as W, since ¢~ is a gauge function (cf. [367, p. 227]). In particular,
(¥,)F is convex and continuous on X*, with efd((¥,)¥) = X* = int(efd((V,)¥)). Finally, from
definition (99) of j, it follows:

NS0V €ZC X" 2l <A = Wy E5(2) Iylxe =9 (l2lx) <07 (), (122)

where the last inequality holds since ¢~ is nondecreasing. Hence, j;f‘ maps bounded sets to bounded
sets (cf., e.g., [232, p. 176]). Since j;_‘ = 0((¥,)F) by (103) and (121), this completes the proof. [

Proposition 3.14. For any gauge ¢, ¥, is Euler—Legendre iff (X, |-| ) is strictly convex and Gateauz
differentiable.

Proof. 1) By Proposition 2.26.(iii), (X, || y) is Gateaux differentiable iff j, is single-valued on X.
By [40, Thm. 5.6.(i)-(ii)], V., is essentially Gateaux differentiable iff (int(efd(V,)) # @ and 0V,
is single-valued on efd(0¥,)). By [27, Thm. 1], j, = 0¥,,. Since efd(0¥,) = X [103, Obs. 1.3.1]
and efd(¥,) = int(efd(V¥,)) = X for any gauge ¢, we obtain: (X, |-|y) is Gateaux differentiable
iff ¥, is essentially Gateaux differentiable.

2) By Proposition 2.26.(ii), (X, |-|y) is strictly convex iff ¥, is strictly convex. By [40, Lemma
5.8], if efd(0W,) and efd((V,)¥) are open, then (¥, is strictly convex on int(efd(¥,,)) iff ¥,
is essentially strictly convex). By [103, Obs. 1.3.1], efd(0¥,) = X. Furthermore, efd(V,) =
int(efd(¥,)) = X. From (121) it it follows that efd((¥,)¥) = X, which is an open set, since
every Banach space is (both a closed and) an open set.

O
Corollary 3.15. For any gauge ¢ and any Banach space (X, || x):
(1) if (X,|]x) is Gateaux differentiable, then
Izl x lie (W) N ‘
Da,e) = [ dte+ [T a0 - el Vewe Xs(123)

(1r) if (X,|-]x) is Gateaux differentiable and U, is totally convex, then W, is Euler—Legendre;
(iii) in particular, if (X,||yx) is locally uniformly convexr and Gateauzr differentiable, then W, is
FEuler-Legendre and totally conver.

Proof. (i) Follows from (43), (121), and Proposition 2.26.(iii).
(ii) Follows from Proposition 3.14 combined with the fact [298, Thm. 3.1, Cor. 3.4] that total
convexity of ¥ implies strict convexity of (X, || x)-
(iii) Follows from the fact that local uniform convexity of (X, |-|y) implies its strict convexity, com-
bined with Propositions 2.26.(xii) and 3.14.
O

Corollary 3.16. For any gauge ¢, if (X, |-|x) is reflexive, strictly convez, and Gateaux differentiable,
and @ # K C X is weakly closed, then K is left Dy, -Chebyshév iff K is convex.

Proof. Follows from [342, Cor. 1| combined with Proposition 3.14. O
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Proposition 3.17. For any gauge ¢, if @ # K C X, and (X, || y) is reflezive, strictly convex, and
Gateaux differentiable, then:
(i) if K is convex and closed, then K is left Dy, -Chebyshév, and Dy, is left pythagorean on K;
(ii) if jo(K) is conver and closed, then K is right Dy ,-Chebyshév, and Dy, is right pythagorean on
K;
(i) Dy, (resp., D\I,g) is an information on X (resp., X*);

. Dy Dy )
(i) %K ¢ and %K ¥ are zone consistent.

Proof. (i) By Proposition 3.13, ¥, is supercoercive for any gauge ¢. For any gauge ¢, Proposi-

tion 2.26.(xii) gives that W, is totally convex on any locally uniformly convex Banach space
(X, || x)- The latter implies strict convexity, and the opposite implication is not true in general.
Furthermore, by Proposition 2.26.(xi), if (X, |-|y) is reflexive, then (it is strictly convex and has
the Radon-Riesz-Shmul’yan property) iff ¥, is totally convex for any gauge ¢. Hence, when
applied to ¥, (and taking into account Proposition 3.14), the weakest conditions to be assumed
in Proposition 2.8.(ii) are provided in Proposition 2.8.(i).b) and 2.8.(i).c), which turn out to be
equivalent in this situation.

(i) Follows from (i) and Proposition 3.1.(i), taking into account that, for reflexive (X, |-|y), Gateaux
differentiability of (X, |-|x) (resp., (X*,|-|x+)) implies strict convexity of (X*,|-|y+) (resp.,
(X, 1)) 201, A.L1].

(iii) Follows from Corollary 2.9 and Proposition 3.1.(iii).

(iv) Follows from int(efd(¥,)) = X.

Lemma 3.18. If ¢ is a quasigauge, then:

(i) ¢", ¥, (L= limg_—y @(s))", and (t — limg_,+; ¢(s))
(11) " (resp., p) is left (resp., right) continuous.

Proof. (i) Nondecreasing of f" and fV holds for any f: R" — [0,00] (cf., e.g., [161, Lem. 2.3.9.a)]
for f" and [346, Lem. 1.(b)]?3). This implies existence of left and right limits of f/\(¢) and fV(¢)
at any t € RT. ¢ # 0 (resp., ¢ # oo) implies " # oo # ¢V (resp., " # 0 # ¢"). Thus,
ds,t > 0 such that lim,_,+,¢"(u) < oo and lim,_,+, p"(u) < co. The same reasoning applies to
(1 0 Tim, -y (3))" and (s lim, ey o(s))V.

(ii) This holds for any nondecreasing f : R™ — [0, 00], cf., e.g., [161, Lem. 2.3.9.c)| for f" and [346,
Lem. 1.(c)]?3 for fV.

Vo are quasigauges;

O
Lemma 3.19. If ¢ is a quasigauge, and fo(u) := f[;l dt (t) Yu € RT, then
()Y (w) :/ dt (lim o(s))” :/ dt (lim (s)) Vu € R, (124)
0 s—Ttt 0 s—="t
If, furthermore, ¢ is right (resp., left) continuous on RT, then**
(F)Y () = [ dte'() Vue R (125)
0
(resp., (f,)¥ (u) :/ dt " (t) Yu € RT). (126)
0

Proof. Since f, and ( fw)Y are proper, convex, lower semicontinuous functions, taking value 0 at
0 [365, pp. 367-368|, we can use the representation [305, Thm. 24.2] of such type of functions,
g(u) = [ dtg, (t) = [ dtg’ (t) Yu € RT, and combine it with [365, Prop. A.2.(i)]

(F)¥)e(0) = (lim o(5))", (127)
(F)¥)-(6) = (lim ()" (128)

23This lemma is stated for f: RT — RT, however the extension of a proof to f : RT — [0, 00] by an analogy with the
proof of [161, Lem. 2.3.9] is straightforward.
24(125) has been proved earlier, by a different method, in [315, Thm. 2.11].
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Lemma 3.20. For any quasigauge ¢ and any Banach space (X, |- x):

(i) (Up)(y) = Jo"'" dt (lim, ey (s)Y = Jg¥" dt (limg - 9(5))" Wy € X5
(1) if  is right (resp., left) continuous on R, then

()P () = /0 G0 (0) vy e x (129)

(resp., (U,)F(y) = /0 M o ) vy e X (130)
(W)F)F () = /0 0 ) e e (131)
(resp., ((0,)F)F(2) = /0 e (8 Ve € X, (132)

and O((Vp)¥) = j5v (resp., I(V)¥) = jin);
(iii) if ¢ is right (resp., left) continuous on RT and (X, |-|y) is reflezive, then j(*;;v)v = jo (resp.,
Sz = o)
Proof.
(i)-(ii) By [365, Eqn. (A.6)], (Tu)F(y) = (fo)Y (lylx+) Yy € X*, where fy(u) = [i'dto(t) Yu € RT.
The rest follows from Lemmas 3.18 and 3.19.

(iii) For any f : Rt — [0,00], f is (nondecreasing and right (resp., left) continuous) iff fVV = f
resp. = 315, Lem. 2. resp., {161, Lem. 2.3.11|). On the other hand, reflexivity o
(resp., f = f) [315, L 4% (resp., [161, L |). On the other hand, refl y of
(X, [-lx) and Wy, € T(X, |- x) give ((T,)F)F = Ty, Hence, jitvy = I(((T,)")F) = 0¥, = jy
in the right continuous case, and analogously in the left continuous case.

O

Corollary 3.21. If (X, || x) is a Gateauz differentiable Banach space, and a quasigauge ¢ is contin-
uous on [0,sup(efd(p))[, then V(z,y) € X x int(sup(efd(y))B(X, || x))

Izl 15 ()] 5«
Do,e)= [ areo+ [T at(lim pl(s)” ~ o0 (133)
Hx"X l7¢(y) Hx*
= [arew s+ [ el p6))" [ G0 (134)
0 0 s—"t

If, furthermore, @ is right (resp., left) continuous at sup(efd(y)), then
Izl x lie ()] x Y ‘
Du, )= [ ate®+ [ @t )~ [ )l (135)

I x I3 ()| x*
(resp., Dy, (z,y) = /0 at p(t) + /0 at o (1) — [ o) - ) (136)

V(z,y) € X x int(sup(efd(v)) B(X, || x))-
Proof. Follows from Lemma 3.20 and Proposition 2.29.(i), applied to (43), (102), and (103). O

Proposition 3.22. Let ¢ be a quasigauge, and let (X, |-|y) be a Banach space. Then:
(i) jyv is bounded;
(i1) if " is right continuous, then j;A is bounded;

(i) if either ¢ is finite or ™ is (right continuous and finite), then U, is supercoercive.

Proof.

25This lemma states only an implication from left to right, however an implication in the opposite direction can be
provided by a direct analogue of the corresponding proof in [161, Lem. 2.3.11].
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(i)—(ii) Lemma 3.18.(i) allows us to use (103) to (129) and (130). Replacing ¢~ in (122) by ¢ (resp.,
"), and using its right continuity together with (98) instead of (99), gives the boundedness of
Iy (resp., jn).

(iii) The assumption of finiteness of ¢ (resp., ¢") guarantees that (f,)Y (u), as defined by (125)
(resp., (126)), is finite Yu € R*. Hence, efd((¥,)¥) = X* = int(efd((¥,)F)). Using (i)-(ii),
together with [302, Cor. 7C], [86, Prop. 1.1.11], and [367, Lem. 3.6.1], in the same way as in the
proof of Proposition 3.13, gives the result.

0

Proposition 3.23. Let (X, |-|y) be a Banach space, and let ¢ be a quasigauge strictly increasing on
efd(p), continuous on [0,sup(efd(y))[, and let

Jo is not single-valued on efd(j,) \ int(sup(efd(p))B(X, || x))
int(efd(Vy)) = efd(¥y)

efd(j,) is open

efd((¥,)F) is open.

(137)

Then VU, is Buler—Legendre iff (X, || x) is strictly convex and Gateauz differentiable.

Proof. Follows the same arguments as the proof of Proposition 3.14, with the properties of a gauge ¢
and of W, replaced by the above assumptions, and with the use of Proposition 2.26.(ii)—(iii) replaced
by the use of Proposition 2.29.(i)—(ii). O

Proposition 3.24. Let (X, |-|y) be a reflexive, strictly convez, and Gateaux differentiable Banach
space, let ¢ be a quasigauge strictly increasing on efd(y) and continuous on [0,sup(efd(p))[, let K N
int(efd(V,)) # @. Then:
(i) if K is convex and closed, and any of the following (inequivalent) conditions holds:
a) ¢V is finite or ©" is (right continuous and finite);
b) (137),
then:
1) K is left Dy -Chebyshév, Dy, is left pythagorean on K, and Dy, is an information on X ;

2) if b) or (a) and K C int(efd(¥,))) holds, then %?w“" are zone consistent;
(11) if K Cint(efd(Wy)), jo(K) is conver and closed, and any of the following (inequivalent) condi-
tions holds:
z)
@) @ is finite or (p¥)" is right continuous and finite;
b) { y oo o . .
(™) is finite or ¢ is right continuous and finite;
( x)
" is continuous on [0,sup(efd(oV))[
) Jv 18 mot single-valued on efd(j7.) \ int(sup(efd(p¥))B(X*, || x+))
) int(efd(Wyv)) = efd(W,v)
efd(j5v) is open
efd(V,) is open;

y)

o™ is continuous on [0, sup(efd(o™))|

4) Jon 18 mot single-valued on efd(j;,) \ int(sup(efd(¢™)) B(X*, || x+))
int(efd(U,n)) = efd(V,n)

efd(j;n) is open

efd(V,,) is open,

where:
@ is right continuous on RT

z) ¢ Y is strictly increasing on efd(p")
Vv is Gateaus differentiable on @ # j,(int(sup(efd(¢))B(X, |-|yx))) € int(efd(¥,v));
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@ is left continuous on RT
y) < " is strictly increasing on efd(o")
. Vo n is Gateaur differentiable on @ # j,(int(sup(efd(¢))B(X, |-|yx))) € int(efd(¥,n)),
then:

1) K is right Dy, -Chebyshév, Dy, is right pythagorean on K, D(\va)F is an information on
D
X*, and %K‘P“" s zone consistent;
2) if either c) or d) holds, then Dy, is an information on X.

Proof. Follows directly from Propositions 3.22 and 3.23, applied to Propositions 2.8 and 3.1, and to
Corollary 2.9. In (ii).a) (resp., (ii).b)) we use ¢V = ¢ (resp., p""* = ) for right (resp., left) continuous
¢ (cf. the proof of Lemma 3.20), while in (ii).c) and (ii).d) we use also ((¥,)¥)F = W, that follows
from ¥, € I'(X, || x) and reflexivity of (X, || x)- O

Corollary 3.25. If (X, |-| ) is reflexive, strictly convez, and Gateaux differentiable, ¢ is a gauge, and
A €]0, 0], then:
o Dy, . . .
(1) if feT(X,||x), then ﬁroxA ;7 is single-valued on X, and satisfies

D D . D
Dy, (z,y) > Dy, (:L‘,ﬁrox)\j“" (y)) + Dy, (ﬁrOXAj‘P (y),y) Y(z,y) € le(ﬁrox)\,}'”) x X, (138)

where Fix(ﬁroxi\;“’) =arginf,cx {f(z)};

(ii) if a proper f : X —] — 00, 00] satisfies f o (jo)~' € D(X*, || x«), then pro%/\Dj:“’ is single-valued
on X, and satisfies

D D . D
Dy, (x,y) > Dy, (z, proz)\;"” (z)) + Dy, (pro%/\;‘p (x),y) V(z,y) € X X le(proz)\;“’), (139)

where Fix(proty %) = (j,) " o arginf e+ {f 0 (j,) '(2)}.

Proof. (i) Follows from Propositions 2.20.(iv) and 3.14.
(ii) Follows from Propositions 3.3 and 3.14.
0

Corollary 3.26. Let (X, |-|y) be reflexive, strictly convez, and Gateaux differentiable, let ¢ be a
gauge, A €]0,00[, and let T : X — 2X". If (T is monotone and ran(j, + \T) = X*) or T is mazimally
monotone, then:

(i) f?sfj"f is single-valued on efd(ﬁfif), Fix(fe—sijq‘f) =T7(0) is convez, and

v )4 . N4
Dy, (z,y) > Dy, (2,168,7 (y)) + Dy, (168, (y),y) ¥(,y) € Fix(fes,7) x X; (140)
(i1) Egi\yr_ﬁ is single-valued on efd(r?%fr_‘ﬁ), Fix(ﬁi’:}f) = jo(T7'(0)) is j,-conver, and
v 7 . v
Dy, )¢ (w,y) > Dy, e (2,768, (x)) + Dy, yr (16837 (x),y) ¥(w,y) € X* x Fix(re§,7), (141)
where (V) is given by (121).
Proof. Follows from Propositions 2.20.(i)—(iii), 3.4, and 3.14. O

Proposition 3.27. Let @ # K C X. For any gauge ¢, if (X,|-|x) is strictly convex, Fréchet
differentiable, reflexive, and has the Radon—Riesz—Shmul’yan property, then:

D
(i) if K is convex and closed, then %K% is norm-to-norm continuous on X, while infycx{ Dy, (y, - )}
18 continuous on X ;

D
(11) if jo(K) is convex and closed, then ?K% is norm-to-norm continuous on X.

Proof. (i) Taking into account Proposition 2.26.(xi), together with equivalence of Fréchet differ-
entiability of (X, |-|y) with Fréchet differentiability of W, (Proposition 2.26.(iv)), we conclude
that, for any gauge o, if (X, || y) is reflexive, strictly convex, Fréchet differentiable, and has the
Radon-Riesz—Shmul’yan property, then ¥, is totally convex and Fréchet differentiable on X (as
well as supercoercive). Hence, Proposition 3.5.(i) applies.
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(ii) By Proposition 2.26.(iv), j, (resp., j;,‘) is norm-to-norm continuous iff (X, |-|y) (resp.,
(X*, || x+)) is Fréchet differentiable (and, in such case, j, = DFW¥,, (resp., j;_‘ =DF((V,)F))).
By |21, Thm. 3.9], if (X, || ) is reflexive, then (X™*, || x.) is Fréchet differentiable iff ((X, || )
is strictly convex and has the Radon—Riesz—Shmul’yan property). Hence, (72) is a composition
of norm-to-norm continuous functions, and thus it is norm-to-norm continuous, under the same
assumptions on ¥ as in (ii).
(ii") Follows from Proposition 3.5.(iii).
O

Proposition 3.28. Let ¢ be any gauge.

(i) If (X,|-|x) is uniformly Fréchet differentiable and strictly convex, then ¥, is LSQ-adapted on
any convex and closed @ # K C X, and %g% is adapted for any @ # C C K with convexr and
closed C'.

