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Abstract

We review the theory of Văınberg–Brègman relative entropies and quasinonexpansive operators
on reflexive Banach spaces, and obtain several new results. We also develop an extension of this
theory to nonreflexive Banach spaces, which is a joint generalisation of the reflexive Banach space
approach and the finite-dimensional information geometric approach. In the reflexive case, we
study generalised pythagorean inequality, as well as norm-to-norm, uniform, and Lipschitz–Hölder
continuity, of (left and right) entropic projections, proximal maps, and resolvents. We also pro-
vide a detailed study of a special (‘gauge’) family of Văınberg–Brègman geometries and operators
that is tightly related with the geometric properties of the underlying Banach space norm. The
extended theory belongs to the intersection of convex theoretic and homeomorphic approaches to
nonlinear analysis. Its models are constructed, using integration theory on order unit spaces, via
nonlinear embeddings into reflexive rearrangement invariant spaces. E.g., we compute the expo-
nent parameters of Lipschitz–Hölder continuity of the extended entropic projections and resolvents,
and establish composability of a suitable class of nonlinear quasinonexpansive operators, over nor-
mal state spaces of JBW- and W*-algebras, determined by ‘gauge’ Văınberg–Brègman geometries
over, respectively, nonassociative and noncommutative L𝑝 spaces, and extended via Mazur embed-
dings. Other examples of extended Văınberg–Brègman geometries feature the (commutative and
noncommutative) Lozanovskĭı factorisation map, generalised spin factors, finite dimensional base
normed spaces, and convex spectral functions on unitarily invariant ideals of compact operators.
We also discuss several categories of entropic projections and quasinonexpansive operators naturally
appearing in this framework.
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1 Introduction

1.1 Văınberg–Brègman geometry...

A property of a Banach space will be said to be linear norm-geometric iff it is invariant under a
linear isometry into another Banach space. For any Banach space (𝑋, ||·||𝑋), both ||·||𝑋 and ||·||2𝑋 are
convex functions. Various linear norm-geometric properties of a Banach space (𝑋, ||·||𝑋) which quantify
convexity (resp., differentiability) of its norm are dual to the corresponding linear norm-geometric
properties quantifying differentiability (resp., convexity) of a norm of a Banach dual space (𝑋⋆, ||·||𝑋⋆).
One of the key features of nonlinear convex analysis on Banach spaces is a generalisation of these
relationships from the pairs (||·||𝑋 , ||·||𝑋⋆) of Banach dual norms to the Mandelbrojt–Fenchel dual pairs
(Ψ, ΨF) of convex functions, acting, respectively, on (𝑋, ||·||𝑋) and (𝑋⋆, ||·||𝑋⋆).

A special role in a passage from norm geometry to convex geometry on a Banach space (𝑋, ||·||𝑋)
is played by the convex functions Ψ𝜙(𝑥) :=

∫︀ ||𝑥||𝑋
0 d𝑡 𝜙(𝑥) ∀𝑥 ∈ 𝑋 (with 𝜙 positive, strictly increasing,

continuous, 𝜙(0) = 0, and lim𝑡→∞ 𝜙(𝑡) =∞; such 𝜙 is called a gauge)1, which are generating duality
mappings 𝑗𝜙 through their subdifferential: 𝜕Ψ𝜙 =: 𝑗𝜙 : 𝑋 → 2𝑋

⋆ . The functions Ψ𝜙 can be seen as a
generalisation of 1

2 ||·||
2
𝑋 (= Ψ𝜙 with 𝜙(𝑡) = 𝑡), allowing to characterise linear norm-geometric properties

of an underlying Banach space in terms of properties of Ψ𝜙 (instead of properties of ||·||𝑋). In general,
the following triad is equivalent: convexity (resp., differentiability) properties of ||·||𝑋 , convexity (resp.,
differentiability) properties of Ψ𝜙, monotonicity (resp., continuity) properties of 𝑗𝜙 (see Proposition
2.26). Since linearity of 𝑗𝜙 for 𝜙(𝑡) = 𝑡 is equivalent with (𝑋, ||·||𝑋) being a Hilbert space [154, Prop. 2],
𝑗𝜙 can be seen as a generically nonlinear map. For Banach spaces (𝑋, ||·||𝑋) with Gateaux differentiable
||·||𝑋 , the corresponding duality mappings 𝑗𝜙 are functions (i.e. singleton-valued maps), and take the
particularly useful form 𝑗𝜙 = DGΨ𝜙 : 𝑋 → 𝑋⋆ (with DG denoting Gateaux derivative).

In essence, the Văınberg–Brègman geometry on a reflexive Banach space (𝑋, ||·||𝑋) takes two further
steps: moving from the specific Gateaux differentiable convex function Ψ𝜙 : 𝑋 → R+ to any Gateaux
differentiable convex function Ψ : 𝑋 → ] −∞,∞], and moving from the (symmetric) metric distance
𝑑||·||𝑋 (𝑥, 𝑦) := ||𝑥− 𝑦||𝑋 ∀𝑥, 𝑦 ∈ 𝑋 to the (asymmetric) Văınberg–Brègman functional [333, Eqn. (8.5)]

𝐷Ψ(𝑥, 𝑦) := Ψ(𝑥)−Ψ(𝑦)−
[︀[︀
𝑥− 𝑦,DGΨ(𝑦)

]︀]︀
𝑋×𝑋⋆ ∀(𝑥, 𝑦) ∈ 𝑋 × int(efd(Ψ)), (1)

with 𝐷Ψ(𝑥, 𝑦) := ∞ ∀𝑦 ∈ 𝑋 ∖ int(efd(Ψ)), [[·, ·]]𝑋×𝑋⋆ denoting the Banach space duality, efd(Ψ)
denoting a domain of finiteness of Ψ, and int denoting a topological interior operator on the subsets
of 𝑋 with respect to the topology of ||·||𝑋 . (Due to this asymmetry, most of objects in the Văınberg–
Brègman geometry exist in two, left and right, versions.) As a result, it provides an alternative setting
of geometric properties on 𝑋, quantified in terms of a convex function Ψ instead of ||·||𝑋 . In particular
(see Table 1): 𝐷Ψ acts as an analogue of (𝑑||·||𝑋 )

2; left and right 𝐷Ψ-projections (onto left and right
𝐷Ψ-Chebyshëv sets 𝐾, respectively),

𝑦 ↦→
←−
P𝐷Ψ
𝐾 (𝑦) := arg inf

𝑥∈𝐾
{𝐷Ψ(𝑥, 𝑦)} and 𝑦 ↦→

−→
P𝐷Ψ
𝐾 (𝑦) := arg inf

𝑥∈𝐾
{𝐷Ψ(𝑦, 𝑥)} , (2)

respectively, act as analogues of metric projections (onto Chebyshëv sets 𝐾)