(1) If (X, |-|x) is uniformly Fréchet differentiable, strictly convexr, and has the Radon-Riesz—
Shmul’yan property, then W, is LSQ-compositional and RSQ-compositional.

(1it) If (X, || x) is uniformly Fréchet differentiable and uniformly convex, then:
a) ¥, is RSQ-adapted on any @ # K C X, and Bg% s adapted for any @ # C C K with
convex and closed j,(C);
b) Forany @# K CX and T : K — X,

T € RSQ(V,, K) <= j,0To(j,)" €LSQ(¥,,j,(K)). (142)

Proof.
(i)-(ii) By Proposition 2.26.(v), (X, || x) is uniformly Fréchet differentiable iff ¥, is uniformly Fréchet
differentiable on bounded subsets of X. By Proposition 2.26.(xi), if (X, |-|y) is reflexive, then
(it is strictly convex and has the Radon-Riesz-Shmul'yan property) iff W, is totally convex
on X. The rest follows from Proposition 3.6.(i).a), as well 3.6.(i).b) and 3.6.(ii)-(iii), due to
supercoercivity of W, (Proposition 3.13) and because total convexity on X implies total convexity
on bounded subsets of X.
(iii) By Proposition 2.26.(vi), uniform convexity of (X, |-|y) is equivalent with uniform Fréchet dif-
ferentiability of (¥,)F on bounded subsets of (X*,|-|y.). By Propositions 3.6.(iv) and 3.6.(v),
this gives, respectively, (iii).a) and (iii).b).
O

Proposition 3.29. Let v €]0,1].
(i) If p(t) € {ﬁt%,tﬁ}, then (X, || x) is %—umformly convez iff jg on (X*, || x.) is single-

valued and %—Lipschitszb'lder continuous on X.

1-—y 1— 1—
(i) Let o(t) € {(1 - 'y)thTv,tTw}. If (X, |- x) 4s %—unz’formly convez, then (j,)™ is single-valued

and %—Lipschitszélder continuous on X.

Proof. (i) Follows from equivalence of 1-uniform convexity of (X,[-|y) and 2

~ ~—-uniform Fréchet
differentiability of (X™*, || x+) [231, p. 63 (Vol. 2)| combined with Proposition 2.26.(viii).b)-c).
(ii) Follows from (i), Proposition 2.26.(viii).b)—c), and (100).

O
Proposition 3.30. Let A\ €]0,00[, let (X, || ) be reflexive, let ¢ be a gauge, let f € T'(X,|-|y) be
bounded from below, and lim|,) o0 f(z) = co. Then:

D
(1) if (X, || x) is strictly convex and Gateauz differentiable, then ﬁrox)\ ;‘” is single-valued and con-
tinuous on X,
1) if (X, | is strictly convex, Fréchet differentiable, and satisfies Radon—Riesz—Shmul’yan prop-
9 X y ) ) y p p

D
erty, then pro%/\ ;“" 1s single-valued and continuous on X.
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Proof. Follows from Proposition 3.7.(i)—(ii), and the same reasoning as in the proof of Proposition

3.27.(1)(ii). O

Proposition 3.31. Let (X,|-|y) be a Banach space, let ¢ be a gauge, and let T : X — 2X" e
mazimally monotone with 0 € efd(T"). Then:
(1) if (X,|-|x) is Fréchet differentiable and uniformly convex, then f?sg“" = (T + j,) " o j, maps X
on efd(T') and is norm-to-norm continuous on X ;
(11) if (X, || x) is strictly convez, uniformly Fréchet differentiable, and has Radon-Riesz—Shmul’yan
property, then r‘eEEIFJ‘P = (jp) "o (T+j,) " maps X* on j,(efd(T)) and is norm-to-norm continuous
on X*.

Proof. (i) By [77, Thm. 5.(c)|, if (X, |-|y) is Gateaux differentiable and uniformly convex, ¢ is a
gauge, and T : X — 2% is maximally monotone with 0 € efd(T’), then (T + jo) " is a norm-to-
norm continuous map from X* to efd(7"). (While the explicit statement of this theorem assumes
additionally that T'= 0f for f € I'(X, |-| y), its proof does not depend on this assumption.) The
rest follows from Proposition 2.26.(iv).b) and composability of norm-to-norm continuous maps
on Banach spaces.

(ii) From Proposition 2.18.(i) it follows that I@?“’ =987, 0 f?%:}l“" 0 DG (V,)F with efd(r‘egl‘lpjw) =
@G\I/@(efd(%g“’)) and ran(@?”) = @G\I/@(ran(ﬁg"’)). Furthermore, due to (103) and (121),
(T,)F = ¥ and (Jp)" = j;_‘. The rest follows from (i), combined with the equivalence of

(Gateaux diferentiability and uniform convexity of (X, |-|y)) with (strict convexity and uniform
Fréchet differentiability of (X™*, || y.)), Proposition 2.26.(iv).b) applied to j, and j;_‘, and the
fact |21, Thm. 3.9] that (reflexivity, strict convexity, and Radon—Riesz—Shmul’yan property of
(X, -] x)) implies Fréchet differentiability of (X*, |- x«)-

0

Proposition 3.32. Let (X, |-|y) be a Banach space, let B €]0,1[, let T : X — 2% be mazimally
monotone, let f € D(X, || x), let g: X =] —00,00] satisfy go jo, ,_, € T(X*, || x+) for B € [§,1], let
A €]0,00[ and r €]1,2]. Then:

7
(i) if B €10, 3] and (X, || y) is %—um’formly convex and uniformly Fréchet differentiable, then ﬁs/\;l’ﬁ

D‘I}WI’B . . .
and }“Srox)\ 7 are single-valued and uniformly continuous on bounded subsets of X ;
(it) if B €]0,1] and (X,|]|y) is %—uniformly convex and r-uniformly Fréchet differentiable, then

T Dy
f?s/\;l’ﬁ and ﬁrox/\ fm’ﬁ are single-valued and (r — 1)$—Lz’pschitszélder continuous on X ;

(1i3) if B € [%,1[ and (X, |-|x) is uniformly convex and %—um’formly Fréchet differentiable, then

v Dy
r@/\;l’ﬁ is single-valued and uniformly continuous on bounded subsets of X*, while pro%/\ gwl’ﬁ is
single-valued and uniformly continuous on bounded subsets of X ;

(iv) if B € [3,1] and (X, || y) is =5 -uniformly convez and %-um’formly Fréchet differentiable, then

v
r‘e%)\;l’ﬁ 1s single-valued and (%)Q-Lipschitk}l(jldw continuous on bounded subsets of X*,

D
while proz)\ jwl’ﬁ 15 single-valued and (%)Q—Lipschitszlélder continuous on bounded sub-
sets of X.

Proof. (i) By [290, Ex. 6.7], if (X,|-|y) is Gateaux differentiable and %—uniformly convex, then
(’DG\I/%, 5 T AT)™" is single-valued and 7 b 5-Lipschitz-Holder continuous on X. Combining this

with Proposition 2.26.(v).b) gives the result for ﬁsijfl’ﬁ . The result for mfjm,a follows in the
same way as in Proposition 3.8. (Equivalently, the same conclusion follows from Proposition 3.8,
combined with Propositions 2.26.(v).b) and 2.26.(vii).b).)

(ii) Follows from the proof of (i), Proposition 2.26.(viii).c), and the fact that the composition of
Lipschitz—Holder continuous maps has the exponent given by the multiplication of the exponents
of the composite maps.
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(iii) From Proposition 2.18.(i), we obtain

Yo, 5

‘Ij . . _
tedy 1 = gy 5 0168y 0 (G ,) (143)

7
The result for @A;I’ﬁ follows from combining (i) with Propositions 2.26.(vi).c) and 2.26.(v).b),
and with the fact that %—uniform Fréchet differentiability of (X, || ) implies its Fréchet differ-

L. D‘I’Apl 8 . .. ..
entiability. The result for proz)\ g follows the same way, using Proposition 2.18.(ii).
(iv) By
C - G - G F : :
(jSol,,B) = (:D \1]901,,8) =9 ((\1]901,,8) ) = ]?@1,13)_‘ :j;I,lfﬁ’ (144)
(143) gives

0 351 (145)

Ty, N
B s ©1,8
rFng =Jp18° fg,\T
L__uniform Fréchet

By [231, p. 63 (Vol. 2)], %—uniform convexity of (X, |-|y) is equivalent with —

differentiability of (X*, || y.) Vv €]0,2]. By [196, Cor. 2.35|, if a Banach space (X, ||y) is
s-uniformly Fréchet differentiable, s €]1,2],20 and w €]1, 00[, then 11, 18 single-valued and
min{w — 1, s — 1}-Lipschitz—Holder continuous on bounded subsets of X. Setting 1 — 8 = w for
B e [%, 1] gives w € [2, oo, hence min{ﬁ —Lr—1}=r—1. Combining this with (ii) and with

Proposition 2.26.(viii).c), we obtain that the map (145) is 12 (1 By — 1)) (r — 1)-Lipschitz—

D
Hélder continuous on X*. The result for pr()%)\ Z”ﬁ follows completely analogously.
O

Proposition 3.33. Let (X, | HX) be a Banach space, p €]0,1[, r €]1,2], @ # K C X. Then:
(i) if 3 €]0,5], (X, |]y) is 5—umf0rmly convex and uniformly Fréchet differentiable, and K is convex

and closed, then % s uniformly continuous on bounded subsets of X ;
(it) if B €]0,1], (X,]- ||X) is B-um‘formly convex and r-uniformly Fréchet differentiable, and K is

v —
convex and closed, then %K LB s ﬁ(l%ﬁl)-LipschitszO'lder continuous on X ;

(iii) if B € [5,1[, (X, []x) is %—um’formly Fréchet differentiable and uniformly convez, and jo,, ,(K)

Dy
s convex and closed, then % L8 s uniformly continuous on bounded subsets of X ;

(iv) if B € [5,1[, (X,|]x) is f—umformly Fréchet differentiable and '5-uniformly convex, and

D
Jor5(K) is convex and closed, then ?K‘P 'S (1‘%)(7“

bounded subsets of X .

1)2-Lipschitz—Hélder continuous on

Proof.
(i)-(ii) Follows from Propositions 3.32.(i)—(ii) and 2.19.(ii), by setting T = Otk and A = 1.
(iii) Follows from (i), taken together with (72), analogously to the proof of Proposition 3.32.(iii),
using (144), and replacing (145) by

Dy N Dy
Pr ™ @) =35, 0By i 0 den (@) Ve € X. (146)

(iv) Follows from (ii), analogously to the proof of Proposition 3.32.(iv), with the same substitution
as in (iii).

O

Definition 3.34. Let ¢ be a gauge. A Banach space (X, || ) will be called p-uniformly convex
(resp., p-uniformly Fréchet differentiable) iff W, is uniformly convex (resp., uniformly Fréchet
differentiable) on (X, || x)-

26While [196, Cor. 2.35] uses s €]1,00], the limitation to s €]1,2] follows from the fact that there are no s-uniformly
Fréchet differentiable spaces for (s < 1 as well as) s > 2 (cf., e.g., [355, pp. 89| for a proof).
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Corollary 3.35. For any gauge ¢, a Banach space (X, || ) is @-uniformly convez (resp., p-uniformly
Fréchet differentiable) iff (X*, || x«) is @-uniformly Fréchet differentiable (resp., o-uniformly convez).

Proof. Follows directly from Lemma 3.10. O

Proposition 3.36. If (X, |-|y) is reflexive, strictly convex, Gateauz differentiable, ¢ is a gauge, & #
Ky C X is a closed convex cone with a verter at 0 € X, @ # Ko C X, j,(K2) is a closed convex cone
with a vertex at 0 € X*, then

) D
r=jt ‘oaw "o jplw) +

Vee X HgD% g;) Oj(p(x)ﬂxxx* _ 0 (147)
d
an e x y=q3( Ka2))° (y) +¥K2 (148)
y 3510 %2’ “W) B 1) (y)]]XXX* o,

where, for any strictly convex function f and convex closed set C, ‘I}é(:r) = arginf, .- {¥(z — 2)}
Ve € X and ‘:Bé ofBé(az) = ‘,ﬁé(@ Vo € X. Furthermore, if @ # K1 C X (resp., @ # jo(K2) € X*)
is a linear subspace instead of a closed convex cone, then (147) (resp., (148)) holds under replacement
of (-)° with (-)*

Proof. Follows from Propositions 3.11, 2.26.(ii)—(iii), 3.13, and (100). O

Remark 3.37. (i) (123) and (133)—(136) are new. The same holds for the equations in Lemma
3.20. The first implicit appearance of the formula equivalent to a statement of nonnegativity of
Dy, (more precisely, of Dgw) can be found in |27, Thm. 1]. (Nonnegativity of Dy as a condition
characterising monotonicity of 0¥ appeared earlier, in [188, Thm. 3].) For ¥ = ¥, , , and
U=y, ,, B¢€]0,1], an identification of this formula as corresponding to the Vainberg-Brégman

functional, together with a study of %D v was made in [8, §7| and [10, §7].

(ii) Proposition 3.14 clarifies relationships between the Euler-Legendre property and total convexity
of W,: the former is equivalent to (strict convexity and Gateaux differentiability) of (X, || y),
while the latter is implied by the local uniform convexity of (X, |-|y), hence it entails strict con-
vexity and the Radon-Riesz-Shmul’yan property of (X, |-|y) (implication of the latter property
is proved in [345, Prop. (p. 352)]). The lack of Gateaux differentiability in the latter case should
be seen in the context of total convexity being defined by CDE\II (and thus DY) instead of DEV
(and thus Dy). For reflexive (X, || ), V., is totally convex iff (X, || y) is strictly convex and has
the Radon—Riesz—Shmul’yan property [298, Thms. 3.1, 3.3]. An example of a reflexive, strictly
convex, Gateaux differentiable Banach space (X, |-| i) which does not satisfy the Radon-Riesz—
Shmul’yan property, so ¥, is Euler-Legendre but is not totally convex, is provided in [42, Ex.
2.5,

(iii) Let (X,|-|y) be a Banach space, let @ # K C X be convex and closed, and consider a metric

dj.
projection defined as a set-valued map B, Mx . X 520 arg inf ep {ly — 2| x} € K. Then:
a) Py MIX oxists and is unique (i.e. K is a Chebyshév set: P, A X (2) = {x} Vo € X) iff (X, ]| )
is strictly convex and reflexive [203, p. 292]*";

dj.
b) P Ig IX"is norm-to-norm (resp., norm-to-weak) continuous on X iff (X, |-|y) is strictly con-
vex, reflexive, and satisfies the Radon-Riesz-Shmul’yan property [341, Thm. (p. 813)]?
(resp., [255, Thm. 2.16]).

27 An implication from right to left was proved earlier in [118, Lem. (p. 316)]. Two key components of the character-
isation result were: 1) the characterisation of strict convexity in [213, p. 179], implying equivalence of strict convexity

d.
of (X,|]y) and uniqueness of B,/ 1¥; 2) the characterisation of reflexivity in [176, p. 167| [177, Thm. 5|, implying

equivalence of reflexivity of (X, |-|5) and existence of ‘B(Q'HX [278, p. 253]. Cf., e.g., [255, Thm. 2.9] and [256, Thm.
5.1.18, p. 436] for more details.
281142, Thm. 8] proved an implication from right to left, while [341, Thm. (p. 813)] established equivalence of norm-

d.
to-norm continuity of &]3K” X with (X, ]| x) being strictly convex and having the Efimov—Stechkin property (cf. also
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Proposition 3.17.(i)—(ii) (resp., Proposition 3.27) can be seen as a Vainberg-Brégman analogue
of implication from right to left in a) (resp., b)). Furthermore, Proposition 3.33 provides a
Vainberg-Brégman analogue of the facts:

d.
c) if (X, |-|x) is uniformly convex, then 3 Ig IX" are uniformly continuous on bounded subsets
of X [276, Thm. 4.1]%;

d) if (X, |-]) is %—uniformly convex, with 8 €]0, 3], then ‘Bﬁ’"x are [-Lipschitz-Holder con-
tinuous on bounded neighbourhoods of K [2, Thm. 5.7];
1

e) if (X, ]-|y) is %—uniformly convex and r-uniformly Fréchet differentiable, with 8 €10, 5] and

r €]1,2], then ‘Bﬁ”x are r3-Lipschitz—Ho6lder continuous on bounded neighbourhoods of K
[2, Thm. 5.8].
In general, the results on behaviour of Dy -projections (existence and uniqueness, norm-to-norm
continuity, uniform continuity, Lipschitz—Holder continuity) require stronger sufficient conditions
on ||y than those which are sufficient for the corresponding properties of metric projections. In
all of these cases the additional strengthening guarantees a suitable differentiability of ¥, (or its
Mandelbrojt—Fenchel dual), which is equivalent with a suitable continuity of j, (or, respectively,
7o),
(iv) The characterisation results (iii).a) and (iii).b), considered in parallel to the characterisation
provided by Proposition 3.14, leads us to ask:

1) are the conditions for K being left Dy -Chebyshév (resp., for norm-to-norm continuity of
%?q’”), imposed in Proposition 3.17 (resp., Proposition 3.27.(i)), not only sufficient but
also necessary?

Additionally, a comparison of (iii).a) and (iii).b) with (iii).c), as well as a comparison of (iii).c)
and Proposition 3.33.(i)—(ii) with (iii).d)—(iii).e), in the context of Proposition 2.26, leads us to
ask: 4

2) does uniform continuity of ;. '¥ on bounded subsets of (X, || ) imply (and, thus, char-
acterise) uniform convexity of (X, |-| x)7;

3) do the results d)—e) hold, with the same values of parameters, globally (i.e. for the Lipschitz—

dj.
Holder continuity of ﬁlﬁ IX"on bounded subsets of (X, || x))?
(v) For any Gateaux differentiable (X, |-|y), 8 €]0,1[, and a €]0, 00[, (104) gives us a special case
of (123),

D, ,(0,y) = (Bl21" + (1 = A = IV [0, 5@k ) Yoy e X (149)

The formula (149) is a tiny generalisation of Dy, 5 For some discussion of the properties of

Wy, 5 see [175, p. 616].
(vi) Proposition 3.14 provides a generalisation of [40, Lem. 6.2]. The latter is recovered for ¢ = ¢ g.

1-2
For any Gateaux differentiable (X, |-| ), (104) gives gives @G\I/gow (z) = |z % j(z) (cf. [234]).
The corresponding Vainberg—Brégman functional appeared implicitly in [358, p. 68|, and was

explicitly discussed, together with a study of gi%l’ﬂ for nonempty, closed, convex K C X, in
[8, pp. 14-15] and [10, §7|, as well as in [312, 313, 314]. For any (X, |-|y) which is reflexive,
strictly convex, and has the Radon-Riesz—Shmul’yan property, total convexity of ¥ follows
directly from [298, Thm. 3.1].

©1,8

[274, Thm. (p. 459), p. 466] for an earlier, and equivalent, characterisation result). By [320, Cor. 3] (cf. also [340, Prop.
2.5]), this is equivalent to say that (X, |-|) is strictly convex, reflexive, and has the Radon-Riesz—Shmul’yan property.
(The claim of a counterexample for this characterisation, stated in [216, Thm. 2.1], has been shown [125, §5] to contain

an error, invalidating this claim. On the other hand, the claim of characterisation of norm-to-norm continuity of ’Bj(”'nx
by (reflexivity and strict convexity) of (X, |-|y), stated in [243, Thm. E], is not equipped with any proof, and refers to
a paper that has never been published or cited elsewhere.)

*For uniformly convex and uniformly Fréchet differentiable (X, || ) this implication has been obtained earlier in
[354, Thm. 2.(ii)] [16, Thm. 3.1, Rem. 3.2] [9, Thm. 3.1, Rem. 3.4|. For uniformly convex (resp., uniformly convex and

uniformly Fréchet differentiable) (X, ||y ) the implication of uniform continuity of ‘ﬁﬁ'ux on bounded neighbourhoods
of K has been obtained earlier in [49, Lem. 2.5] (resp., [351, Thm. 4]).
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(vii)

(viii)

Proposition 3.27.(i) is a generalisation of [298, Cor. 4.4]. The latter is recovered for ¢ = ¢33
(for a Gateaux differentiable (X, || ), the corresponding Dy, , was discussed in [14, 88]). The
use of Proposition 3.5.(i) (resp., 3.5.(iii)) in the proof of Proposition 3.27.(i) (resp., 3.27.(ii)),
instead of Proposition 3.5.(ii) (resp., 3.5.(iv)) is due to their larger generality in the ¥ = V¥,
case. More precisely, since 3.5.(ii) requires ¥, to be totally convex on bounded subsets of X,
and any ¥ € I'(X, || y) is totally convex on bounded subsets of X iff it is uniformly convex
on bounded subsets of X [87, Prop. 4.2|, Proposition 2.26.(vi) implies that (X, |-|y) has to be
uniformly convex. Thus, using Proposition 3.5.(ii) instead of Proposition 3.5.(i) in the proof
would require us to strengthen an assumption of (reflexivity, strict convexity, and the Radon—
Riesz—Shmul’yan property of (X, |-|y)) to uniform convexity. Analogous situation holds for the
Proposition 3.27.(ii).

If o =1and 8 =1, then g, 5(t) =t and Uy, (@) = %”x\@( If (X,|-]y) is Gateaux differen-
tiable, then QG\IJ@IJ/Q = || x®C|-|x = j and we obtain a special case of (149), given by [15, p.
1035] [7, p. 5] [8, §7] [10, §7] (cf. also [362, Def. 1])

2 2 ,
Dy, ,,(@9) = slolx + 3lylx — [2.5@)]xuxs Y2y € X (150)

In general, if (X,[-|y) is not a Hilbert space, then neither left nor right Dy, I/Q—projections
coincide with metric projections (cf. [14, p. 39| for a simple example). If (X, |-|y) is reflexive,

Dy
Gateaux differentiable, strictly convex, and = € X, then: left D\pwl s -projections %K ®1,1/2 ()

onto closed convex sets K are characterised as z € X satisfying variational inequality [10, Prop.
7.c]

[z —y,5(x) =i (D) xxx- 20 Vy € K, (151)
which is a special case of (67); if K C X is left Dy ¢171/2—Chebyshév then K is convex iff it is
weakly closed [242, Cor. 4.2] (cf. Corollary 3.16). See [8, 10, 13| for further properties of left
D‘I’vm/g -projections in this case.

It is quite noticeable that Proposition 3.13 and Corollary 3.15.(iii) provide jointly all three key
convexity properties of W, (i.e. W, being supercoercive, totally convex, and Euler-Legendre)
without assuming reflexivity of (X, |-| y). Additionally, the sum of Proposition 3.13 and Corollary
3.15.(iii) can be considered as a far generalisation of Example 2.2.(vi) from ¥ = ¥, , , and
X = R" to ¥ = ¥, for any gauge ¢ and any Gateaux differentiable, strictly convex, locally
uniformly convex Banach space (X, |-|y). The equation (63) is recovered from (150) by setting
(X, [-lx) = (L1y7 (X, 1), [l ) with purely atomic finite (X, 1), and applying the formula for j

on (Lyy(X, 1), |l /,), which reads [253, p. 132] j(z) = ||x||§/j/”|xyl/7*1sgn(x).

Ifa=1,3=3 and (X,||y) is a Hilbert space (H, (-,-)5), then (\1’501,1/2)]? =V ) = %||||§_[,

2
D, |, = idy with D9V, | (y)(x) = (2,y)y, and (150) turns into [67, p. 1021] [68, §2.1]

2 2 2
Dy, ,(@.y) = 5loly + 5lyly — @y = 5o — yly, Yo,y €. (152)

In consequence, Chebyshév, left Dy . 1/2—Chebyshév, and right Dy . 1/2—Chebyshév subsets of H

coincide, with
D D dy. KCH
BK%LI/Q (y) = 5;{%1’1/2 (y) = ‘B;ﬁ I (y) Vy € H V Chebyshév K C H. (153)

dy.
In particular, for any convex closed K C H, the metric projection B Ig I (y) is characterised as
amap T : H — K satisfying |24, p. 87|

(y—T(x),z —T(x))y <0 V(z,y) € H x K. (154)
If K is affine, then the generalised pythagorean equation (71) turns into

o= ol = o~ @+ @) o vemerxH s
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(xii)

(xiii)

(xiv)

(with ’Blﬁ I given by the bounded linear projection operator Px : H — K if K is a linear
subspace of #H), while the generalised cosine equation (40) turns into

o — 215 =l =yl + Iy — 215, — 2 (& =y, 2 =)y, Va,y,2 € H (156)

(which, for # = R? with (T, y)y = Z?Zl Z;Y;, gives the cartesian version of a planar cosine
theorem of al-Kashani [6]>°). On the other hand, left and right strongly quasinonexpansive
operators with respect to Wy, , on M do not coincide, in general, with the strongly |1l
nonexpansive operators of [79, p. 459|, although for H = R” the latter are the subset of the
former [247, Rem. 3.

While there is no general notion of an angle between two elements of a general Banach space, the
relationship between (40) and (156) allows us to introduce a ¥-angle between nonzero vectors
x—y,z—y € X, for any reflexive and Gateaux differentiable Banach space (X, || y):

[» — 5, 20(z) - EGW(y)]]XXX*>

(157)
2|z —ylxlz —ylx

Ly(x —y,z —y) := arccos (
Not much is known so far about weak sequential continuity of j, = @G‘I&P for arbitrary gauge ¢
and arbitrary Banach spaces. It is known to hold for ¢ = ¢ 3 on sequence spaces (I /g, |-[; /5)

with 8 €]0,1[ [75, Lem. 5|, and on arbitrary infinite-dimensional Hilbert spaces iff § = % [352,
Prop. 3.3]. On the other hand, it is known that j, is not weakly sequentially continuous for
arbitrary ¢ on (L1, (X, p), [],/,) spaces with vy €]0, 1[\{3} and nonatomic finite (X, p) [273,
Lem. 3, §5] (cf. [75, p. 268] for v = I case), and for ¢(t) = ¢ on (L1/7: I-l1 /) spaces for
p €]0, 1[\{%} [352, Prop. 3.2]. These are quite severe limitations, appearing already at the range
of elementary model spaces. By this reason, in Propositions 3.6.(iv) and 3.28 we have omitted the
case a) of Proposition 2.16.(iv) in favour of case b), which is much better behaved geometrically,
and (as we will show in Section 4) admits a direct application to a range of noncommutative
model spaces. In the broader perspective, dependence of weak sequential continuity of CDG\I’@ on
the specific choice of ¢ makes it a property of a different character from all other properties of
U, and @G\I&p used in this paper for the case I-IV models. So, even if it would be available for
a larger class of models, relying on it would break the invariance of our framework with respect
to the choice of a gauge, and this would be a structurally undesirable feature. Nevertheless, in
face of the relationships in Proposition 2.26, it is tempting to ask: what kind of differentiability
property of ¥, (and of (X, |-|y)) is equivalent to weak sequential continuity of j,?

Corollary 3.35 provides a generalisation of the duality between %—uniformly convex and —

1=y

uniformly Fréchet differentiable Banach spaces, v := % €10, 1[, as exhibited in Proposition
2.26.(vii)-(viil) (and originally stated in [231, p. 63 (Vol. 2)|; the case ¥ = 3 goes back to
[230, Lem. 4]). Proposition 2.26.(viii).b) leads us to ask: is it possible to identify a specific type
of uniform continuity of j, which would be equivalent to p-uniform Fréchet differentiability of
(X, Il x)? And, if yes, then is it possible to use it to generalise Proposition 3.33 by replacing
1,3 by any gauge ¢, together with replacing %—uniform convexity (resp., %-uniform Fréchet dif-
ferentiability) by y-uniform convexity (resp., p-uniform Fréchet differentiability)? An analogous
question of an extension rises with respect to [324, Thm. 5| (=[195, Thms. 1, 2|), which states
that r-uniform convexity (resp., r-uniform Fréchet differentiability) of a Banach space (X, || y)
is equivalent with (X, |-|y) having a strong type (resp., strong cotype) r, as defined in [324,
Def. 2| (=[195, Rems. 2.(iii), 3.(iii)]). Is it possible to define the corresponding notions of a
strong @-type (resp., strong p-cotype), which would be equivalent to ¢-uniform convexity (resp.,
p-uniform Fréchet differentiability)?

The special case of Proposition 3.36, for ¢(t) = ¢ and %g‘f“’, has been obtained in [11, Thm.
24| (cf. [12, Thm. 2.13] for its nontrivial consequence). For ¢(t) =t and (X, |-| ) given by a
Hilbert space, this result has been obtained in [259, Prop. 1].

30More precisely, al-Kashani states ¢ = /(asinf)2 + (b — acos )2, that is equivalent to ¢ = a® + b* — 2abcos 6 via
(sin@)? + (cos)? = 1. Cf. p. 143 of Russ. transl. or p. 31 of Vol. 2 of Engl. transl.
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(xv)

(xvi)

(xvii)

(xviii)

(xix)

If (X, ]| y) is reflexive and Gateaux differentiable, and ¢ is a gauge, then Vz,y € X

Dy, (2.y) = { iig; + () F (Jp(v)) — (=, YDy Z i 8’ (158)
Wwhere (=l x) (- z) tz#0
(- o), = { OII:JcHX ’ o (159)

and ((z,y)) := (j(y))(x). For any Banach space (X,||y), if z,y € X, then z is said to be
orthogonal to y iff |z + A\y| y > |z|x VA € R [52, p. 169]. If (X, || x) is Gateaux differentiable,
then z is orthogonal to y iff (j(y))(z) = 0 (cf, e.g., [145, Prop. 1.4.4]). Hence, (-, ), can be
seen as a generalised form of orthogonality. (The notation ((-, -)) refers to Lumer’s semi-inner
product (239, Def. 1|, which in the case of Gateaux differentiable (X, || y) is given uniquely by

(3(-))(-)-) In particular, for ¥ = W, the formula (157) turns into

«w—-%z»w—-«w—why»w)

2|z =yl xlz —ylx

Ly, (v —y,z —y) := arccos ( (160)
Corollary 3.21 provides an alternative proof of Corollary 3.15.(i). Proposition 3.13 (resp., 3.14;
3.17) is a special case of Proposition 3.22.(iii) (resp., 3.23; 3.24). We have separated these
propositions in order to illustrate the differences showing up under generalisation from gauges
to quasigauges. In principle, provided a quasigauge generalisation of Propositions 2.26.(iv) and
2.26.(xii), one could use Propositions 3.5 and 3.6, combined with Propositions 2.29.(iii)—(iv), to
obtain a quasigauge generalisation of Propositions 3.27 and 3.28. (Even a quasigauge analogue
of Proposition 2.26.(xii) would suffice, although in this case the corresponding generalisation of
Proposition 3.27 would be less general, using local uniform convexity of (X, |-|y) and (X, |-| x)*
instead of their Fréchet differentiability.) For our current purposes it is sufficient to compare
Proposition 3.17 with Proposition 3.24: already at this level, there is a noticeable difference
between conditions required for a quasigauge for either left or right pythagoreanity of Dy, .
Furthermore, in the left case there are three inequivalent conditions available, while in the right
case there are six inequivalent conditions. An inspection of the proofs leading to this result,
together with a look at Propositions 2.29.(iii)—(iv), shows that the conditions imposed on ¢ in
the quasigauge analogues of Propositions 3.27 and 3.28 will not be the same as in Proposition
3.24. Thus, while there is no a priori constraints on the gauge functions used in the Propositions
3.17, 3.27, and 3.28, their quasigauge analogues introduce a substantial split of the assumptions
on ¢ used in each of the corresponding propositions. So, while the properties of case I-IV models
are independent of the choice of a gauge, they are sensitive to the choice of a quasigauge.

In principle, due to Lemma 3.18.(i), given a quasigauge ¢, one can use (lim,_,+;¢(s))" (resp,
(limy_,—; p(s))") instead of ¢V (resp., "), relying on (124) and Lemma 3.20.(i) instead of (125)
(resp., (126)) and (129) (resp., (130)) in Propositions 3.22.(iii), 3.23, and 3.24. However, while
this would make these propositions a bit more general, it would also make them less readable.
If efd(j,) = int(efd(j,)) = efd(¥,) = int(efd(V,)) = int(sup(efd(¢))B(X,|-|y)), then the
assumptions (137) simplify, since their first and third line become obsolete. However, in a general
case, we know only that int(sup(efd(y))B(X, || x)) C efd(¥,) C cl(int(sup(efd(v))B(X, || x)))
[365, p. 369].

The result in Proposition 3.33.(i) was obtained earlier, by a different method, in [314, Prop.
6.27.(a)]. By [314, Eqn. (6.100)|, under conditions on (X, |-| y) given in 3.33.(i), 3IA > 0Vz,y € X

Dy Dy
[, @) -

< (max {[ B O Bl ol o) = s l)
(161)

D
Assuming boundedness of K, boundedness of domain ) C X of § K%w , r-uniform Fréchet
differentiability of (X, || y), and using Proposition 2.26.(viii).c), we get

@w

X

r—1
< A — g3V,
X

D D
N> 0wy € Q [0 @ - 5 )] (162)
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Hence, for bounded K, and under all assumptions of Proposition 3.33.(i), this gives 8(r — 1)-

Lipschitz—Holder continuity of %g\%l’ﬂ on bounded subsets of X. In comparison with Proposi-
tion 3.33.(ii), this conclusion is weaker regarding the value of the exponent of Lipschitz—Hélder
continuity (since 1 > %(r —1) > B(r — 1)) and regarding the assumptions on its domain (lim-
itation to bounded subsets of X), while assuming more (boundedness of K). An analogue of a
proof of Proposition 3.33.(iv), using:
a) given a convex and bounded subset U (resp., W) of a Banach space (X1, ||y,) (resp.,
(X2, 'l x,)), and a Banach space (X3, || x, ), if f : U — X3 is s-Lipschitz—Holder continuous,
g : W — X3 is A-Lipschitz—Hoélder continuous, f(U) C W, and s, A €]0,1], then go f is
sA-Lipschitz—Holder continuous [122, Thm. 4.3, Prop. 5.2];
b) by definition of j,, it maps bounded sets to bounded sets (cf. the proof of Proposition 3.13),

D
gives %(r — 1)2-Lipschitz-Holder continuity of 5 K%LB on bounded and convex subsets of

X, under the assumptions of Proposition 3.33.(iv), equipped with an additional requirement that
Jgr,5(K) is bounded. This conclusion is weaker than Proposition 3.33.(iv).
(xx) The continuity results in Proposition 3.27 cannot be improved using Proposition 3.30, since

hm||$Hx—>00 LK(:L‘) 75 Q.

3.3 Dy

Definition 3.38. Given Banach spaces (X, |-|y) and (Y,|-|y), Z CY, ¥ € TS (X, ||x), let £ : Z —
0(Z) C X be a bijection such that £(Z) Nint(efd(V)) # &. Then

will be called an extended Vainberg—Brégman functional.

Definition 3.39. Given Banach spaces (X, || y) and (Y, ||y ), @ # Z CY, @ # K C X, a bijection
(:Z = 02Z) C X with K C #(Z), and a function T : K — ((Z), the function T* := ("' oT ol :
0N(K) — Z will be called an (-operator.