𝑦 ↦→ P
𝑑||·||𝑋
𝐾 (𝑦) := arg inf

𝑥∈𝐾
{||𝑥− 𝑦||𝑋} ; (3)

left and right 𝐷Ψ-(quasi)nonexpansive operators act as analogues of ||·||𝑋 -(quasi)nonexpansive oper-
ators, etc. For (𝑋, ||·||𝑋) given by a Hilbert space and Ψ = 1

2 ||·||
2
𝑋 one has 𝐷Ψ(𝑥, 𝑦) = 1

2 ||𝑥− 𝑦||
2
𝑋 ,

hence metric and Văınberg–Brègman geometry coincide in this case, however it is no longer so in more
1Statements of this paragraph hold also for a more general class of quasigauges, defined as nondecreasing functions

𝜙 : R+ → [0,∞] such that 𝜙 ̸≡ 0 and ∃𝑠 > 0 lim𝑡→+𝑠 𝜙(𝑡) <∞. However, in this case, each of the linear norm-geometric
properties of ||·||𝑋 requires to impose some additional conditions on 𝜙 (see Proposition 2.29), so it is more straightforward
to discuss the key ideas of Ψ𝜙 while assuming that 𝜙 is a gauge.

2



general cases.2 Each choice of Ψ provides a specific “probing” of the structure of a Banach space, and
it also establishes a particular convention of statistical inference on it (e.g., Ψ = 1

2 ||·||
2
𝑋 corresponds to

𝐷Ψ-projections encoding the optimal estimation on (𝑋, ||·||𝑋) in the sense of least squares). The class
of Văınberg–Brègman geometries determined by Ψ = Ψ𝜙 provides thus an intermediate stage between
the Banach space norm geometry (characterised by the properties of Ψ𝜙) and the Văınberg–Brègman
geometry in general. Beyond the realms of Ψ = Ψ𝜙, the properties of Văınberg–Brègman geometry
are no longer directly related to linear norm-geometric characteristics of the Banach space. However,
it remains a rich geometric theory on its own, with a deep role played in convex nonlinear analysis
on Banach spaces, since the formula (1), defining 𝐷Ψ, essentially encapsulates the first order Taylor
expansion of the convex function Ψ (and, thus, the knowledge about the global minimum of Ψ).3

Brègman and Chencov have independently discovered a characteristic geometric property of addi-
tive decomposition of a certain family of relative entropies under entropic projection onto a (suitably
understood) affine (resp., convex) closed subset 𝐾 ⊆ 𝑀 , called a generalised pythagorean equation
(resp., inequality). Chencov [99, Eqns. (11), (15), Thm. 1] discovered it for 𝐷1 and

−→
P𝐷1
𝐾 ,

𝐷1(𝜔, 𝜑) ≥ 𝐷Ψ(𝜔,
−→
P𝐷1
𝐾 (𝜔)) +𝐷Ψ(

−→
P𝐷1
𝐾 (𝜔), 𝜑) ∀(𝜔, 𝜑) ∈𝑀 ×𝐾. (4)

where 𝐷1(𝜔, 𝜑) :=
∫︀
𝜇(𝜑 − 𝜔 + 𝜔 log 𝜔

𝜑 ) is the Kullback–Leibler information [215, Eqn. (2.4)], 𝜔, 𝜑 ∈
(𝐿1(𝒳 , 𝜇))+, (𝒳 , 𝜇) is a localisable measure space, 𝑀 = (𝑆(𝐿1(𝒳 , 𝜇), ||·||1))+ is a (not necessarily
finite-dimensional) set of probability densities, and 𝐾 is given by the finite-dimensional convex set of
exponential families, i.e. for 𝑚 ∈ N, a convex closed subset Θ ⊆ R𝑚, 𝑝0(x ) ∈ 𝑀 , and 𝑞𝑖(x ) ∈ 𝑀
∀𝑖 ∈ {1, . . . ,𝑚},

𝐾 =

{︂
𝑝(x , 𝜃) ∈𝑀 : 𝑝(x , 𝜃) =

𝑝0(x ) exp(
∑︀𝑚

𝑖=1 𝑞𝑖(x )𝜃𝑖)∫︀
𝒳 𝜇 𝑝0(x ) exp(

∑︀𝑚
𝑖=1 𝑞𝑖(x )𝜃𝑖)

, 𝜃 = (𝜃1, . . . , 𝜃𝑚) ∈ Θ

}︂
. (5)

On the other hand, Brègman [67, Lem. 1] (=[68, Lem. 1, §2.2]) discovered it for 𝐷Ψ and
←−
P𝐷Ψ
𝐾 ,

𝐷Ψ(𝜔, 𝜑) ≥ 𝐷Ψ(𝜔,
←−
P𝐷Ψ
𝐾 (𝜑)) +𝐷Ψ(

←−
P𝐷Ψ
𝐾 (𝜑), 𝜑) ∀(𝜔, 𝜑) ∈ 𝐾 ×𝑀, (6)

where 𝐷Ψ is a Văınberg–Brègman functional, and 𝐾 is a convex closed subset of 𝑀 = R𝑛. In both
cases, the passage from convex to affine 𝐾 implies replacing ≥ by =. The fact that 𝐷1 belongs to the
family 𝐷Ψ for atomic finite (𝒳 , 𝜇) was established in [67, p. 1021] (=[68, p. 15]). A generalisation of
right pythagorean inequality (4) for 𝐷Ψ and

−→
P𝐷Ψ
𝐾 ,

𝐷Ψ(𝜔, 𝜑) ≥ 𝐷Ψ(𝜔,
−→
P𝐷Ψ
𝐾 (𝜔)) +𝐷Ψ(

−→
P𝐷Ψ
𝐾 (𝜔), 𝜑) ∀(𝜔, 𝜑) ∈𝑀 ×𝐾, (7)

where 𝑀 is a reflexive Banach space (𝑋, ||·||𝑋), and 𝐾 ⊆ 𝑋 is such that DGΨ(𝐾) is convex and closed
in 𝑋⋆, has been obtained in [245, Prop. 4.11]. Under some suitable conditions on Ψ, left (resp., right)
pythagorean inequality characterises left (resp., right) 𝐷Ψ-projections, cf. Proposition 2.8 (resp., 3.1).

Given the nonlinearity of
←−
P𝐷Ψ
𝐾 and

−→
P𝐷Ψ
𝐾 , as well as asymmetry and nonquadraticity of 𝐷Ψ, the

left and right generalised pythagorean equations are a highly remarkable generalisation of the ancient
equation 𝑎2 + 𝑏2 = 𝑐2, as well as its cartesian and hilbertian analogues,

||𝑥− 𝑦||2ℋ =
⃒⃒⃒⃒⃒⃒
𝑥−P

𝑑||·||ℋ
𝐾 (𝑦)

⃒⃒⃒⃒⃒⃒ 2
ℋ
+
⃒⃒⃒⃒⃒⃒
P
𝑑||·||ℋ
𝐾 (𝑦)− 𝑦

⃒⃒⃒⃒⃒⃒ 2
ℋ
∀(𝑥, 𝑦) ∈ 𝐾 ×ℋ, (8)

for any convex closed subset 𝐾 of a Hilbert space ℋ. As shown in Table 1, this generalisation extends
to a wide range of structures.