Definition 3.40. Under assumptions on (£,V) as in Definition 3.38, and with @ # C C Z,
(i) C will be called left (resp., right) Dy y-Chebyshév iff {(C) is left (resp., right) Dg-Chebyshév,
with the corresponding left (resp., right) Dy y-projections given by

FTort (¢) =0 LY 0 () Vo € £ (int(efd(V)) N €(2)) (164)
(resp., Bt () = € o PL2 0 0() Vo € (7 (int(efd(V)) N E(Z)) ); (165)

(i1) Dy will be called left (resp., right) pythagorean on C iff Dy is left (resp., right) pythagorean
on L(C);

(i4i) C will be called (-convex (resp., (-closed; (-affine; (-bounded; DT o (-convex; DV o (-
closed; DG o (-affine) iff ((C) is convex (resp., closed; affine; bounded; DV -convex; DEV-
closed; DS W-affine);

(iv) %g“’ (resp., ?g“’) will be called zone consistent iff £(C) C int(efd(¥)) and %Zé) (resp.,
%Zé) ) is zone consistent;

(v) Vol :Z —]—o00,00] and ¥F 0 DGW o ¢ : ¢ '(int(efd(¥)) N £(Z)) —] — oo, 00] will be called
(¢, ¥)-potentials;

(vi) the topology on Z induced by £ (resp., DEW o £) from the norm topology of (X,|-|x) (resp.,
(X*, |- x+)) will be called £-topology (resp., DGV o (-topology);

(vii) An C-operator T : C' — £ (int(efd(W)) N€(Z)) will be called left (resp., right) strongly quasi-
nonexpansive with respect to (¢, V) and C iff £(C) C int(efd(V)) and T is left (resp., right)
strongly quasinonexpansive with respect to W and £(C); the set of all l-operators which are left

(resp., right) strongly quasinonezpansive with respect to (¢, ) and C' will be denoted LSQ(¢, ¥, C)
(resp., RSQ((, ¥, C) );
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(viii) the set LSQ(L, ¥, C) (resp., RSQ(¢, ¥, C)) will be called composable iff LSQ(V, £(C)) (resp.,

RSQ(¥,¢(C))) is composable;

(iz) %g“’ (resp., ?g“’ will be called adapted iff %g‘l’ (resp., ag‘l’) 1s adapted;

(z) an £-operator T : C — £7'(int(efd(¥)) N £(Z)) will be called completely nonexpansive with
respect to (£, ) and C iff £(C) C int(efd(¥)) and T is completely nonexpansive with respect to
U and £(C); the set of all L-operators which are completely nonexpansive with respect to (¢, V)
and C will be denoted CN(¢,¥,C);

(xi) if T : 0(Z) — 2X7, graph(T) # @, and X €]0,1], then the left Dy w-resolvent of T is defined as
f?si’;f =/("o ﬁ%’T o/.

Corollary 3.41. If (X,|-|y) and (Y,|-|y) are Banach spaces, ¥ € T¢(X,|-|y), @ #C C Z CY,
0:7Z = UZ) C X is a bijection such that £(Z) Nint(efd(V)) # &, then:
(i) if Dy is an information on £(Z), then Dy tis an information on Z;
(1t) C is (-closed iff it is closed in the topology induced by £ from the norm topology of (X, |-|x);
(iii) if (X, || x) reflexive, C is L-closed and {-convex, then:
1) if any of the following (generally, inequivalent) conditions holds:
a) U is totally convex on efd(V), ¢(C) C int(efd(V)); or
b) ¥ is strictly convex on efd(V) and supercoercive, £(C) Nint(efd(V)) # &;
c) ¥ is Euler—Legendre, £(C) Nint(efd(¥)) # @,
then C 1is left Dy w-Chebyshév and Dy is left pythagorean on C;
2) if (1).c) holds) or (1).a) or 1).b) holds, and ¢(C) C int(efd(V))), then %g” is zone
consistent;
3) if any of 1).a)~1).c) holds, then Dy is an information on Z;
4) if 1).c) holds, then Dgcyopyr is an information on Z;
5) if any of 1).a)-1).c) holds, and C' is (-affine, then

Dia (6. T2 (6)) + Dyw (T2 (8),9) = Dyu(0 ) ¥(6,) € € x £ (it (efd(0)) N £(2)):
(166)
6) if £(C) C int(efd(V)), and ¥ is Fréchet differentiable on int(efd(¥)), totally con-
vex on efd(V), and supercoercive, then %g“’ 1s L-topology-to-£-topology continuous
on ¢ '(int(efd(¥)) N €(Z)), while infger{Dew(p, )} is continuous in L-topology on
0 (int(efd (W) N 4(2));
() if (X,|]x) is reflezive, C is DGV o ¢-closed and DV o L-convez, £(C) C int(efd(V)), UF s
Gateauz differentiable on & # DS (int(efd(¥))) C int(efd(UF)), then:
1) if any of the following (generally, inequivalent) conditions holds:
a) UF is totally convex on efd(VF); or
b) UF is strictly conver on efd(UF) and supercoercive; or
¢) WY is Euler-Legendre,
then C' is right Dy y-Chebyshév and Dy y is right pythagorean on C';
2) if any of 1).a)-1).c) holds, then 33“’ is zone consistent;
8) if 1).c) holds, then Dy g and Dycyeppr are informations on C;
4) if any of 1).a)-1).c) holds, and C is DCW o (-affine, then

D D s
Deu(9,9) = Dow (6. B (9)) + Do (B (9),9) V(.) € € (int(efd()) N(Z)) x C:
(167)
5) if UF is totally convex on efd(WUF), Fréchet differentiable on int(efd(¥F)), and supercoercive,
then %gm’ is {-topology-to-£-topology continuous on £~ (int(efd(¥)) N 4(Z));
(v) if € is a norm-to-norm homeomorphism, then:
1) C-closed sets in (Y, |-|y) coincide with closed sets;

2) result in (iii).6) is strengthened to norm-to-norm continuity of %g“’ onto closed {-convex
C, and continuity of infycc{Dyw (¢, -)} in the norm topology;

8) if W is Fréchet differentiable, then DSV o (-closed sets in (Y, |-|y) coincide with closed sets;

4) if U is Fréchet differentiable, then the result in (iv).5) is strengthened to norm-to-norm

continuity of %g“' onto DEW o -conver set C, closed in the norm topology of (Y, | |y);
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(vi) if (X, || x) is reflexive, ¥ : X — R is uniformly Fréchet differentiable on bounded subsets of X,
and UF¥ is supercoercive, then:
1) if any of the following (generally, inequivalent) condition holds:
a) ¥ is totally convexr on X ; or
b) W is totally convex on bounded subsets of X and supercoercive,
then LSQ(¢, ¥, C) is composable;
2) if any of the following (generally, inequivalent) condition holds:
a) ¥ is totally convex on bounded subsets of X; or
b) U is Buler-Legendre and supercoercive, WY is (totally convex and uniformly Fréchet
differentiable) on bounded subsets of efd(UF) = X*,
then RSQ(¢, ¥, C) is composable;
3) if ¥ is FEuler—Legendre, and C' is (-convezr and (-closed, then %g” is adapted;
4) if U is supercoercive and Euler-Legendre, and V¥ is uniformly Fréchet differentiable on
bounded subsets of int(efd(V¥)) # @, then 32“’ is adapted for any DCVol-conver DCEWol-
closed C.

Proof. Follows from Definition 3.40 applied to Propositions 3.1, 3.5, and 3.6. O

Corollary 3.42. Let (Y, ||y ) be a Banach space, (X, |-|y) a reflexive, Gateauz differentiable, strictly
convexr Banach space, ¢ a gauge, @ #C C Z CY 0 :7Z — UZ) C X a bijection. Then:
(i) Dyw, and Dycy,orur are informations on Z;
(ii) if C is L-convex and {-closed, then C is left Dy g, -Chebyshév, Dyy,, is left pythagorean on C,
gDe,\% .
and C are zone consistent;
(iii) if C is j,ol-convex and j,ol-closed, then C is right Dy, -Chebyshév, Dy, is right pythagorean
Dyw .
on C, and %C ¥ are zone consistent;
() if (X, || x) is Fréchet differentiable and has the Radon—Riesz—Shmul’yan property, then:

1) if C is L-convex and (-closed, then %gg’% is £-topology-to-f-topology continuous on Z, while
infyec{Dew, (¢, - )} is continuous in £-topology on Z;
2) if C is j, o L-convex and j, o £-closed, then {-topology coincides with ZDG\IJW o (-topology (so,
C' is l-closed), and ?gﬁ% is £-topology-to-L-topology continuous;
(v) if (X, || x) is uniformly Fréchet differentiable and strictly convex, and C' is £-convex and (-closed,
Dyw, .
then 50 ¥ is adapted;
(vi) if (X, || x) is uniformly Fréchet differentiable, strictly convex, and has the Radon—Riesz—Shmulyan
property, then the sets LSQ(¢, ¥, C) and RSQ(L, ¥, C) are composable;
(vii) if (X,|-|x) is uniformly Fréchet differentiable and uniformly convex, and if C is j, o £-convex
Jo o L-closed, then g“’ 1s adapted;
(viti) if £ is norm-to-norm homeomorphism, then {-topological closure and continuity in (ii)—(iv) and
(vii) coincide, respectively, with closure and continuity in the norm topology of (Y, |-|y ).

Proof. Follows from Definition 3.40 applied to Propositions 3.14, 3.17, 3.27, 3.28. OJ

3.4 Categories of D, g-projections and strongly D, g-quasinonexpansive maps

Definition 3.43. Let (X, |-|y) and (Y,|-|y) be Banach spaces, let (X, || ) be reflexive, @ # W C
ZCY,VeTSX,||x), £:Z— int(efd(¥)) be a bijection. Consider two conditions:
(L) W is totally convex on efd(¥) or Euler—Legendre or (strictly convex on efd(V) and supercoercive);
(R) UF is Gateaus differentiable on @ # DSV (int(efd(V))) C int(efd(TF)) and (totally convex on
efd(UF) or Buler-Legendre or (strictly convex on efd(¥) and supercoercive)).
Then:

(i) if (L) holds, then 1Cvx(¢, ¥, W) is a category with: objects given by £-closed {-convex subsets of
W, including @; morphisms given by left Dy y-projections onto £-closed {-convex subsets of these

subsets (i.e. Homycyy(rww)(-,C) consists of %g“’ with @ wvarying over all £-closed £-convex
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subsets of C), including @ (resulting in empty arrows, "@" € Homycyx(e,w,w)(C1, Ca)); identity
morphisms given by %g‘l’ (C) = C; composition of morphisms given by

O oSBT = Pt (168)
with composition of any morphism with empty arrow resulting in an empty arrow;

(i) if (L) holds, then 1A££(¢, U, W) is a subcategory of 1Cvx(¢, W, W) obtained by restriction from
£-closed £-convex to £-closed £-affine subsets of W ;

(iii) if (L) holds, then 1CvxS(£, U, W) (resp., 1Af£S(¢, W, W)) is a subcategory of 1Cvx(¢, ¥, W)
(resp., LAf£(0, U, W)) obtained by restriction of composition (168) by the condition Cy C Cy
(so the composition of morphisms not satisfying this condition results in '—Q—');

(i) if (L) holds, then 1Cvx({,¥) (resp., lAff(Z U); 1Cvx=((,W); 1Af£S(L,W)) is defined as
1Cvx (6, U, W) (resp., 1Af£(L, ¥, W); 1Cvx< (¢, ¥ W) 1A££S (0,0, W) with W = Z;

(v) if (L) holds, then 1Cvx(¥) (resp., lAff(\If); 1CvxS(W); 1A££S(W)) is a category defined as
1Cvx (¢, V) (resp., LAf£(¢,V); 1CvxS(4, ¥); 1A££S(0,W)) with (X, |-|yx) = (Y,|-]y) and Z =
int(efd(¥));

(vi) if (R) holds, then TCvx(£, ¥, W) is a category with objects given by DV o (-closed DT o (-
convex subsets of W, including &; morphisms given by right Dy g -projections onto DCWol-closed

DCW o l-conver subsets of these subsets, including &; identity morphisms given by BD‘I’ =C
composition of morphisms given by
ng, Dew G F Dyr Dyr G .
? =0 oD e ( (6wol)(C) © (@Wwacl)) 0D Wol; (169)

(vii) if (R) holds, then TAff((, W), tCvx=((, W), TAff<((, W), rCvx(¥), TAff(¥), rCvx=(¥),

TAf£S(V) are categories defined analogously as in (ii)-(v), with 1Cvx (¢, ¥) replaced by TCvx (£, ¥);

(viii) CN(L, W, W) is a category with subsets of W as objects, elements of CN(¢, W, W) as morphisms,

identity maps of subsets as identity morphisms, and composition of morphisms given by compo-
sition of elements in CN(¢, U, W); CN(¢, V) will denote CN(¢, U, W) for W = Z;

(iz) for any set V', let Pow(V') denote the category of all subsets of V' as objects, with functions between
them as morphisms, and composition of functions as composition of morphisms.

Definition 3.44. Let (X, |-|y) and (Y,|-|y) be Banach spaces, let (X,|-|y) be reflexive, Z C Y,
U elS(X,||y), £: Z — int(efd(¥)) be a bijection. Then:

(i) if (L) and (R) hold, then (-)¥" : 1Cvx(£, ) — £Cvx(, ®) is a functor, acting by C +— oDV o
0(C) on objects C € Ob(1Cvx(¢, 0)), with (@)Y =@, and by T — £ o DCTF 0 ToDSW ol on
morphisms £~ o T o £ € Arr(1Cvx (¢, ¥)), with (’_Q—')‘I’F =g

(ii) if (L) and (R) hold, then (-)¥ : ¥Cvx(¢, U) — 1Cvx (¢, V) is a functor, acting by C — £~ o DETF o
£(C) on objects C € Ob(xCvx (¢, V)), with (@)Y := &, and by T+ £ o DCW o T 0 DEUF 0 ¢ on
morphisms £~ o T o £ € Arr(¥Cvx (¢, V)), with ("27)¥ :="a7;

(#ii) if (L) holds, then Co{f,(-)w : Pow(X) — 1Cvx(W) is a functor, defined by:

1) a map co{f,(-)w : Ob(Pow(X)) — Ob(Pow(X)), assigning to each subset W of X the closure
~ of a convex hull co(-) of W Nint(efd()) m the weak topology of (X, || y) (it coincides
with the norm closure) if co(W N int(efd(¥)))" C int(efd(V)), and assigning @ otherwise;

2) a map co(-) : Arr(Pow(X)) — Arr(Pow(X)), assigning to each function f: Wy — Wy a
map %8“’ : co&,(Wl)w — coI\f,(Wg) , where @Q = co\I,(f(Wl)) , with %S‘I’ = "7 if either
Q=9 or co{f,(Wl)w =g;

(i) if (R) holds, then coR(:) :Pow(X) — TCvx (V) is a functor, defined by:

1) a map co(-) : Ob(Pow(X)) — Ob(Pow(X)), assigning to each subset W of X the set

DEYF (CO (DCY (W) N int(efd(\I/F)))w> (with =" denoting a closure in a weak topology of

(X*, ] x+)) if co(@ET (W) N int(efd(WF)))" C int(efd(UF)), and assigning @ otherwise;
2) a map col(- )w : Arr(Pow(X)) — Arr(Pow(X)), assigning to each function f: Wy — Wy a
map ?8‘1’ co%(Wl)w — co%(Wg)w, where @ := co\I,(f(Wl)) , with %D‘I’ = "7 if either

Q= or COI\%(Wl)w =9;
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— —
(v) cof g () : Pow(Z) — 1Cvx((, ¥) and COE\I,(') : Pow(Z) — zCvx (¢, V) are functors defined analo-
gously to the corresponding functors in (iii)—(iv), by the bijectivity of ¢;

— 7@
(vi) coz’\%(-) : Pow(Z) — 1CvxS(4, ) (resp., coé\I, () : Pow(Z) — tCvxS(¢,W)) is defined as a
restriction of the functor coeqj(-) (resp., cog‘l,(-) ) by the additional condition %w’(@) ="o7if

7 7£
Q & cofy (W) (resp, F it =727 if Q £ coffy (W) );
(vii) if (L) (resp.,(R)) holds, then FrgSet&\I, : 1Cvx (¢, ¥) — Pow(Z) (resp., FrgSetZ\I, : rCvx (¢, U) —
Pow(Z)) denotes a forgetful functor, forgetting all propertzes of domain category, except their
structure as sets and functions between them; FrgSetg (resp., FrgSetw) will denote a restric-

tion of FrgSetgq, (resp., FrgSety Ry) to the category 1CvxS (£, W) (resp., TCvx< (L, ¥)).

Corollary 3.45. (i) Functors (-)¥ and ()‘I’F establish equivalence of categories 1Cvx({,¥) and
rCvx((, V).

. o,
(ii) There are the following adjunctions of functors: CO%,\IJ(') - FrgSetlE\I,, cozv‘g(.) 4 FrgSetz’\%,
I —_—
co?\l,() —| FrgSetE\I,, COZ(I,Q(J —| I*“rgSet?{I,g

Proof. (i) Follows from (169).
(ii) Follows from the definition of the forgetful functor.
O

Proposition 3.46. Let [0,00] denote a category consisting of one object, o, with morphisms given by
the elements of the set R* U {oco}, and their composition defined by addition (219, p. 140]. Let 2
denote the category consisting of two objects, one arrow between them, and identity arrows on both of
the objects. The category [0,00]? has morphisms of [0,00] as objects, commutative squares in [0, o0]
as morphisms, and commutative compositions of these squares as compositions. Let QQ be a closed
affine subset of a reflexive Banach space (X, ||x), ¥ € TC(X,|-|y) satisfies (L), ¢ € Q, and let
1Aff%(\11) denotes a subcategory of LAf£<(W) with objects restricted to sets C € Ob(LAf£<(W)) such

that @ C C. Then Dy(¢, -) determines a contravariant functor lAff%(\If) — [0,00]? as well as a

family of natural transformations in the category of functors lAffCC—g(\I/) — [0, 00]. Analogous statement

holds for 1Af£S(W) (resp., Dy(d, -)) replaced by 1Af£S(¢, W) (resp., Doy (¢, -)), or by TA££S (V)
(resp., Dy(-,$)), or by TAf£S(0, ) (resp., Dyw(-,¢)) (last two cases require also to replace (L) by

(R))-

Proof. Let K1,Ky, K3, K, L € Ob(lAffc%(\I’)), K C Ky and L C K3. For each ¢ € @), left pythagorean
equation implies commutativity of the diagram

f o ) (170)
’ Dy(PRY (2).)
T Dy (6,F ¥ (x)) T viTK
° [ ]
0 D Dy D (1) [ (4
T Dw(dﬁ,%f‘l’o%i‘l’(az)) T \I'(%L Q%K (@), B k" (2))
[ ] .’
and hence also of
| 171
i ( Dy (6,2) J;) (171)
%W 0 Do (% ’Tw (2),2)

v (6, B2 (z))

Dy %Dq’ gD‘I’ (z), %D‘p )
D\P(¢7§ QED\I’
).
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This defines a contravariant functor Dy(¢, ) : lAff%(\Il) — [0, 00]%.

For any two categories C and D, cartesian closedness of the category Cat of all small categories
(with natural transformations as morphisms) implies that any functor C — D? corresponds to a natural
transformation in DE. O

Definition 3.47. Let (X, |-|y) and (Y,|-|y) be Banach spaces, let (X, |-|y) be reflexive, @ # W C
ZCY,Uel%X,||y), ¢:Z — int(efd(¥)) be a bijection. Then:
(i) if ¥ is LSQ-compositional on £(W), then LSQS,,(V,4(W)) is a category with: objects given by
convex closed subsets of L(W), including @; morphisms given by

L ot : Ko Z K
Homygog, w.eqwy) (K1 K2) = { {T: € LSQ(Y, K1) : Ky Dran(T})} @ Kz C Ky; (172)
composition of morphisms (f : Ko — K3) ¢ (g : K1 — K3) given by
(fog): K1 — Ky : Fix(fog) =Fix(f) NFix(g) # @ a73)
T : otherwise;

identity given by {idx : K — K} € LSQ(V, K);
(ii) LSQS, (¢, Y, W) is a category defined by pulling back LSQ
LSQS

(0. £(W) along £; LSQS,,(¥) (resp.,
S (0,)) is defined as LSQS, (¥, £(W)) (resp., LSQCVX(E,\I/ W)) with W = Z;
(11i) if U is RSQ compositional, then the categories RSQS,, (W, £(W)), RSQS, (¢, ¥, W), RSQS,, (4, ¥),
and RSQS, (V) are defined analogously to (i)-(ii), by replacing LSQ(¥, K) with RSQ(¥, K), and
replacing convex closed subsets of L(W) by DCW-conver DEW-closed subsets of L(W).

Definition 3.48. Let (X, |-|y) and (Y,|-|y) be Banach spaces, let (X,|-|y) be reflexive, Z C Y,
U e TYX, | y), £: Z — int(efd(¥)) be a bijection. Then:
(i) if U is LSQ-compositional and RSQ-compositional, then ()% : LSQS, (¢, ) — BSQS,, (¢, V)

denotes a functor, acting by C — £7"oDCW 0 4(C) on objects C € Ob(LSQCCVX( U)), with
(@)‘I’F =@, and by T +— £ o DCUF 0 DCW 0 £ on morphisms £~ o T o £ € Arr(LSQS,, (4, ¥)),
with ('—E—')‘I’F =g

(i) if U is LSQ-compositional and RSQ—compositional, then ()Y : BSQS, (4, 0) — LSS, (4, W)
denotes a functor, acting by C — 07" o DGTF 6 ¢(C) on objects C € Ob(RSQS,, (4, 1)), with
@)Y =2, and by T — 0o DS o T 0 DCUF 0 ¢ on morphisms £~ o T o £ € Arr(RSQS,, (£, ¥)),
with ('—Q—') =g

(111) if (L) holds, ¥ is LSQ compositional and VY is LSQ-adapted on any convex closed & # K C
int(efd(¥)), then Lg 1 1CvxS (4, W) < LSQS,, (£, V) denotes an embedding functor;

CVX(

(i) if (R) holds, ¥ is RSQ- composztzonal and U is RSQ adapted on any DSV -convexr DCV-closed
& # K Cint(efd(V)), then LZ : TCvxS (4, ) < RSQG,, (¢, V) denotes an embedding functor;

CVX(

(v) if (L) holds and ¥ is LSQ-compositional, then le : LSQS,, (4, ¥) — 1CvxS(4, ¥) denotes a
functor, acting as an identity map on objects, and as an assignment £~ o T o £ — Df(‘;lx(T)) to

each ("' o T ol € Arr(LSQS,, (4, ¥));

vi) 4 olds an is compositiona en Fix} — TCvx© enotes a
R) hold d ¥ is RSQ- itional, then Fi Z\IJ RSQCVX rC £, W) denot
functor, acting as an identity map on objects, and as an asszgnment ('oT ol if’(;’ix(T)) to

each 07" o T o £ € Arr(RSQS,, (£, 1)).

Proposition 3.49. Let (X, |-|y) and (Y,|-|y) be Banach spaces, let (X, |-|y) be reflexive, Z C Y,
U eTYX, | y), £: Z — int(efd(¥)) be a bijection. Then:

(i) if ¥ is LSQ-compositional, RSQ-compositional, Euler—Legendre, DCW is (uniformly continu-
ous and bounded) on open subsets of int(efd(V)), and DEUF is (uniformly continuous and
bounded) on open subsets of int (efd(UF)), then ()Y and ()‘I’F establish an equivalence of cate-
gories LSQS,, (£, ¥) and RSQS,, (¢, );

CVX CVX
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(i) if (L) holds, ¥ is LSQ—adapted on any convex closed & # K C int(efd (¥ )), and LSQ—compositional,

then there are adjunctions Lg = leé’— and LZ\I, o coiflf( ) - FrgSetZ o lef , with a monad

FIXE\E OL%\I% on 1Cvx=(¢, V), and a comonad cog’qj() oFrgSete’\Ij on 1CvxS (¢, 0);

(iii) if (R) holds, ¥ is RSQ-adapted on any DU -conver DG W-closed @ # K C int(efd(V)), and RSQ-

compositional, then there are adjunctions Le < 4 FlX@ \I,— and LE\I/C ocogqjc( ) A FrgSete v oF1x£\I, ,
7@

with a monad lezq,COL?(Pg on ¥Cvx< (¢, V), and a comonad coéq,c(-) oFrgSete(I,— on ¥Cvx< (L, U);

(i) if (L) and (R) hold, W is LSQ-adapted on any convex closed nonempty subset oflnt(efd( )), RSQ-
adapted on any @G\Il-convex DS V-closed nonempty subset of int(efd(¥)), LSQ-compositional,
and RSQ-compositional, Euler—Legendre, D is (uniformly continuous and bounded) on bounded
subsets of int(efd(¥)), and DV is (uniformly continuous and bounded) on bounded subsets of
int(efd(UF)), then the following diagram holds (with the horizontal arrows denoting adjoint func-
tors, and vertical arrows denoting equivalences of categories):

Pow(Z) L 1CvxS (4, (174)

Proof. (i) Follows from Pr0p081t10n 2.16.(v).

(ii) The adjunction i3 s lee ’\17 follows from Definition 2.23, while the composite adjunction follows
from Corollary 3. 45, (ii). The corresponding monad and comonad are determined by the latter
adjunction.

(iii) Follows from Definition 2.23 and Corollary 3.45.(ii).

(iv) Follows from (i)—(iii).

O

Corollary 3.50. Let (Y,|-|y) be a Banach space, let (X, |-|y) be a uniformly Fréchet differentiable,
strictly convex Banach space with the Radon—Riesz—Shmul’yan property, let Z CY, 0 : Z — int(efd(¥))
be a biyjection, let ¢ be a gauge. Then:

(i) there are adjunctions

L,C
) Lo,
= —_—
Pow(Z) 1 1CvxS(4,U,) i LSQS,, (4, ¥oy) (175)

and

Pow(Z) L 1CvxS (4, 0,,), (176)
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with corresponding monads and comonads, and there are also equivalences

()

rCvx& (L, V) 1CvxS (4, W,,), (177)

RSQCQVX (Ev \IISD) LSchvx
-~
(.)(‘ho)F

(0, ¥,); (178)

(i1) if (X, || x) is uniformly convez, then there is an adjunction

FCvxS(0,U,) L RSQS,, (4, 0,,), (179)

cvx
R,C

FIXA‘I’LP

together with the corresponding monads and comonads.

Proof. Follows from Propositions 3.49 and 3.28. O

Remark 3.51. (i) Regarding Definition 3.43:
a) the restriction to subsets of £7'(int(efd(¥))), together with (L) (resp., (R)), guarantees

D :
“¥ (resp., Po""), via Corollary

composability of ¢ by means of zone consistency of g
3.41.(iii).2) (resp. Corollary 3.41.(iv).2));

b) Cy N Cy = Cy N Cy implies commutativity of ©;

¢) we interpret an empty (resp., identity) arrow as an inference corresponding to overdetermi-
nation (resp., underdetermination) of constraints (cf. [181, p. 35] for a related discussion);

d) the notation rCvx(¢, V) (resp., rAff(¢,¥)) is kept reserved for the category of right Dy -
projections onto ¢-closed and ¢-convex (resp., (-closed and ¢-afine) subsets of Z. An example
of rCvx (W) is provided by [46, p. 192, Def. 3.1, Lem. 3.5]: if n € N, X = R", ¥ is Euler—
Legendre with D9®%W continuous on int(efd(¥)), Dy is jointly convex, Dy (x, -) is strictly
convex on int(efd(¥)) Vo € int(efd(¥)), and efd(¥F) is open, then every convex closed
K C X with K Nint(efd(¥)) # @ is a right Dg-Chebyshév set, with 2% (y) € int(efd(¥))
Yy € int(efd(V)).

(ii) a) The composition rule ¢ for left Dy-projections has a range of well defined computational
meanings. Its quantitative evaluation can be performed by means of an algorithm given in
[42, Rem. 4.5, Alg. 5.1, Cor. 5.2| (valid for any {K; : i € I} with a countable set I and
any Euler-Legendre W that is totally convex3! on bounded subsets of (X, |-|y), hence, in
particular, for any LSQ-adapted ), or by means of [44, Thm. 3.2] |70, Alg. 2.4, Thm.
3.1] [127, Alg. B]| (valid for dim X € N, a finite family {K; : i € {1,...,n},n € N}, and
Euler-Legendre ¥ satisfying some additional conditions). For (X, |-|y) given by the Hilbert
space (H, |]) and ¥y, |, = %”H?{, the former algorithm turns to Haugazeau’s [162, Thm.
3-2| algorithm, while the latter turns to Dykstra’s algorithm [132, p. 838, Thm. 3.2] [160,
§2, Thm. 4.7] (valid for dimH € NURy [64, p. 32, Thm. 2|, and extendable to {K; : i € I}
with a countable set I [171, §2|). Under further restriction of {K; : ¢ € {1,...,n},n € N}

Dy
to a finite family of closed linear subspaces of H, § K, “L12 turn into orthogonal projection

operators Pk, : H — Kj;, while Dykstra’s algorithm turns into Halperin’s theorem [158,
Thm. 1| on strong convergence of a cyclic repetition of Pk, --- P, to Px,n. Ak, , 1-€.

lim H ((PKn L PKm“ﬂKn) gHH —0 Ve H. (180)

k—o0

3142, Rem. 4.5] assumes uniform convexity on bounded subsets of (X, || ), yet it is equivalent with total convexity
on bounded subsets of (X, || ) due to [89, Thm. 2.10].
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(iii)

(iv)

(v)

Dy
. . . . .. £1,1/2
When only two projections are considered, corresponding to a composition %Kl

Dy
§ K> “L1/2 for linear subspaces K1 and Ko of 4, (180) becomes the von Neumann—Kakutani

theorem [344, Thm. 13.7] [192, pp. 42-44].

b) All of above algorithms provide evaluation of the left Dg-projection %2‘11’0”.01{1_ (z), for
i € I where I is a finite or countable set, in terms of a norm convergence of a cyclic
sequence of algorithmic steps to the unique limit point. The differences in definitions of
those algorithms correspond to different ranges of generality and computational effectivity.
In particular, while the direct extension on the von Neumann—Kakutani algorithm to closed
convex sets converges weakly to an element in the nonempty intersection of Ky and Ko
[66, Thm. 1] (Kaczmarz’s algorithm [189, pp. 355-357| is a special case of this extension,
obtained for hyperplanes and dim H € N), the limit point may be not equal to a projection
onto K7 N K>y [106, Fig. 2] and the norm convergence generally does not hold [170, Thm. 1]
(although the latter holds always for dimH € N, and can be guaranteed under additional
conditions for dim#H = Ry [155, Thms. 1, 2|). On the other hand, the direct extension of
Halperin’s theorem to linear projections, of norm equal to 1, onto subspaces of uniformly
convex Banach space is norm convergent and returns a projection, of norm equal to 1, onto
an intersection [79, Thm. 2.1|. For noncyclic algorithms, see [73, 284, 20, 78, 171, 38, 42|.

If (X,]|y) is separable, then 1Aff(W¥) has objects given by the countable sets of polynomial
equations, which can be interpreted as data types, with morphisms between them interpreted
as programs (algorithms). More generally, if (X, || y) is a separable Banach space, then every
convex closed subset C' C X is the intersection of the countable number of its supporting closed
half-spaces [54, Cor. 3|, i.e. it is a (countable) polyhedron, which is the set of solutions for a
countable system of linear inequalities (see [61] for a discussion of the nonseparable case). Hence,
also 1Cvx (W), at least for separable (X, |-|y), can be represented as a category of specific data
types and computations between them.

Functor COL;"\I,(')K (resp., co?w(-)é) can be seen as implementing the following procedure: given the
collection of ‘raw’ data sets and maps between them, produce the category of ¢-convex ¢-closed
(resp., DEW o l-convex DEW o (-closed) information state spaces and inferences between them,
provided by left (resp., right) Dy g-projections. The construction of objects by means of these
functors implements maximum absolute entropy procedure, along the lines of [136, 322, 179, 180,
while the construction of morphisms corresponds to maximum relative entropy procedure, along
the lines of [310, 214, 67, 99, 166|.

a) The equivalence in Corollary 3.45 may seem trivial, since it is a direct consequence of the
definition of rCvx(V¥). Yet, we see it is as a top of an iceberg: currently it is an open
question whether rCvx(V) is a subcategory of rCvx(¥) or is it an independent structure
(see [47, Ex. 7.5] for an example of g‘p with convex D9¥(C) and nonconvex C), the
equivalence between LSQ(W¥) and RSQ(W) classes holds only under special conditions (see
Proposition 2.16.(v)), and there is an important difference between availability of LSQ- vs
RSQ-adaptedness in models (see Propositions 3.6 and 3.28). Furthermore, while %D“'

for Dyy = Dy correspond to Sanov-type theorems [310, Thms. 10-13| [109, Thm. 1] [55,
Thm. 2| (and, more generally, for any Csiszar-Morimoto information Dj [107, p. 86| [265,
p. 329], BPr corresponds to conditional laws of large numbers, cf., e.g., [222, §7]), iD“’
correspond to minimum contrast (e.g., maximum likelihood) estimation [99, pp. 328-330]
[100, §22] [135, §1] [19, p. 93 (Engl. rev. ed.)].
b) The inequality
(y—T(z),x =T (x))y <O0V(z,y) e xC (181)

dy.
characterises [24, p. 87] metric (= Dy, 1/2—) projections, T = ‘I?Cl,l 1" onto convex closed

subsets C' in Hilbert space H. In general, the dichotomy between %D‘I’ and BD‘P can be
seen as Dy-version of the left /right split of (181) under a passage from H to Banach spaces.
More precisely, if (X, |-|y) is a Gateaux differentiable Banach space and @ # C' C X is
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(vi)

(vii)

(viii)

convex and closed, then
[y = T(z),j(x = T(2)xxx+ <0 V(z,y) € X xC (182)
characterises metric projections on C' [124] [307, Thm. (p. 711)| [232, Eqn. (5.11)], while
[z = T(2),j(y = T(@)xxx- <0 V(z,y) € X xC (183)

characterises sunny completely || y-nonexpansive retractions®* on C [292, Lem. 2.7]. On
the other hand, if (X, |-|y) is reflexive, Gateaux differentiable, and strictly convex, then
(151) characterises left Dy, I/Q-projections [10, Prop. 7.c|, while, if (X, |-|y) is reflexive,

U is totally convex on efd(¥) and Euler-Legendre, with efd(¥¥) = X*, then right Dy-
projections are characterised as sunny quasinonexpansive Dy-retractions [245, Cor. 4.6].
c) This suggests us a tentative conjecture that the Euler—Legendre transform in the Vainberg—
Brégman setting, under a suitable choice of categories (e.g., a category of left Dy-projections
and a category of sunny quasinonexpansive right Dyg-retractions), may be an adjunction,
with the above equivalence as a special case (arising as a relationship between reflective and
coreflective subcategory of an above adjunction). Can this conjecture be approached via
the notion of a nucleus of profunctor, as in [348, §5|?
Regarding Proposition 3.46, dependence of Dy(¢,-) on @ can be factored out by reducing con-
siderations to singletons @ = {¢} (understood as 0-dimensional closed affine spaces). In (some)
analogy to [35, Thm. 7] [150, Thm. 4.4], this allows us to state a problem of characterisation of
Dy as a functor (or a natural transformation) Dy (¢, ).
Given any @ € Ob(1Cvx(¥)), Homicyx(w)(-, Q) can be equipped with the structure of a com-
mutative partially ordered monoid (i.e. a monoid (M,n), satisfying xoy = yox Vr,y € M,
and equipped with a partial order < such that x < y = zox < 2oy Vr,y,z € M), with
8;1’ o 8;1’ = 8?’5%&1’ = &I’m%, Sf’ < %gg ;= @1 € @9, and a distinguished zero
object, given by 8‘1’. (Hence, each Homjcyy(s, 0 (-, @) forms a resource theory in the sense of
[149, §3| (the latter generalises, in particular, the approaches of [227] and [126]).) Viewing the
order of extended positive reals as a feature distinct from their composition by addition turns
[0, 00] into a commutative partially ordered monoid (with x 4 0o := 0o =: co + = Yz € [0, 0]).
Thus, each functor Dy (¢,-) can be seen as a morphism Hom (+,Q) — [0,00] inside the

1a££5(0)
category of commutative partially ordered monoids.