2Strictly speaking, the Văınberg–Brègman theory on reflexive Banach spaces is a generalisation of the theory of metric
projections and norm-nonexpansive operators on Hilbert spaces, and is analogous to (and is generally better behaved,
see [8, §§4–5, §§7–8], than) a corresponding theory of metric projections and norm-nonexpansive operators on Banach
spaces. In particular, while metric projections on Hilbert space as well as left and right 𝐷Ψ-projections on reflexive
Banach spaces satisfy the pythagorean theorem (see Table 1), it is not so for metric projections on reflexive Banach
spaces.

3According to [63, p. 69]: «[t]his is perhaps the most important property of convex functions, and explains some of
the remarkable properties of convex functions and convex optimization problems».
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geometry norm Văınberg–Brègman

domain Hilbert space (ℋ, ⟨·, ·⟩ℋ) reflexive Banach space (𝑋, ||·||𝑋)

convex function 1
2
||·||2ℋ Ψ

orthogonality
functional

⟨·, ·⟩ℋ
[︀[︀
·,DGΨ(·)

]︀]︀
𝑋×𝑋⋆

relative
quantification

(𝑑||·||ℋ (𝑥, 𝑦))2 := ||𝑥− 𝑦 ||2ℋ ∀𝑥, 𝑦 ∈ ℋ 𝐷Ψ(𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋

cosine equation ||𝑥− 𝑧||2ℋ = ||𝑥− 𝑦||2ℋ + ||𝑦 − 𝑧||2ℋ −
2 ⟨𝑥− 𝑦, 𝑧 − 𝑦⟩ℋ ∀𝑥, 𝑦, 𝑧 ∈ ℋ

𝐷Ψ(𝑧, 𝑥) = 𝐷Ψ(𝑧, 𝑦) +𝐷Ψ(𝑦, 𝑥)−[︀[︀
𝑧 − 𝑦,DGΨ(𝑥)−DGΨ(𝑦)

]︀]︀
𝑋×𝑋⋆ ∀𝑥, 𝑦, 𝑧 ∈ 𝑋

projection P
𝑑||·||ℋ
𝐾 := arg inf𝑥∈𝐾

{︀
||𝑥− · ||ℋ

}︀ ←−
P

𝐷Ψ
𝐾 := arg inf𝑥∈𝐾 {𝐷Ψ(𝑥, · )} ∀𝑥 ∈ 𝑋,

= arg inf𝑥∈𝐾

{︁
||𝑥− · ||2ℋ

}︁
∀𝑥 ∈ ℋ

−→
P

𝐷Ψ
𝐾 := arg inf𝑥∈𝐾 {𝐷Ψ( · , 𝑥)} ∀𝑥 ∈ 𝑋

orthogonal
decomposition

⎧⎪⎪⎨⎪⎪⎩
𝑃

𝑑||·||ℋ
𝐿 + 𝑃

𝑑||·||ℋ
𝐿⊥ = Iℋ⟨

𝑦, 𝑃
𝑑||·||ℋ
𝐿⊥ (𝑥)

⟩
ℋ

= 0 ∀(𝑥, 𝑦) ∈ ℋ× 𝐿,⎧⎪⎪⎨⎪⎪⎩
P

𝑑||·||ℋ
𝐾 +P

𝑑||·||ℋ
𝐾∘ = Iℋ⟨

P
𝑑||·||ℋ
𝐾 (𝑥),P

𝑑||·||ℋ
𝐾∘ (𝑥)

⟩
ℋ
= 0 ∀𝑥 ∈ ℋ,

for linear subspace 𝐿 ⊆ ℋ, convex
closed cone 𝐾 ⊆ ℋ,
𝐿⊥ := {𝑦 ∈ ℋ : ⟨𝑥, 𝑦⟩ℋ = 0 ∀𝑥 ∈ 𝐿},
𝐾∘ := {𝑦 ∈ ℋ : ⟨𝑥, 𝑦⟩ℋ ≤ 0 ∀𝑥 ∈ 𝐾}

⎧⎪⎨⎪⎩
←−
P

𝐷Ψ
𝐾 + (DGΨ)

p ∘ P̂ΨF

𝐾∘ ∘DGΨ = id𝑋[︁[︁←−
P

𝐷Ψ
𝐾 (𝑥), P̂ΨF

𝐾∘ ∘DGΨ(𝑥)
]︁]︁

𝑋×𝑋⋆
= 0 ∀𝑥 ∈ 𝑋,⎧⎪⎪⎨⎪⎪⎩

P̂Ψ
(DGΨ(𝐶))∘

+
−→
P

𝐷Ψ
𝐶 = id𝑋[︁[︁

(DGΨF)

p ∘
−→
P

𝐷Ψ
𝐶 (𝑦), P̂Ψ

(DGΨ(𝐶))∘
(𝑦)

]︁]︁
𝑋×𝑋⋆

= 0 ∀𝑦 ∈ 𝑋,

for convex closed cone 𝐾 ⊆ 𝑋, convex closed cone
DGΨ(𝐶) ⊆ 𝑋⋆,
𝐾∘ := {𝑦 ∈ 𝑋⋆ : [[𝑥, 𝑦]]𝑋×𝑋⋆ ≤ 0 ∀𝑥 ∈ 𝐾},
P̂ΨF

𝐾∘ (𝑦) := arg inf𝑧∈𝐾∘
{︀
ΨF(𝑦 − 𝑧)

}︀
∀𝑦 ∈ 𝑋⋆; if 𝐾 (resp.,

DGΨ(𝐶)) is replaced by a linear subspace 𝐿 ⊆ 𝑋 (resp.,
DGΨ(𝐿) ⊆ 𝑋⋆), then (·)∘ is replaced by (·)⊥, where
𝑀⊥ := {𝑦 ∈ 𝑋⋆ : [[𝑥, 𝑦]]𝑋×𝑋⋆ = 0 ∀𝑥 ∈𝑀}

pythagorean
theorem for
projections

||𝑥− 𝑦||2ℋ ≥⃒⃒⃒⃒⃒⃒⃒⃒
𝑥−P

𝑑||·||ℋ
𝐾 (𝑦)