The extension from the monoid structure of the composable sets LSQ(¥, K) and RSQ(¥, K) to
the corresponding categories LSQS,, (¥, K) and &SQS, (U, K) (which depends on the associativity
of composition) is possible due to an observation that the proofs of [293, Lems. 1, 2| and [246,
Props. 3.3, 4.4, 6.6, Fact 6.5] do not depend on the action of 7; on the domain K \ ran(7;_1)
for i € {2,...,m}, m € N. Hence, these results hold in larger generality, namely for m-tuples of
maps (17 : K — K, Ty :ran(Ty) — K, Ty :ran(T) — K, ..., Ty, :ran(Ty—1) — K).

The restriction of considerations from the category RSQC%X(K, U) (with objects given by any
nonempty subsets of int(efd(¥))) to RSQS,, (¢, ¥), as exhibited in Definitions 3.47 and 3.48,
Proposition 3.49, and Corollary 3.50, is due to requirement of compatibility with rCvx(¢, ¥),
as well as with the use of Proposition 2.16.(v). Thus, the discussion in (v) applies, mutatis
mutandis, to BSQS,, (£, U).

Under the additional assumptions on ¥ provided by Proposition 3.5, and assuming norm-to-
norm continuity of ¢, we obtain the categories 1Cvxcont (¢, V) and TCvXeont (¢, ¥) of norm-to-
norm continuous left and right D, y-projections, respectively. By Proposition 3.27, if ¥ = ¥,
for a gauge ¢, then the above assumptions on ¥ are equivalent with assuming that (X, |-|y)
is reflexive, strictly convex, Fréchet differentiable, and has the Radon—Riesz—Shmul’yan prop-
erty. Analogously, Corollary 3.9 leads to the category 1Cvxiﬁf}1)(\lf) (resp., vaxii?j/ )((T_l)(\lf)

s2w
r—1

of %5 (resp., )-Lipschitz-Hélder continuous left (resp., right) Dy y-projections on X, while

32Given nonempty subsets K1 and K> of a Banach space (X, || ), a function T : K1 — K> is called: a retraction

iff T'(x

) =x Vz € K [56, §2|; sunny iff T'(z) =y = T(y+t(zr —y)) =y VYo € K1 Vt > 0 [134, p. 19].
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Proposition 3.33 leads to the category 1Cvx€g,_;)/(1_6)(\1'%ﬁ) (resp., vaxiEﬁgziigg;;)/ﬁg (Ve 5))

of ’Bg%gl)(resp., %#)-Lipsehitz—Hélder continuous left (resp., right) Dy o ﬁ-projections on
X (resp., bounded subsets of X).

4 Some models

4.1 X = Ly, space, { = Mazur map, ¥ = ¥,

Proposition 4.1. Let N be a W*-algebra, ¢ a gauge, v €]0,1[, A €]0,00[, @ # C C N, B a ball in
N (e.g., B= BN, ||,)). Then:
(i) Dxe,w, : Ni x Ny = [0,00] is an information on Ni;
(ii) if C is M-convex M -closed, then Dy, v, is left pythagorean on C, %gww’% s zone consistent,
and adapted;
D
(i) if C C NFUB is M -convex closed, then Dy, w, is left pythagorean on C, %C
sistent, adapted, and norm-to-norm continuous on Ny, and infyec{Dxe, w,(y, -)} is continuous
on N*,'
D
(iv) if C is My_-convex My -closed, then Dy, v, is right pythagorean on C, and 30
consistent, and adapted;
D
(v) if C CNFUB is My_-convez closed, then Dy, w, is right pythagorean on C, and @CM”’% is
zone consistent, adapted, and norm-to-norm continuous on Ny ;
(vi) the sets LSQ(M,, ¥, C) and RSQ(M,, ¥, C) are composable;
(vii) the categories 1Cvx=(My, Uy,), TCVXS (Aly, Uy), LSQG, (M, Uy), and RSQG,, (AL, U,) satisfy the
functorial adjunctions and equivalences given by Corollary 3.50.(i)—(ii) with Z = Ny;
(viii) if T : Ly (N) — 2L1/a-0W) s mazimally monotone with 0 € efd(T), then @:\IFI“’ maps Ly /,(N)

on efd(T') and is norm-to-norm continuous on (Ly/y(N), ||y ,,), @;v maps Ly /-y N) on

PV
T 4s zome con-

N~y Uy .
TP 4s zone

Jo(efd(T)) and is norm-to-norm continuous on (Ly/q—)(N), Il /(12)); and ﬁsgf’\y“’ maps N
on £, (efd(T)) and is norm-to-norm continuous on Nj.

Proof. Since int(efd(¥,)) = Ly, (N), we have (Al,)”(int(efd(¥,,))) = N,. Zone consistency of left
and right Dy, w,-projections follows from Proposition 3.17.(iv). For any v €]0,1[, (L1/,(N), ]y ,,)
is uniformly convex (as proved for v €]0,1] in [129, Lem. 5] and for v €]0,1[ in [105, Cor. 2.1]33
for type I NV, for v €]0,1[ in [364, Lems. 3.12, 3.22, p. 262|, for v €]0,1[ in [22, Prop. 8.2, Lem.
9.1] and [207, Thm. 4.2] for countably finite N, for v €]0, 3] in [206, Lem. 3.4.2.(i)] [326, Prop. 31]
(cf. [156, Lem. 1.18|) [165, Lem. 9| and for v €]0,1] in [248, Lems. 8.1, 8.2] [140, Thm. 5.3] for
any N), hence uniformly Fréchet differentiable (due to (Ly/y(N), [-];/,)* = (L1a—N)s 11 1-)
Vv €]0,1[, proved in [311, p. 580] for type I N, [129, Thm. 7| and [356, Thm. 4.2] for semifinite
N, and in [206, Thm. 3.4.3] [165, Thm. 10.(2)] [326, Thm. 32.(2)] (cf. [156, Thm. 1.19]) for
arbitary A). Since uniform convexity entails both strict convexity and the Radon-Riesz-Shmul’yan
property, while uniform Fréchet differentiability entails (Fréchet differentiability and thus) Gateaux
differentiability, ¥, is Euler-Legendre on any (Ly /o (N), [-[, /) by means of Proposition 3.14, and is left
(resp., right) pythagorean on convex closed (resp., @G\Ifw—convex @G\I/@—closed) K = M, (C) by means
of Proposition 3.17 (this proposition implies also zone consistency in (ii) and (iii)). By Proposition
2.26.(iv), Fréchet differentiability of (X, || y) is equivalent with norm-to-norm continuity of j, for any
gauge ¢. Furthermore, for any v €10, 1], £, is a norm-to-norm homeomorphism from the positive cone
of (N, [-];) to the positive cone of (Ly/,(N),[];/,) [208, Thm. 4.2], and a uniform homeomorphism
from any ball in N, [289, Lem. 3.2|. Since A is a multiplicative constant, the same conclusion follows
for Al,. Since @G\If¢—convexity is a convexity in Ly q_-) (N), while j, = @G\IQP is norm-to-norm
continuous, (DCGV, o Al,)-convex (DEW, o AL, )-closed sets in N coincide with Aj_,-convex Mj_.-
closed sets in N,. Since uniform convexity implies also the Radon-Riesz—Shmul’yan property [318,
Thm. 5], norm-to-norm continuity in (iii) and (v) follows from Proposition 3.27. Adaptedness in (ii)

331254, Thm. 2.7] is often cited in this case, however its proof is incorrect (see [140, p. 299]).
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and (v) and composability in (vi), follow from Proposition 3.28, and these imply (vii). (viii) follows
from Proposition 3.31. O

Proposition 4.2. For ¢ = a3, o, A €]0,00[, 8,7 €]0,1[, any W*-algebra N, and ¢, € N,

Dt (00) = 52 (A6 4 1= I = 11} 7o [ugloPuglol ). (s

Proof. By a direct calculation from (149), using [208, Lem. 3.1] and Ly/,(N) > = = j(z) =
”mﬂf/_;/yux\ﬂl/v_l € Lyj(1—y)(N), the latter following from [326, Prop. 24] [165, p. 162] (cf. also
[183, Eqn. (11)]). O
Corollary 4.3. For ¢ = ¢, 5, a, A €]0,00[, 5,7 €]0,1[, any W*-algebra N, and ¢,v € N.:

() D, ., s = Do, ar-1/85"

_ 1
(i) if \=1, B=7, a=~(1—7), then py1—y) () = W(ll_v)tl/v L \I}%(l—w),w( ) = ” Hlﬂ’

Do, (&%) = D1y, (¢,) (185)

R
Pal=1/7 (1) 5

= 16k + 2ol + srgre [ usloPulel' T = Dy(6 0 (136)

(iii) CPTP(N,) C CN(¢,, ¥y,

preserving maps from N, to

), where CPTP(N,) denotes the set of completely positive trace-

Proof. (i) follows directly from (184), while (ii) is a special case of (i). (iii) follows from (ii), combined
with the result [183, (ii) (p. 288)] obtained for D, on N. O

Proposition 4.4. Let N be a W*-algebra, 3,7 €]0,1], @ # K C Ly,,(N), @ # C € BNy, [-],), let
T : Ly, (N) = 28000 and W2 B(Ly (N, |y ) — 2008 PE0 OO0 e magimally mono-
tone, f € I'(L1y(N), [-ly),), let g = Ly (N) — ] =00, 00] satisfy gojp, 5 € L(L1ja—y)N)s Il ya—ry)
for B € [5,1[, and X €]0,1[. Then:

(i) ify € [%, 1[ and B €]0, %], K is convex and closed (resp., C is {-convex and closed), then %?Pm b

D
(resp., % e, ) is uniformly continuous on bounded subsets of L1/, (N) (resp., £-bounded sub-
sets of BN, |-|,)), and A 7 1) -(resp., w - )Lipschitz—Hoélder continuous on Ly /o (N) (resp.,

BN Ih));
(ii) if v €]0,3] and B €]0,7], K is conver and closed (resp., C is y-convex and closed), then

D D

%K\%l ? (resp., % e, ) is uniformly continuous on bounded subsets of Ly, (N) (resp., £,-
bounded subsets of B(N,|-|,)) and ’8 -(resp., { xal 5-)Lipschitz—Hélder continuous on Ly (N)
(resp., BN, [11));

(iii) if v € [3,1] and B € [7,1[, jo, ., (K) is convex and closed (resp., C is (jg, ., o {y)-conver and

D\I’SD Dé’y,\llw

closed), then 3[( Y2 (resp., 30 L) s (122 3 BY2_(resp., v(A2 3 B52_) Lipschitz—Hélder continuous
on bounded subsets of Ly, (N) (resp., £y-bounded subsets of BNy, |-I,));

(iv) ify €10, 5] and B € [5,1[, jo, 5(K) is convex and closed (resp., C is (jy, ,0ly)-convex and closed),

D D
then iK%m (resp., icéw %”3) is (231( 67 )2-(resp., ¥ (5((11 67)) -)Lipschitz—Hdélder continuous

on bounded subsets of Ll/w( ) (resp ~-bounded subsets of B(N,, |- || ));

Dy
v) if v € 5,1 and B €]0, 5], then f—s L8 and prox, . P (resp., f__s Yeis are (resp., 18) single-
2 AT A f AW
valued and umformly contmuous on bounded subsets of Ll/y( ) (resp., £y-bounded subsets of

s as well as single-valued an resp., ipschitz—Hélder continuous on
B, il le-valued and 22— - PO ) Lipschitz-Hld

Ly (N ) (7’6819 BN IHh)):
(vi) if v €]0,3] and B €]0,], then f?s/\T’ and ﬁrox/\ Y2 (resp., ﬁ,\w “Y8) are (resp., is)

single-valued and uniformly continuous on bounded subsets of LI/A/( ) (resp., £y-bounded subsets
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of BN, [-]1)), as well as single-valued and = 5-(resp., 1 B -)Lipschitz—Hdolder continuous on
Ly, (N) (resp., BN, | ]1)); .
(vit) if v € [%, 1[ and B € [7,1], then ﬁA;I’ 18 smgle valued and (12 3 ) -Lipschitz—Holder continuous

on bounded subsets of Ly (1_)(N), and pro % Y2 s single-valued and ( ) -Lipschitz—Holder
continuous on bounded subsets of Ll/v(./\/)

(viii) if v €10 ,5] and 3 € [5, [, then ﬁAT " s single-valued and ((1( B)A)’) -Lipschitz—Hélder continu-

ous on bounded subsets of Ly j(1—)(N), and pro%/\g 7 is single-valued and ((Bl(zf)j))zl/ipschitzf
Hélder continuous on bounded subsets of Ly (N).

Proof. Clarkson inequality for (Ly/,(N), ||y ,,) spaces ([104, Thm. 2| for commutative N, [105, Cor.
2.1| for type I NV, [364, Lems. 3.21, 3.22, p. 262| for semifinite A/, [207, Prop. 5.3] for countably finite
N, [140, Thm. 5.3] for any N) implies: if v €]0, 1], then (L1/y(N), |- l1/,) is %—unlformly convex and

ﬁ—uniformly Fréchet differentiable. Furthermore, if y € [§, 1], then (Lq/,(N), ||, /) is 2-uniformly
convex ([159, Rem. (p. 244)] [190, Equs. (10a)—(10b)] for commutative N, [327, Thm. 2.2] for type TN,
[36, Thm. 1, p. 466] for semifinite AV, [282, Thm. 5.3] for any N'), hence (L1 (N, -]y 1)) is 2-
uniformly Fréchet differentiable. Thus, (Ly/,(N), [-],/,) is max{2, %}—uniformly convex and min{2, %}—
uniformly Fréchet differentiable Vy €]0,1[. Combining this with Proposition 3.33, and with the fact
that ri-uniform convexity (resp., rj-uniform Fréchet differentiability) implies ro-uniform convexity
(resp., ro-uniform Fréchet differentiability) for 2 < r1 < ry < 0o (resp., 1 < ro < 11 < 2) (cf,, e.g.,
[355, Props. 2.1, 2.2.(iii)] for a proof), we obtain the statements for left and right Dy _-projections
on Ly, (N). The corresponding statements for left and right Dy, v -projections follow from Lipschitz
continuity of (¢,)™" on B(Ly/y(N),[];/,) and ~-Lipschitz-Holder continuity of £, on B(N, |-[,), for
any v €]0,1[ [299, Thm. (p. 37)]. (v)—(viii) follows from Proposition 3.32 by an analogous reasoning.

O

Proposition 4.5. Let A be a semifinite JBW-algebra, T a faithful normal semifinite trace on
A, v €]0,1[, A €]0,00[. Then M. is a norm-to-norm homeomorphism between (A, |-|,)" and

(Ll/'y(Aa T)v H”l/'y)Jr

Proof. 1) Consider z € A and a sequence {z, € A} : n € N} such that lim,, o0 |z, — z|; =
0. From inequality |z —y'7||1/7 < |z —yl, Yo,y € AF [173, Prop. 9.(ii)] it follows that
limy, 00 |27 — 27 ”1/7 =0, ie. limy oo [l (2n) — &Y(av)Hl/7 =0

2) The uniform convexity of (Ly/(4,7),[;/,), proved in [172, Thm. V.3.2] for v €]0, 3] and in
[31, Thm. 2.5] and [173, Cors. 12, 13] for v €]0, 1], taken together with the duality [1, Thm.
2.1.10] [172, Thm. V.3.2]

(Ll/’y(AvT)7 ”Hl/'y)* = (Ll/(lf’y)(AvT% ”Hl/(l—’y)) vfy 6]07 1[7 (187)

implies uniform Fréchet differentiability of (Ly/,(A,7),]|;/,), which in turn implies its
Fréchet differentiability. Taking ¢(t) = t/771 (ie. @13 with B = =), corresponding to
[z, jo(2)] = ||x||1/'y and |7, ()| = ||:r3||1/771 gives norm-to-norm con-
WJO\INL, , (Ar)% Ly 1y (Ar) 1/y Je\T) N1 /(1) 1/y

tinuity of

Jo 1 Liy(A,T) 22 =sp0z] 0 sp0 o771 € Ly (4, 7), (188)
with © denoting the nonassociative Jordan product in A. (The above expression for j, can
be explicitly deduced by noticing that the formula Hx”i/_,ylmsgCQ 2|77 1, p. 51] [172, Lem.
V.3.3.2°] (cf. [31, p. 101] and [173, p. 420]) equals to ”DF”:CHIM by [173, Lem. 14|. Then, using
the general formulas j(x) = 107 (J2l%) = |a]xDF|aly and js(2) = laly"¢(l2l ) (@), valid for
any gauge ¢ and any Fréchet differentiable (X, |- y), we obtain j(z) = HmH
jo(x) = sp oz for () = 1771 and (X, |-|x) = (Ly/y (A7), | ], 7).) The latter, taken
together with the nonassociative Rogers-Holder inequality |zy[, < |z|, /7Hy||1 J(1—y) YT,y € Ar
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[1, Lem. 2.1.1.(a)] [172, Lem. V.3.3.1°| (cf. [31, Prop. IV.2.4.(i)] and [173, Lem. 3.(i)]), entails
norm-to-norm continuity of j,(z) o = 2"/ 7 ox = 27 Vo € Ly (A7)
3) Since A is a multiplicative positive constant, the above reasoning follows from ¢, to (.
O

Proposition 4.6. Let A be a semifinite JBW-algebra, T a faithful normal semifinite trace on A. If

v € [3,1], then (Ly/,(A, ), Il1,,) is 2-uniformly convex and %—um’formly Fréchet differentiable.