⃒⃒⃒⃒⃒⃒⃒⃒ 2
ℋ

+

⃒⃒⃒⃒⃒⃒⃒⃒
P

𝑑||·||ℋ
𝐾 (𝑦)− 𝑦

⃒⃒⃒⃒⃒⃒⃒⃒ 2
ℋ

∀(𝑥, 𝑦) ∈ 𝐾 ×ℋ ∀ Chebyshëv 𝐾

𝐷Ψ(𝑥, 𝑦) ≥ 𝐷Ψ(𝑥,
←−
P

𝐷Ψ
𝐾 (𝑦)) +𝐷Ψ(

←−
P

𝐷Ψ
𝐾 (𝑦), 𝑦)

∀(𝑥, 𝑦) ∈ 𝐾 ×𝑋 ∀ left 𝐷Ψ-Chebyshëv 𝐾,
𝐷Ψ(𝑥, 𝑦) ≥ 𝐷Ψ(𝑥,

−→
P

𝐷Ψ
𝐾 (𝑥)) +𝐷Ψ(

−→
P

𝐷Ψ
𝐾 (𝑥), 𝑦)

∀(𝑥, 𝑦) ∈ 𝑋 ×𝐾 ∀ right 𝐷Ψ-Chebyshëv 𝐾

completely
nonexpansive maps

||𝑇 (𝑥)− 𝑇 (𝑦)||ℋ ≤ ||𝑥− 𝑦||ℋ ∀𝑥, 𝑦 ∈ 𝐾 𝐷Ψ(𝑇 (𝑥), 𝑇 (𝑦)) ≤ 𝐷Ψ(𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝐾

quasinonexpansive
maps

||𝑥− 𝑇 (𝑦)||ℋ ≤ ||𝑥− 𝑦||ℋ
∀(𝑥, 𝑦) ∈ Fix(𝑇 )×𝐾

𝐷Ψ(𝑥, 𝑇 (𝑦)) ≤ 𝐷Ψ(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ Fix(𝑇 )×𝐾,
𝐷Ψ(𝑇 (𝑥), 𝑦) ≤ 𝐷Ψ(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ 𝐾 × Fix(𝑇 )

proximal maps prox
𝑑||·||ℋ
𝜆,𝑓 :=

arg inf𝑥∈efd(𝑓)

{︁
𝑓(𝑥)− 𝜆

2
||𝑥− · ||2

}︁ ←−−prox
𝐷Ψ
𝜆,𝑓 := arg inf𝑥∈efd(𝑓)∩efd(Ψ) {𝑓(𝑥) + 𝜆𝐷Ψ(𝑥, · )},

−−→prox
𝐷Ψ
𝜆,𝑓 := arg inf𝑥∈efd(𝑓)∩int(efd(Ψ)) {𝑓(𝑥) + 𝜆𝐷Ψ( · , 𝑥)}

pythagorean
theorem for
proximal maps

||𝑥− 𝑦||2ℋ ≥
⃒⃒⃒⃒⃒⃒⃒⃒
𝑥− prox

𝑑||·||ℋ
𝜆,𝑓 (𝑦)

⃒⃒⃒⃒⃒⃒⃒⃒ 2
ℋ

+⃒⃒⃒⃒⃒⃒⃒⃒
prox

𝑑||·||ℋ
𝜆,𝑓 (𝑦)− 𝑦

⃒⃒⃒⃒⃒⃒⃒⃒ 2
ℋ

∀(𝑥, 𝑦) ∈ Fix(prox
𝑑||·||ℋ
𝜆,𝑓 )×ℋ,

Fix(prox
𝑑||·||ℋ
𝜆,𝑓 ) = arg inf𝑥∈efd(𝑓) {𝑓(𝑥)}

𝐷Ψ(𝑥, 𝑦) ≥ 𝐷Ψ(𝑥,←−−prox
𝐷Ψ
𝜆,𝑓 (𝑦)) +𝐷Ψ(←−−prox

𝐷Ψ
𝜆,𝑓 (𝑦), 𝑦)

∀(𝑥, 𝑦) ∈ Fix(←−−prox
𝐷Ψ
𝜆,𝑓 )× int(efd(Ψ)),

Fix(←−−prox
𝐷Ψ
𝜆,𝑓 ) = int(efd(Ψ)) ∩ arg inf𝑥∈efd(𝑓) {𝑓(𝑥)},

𝐷Ψ(𝑥, 𝑦) ≥ 𝐷Ψ(𝑥,−−→prox
𝐷Ψ
𝜆,𝑓 (𝑥)) +𝐷Ψ(−−→prox

𝐷Ψ
𝜆,𝑓 (𝑥), 𝑦)

∀(𝑥, 𝑦) ∈ int(efd(Ψ))× Fix(−−→prox
𝐷Ψ
𝜆,𝑓 ),

Fix(−−→prox
𝐷Ψ
𝜆,𝑓 ) = DGΨF(←−−prox

𝐷
ΨF

𝑓∘DGΨF )

resolvents res𝜆𝑇 := (id𝑋 + 𝜆𝑇 )

p ←−resΨ𝜆𝑇 := (DGΨ+ 𝜆𝑇 ) ∘DGΨ,
−→resΨ𝜆𝑇 := (id𝑋⋆ + 𝜆𝑇 ∘DGΨF)

p

pythagorean
theorem for
resolvents

||𝑥− 𝑦||2ℋ ≥
||𝑥− res𝜆𝑇 (𝑦)||2ℋ + ||res𝜆𝑇 (𝑦)− 𝑦||2ℋ
∀(𝑥, 𝑦) ∈ Fix(res𝜆𝑇 )×ℋ,
Fix(res𝜆𝑇 ) = 𝑇

p

(0)

𝐷Ψ(𝑥, 𝑦) ≥ 𝐷Ψ(𝑥,←−resΨ𝜆𝑇 (𝑦)) +𝐷Ψ(←−resΨ𝜆𝑇 (𝑦), 𝑦) ∀(𝑥, 𝑦) ∈
Fix(←−resΨ𝜆𝑇 )× int(efd(Ψ)), Fix(←−resΨ𝜆𝑇 ) = int(efd(Ψ)) ∩ 𝑇 p

(0),
𝐷ΨF (𝑥, 𝑦) ≥ 𝐷ΨF (𝑥,−→resΨ𝜆𝑇 (𝑥))+𝐷ΨF (−→resΨ𝜆𝑇 (𝑥), 𝑦) ∀(𝑥, 𝑦) ∈
int(efd(ΨF))× Fix(−→resΨ𝜆𝑇 ),
Fix(−→resΨ𝜆𝑇 ) = DGΨ(int(efd(Ψ)) ∩ 𝑇 p

(0))

Table 1: Comparison of metric geometry on a Hilbert space and Văınberg–Brègman geometry on a reflexive
Banach space. For interpretation of

[︀[︀
·,DGΨ(·)

]︀]︀
𝑋×𝑋⋆ as orthogonality in a Gateaux differentiable reflexive

Banach space (𝑋, ||·||𝑋) for Ψ = Ψ𝜙, see Remark 3.37.(xv). For comparison of characterisations of metric
projections in Hilbert and Banach spaces with characterisations of left and right 𝐷Ψ-projections, including
their respective continuity properties, see Remark 3.37.(iii). For 𝑍 ∈ {ℋ, 𝑋} and 𝑇 : 𝑋 → 2𝑋 , Fix(𝑇 ) := {𝑥 ∈
𝑍 : 𝑇 (𝑥) = 𝑥}. We denote 𝑃

𝑑||·||ℋ
𝐿 := P

𝑑||·||ℋ
𝐿 for a linear subspace 𝐿 ⊆ ℋ, since in such case P

𝑑||·||ℋ
𝐿 coincide

with the bounded linear projection operators on ℋ.
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1.2 ...and quasinonexpansive operators

Let (𝑋, ||·||𝑋) be a reflexive Banach space. In general, a map 𝑇 : 𝐾 → int(efd(Ψ)) with ∅ ̸= 𝐾 ⊆
int(efd(Ψ)) ⊆ 𝑋 is said to be left (resp., right) 𝐷Ψ-quasinonexpansive on Fix(𝑇 ) := {𝑥 ∈ 𝐾 : 𝑇 (𝑥) =
𝑥} iff

𝐷Ψ(𝑥, 𝑇 (𝑦)) ≤ 𝐷Ψ(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ Fix(𝑇 )×𝐾 (9)
(resp., 𝐷Ψ(𝑇 (𝑥), 𝑦) ≤ 𝐷Ψ(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ 𝐾 × Fix(𝑇 )). (10)

Let 𝜆 ∈ ]0,∞[. An important example of left (resp., right) 𝐷Ψ-quasinonexpansive maps is provided
by left (resp., right) 𝐷Ψ-resolvents of monotone operators 𝑊 : 𝑋 → 2𝑋

⋆ [133, Lem. 1] [41, Def. 3.7]
(resp., [245, Def. 5.3]),

←−resΨ𝜆𝑊 := (DGΨ+ 𝜆𝑊 ) ∘DGΨ, (11)

(resp., −→resΨ𝜆𝑊 := (id𝑋⋆ + 𝜆𝑊 ∘DGΨF)

p ). (12)

Their special case,4 given by the left (resp., right) 𝐷Ψ-proximal maps for suitable 𝑓 : 𝑋 → ] −∞,∞]
[95, Eqn. (13)] [41, Def. 3.16] (resp., [43, Def. 3.7] [218, Def. 3.3]),

←−−prox𝐷Ψ
𝜆,𝑓 := arg inf

𝑥∈efd(𝑓)∩efd(Ψ)
{𝑓(𝑥) + 𝜆𝐷Ψ(𝑥, · )} (13)

(resp., −−→prox𝐷Ψ
𝜆,𝑓 := arg inf

𝑥∈efd(𝑓)∩int(efd(Ψ))
{𝑓(𝑥) + 𝜆𝐷Ψ( · , 𝑥)} ), (14)

generalises left (resp., right) 𝐷Ψ-projections. Quite noticeably, it turns out that the left 𝐷Ψ-resolvents
(resp., left 𝐷Ψ-proximal maps) also satisfy the generalised pythagorean theorem [133, Lem. 1] [41,
Props. 3.3.(i), 3.13.(iv).(b), 3.21.(vi), 3.22.(ii).(b), 3.23.(v).(b), Cor. 3.25]

𝐷Ψ(𝑥, 𝑦) ≥ 𝐷Ψ(𝑥,
←−resΨ𝜆𝑊 (𝑦)) +𝐷Ψ(

←−resΨ𝜆𝑊 (𝑦), 𝑦) ∀(𝑥, 𝑦) ∈ Fix(←−resΨ𝜆𝑊 )× int(efd(Ψ)); (15)

(resp., 𝐷Ψ(𝑥, 𝑦) ≥ 𝐷Ψ(𝑥,
←−−prox𝐷Ψ

𝜆,𝑓 (𝑦)) +𝐷Ψ(
←−−prox𝐷Ψ

𝜆,𝑓 (𝑦), 𝑦) ∀(𝑥, 𝑦) ∈ Fix(←−−prox𝐷Ψ
𝜆,𝑓 )× int(efd(Ψ))). (16)

In Proposition 3.4 (resp., 3.3) we complete this theoretical landscape, establishing the generalised
pythagorean theorem for right 𝐷Ψ-resolvents (resp., right 𝐷Ψ-proximal maps)

For ∅ ̸= 𝐾 ⊆ int(efd(Ψ)) ⊆ 𝑋, 𝑇 : 𝐾 → int(efd(Ψ)), and cl denoting a topological closure operator
on the subsets of 𝑋 with respect to the topology of ||·||𝑋 , consider a topological generalisation of Fix(𝑇 )
given by [293, p. 313]

̂︂Fix(𝑇 ) := {𝑥 ∈ cl(𝐾) : ∃{𝑥𝑛 ∈ 𝐾 : 𝑛 ∈ N}, 𝑥𝑛 converges weakly to 𝑥, lim
𝑛→∞

||𝑥𝑛 − 𝑇 (𝑥𝑛)||𝑋}. (17)

𝑇 : 𝐾 → int(efd(Ψ)) such that

𝐷Ψ(𝑥, 𝑇 (𝑦)) ≤ 𝐷Ψ(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈̂︂Fix(𝑇 )×𝐾 (18)

(resp., 𝐷Ψ(𝑇 (𝑥), 𝑦) ≤ 𝐷Ψ(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ 𝐾 ×̂︂Fix(𝑇 )) (19)

and, for any 𝑦 ∈̂︂Fix(𝑇 ) and any bounded {𝑥𝑛 ∈ 𝐾 : 𝑛 ∈ N}, [94, Def. 3.2] [293, pp. 313–314] (resp.,
[245, Def. 2.3.(iv)])

lim
𝑛→∞

(𝐷Ψ(𝑦, 𝑥𝑛)−𝐷Ψ(𝑦, 𝑇 (𝑥𝑛))) = 0 ⇒ lim
𝑛→∞

𝐷Ψ(𝑇 (𝑥𝑛), 𝑥𝑛) = 0 (20)

(resp., lim
𝑛→∞

(𝐷Ψ(𝑥𝑛, 𝑦)−𝐷Ψ(𝑇 (𝑥𝑛), 𝑦)) = 0 ⇒ lim
𝑛→∞

𝐷Ψ(𝑥𝑛, 𝑇 (𝑥𝑛)) = 0), (21)

4Strictly speaking, −−→prox𝐷Ψ
𝜆,𝑓 is a map 𝑋 → 2𝑋 , while −→resΨ𝜆𝑊 is a map 𝑋⋆ → 2𝑋

⋆

, so the former cannot be a special case
of the latter. However, under some mild conditions on Ψ, (84) and (85) allow for the above conceptual simplification.
Apart from simplification of terminology, this perspective proves to be useful in applications. E.g., in Proposition 3.32.(iv)
we show that −−→prox𝐷Ψ