Proof. ﬁ—uniform convexity and Z-uniform Fréchet differentiability of L, /y(A,T) for v € [%, 1] is
established explicitly in [31, p. 102] and [173, p. 427]. 2-uniform convexity follows from the inequality

[36, Thm. 1, p. 466] [282, Thm. 5.3|

2y
o3, + (2= 1) Wity < (3 (le+wlhl +le = wl}))) " vay € Ly, W), (189)

for any W*-algebra N, taken together with an extension of the Shirshov—Cohn theorem to semifinite
JBW-algebras with weights [31, Rem. (p. 94)]. O

Proposition 4.7. Let A be a semifinite JBW-algebra, T a faithful normal semifinite trace on A, ¢ a
gauge, v €10,1[, A €]0,00[, @ # C C A,. Then:
(i) Dxe,w, : Ax X Ay = [0,00] is an information on A, independent of the choice of T;
(11) the sets LSQ(My, ¥y, C) and RSQ(A,, ¥y, C) are composable;
(ii) if C' is My-conver M-closed, then Dy, w, is left pythagorean on C, and %ng'% 1S zomne
consistent and adapted;

Ay, T

D
(iv) if C is My_-convex Mo -closed, then Dxe, v, is right pythagorean on C, and 50 s zone

consistent and adapted;
D
(v) if C C Af is My-convex closed, then (iit) holds, %C”W“’ is morm-to-norm continuous on A}
(with respect to |-|,), and infyec{Dxe, w,(y, - )} is continuous on A} (with respect to ||, );

(vi) if C C Af is My_-convex closed, then (iv) holds, and %guy,% is norm-to-norm continuous on
Af (with respect to || );
(vii) the categories 1CvxS (M, W), TCvxE(My, Uy,), LSQS,. (A, ¥y), and RSQC%X()\KW, VU.,) satisfy the
functorial adjunctions and equivalences given by Corollary 3.50.(i)—(ii) with Z = Ay;
(viii) if T : Ly/y (A7) — 2L1/0-0AT) s mazimally monotone with 0 € efd(T), then %g“" maps
Ly/y(A,7) on efd(T) and is norm-to-norm continuous on (Ly/(A,7), |ly,,), and r@;’“’ maps
Lij(—) (A7) on jo(efd(T)) and is norm-to-norm continuous on (Ly/(1—~)(A,7), |-l1/0-));

(ix) if T : (Ly/y(A,7)" — 21/ a-ATDT s mazimally monotone with 0 € efd(T), then f?s?’ww
maps AT on £, (efd(T)) and is norm-to-norm continuous on A" (with respect to || ).

Proof. Due to uniform convexity and uniform Fréchet differentiability of (L;,,(4,7), H'||1/7)a v €10, 1],
Proposition 3.14 implies that W, is Euler-Legendre on (Ly/(4,7),[-|;/,), while Proposition 3.17
implies that Dy, is an information. The proof that Dys, v, is left (resp., right) pythagorean on A, -
convex (resp., AMj_--convex) closed sets C' is exactly the same as in the proof of Proposition 4.1. By
32, Cor. 1] (cf. also [33, Cor. 2| with the choice of an N-function Y (¢) = ~|t|'/7), (L1 (A, 71)s 1l 5)
and (Ly/,(4,72),[],,,) are isometrically isomorphic for any two faithful normal semifinite traces 71
and 79 on A, with v €10, 1]. Hence, Dy, v, does not depend on the choice of 7. The rest follows from
Propositions 4.5, [210, Prop. 4.6], 3.27, 3.28, and 3.32 in the same way as in Proposition 4.1. O

Corollary 4.8. Let A be a semifinite JBW-algebra with a faithful normal semifinite trace 7. Then
all of the statements of Proposition 4.4.(i)~(viii) hold for Ly, (N) (resp., B(Ny,|-|,)) replaced by
Li/y(A,7) (resp., (B(Aw, [11)7)-

Proof. Follows from Propositions 3.32, 3.33, [210, Prop. 4.6], and 4.6, directly along the lines of the
proof of Proposition 4.4. O
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Remark 4.9. (i) Identification of D., as Dy_

(iii)

, provided in Corollary 4.3, is new. The right
N

\ijv(lfv)y
hand side of (185) corresponds to Dy, with o(t) = ﬁ(’yt)l/ =1, Up to reformulation in weight-
independent terms, provided in [209, Eqn. (41)], the formula (186) was obtained in [183, §8] (cf.
also [272, Eqn. (42)]) as D\p(%ﬁw(qﬁ), %EWW)) with ¥ equal to \II“"wl—l/“/(l—w),w (
identified there as an example of W, although the corresponding Dy was explicitly identified as
a Vainberg—Brégman functional). Proposition 4.1.(ii) provides a generalisation of [183, Props.
8.1.(1)—(ii), 8.2.(ii)] to ¥, with any gauge ¢.

Another special case of D\y%ﬁ (z,y) on Ly (N) spaces, with a = 1, 8 = %, v €]0,1], and

however, it was not

N limited to type I, W*-algebras, was considered in [269, p. 377]. For v = %, and for any

2
W+-algebra N, they are also a special case of 4Dy, " (7,y) = Day, . (z,y), and take
yl= yUL=7)y

)Y
the form 2|z — y”LQ(N).

Plugging the formula for j : L/, (A,7) — Ly/1-4)(A,7) from the proof of Proposition 4.5 into
(149), we obtain a family belonging to the class Dy g, on A, which is a nonassociative analogue

of (184), with (X, o, 8,7) €]0,00[% x 10, 1[> and ¢,9 € A,:

Dy, (6 0) = 222 (B(r(@))/8 + (1= B)(r @)1 = (r())/E " 7((sg 0|6 o (sy 0[] )

(iv)
(v)

(vi)

(vii)

(viii)

(190)
When restricted to ¢, € A}, corresponding to 54 = I = sy, (190) satisfies the conditions of
Proposition 4.7.(v) and 4.7.(vi).
Since Corollary 4.3.(i) applies to (190) as well, in what follows we will set A = 1 in both JBW-
and W*-algebraic cases.
Since [289, Lem. 3.2] establishes local uniform homeomorphy of ¢y on (N, |-|;), the statements

about uniform continuity of %gem%l’ﬁ and 3?77%1"9 in Proposition 4.4 hold for £,-bounded
subsets of any closed ball in N, (this variant was explicitly used in Proposition 4.1).
Propositions 4.1.(i) and 4.7.(1), 4.1.(ii)—(iii) and 4.7.(iii) in their part on left pythagoreanity and
zone consistency, as well as 4.1.(iv)—(v) in their part on right pythagoreanity and zone consistency
hold also under replacing a gauge ¢ by a quasigauge ¢, provided the latter satisfies the respective
conditions of Proposition 3.24.

For an arbitrary W*-algebra A/ and 1,2 €10, oo[, the noncommutative Mazur map,

lyims : L1y N) D @ = uglz] = ug |z € Ly, (N), (191)

has appeared implicitly in [156, Prop. 1.9] (cf. [326, Prop. 12]), and then explicitly in [208, Thm.
4.2] (with u, = I and v1,7v2 €]0,1]) and [289, p. 58| (in full generality). In commutative case,
this map has been introduced in [251, p. 83]. As proved independently in [3, Thm. 4.5, Rem.
4.3] (for semifinite N and 1,72 €10, 1[) and [299, Thm. (p. 37)] (for any N and 1,72 €]0,1]),
€y, 1y is min{ 22, 1}-Lipschitz-Holder from B(Ly/,, (N), | ‘k/w) to B(L1/y,(N),[l;/,,). hence, by
3, Lem. 3.1], also from S(Ly,,, (N), []1/,,) to S(L1/,(N), [ l1/,,)- The nonassociative Mazur
map with y1 = 1 and 2 €]1, oo[ has appeared implicitly in [1, p. 68|, and was introduced in full
generality in [210, Def. 4.5].

Due to availability of several different (although equivalent) definitions of noncommutative L,
spaces over general W*-algebras, we should specify the default meaning of this notion (since for
general W*-algebras it is defined using the tools essentially beyond the range of the integration
theory on semifinite W*-algebras). In (191), as well as everywhere else, we use the definition of
Ly/4(N) (and thus the functional analytic meaning of the symbol a7/ as given in [141, p.
196]. The sign of integral, appearing in (184) below and further, is understood in the sense of
[141, Eqn. (3.127)].

Proposition 4.5 is a generalisation of [208, Thm. 4.2| from (any) W*-algebras to (semifinite)
JBW-algebras. The last step of the second part of the proof (using Rogers—Hélder inequality for
zxt/ 7=1) is exactly the same here as there, however we prove the earlier part (corresponding to
[208, Lem. 4.1]), differently, using directly the properties of the duality map, instead of a multiple
use of the Rogers-Hélder inequality. [289, Lem. 3.2| establishes local uniform continuity of ¢, on
N, (this term means [288, p. 70] uniform continuity on every closed ball in ). Due to structural
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analogies between noncommutative and nonassociative integration theories, and in accordance
with a tradition of [172, Conj. V.3.10], we conjecture that £, is norm-to-norm continuous also on
unit balls of preduals of JBW-algebras. If this is true, then the continuity results of Proposition
4.7.(v)—(vi) hold for A, replacing Aj .

4.2 Other models with ¥ = ¥,

Proposition 4.10. If (X,|-|y) is a uniformly convex and uniformly Fréchet differentiable Ba-
nach function space over a localisable measure space (X,p), lx™ : S(X,|'|x) 2 = — |j(@)|z €
S(Ll(‘){a/‘)a”'nl)} ‘10 is a gauge, \IIAO : (Xv ””X) = R, and & # C C S(Ll(Xa/")7||'”1)7 A E]0,00[,
T:S(X,||y) — 2 s XD s mazimally monotone for B €10, 3], then:
(i) €x s a bijection, and Cx|s(L,(x )]+ = %(X’||'Hx))+’ with D1 understood as a map
(Loo (X, 1)) ™ x X — [0, 00];
(ii) DZX7‘I’¢ : S(Ll(Xvu)ﬂ ””1) X S(Ll(‘)(vu)ﬂ ””1) — [0,00] is an information on S(Ll(Xnu)v H”l)?
(i4i) if C is £x-convex closed set, then Dy, g, is zone consistent, left pythagorean on C, %géﬂ“’ is
norm-to-norm continuous on S(L1(X, p),[-|,) and adapted, and infyec{Dey w,(y, - )} is contin-
uous on S(Li(X, p), [-,);
(iv) if C is (j, o £x)-convex closed set, then Dyy , is zone consistent, right pythagorean on C, and

%géx’% are norm-to-norm continuous on S(L1(X, p),|-|,) and adapted;

(v) the sets LSQ(ZX,\IJSO,C) and RSQ(EX,\IJSO,C’) are composable;

(vi) the categories 1CvxS(Lx,U,), TCvxS(lx,W,), LSQS.(fx,P,), and RSQS,(fx,V,) satisfy
the functorial adjunctions and equivalences given by Corollary 3.50.(i)—(ii) with Z =

S(La(X, ), 1)
(vii) if (X, ]| ) is %—uniformly convex with ( 6] 3], then:

a) if C is {x-conver and closed, then § TeLs g uniformly continuous on £x-bounded subsets
of S(La(&X, ), [-I);
b) f?si);’\pm‘ﬁ is uniformly continuous on £x-bounded subsets of S(L1(X, pn),|-|;);
(viii) if (X, || ) is ﬁ—um’formly Fréchet differentiable with 8 €0, %], and C is (Jp1.1_5 © £x)-convex

Der‘I’wl A—-5 - . .
and closed, then 3 is umformly continuous on x -bounded subsets of S(L1(X, p),|-],);
(i) if (X,|]x) is f—umformly conver and f—umformly Fréchet differentiable, with 8 €]0,1] and

v € [, 1], then:

D
a) if C is closed and {x-convez, then %CZX’%I’ﬁ 15 5,;((11:75); -Lipschitz—Hélder continuous on
S(La(X, ), [1y):

D' ’ —
b) if C is closed and (j,, ., o {x)-convez, then BC[X Yors g B0 7)2 -Lipschitz—Hdlder contin-

7 (1-8)
uous on {x-bounded subsets of S(L1(X, ), | |1);

8 R . 2 .
c) s;; LA s i((l 7)) -Lipschitz—Holder  continuous on £x-bounded subsets of

S(LI(XHU’)a ”H1)> —~
(z) the properties (ii)-(iz) hold also for lx (and, resp., S(Li(X,pn),|-|;)) replaced by lx(x) =
) for x € B(Li(X,p),|-],) \ {0} and E};(O) =0 (and, resp., B(L1(X, ), |-],))-

||33||1€X <|$|\

Proof. (i) comes straight from the definition of £x [270, p. 261] [96, pp. 16-17, 20| (see [97, §5] for an
explicit discussion). By [270, Prop. 2.6] [96, Prop. 2.9] (cf. also [287, Thm. 12]), £x ' is a uniform
homeomorphism. Hence, by [270, Prop. 2.9], (x is a uniform homeomorphism on B(L1 (X, 1), |-1,)-
1_TV—(lresp., $3-)Lipschitz-Holder continuity of £x (resp., £x ') for %—uniformly convex and L-uniformly
Fréchet differentiable (X, H | x) has been established in [3, Thm. 4.2| (=[5, Thm. 5.6]) (cf. |2, Rem.
3.1.b)] for equivalence of f—umform convexity (resp., umform Fréchet differentiability) with (4 5> he)-
uniform convexity (resp., (i hs)-uniform Fréchet dlfferentlablhty) used in [3, Thm. 4.2]). The rest
follows from Corollary 3.42 and Propositions 3.32 and 3.33. The part of (x) that refers to (ii)—(viii)
relies on equivalence of uniform continuity of £ on S(Y, |-|y-) with uniform continuity of £ on B(Y, |-|y)
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for any Banach space (Y, |-|y-), as provided by (25) and (26), while the part of (x) that refers to (ix)
relies on the analogous equivalence for Lipschitz—Hélder continuity, proved in |3, Lem. 3.1]. O

Proposition 4.11. If (X, |-| y) is a uniformly convex and uniformly Fréchet differentiable noncommu-
tative rearrangement invariant space over a type I, W*-algebra N with n € N, £x™" : (S(X, |-|x)* 2
v [j(@)lz € (SN 1), ¢ is a gauge, Ty« (X, |]x) = R, @ # C C (SN [1)*, B €]0, 3],

A €]0,00[, and T : (S(X, || x)" — 971, (ST 4 maximally monotone, then:
(i) Lx is a bijection, and {x = @1(X,\|~||X))+;
(ii) Doy w, = (SN 1) T x (SN 1)) = [0,00] is an information on (S(N, |-1)) "

D
i) if C is {x-convex closed set, then is zone consistent, le agorean on is
(iii) if C is € losed set, then Dyy .y, i istent, left pythag O, Porxre
norm-to-norm continuous on (S(N, |-|;))* and adapted, and infycc{Dy, w,(y, -)} is continuous
on (SNw, I111))*;

(iv) if C is (j, o £x)-convex closed set, then Dy w,, is zone consistent, right pythagorean on C, and

%geﬂ*" are norm-to-norm continuous on (SN, |-|;))" and adapted;
(v) the sets LSQ({x,V,,C) and RSQ({x,¥,,C) are composable;
(vi) the categories 1CvxS(€x,V,), tCvxS(lx,V,), LSQS(Lx, Vy,), and RSQC%X(KX,\I/LP) satisfy the
functorial adjunctions and equivalences giwen by Corollary 3.50.(i)—(ii) with Z = (S(N4, ||;))";
(vii) if (X, ]| x) s %-um‘formly convex, then:

. . . DZXv‘I'wlg . . .
(i) if C is €x-convex and closed, then %C s uniformly continuous on £x -bounded subsets
of 25(\1/!\/*7 I-1)*
(i1) ﬁ/\? Y8 s is uniformly continuous on Lx-bounded subsets of (S(Na, |-|;))7;
(viii) if (X, ]-|x) s ﬁ-um‘formly Fréchet differentiable, and C' is (jo, ,_, © £x)-conver and closed,

D
then %CZ»%M,B is uniformly continuous on Lx-bounded subsets of (SN, |-|;))"-

Proof. (i) is just [97, Def. 5.3]. By [97, Props. 5.6, 5.7, Lem. 5.8], £x ' is a uniform homeomorphism.
The rest follows from Corollary 3.42 and Propositions 3.32 and 3.33. O

Proposition 4.12. If (V,|-|/) is a radially compact base normed space with a weakly compact base
K, ¢ is any gauge, @ # C CV, ¥, : V — R is Buler-Legendre, £ : V — V is any automorphism of
V, then:
(i) Dy, is an information on V;
(ii) if C is £-conver and (-closed, then it is left Dy ,-Chebyshév, Dy, is left pythagorean on C,
§§Daw¢ .
and C are zone consistent;
(iii) if C is j,ol-conver and j,ol-closed, then it is right Dy g, -Chebyshév, Dy, is right pythagorean
Dyw, . )
on C, and c are zone consistent;
(iv) if each norm-exposed face of K is projective, then the pair (V,|-|y,), (V*,|-|y+)) is in spectral
duality.

Proof. A radially compact base normed space is reflexive iff its base is weakly compact [18, Lem. 8.71].
Hence, (i)-(iii) follow from Proposition 3.14 and Corollary 3.42.(i)—(iii). On the other hand, (iv) is
just [17, Prop. 2.5]. O

Proposition 4.13. Let (V = X @ R, |-|},) be a radially compact base normed space with a base K,
and a reflexive real Banach space (X, || ) such that

v>0 1= A>|z|y

Vo= (x,\) eV
(@) {||U\V:=max{|x|,||x||x},

(192)
let byjg : K > v = (z,1) = z € B(X,||x), and let ¢ be any gauge. If any of equivalent conditions
holds:

1) the pair (V. |-|y/), (V= |-|y+)) is in spectral duality;

2) (X, |-|x) is strictly convex and Gateauz differentiable;

3) W, : B(X,||x) = R is Euler—Legendre,

63



then:
(i) Desg,w, is an information on K;
(ii) if @ # C C K is £ g-convex and { g-closed, then it is left Dy, w,-Chebyshév, Dy, w, s left

Dy vy .
pythagorean on C, and c are zone consistent;

(i4) if @ # C C K 1is j, o {g-convex and j, o £ p-closed, then it is right Dy v, -Chebyshév, Dy, w,

Dy v .
is right pythagorean on C, and %C /"% are zone consistent.