𝜆,𝑓 and −→resΨ𝜆𝑊 , for Ψ = Ψ𝜙1,𝛽 , exhibit exactly the same value 𝑡 of 𝑡-Lipschitz–Hölder continuity. On
the other hand, while the generalised pythagorean theorem for −−→prox𝐷Ψ

𝜆,𝑓 features 𝐷Ψ, its variant for −→resΨ𝜆𝑊 features 𝐷ΨF .
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will be called a left (resp., right) strongly 𝐷Ψ-quasinonexpansive map, while the set of all such maps
will be denoted by LSQ(Ψ,𝐾) (resp., RSQ(Ψ,𝐾)). Condition (20) (resp., (21)) is essentially a topo-
logical version of the left (resp., right) generalised pythagorean theorem. Under some conditions on
Ψ, cf. Definition 2.14 and Proposition 2.16.(i)–(ii), the suitable finite subsets of LSQ(Ψ,𝐾) (resp.,
RSQ(Ψ,𝐾)) admit composition [293, Lems. 1, 2] [246, Prop. 3.3] (resp., [246, Props. 4.4, 6.6]): for
any set {𝑇𝑖 : 𝐾 → 𝐾 : 𝑇𝑖 ∈ LSQ(Ψ,𝐾) (resp., RSQ(Ψ,𝐾)), 𝑖 ∈ {1, . . . ,𝑚},𝑚 ∈ N},⋂︀𝑚

𝑖=1
̂︂Fix(𝑇𝑖) ̸= ∅ ̸=̂︂Fix(𝑇𝑚 ∘ · · · ∘ 𝑇1) ⇒ 𝑇𝑚 ∘ · · · ∘ 𝑇1 ∈ LSQ(Ψ,𝐾) (resp., RSQ(Ψ,𝐾)), (22)

with ̂︂Fix(𝑇𝑚 ∘ · · · ∘ 𝑇1) ⊆ ⋂︀𝑚
𝑖=1
̂︂Fix(𝑇𝑖). Such Ψ will be called LSQ-compositional (resp., RSQ-

compositional). Under some additional conditions on LSQ-compositional (resp., RSQ-compositional)
Ψ, cf. Proposition 2.16.(iii)–(iv),

←−
P𝐷Ψ
𝐶 : 𝐾 → int(efd(Ψ)) belongs to LSQ(Ψ,𝐾) with ̂︂Fix(←−P𝐷Ψ

𝐶 ) =

Fix(
←−
P𝐷Ψ
𝐶 ) = 𝐶, and ←−resΨ𝑇 ∈ LSQ(Ψ, 𝑋) (resp.,

−→
P𝐷Ψ
𝐶 : 𝐾 → int(efd(Ψ)) belongs to RSQ(Ψ,𝐾) witĥ︂Fix(−→P𝐷Ψ

𝐶 ) = Fix(
−→
P𝐷Ψ
𝐶 ) = 𝐶, and −→resΨ𝑇 ∈ RSQ(ΨF, 𝑋⋆)). Such Ψ will be called LSQ-adapted (resp.,

RSQ-adapted)5.
In the context of information theory (or statistical inference), 𝐷Ψ(𝜔, 𝜑) can be interpreted as a

quantification of relative information content of the information state 𝜔 with respect to the information
state 𝜑. Hence, the generalised pythagorean equation (6) can be interpreted as a nonlinear additive
decomposition of quantification 𝐷Ψ(𝜔, 𝜑) of an “information gain” (or an “uncertainty loss”) from 𝜑

to 𝜔 into 𝐷Ψ(
←−
P𝐷Ψ
𝐾 (𝜑), 𝜑), interpreted as quantification of an “information gain due to learning of

constraints” 𝐾, and 𝐷Ψ(𝜔,
←−
P𝐷Ψ
𝐾 (𝜑)), interpreted as quantification of an “uncertainty loss within the

constraints”. Analogous interpretation holds for right 𝐷Ψ-projections, left and right 𝐷Ψ-proximity
maps, as well as left and right 𝐷Ψ-resolvents. Thus, left and right pythagorean inequalities allow for
an additive decomposition of information contained in “data” into “signal” plus “noise” under a vast
range of nonlinear quasinonexpansive operators. Due to (20)–(21), the quasinonexpansive maps in
LSQ(Ψ,𝐾) and RSQ(Ψ,𝐾) can be seen as a suitable topological generalisation of such inferences.

1.3 New results

Our work has five interconnected layers: 1) new results for 𝐷Ψ on reflexive Banach spaces (𝑋, ||·||𝑋);
2) construction of suitable categories of left and right 𝐷Ψ-projections as well as of LSQ(Ψ,𝐾) and
RSQ(Ψ,𝐾) maps; 3) new results for 𝐷Ψ𝜙 on reflexive Banach spaces (𝑋, ||·||𝑋); 4) developing the
theory of extended Văınberg–Brègman functionals 𝐷ℓ,Ψ and quasinonexpansive maps over nonreflexive
Banach spaces, together with the corresponding categories; 5) deriving a range of results for 𝐷Ψ and
𝐷ℓ,Ψ in particular models, with a main focus on (nonreflexive) preduals of W*- and JBW-algebras.

1.3.1 Reflexive setting

We contribute to the general theory of 𝐷Ψ on reflexive Banach space (𝑋, ||·||𝑋) with several new
results, including an extension of a characterisation of right 𝐷Ψ-projections by means of generalised
pythagorean inequality to not necessarily finite Ψ (Proposition 3.1.(i)), proving a generalised pythagore-
an inequality for right 𝐷Ψ-proximal maps (Proposition 3.3) and right 𝐷Ψ-resolvents (Proposition 3.4),
providing the right version of Al’ber’s generalised orthogonal decompositions (Proposition 3.11.(ii)),
and establishing sufficient conditions for: norm-to-norm continuity of right𝐷Ψ-projections (Proposition
3.5.(iii)–(iv)) and right 𝐷Ψ-proximal maps (Proposition 3.7.(ii)); Lipschitz–Hölder continuity of left
and right 𝐷Ψ-resolvents (Proposition 3.8), left and right 𝐷Ψ-proximal maps (Proposition 3.8), as well
as left and right 𝐷Ψ-projections (Corollary 3.9).

1.3.2 Categories

Under some restrictions, the sets of left and right 𝐷Ψ-projections, as well as the sets LSQ(Ψ,𝐾) and
RSQ(Ψ,𝐾), can be transformed into suitable categories (Definitions 3.43 and 3.47). Taking closed

5More precisely, the abstract notion of an RSQ-adapted Ψ is not sufficient for −→resΨ𝑇 ∈ RSQ(ΨF, 𝑋⋆), however the
latter property is implied by all of the known sufficient conditions for RSQ-adaptedness of Ψ.
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convex sets in (𝑋, ||·||𝑋) as objects, left 𝐷Ψ-projections onto such sets as morphisms, and defining
the composition of morphisms as a left 𝐷Ψ-projection onto the intersection of constraint sets of the
composed left 𝐷Ψ-projections, we obtain the category lCvx(Ψ). By restriction of objects to affine
closed sets, we obtain the category lAff(Ψ). By taking objects given by DGΨ-convex DGΨ-closed
sets in (𝑋, ||·||𝑋) (i.e. sets such that their images in (𝑋⋆, ||·||𝑋⋆) under the map DGΨ : 𝑋 → 𝑋⋆ are
convex and closed), morphisms given by their right 𝐷Ψ-projections, and defining composition of two
morphisms as a right 𝐷Ψ-projection onto the intersection of the constraint sets of these morphisms, we
obtain the category r̄Cvx(Ψ). Its restriction to DGΨ-affine DGΨ-closed sets is denoted r̄Aff(Ψ). These
categories are well defined provided that we admit an empty set as an object and an empty arrow,
⌜∅⌝, as a morphism available between any two objects. The superscript ⊆ will denote a restriction
of the above categories to the case when the composition of morphisms is different from ⌜∅⌝ only
when the codomain of second projection is a subset of the codomain of first projection. Assuming
analogous conditions on the ̂︂Fix(𝑇 ) sets of left strongly 𝐷Ψ-quasinonexpansive maps, and restricting
them to be convex and closed, gives rise to the category LSQ⊆cvx. An analogous construction for right
strongly 𝐷Ψ-quasinonexpansive maps gives a category R̄SQ⊆cvx. Hence, LSQ-compositionality (resp.,
RSQ-compositionality) of Ψ is a condition allowing to define the category LSQ⊆cvx (resp., R̄SQ⊆cvx). If Ψ
is LSQ-adapted (resp., RSQ-adapted), then there is an embedding functor from lCvx⊆(Ψ) to LSQ⊆cvx
(resp., from r̄Cvx⊆(Ψ) to R̄SQ⊆cvx), as well as a functor right adjoint to it, which assigns to each 𝑇
its fixed point set Fix(𝑇 ) (Definition 3.48.(iii)–(vi) and Proposition 3.49.(ii)–(iii)). The categories
lCvx(Ψ) and r̄Cvx(Ψ) are equivalent, and the same is true for LSQ⊆cvx(Ψ) and R̄SQ⊆cvx(Ψ), since the
second element of each of these pairs is defined by means of the first one, through the Euler–Legendre
transformation implemented by DGΨ (Propositions 3.45.(i) and 3.49.(i)).

1.3.3 Gauges and quasigauges 𝜙

For 𝐷Ψ with Ψ = Ψ𝜙 and a gauge 𝜙, we provide the first systematic study of the properties of this func-
tional, obtaining an array of new results, including the sufficient conditions on linear norm-geometric
properties of (𝑋, ||·||𝑋) for: zone consistency and characterisation of left and right 𝐷Ψ𝜙-projections
by a generalised pythagorean inequality (Proposition 3.17); norm-to-norm continuity of left and right
𝐷Ψ𝜙-projections (Proposition 3.27), left and right 𝐷Ψ𝜙-proximal maps (Proposition 3.30), and left and
right 𝐷Ψ𝜙-resolvents (Proposition 3.31), as well as uniform continuity and Lipschitz–Hölder continuity
of left and right 𝐷Ψ𝜙-projections (Proposition 3.33) and of left and right 𝐷Ψ𝜙-proximal maps and
𝐷Ψ𝜙-resolvents (Proposition 3.32); LSQ-compositionality, LSQ-adaptedness, RSQ-compositionality,
and RSQ-adaptedness of Ψ𝜙 (Proposition 3.28). (See Table 2 for more detailed discussion of, and
structural view on, these notions and results.) Furthermore, we characterise the Euler–Legendre prop-
erty of Ψ𝜙 by strict convexity and Gateaux differentiability of (𝑋, ||·||𝑋) (Proposition 3.14). We also
deliver several new results for Ψ = Ψ𝜙 with a quasigauge 𝜙, which has never been considered before
in the context of 𝐷Ψ, including a characterisation of the Euler–Legendre property of Ψ𝜙 (Proposition
3.23) and sufficient conditions on 𝜙 for a characterisation of left and right 𝐷Ψ𝜙-projections by the
respective generalised pythagorean theorem (Proposition 3.24). Taken together, these results establish
a strong bridge between the Văınberg–Brègman and norm geometries of reflexive Banach spaces. They
also play a key role in providing nontrivial functional analytic and operator algebraic models of the
(reflexive and extended) Văınberg–Brègman geometry in Section 4.

1.3.4 Extension ℓ

While the generalised pythagorean equation (7) has the same form as, and is completely analogous to,
(6), the original result (4) of Chencov is more subtle, containing an additional layer of abstraction.
More specifically, (7), provided in [245, Prop. 4.11] and Proposition 3.1, deals with 𝑀 given by the
reflexive Banach space (𝑋, ||·||𝑋), with convexity and closure specified, via DGΨ, in terms of structure
of (𝑋⋆, ||·||𝑋⋆), and it is also applicable to a special case of 𝐷1 defined on R𝑛. On the other hand,
Chencov’s result deals with 𝐷1 over (𝐿1(𝒳 , 𝜇), ||·||1), which is a nonreflexive Banach space, and it
specifies convexity not in terms of the linear structure of 𝐿1(𝒳 , 𝜇), but in terms of exponential families
(5): for a fixed 𝑛 ∈ N, it uses a nonlinear exponential coordinate map from an 𝑛-dimensional subset
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of 𝐿1(𝒳 , 𝜇) to a convex closed subset of a reflexive space R𝑛. The same issue of a “suitable definition”
of convexity and closure of the sets for a generalised pythagorean theorem over a nonreflexive Banach
space appeared in [183, Prop. 8.1, Prop. 8.2], for a family 𝐷𝛾 of relative entropies over (nonreflexive)
preduals (𝒩⋆, ||·||𝒩⋆

) of arbitrary W*-algebras 𝒩 : in order to establish the generalised pythagorean
theorem for left 𝐷𝛾-projections on subsets 𝐾 of (𝒩⋆, ||·||𝒩⋆

), the convexity and closure of 𝐾 was
specified in terms of the structure of (reflexive) noncommutative (𝐿1/𝛾(𝒩 ), ||·||1/𝛾) space with 𝛾 ∈ ]0, 1[,
via Mazur maps ℓ𝛾 : 𝒩⋆ → 𝐿1/𝛾(𝒩 ) (cf. Corollary 4.3.(ii) and Remark 4.9.(i) for details).