Furthermore, if (X, || ) satisfies any of 1)-3) above, is uniformly Fréchet differentiable, and has the
Radon—Riesz—Shmul’yan property, then:
(iv) LSQ(4/r, ¥y, C) and RSQ(L/r, ¥y, C) are composable for any @ # C C K;

D
(v) %C”R’% are adapted and £ g-topology-to- g-topology continuous on any £ ;r-conver and £g-
closed @ + C C K;

D
(vi) 304/%% are £ g-topology-to-{ ;g -topology continuous on any (j, o €/r)-conver and L g-closed
o#+CCK;
(vii) the categories 1CvxS({ g, U,), TCvx<({/R, ¥,), LSQS, (¢/r, ¥y,), and RSQC%X(K/R, U,) satisfy the
functorial adjunctions and equivalences given by Corollary 3.50.(i) with Z = K ;
(viii) if T : B(X,|-|x) — 22¢B&D) is mazimally monotone with 0 € efd(T), then 1@?“’ maps
Jo(B(X, || x)) pn jo(efd(T)) and is norm-to-norm continuous on j,(B(X, || x));
(ix) if (X, ]| x) is uniformly convex, then:

Dy vy .

a) %C are adapted for any (j, o £/r)-conver and £ g-closed @ # C C K;

b) the categories vaxg(f/R, U,) and RSQC%X(E/R, V) satisfy the functorial adjunction of Corol-
lary 3.50.(ii);

c) if T is as in (viii), then %g“" (resp., @sgﬂ/k’qlw) maps B(X, |-|x) on efd(T) (resp., K on
(" (efd(T))) and is norm-to-norm continuous on B(X, || x) (resp., £ ;g-topology-to-C /-
topology continuous on K ).

Proof. Equivalence of 1) and 2) was established in [50, Thm. 1| (and recently rediscovered in [184,
Thm. 6.6]). Equivalence of 2) and 3) follows from Proposition 3.14. (i)—(iii) follow from Corollary
3.42.(1)—(iii). (iv)—(vii) and (ix).a)-b) follow from Corollaries 3.42.(iv), 3.42.(v)—(vii), and 3.50. (viii)
and (ix).c) follow from Proposition 3.31. O

Remark 4.14. (i) Using [270, Thm. 2.1] [96, Thm. 2.1 [4, Thm. 6.2] (resp., [97, Thm. 6.4]),
combined together with the Maurey—Pisier theorem [250, p. 46] and a fact that g-uniform
convexity with ¢ > 2 implies cotype ¢ [231, Thm. 1.e.16.(i) (Vol. 2)|, one can state an analogue
of Proposition 4.10.(ii)(x) (resp., Proposition 4.11.(ii)~(viii)) for g-uniformly convex (X, |-|y)
with ¢ > 2. (In the case of Proposition 4.11.(ii)—(viii), the resulting proposition includes also
a generalisation of N from type I,, to separable factors of type 1.) However, in both cases, the
corresponding uniform homeomorphism ¢, as well as ¢!, is constructed via renorming of the
convexification of (X, |-|y), and as a result it lacks an explicit formula.

(ii) Let (X, ) be a localisable measure space, and let E(X,u) C Lo(X, ) be a complete Banach
vector lattice. Let F(X,u) satisfy also the Fatou property, i.e. if {z, € (E(X,u))*t : n € N}
is increasing and sup,,cy HanE(X,“) < oo, then there exists sup,eyzn, =: ¢ € E(X,u) and
supnen 2nlpen = lonlegen 275 (B)s (b 45)] [241, (1-(2) (p. 1. (In particular, if
E(X, ) is reflexive, then it satisfies the Fatou property [271, Thm. §3.1].) Lozanovskii proved
[238, Thm. 6.3] that Vo € Li(X,u) I(y,z) € E(X,p) x (E(X,u))* such that z = yz and
|zl = 1Yl a0 12) (B2 )< - The uniqueness of this factorisation, under additional assumption
supp(z) = supp(y) = supp(z), has been established in [153, §3.(a)] (cf. also [237, 1117]). The
map (S(E(X, ), |lpa, )™ 2y = i)y € (S(L1(X, p)))™, together with the explicit formula
for its inverse, as well as with the proof of its uniform homeomorphy, has been given by Odell and
Schlumprecht in [270, Prop. 2.6| for uniformly convex, uniformly Fréchet differentiable E(X, )
with a l-unconditional basis and atomic infinite (X, ). The assumptions of 1-unconditional
basis and atomic infinite (X', i) were shown to be obsolete in [96, Prop. 2.9]. The formula given
in Proposition 4.10.(i) has been established in |97, §5|. So, while the right D;-projection was
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introduced by Chencov |99, Eqn. (16)] at nearly the same time as Lozanovskil introduced his
factorisation, it took over a half of century to have the special case of the former map identified
as the inverse of the latter.

(iii) Proposition 4.10 (when restricted to the positive parts of unit spheres) and Proposition 4.11 deal

with the special cases of left and right D, g-projections with ¢ given by another special case of
Dgoy v b N

right Dy y-projection, i.e. %C%S(X’”'”X)w " and aci(s(x’”'”)‘))y ”. This leads to a question:
is it possible to use the latter projection as £ in some appropriate context?

(iv) In Propositions 4.10 and 4.11, one can replace j with jz for any gauge ¢ satisfying ¢(1) = 1,
since [287, Thm. 12| and [97, Props. 5.6, 5.7, Lem. 5.8] are proved by evaluation of j exclusively
on the unit spheres (or their positive parts).

(v) Examples of radially compact base normed spaces with weakly compact base include all finite
dimensional base normed spaces, type Io JBW-factors [18, Prop. 3.38| (their reflexivity was
established already in [236, Ex. 2|), and state spaces of orthomodular posets satisfying the
Jordan-Hahn decomposition property [144, Thm. 3|.

(vi) Order unit spaces (V*, |-|) satisfying the condition 2) in Proposition 4.13 were introduced in
[50, Def. 4], and named the generalised spin factors (cf. also [217, §2.3.3], where their finite
dimensional version was rediscovered as ‘centrally symmetric models’). For X given by a real
Hilbert space with a scalar product (-, )y, (X* @ R, || x+gr) turn into spin factors.

(vil) Relationship between the properties of W, and the spectral properties of (V |-|y,) differ strongly
between Propositions 4.12 and 4.13: in the first case there is no relationship between them, in
the second case it is a characterisation.

(viii) Proposition 4.13.(i)—(iii) holds also under replacing a gauge ¢ by a quasigauge ¢, provided the
latter satisfies the respective conditions of Proposition 3.24.

Dy

4.3 Some models with ¥ # VU,

Proposition 4.15. Let H (resp., {1/3) be either an (La(N))** space for any W*-algebra N (resp., a
map N5 3 ¢ = uglg| = ugld|'? € (La(N))*) or an La(A,7) space for a semifinite JBW-algebra
A with a faithful normal semifinite trace T (resp., a map A, = L1(A,7) 3 sgo|d| = sy0|p|"? €
Ly(A, 7)), let B be a ball in Ny (e.g., B = BNy, ||;)), and let T : H — H be a continuous linear
map such that IX > 0 Vo, y € H (Ty — Ta,y — x), > Ao — yHi (or, equivalently, inf{(T€,&),, : £ €
H, |l =1} > 1). Then:

(i) T is invertible;

(ii) Or:H — R given by Ur(z) := § (Tx,x),, is Euler-Legendre;

(iii) U5 = 5 (T 'y, y),, Yy € H, DU =T, DOVE =T7;

(’w) D\I/T(xvy) = % <T£U —Ty,x— y>7—[;

(v) D, 0y is an information on N* (resp., A);

(vi) if @ # C C N} UB (resp., @ # C C Af) is £y j9-convex and closed, then it is left Dy, , wy.-

D‘ ’ .
Chebyshév, Dzl/%qu is left pythagorean on C, and %C“/Q T are zome consistent;

(vit) if @ # C C NFUB (resp., @ # C C Af) is T o lyy-convex and T-closed, then it is right

ty/2:YT

D
Dgl/qu,T-Chebyshév, Dgl/%\pT is right pythagorean on C, and %C are zone consistent.

Proof. (1)—(iv) are special cases of results which hold for any real Hilbert space H. (i) follows from
[220, Thm. 2.1]; (ii) follows from [291, p. 64]; (iii) follows from [290, Ex. 3.2|; (iv) follows by a direct
calculation; (v) follows from conjunction of (ii), Corollary 2.9, and 3.41.(i); (vi) follows from Corollary
3.41.(iii) and norm-to-norm continuity of £, on N;f UB (resp., Af) [208, Thm. 4.2] [289, Lem. 3.2]
(resp., Proposition 4.5); (vii) follows from Corollary 3.41.(iv) and norm-to-norm continuity of ¢; 5. [

Proposition 4.16. Let H be a Hilbert space with dimH € N, let dim((&2(H))%*) =: n, and let
U € TO((B2(H))*, ||,) be spectral, with ¥ = f o X, where f € TS(R™, |-|gn) is Euler-Legendre. Let
0 (resp., C # @; K # &) be given either by a bijection £ : Y = (&3(H))™ — (2(H))* (resp., a
closed £-convex subset of (Ba(H))%?; a closed (grad¥) o £-conver subset of (G2(H))%*) or by a bijection
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bijg 1 Y == (61(H))** > v — V2% € (B3(H))*® (resp., a closed {1 )9-convex subset of (&1(H))™; a
closed (gradW¥) o £y j5-convex subset of (1(H))*). Let £(C) C int(efd(¥)) 2 L(K). Then:

(1) Dy is an information on'Y;

(1t) C is left Dy w-Chebyshév, Dy is left pythagorean on C, and §ge"y are zone consistent;

(iii) K s right Dy y-Chebyshév, Dy is right pythagorean on K, and B?"I’ are zone consistent.

Proof. Follows from the fact that f is Euler-Legendre iff f o A is Euler-Legendre (see Example 2.3),
combined with Propositions 2.8.(i).c), 2.8.(iii), 3.1.c), and Corollary 2.9. O

Corollary 4.17. Proposition 4.16 holds, in particular, for W = foX and Dy = Dy, given in Example
2.8.(i)-(iii), as well as for:

(iv) flx)=> " (x;ilog(x;) + (1 —x;)log(l —a;)) onefd(f) = [0,1]" and f(z) = oo otherwise, which
gives spectral Euler—Legendre (f o X)(§) = try(§log(&) + (I — &) log(I —€)) for & € efd(f o A) =
B(&3(H),||5) N (B2(H))T and (f o A)(§) = oo otherwise. The corresponding Vainberg—Brégman
functional reads

Dyox(€,¢) = try(€(log € —log () + (I — &) (log(I — &) — log(I - ())) (193)

for (&,¢) € efd(f o X) x int(efd(f o X)), and Dyox(€, () = 0o otherwise;
(v) f given by U, in (61), which gives spectral Euler—Legendre

Lotry (€2 —1) : £ € (G2(H)T, a0, 1]
(FoA)(€) =1 matru(é*—1) : &€ (Ba(H))], a€]—o0,0[ (194)

00 : otherwise.

The corresponding Vainberg—Brégman functional Dyox(§,() reads

Tatra (=2 + (1= )™ + a¢®71E) = (€,¢) € (B2(H))T x (B2(H))y, a €]0,1]
Lotrp (€ 4+ (1 — @)™ + a8 = (§,0) € (B2(H))] x (B2(H))§, o €] — 00,0
00 : otherwise.

(195)
Proof. (iv)—(v) follow by application of A to Examples 2.2.(iv)—(v). O

Corollary 4.18. Let n € N, let N be a type I, W*-algebra, and f(z) = > " (x;log(z;) —x;) if x > 0
and f(z) = oo Yo € R™\ (R")*. Then CPTP(N,) € CN({y)s, f o A).

Proof. Follows from Corollary 4.17 for ¥ = f oA from Example 2.3.(ii), combined with [229, Thm. (p.
149)). O

Proposition 4.19. Let (I,|-|;) be a reflexive separable rearrangement invariant sequence space, and
let (6(H),|lez)) be a rearrangement invariant space of compact operators on a separable Hilbert
space H, corresponding to (1,[],) via &(H) = {z € €(H) : 27 € 1} and ||gmy = 1()7];, where
x7 denotes a decreasing rearrangement of eigenvalues of x, while €(H) denotes the space of compact
operators on H. For any x € 1 consider sets Is(x) := {i € N : ; > 0}, I_(z) := {i € N : z; = 0},
Io(x):={ieN:xz;<0}. Let X:l—1 be defined by the following procedure:
(1) let j :=1;
(2) if Is.(x) # &, then:
(i) choose i € I (x) mazimising x;;
fii) (N); =i
I (z) == Is(2) \ {i}
(11i) redefine { =it
(3) if I-(x) # &, then:
(i) choose i € I-(z);
(ii) (N); == 0;

I_(z):=1-(x)\{i}
(1i1) redefine { Pl
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(4) if I-(x) # O, then:

(i) choose i € I<(z) minimising x;;

(’LZ) (A)J = Ty,

(11i) redefine {

(5) go to (2). N R

Let X : (8(H))™™ — 1 be defined by A(y) := A(y), where y is any sequence of eigenvalues of y €

(B(H))%2, counted with multiplicities. Let f € T9(L,|-|,), with int(efd(f¥)) # @, int(efd(f o A)) # @,

int(efd(fF o X)) # @, and (f o X)(uzu*) = (f o A)(z) Vo € (B(H))** V unitary u € B(H). Then fo A
is Euler—Legendre iff f is Buler-—Legendre, with (f o \)¥ = fF o .

Proof. Follows directly from [58, Thms. 3.3, 5.9], combined with the characterisation of Euler—Legendre
functions on reflexive Banach spaces given in [294, §2.1]. Reflexivity of ((&(H))**, [[(g(z))sa) follows
from [130, Prop. 6.8.15] (cf. also [23, p. 153]). The equivalence of single-valuedness of df on
efd(0f) with single-valuedness of O(f o X) on efd(fo X), as well as the corresponding property of their
Mandelbrojt—Fenchel duals, is a direct consequence of the proof of [58, Thm. 5.9], when used without
the restriction to the points of Gateaux differentiability. While [58, Thm. 5.9] is stated only for
(&1 (H))™, ||'||(®1/V(H))Sa), v €]0,1[, it holds also in the more general case considered here, since the

I<(2) = I<(2) \ {i}
j=3+1

only property of (6., (H)), ”'”(61/%71))“) it relies upon (apart from reflexivity), is [58, Prop. 5.3].
However, by [311, Thm. 3.5], the latter holds in every rearrangement invariant ((&(H))>, || (g z))s)-
OJ

Proposition 4.20. Let (I, |-|;) be a reflexive separable rearrangement invariant sequence space, and let
(&(H), |"|¢z)) be a rearrangement invariant space of compact operators on a separable Hilbert space

H, corresponding to (I, |-|,) as in Proposition 4.19. Let X be defined as in Proposition 4.19. Let [ €
TS |+],) be Buler-Legendre, int(efd(foX)) # @, int(efd(fF o)) # @, and (foX)(uzu®) = (foX)(z)
Vo € (&(H)) V unitary u € B(H). If one of the following conditions holds:

a) L=ty @)= (OH) | spn) = (B14(H),I-l1),), @ # C C (B1(H) T UB(S1(H)™ [],),
Z = (61(H))*;

b) £ = Ulx, with a finite dimensional uniformly convex and uniformly Fréchet differentiable re-
arrangement invariant space (X, ||x) = (8(H), |lgm)), @ # C C (B(&1(H), |I])T, 2 =
(B(&1(H), I-1))*,

then:

(i) D, ¢ox is an information on Z;

(i) if C is l-convexr and closed, then C' is left D&fo;\-Chebyshéfu, De,foX is left pythagorean on C, and

D, foX .
c’ are zone consistent;

(iii) if C is (DC(f o X)) o Ll-convez and (DC(f o X))-closed, then C is right D, . 5-Chebyshév, D

0,foXx £,foXx

Z,fo;\

D
is right pythagorean on C, and BC are zone consistent.

Proof. Follows from Proposition 4.19, combined with Propositions 2.8.(i).c), 2.8.(iii), 3.1.c), and Corol-
lary 2.9. Homeomorphy of £, follows from combination of [208, Thm. 4.2| and [289, Lem. 3.2|, while
homeomorphy of ¢x follows from [97, Props. 5.6, 5.7, Lem. 5.8|. O

Remark 4.21. (i) The condition on 7' : H — H assumed in Proposition 4.15 holds, in particular,
when T is positive semidefinite and invertible [290, Ex. 3.2], as well as when # is finite dimen-
sional and 7" is symmetric and positive definite [291, p. 64| (this case goes back to [68, p. 15]).
For T' = Iy with arbitrary dimensional H, one obtains Dy, = Dy, ,, (see Remark 3.37.(x)),
which was considered as an example (for dim H < oo) already in [67, p. 1021] and [68, §2.1].

(ii) The formula (193) has appeared earlier in [269, p. 376, however without using spectral convex
functions (the Taylor expansion formula, and the finite dimensional quantum analogue Dg” of
the Brunk-Ewing—Utz functional were used instead). Formula (195) is new.

(iii) The main open problem posed by Proposition 4.20, is it provide examples of unitarily invariant
Euler-Legendre functions f o A on the suitable separable reflexive spaces (&(H), [|g3,)- In
particular, is it so for the countable extensions of functions listed in Proposition 4.177
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