In order to extend applicability of the Văınberg–Brègman geometry beyond the class of reflex-
ive Banach spaces (𝑋, ||·||𝑋), we generalise the above observations, and consider a bijective map ℓ
from a subset 𝑈 of a (generally not reflexive) Banach space (𝑌, ||·||𝑌 ) to a subset ℓ(𝑈) of 𝑋. In this
sense, ℓ establishes a global nonlinear coordinate system on 𝑈 , modelled in 𝑋. Given ℓ and Ψ, the
extended Văınberg–Brègman functional on 𝑈 is defined by 𝐷ℓ,Ψ(𝜑, 𝜓) := 𝐷Ψ(ℓ(𝜑), ℓ(𝜓)). The suit-
able properties of the subsets of 𝑈 become expressed in terms of the corresponding properties of
their ℓ-embeddings into (𝑋, ||·||𝑋), with the convex analytic results proved for 𝐷Ψ on (𝑋, ||·||𝑋) pulled
back into the corresponding results for 𝐷ℓ,Ψ. Hence, consideration of convexity (resp., affinity; clo-
sure; DGΨ-convexity; DGΨ-affinity; DGΨ-closure) of sets in (𝑋, ||·||𝑋) leads us to consideration of
ℓ-convexity (resp., ℓ-affinity; ℓ-closure; (DGΨ ∘ ℓ)-convexity; (DGΨ ∘ ℓ)-affinity; (DGΨ ∘ ℓ)-closure) of
sets in (𝑌, ||·||𝑌 ), and dealing with the left 𝐷ℓ,Ψ-projections onto ℓ-convex ℓ-closed sets, right 𝐷ℓ,Ψ-
projections onto (DGΨ ∘ ℓ)-convex (DGΨ ∘ ℓ)-closed sets, sets LSQ(ℓ,Ψ, 𝐶) and RSQ(ℓ,Ψ, 𝐶) of left
and right strongly 𝐷ℓ,Ψ-quasinonexpansive maps, respectively, etc. (In particular, we obtain categories
lCvx(ℓ,Ψ) and r̄Cvx(ℓ,Ψ) (as well as their affine and ⊆- subcategories), LSQ⊆cvx(ℓ,Ψ) and R̄SQ⊆cvx(ℓ,Ψ),
and the corresponding functorial relationships between them.)

In other words, each choice of (ℓ,Ψ) sets up a specific way of probing the relationship between
quantitative and geometric properties of a subset 𝑈 of (𝑌, ||·||𝑌 ) in terms of the Văınberg–Brègman
geometry of ℓ(𝑈) in (𝑋, ||·||𝑋), i.e. as perceived through the lenses of a nonlinear embedding (‘coordinate
system’) ℓ : 𝑈 → 𝑋 and a convex function Ψ : 𝑋 → ] − ∞,∞] (‘loss/bias criterion of statistical
discrimination’). This way, by moving from𝐷Ψ to𝐷ℓ,Ψ = 𝐷Ψ∘(ℓ, ℓ), we provide a partial reconcilliation
between (arbitrary dimensional) Chencov’s and Văınberg–Brègman approaches by means of a setting,
which we call the extended Văınberg–Brègman geometry.

While the results on uniqueness and existence of 𝐷Ψ-projections can be pulled back without any
additional topological assumptions on ℓ (since bijectivity of ℓ allows to use the topology induced by
the norm topology of (𝑋, ||·||𝑋)), providing sufficient conditions for the stability of 𝐷ℓ,Ψ-projections,
expressed in terms of their norm-to-norm continuity or uniform continuity, requires to impose the
corresponding continuity conditions on ℓ. As a result, the best behaved sector of the extended Văınberg–
Brègman geometry (which we identify as ‘well adapted models’) belongs to an intersection of the convex
analysis on reflexive Banach spaces with the nonlinear homeomorphic theory of (arbitrary) Banach
spaces. In particular, if ℓ is norm-to-norm continuous, then the ℓ-closed sets in (𝑋, ||·||𝑋) coincide with
the sets closed with respect to the topology of ||·||𝑋 . Hence, the only inevitable price to pay for the
extension from 𝐷Ψ to 𝐷ℓ,Ψ is the replacement of convexity by ℓ-convexity.

1.4 Models

A pair (ℓ,Ψ) will be called a model of an extended Văınberg–Brègman geometry iff it satisfies the
following axioms: 𝐷Ψ is an information (i.e. 𝐷Ψ(𝑥, 𝑦) = 0 ⇐⇒ 𝑥 = 𝑦), left and right 𝐷Ψ-projections
(onto, respectively, left and right 𝐷Ψ-Chebyshëv subsets of (𝑋, ||·||𝑋)) exist, and they satisfy the cor-
responding generalised pythagorean inequalities. For Ψ = Ψ𝜙, further strengthening of the model
(allowing more axioms to be satisfied) is implemented by strengthening of the geometric properties of
the corresponding norm ||·||𝑋 , as shown in Table 2.

While the definition of an extended Văınberg–Brègman model does not impose any additional
conditions on a bijection ℓ : 𝑈 → ℓ(𝑈) ⊆ 𝑋, this is not longer so for its further refinements. Borrowing
a terminology from [131, p. 231], we will call a model (ℓ,Ψ), not necessarily with Ψ = Ψ𝜙, to be well
adapted (resp., uniformly well adapted ; Lipschitz–Hölder well adapted) iff it satisfies all axioms of case
IV (resp., V; VI) and ℓ is a norm-to-norm (resp., uniform; Lipschitz–Hölder) homeomorphism. For
(ℓ,Ψ = Ψ𝜙) with a gauge 𝜙 it turns out that the properties of case I–IV models do not depend on
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geometry of (𝑋, ||·||𝑋)
case properties of the Văınberg–Brègman geometry (satisfied in a given case) for Ψ = Ψ𝜙

I 𝐷Ψ and 𝐷ΨF are informations, left and right 𝐷Ψ-projections are single-
valued and are characterised by the respective generalised pythagorean in-
equalities, left and right 𝐷Ψ-resolvents are single-valued and satisfy the
respective generalised pythagorean inequalities SC ∩G ∩R

→˓

II left and right 𝐷Ψ-projections are norm-to-norm continuous + all of above SC ∩RRS ∩ F ∩R

→˓

IIIR/
/IIIL

(norm-to-norm continuity of right 𝐷Ψ-resolvents + LSQ- and RSQ-compo-
sability/norm-to-norm continuity of left 𝐷Ψ-resolvents) + all of above

SC ∩ RRS ∩ UF/
/UC ∩ F

→˓

IV RSQ-adaptedness + all of above UC ∩UF

→˓

VL/VR left/right 𝐷Ψ-projections and left/right 𝐷Ψ-resolvents are uniformly con-
tinuous on bounded subsets + all of above

1
𝛽 -UC ∩ UF/
/UC ∩ 1

𝛽 -UF

→˓

VI left and right 𝐷Ψ-projections and 𝐷Ψ-resolvents are Lipschitz–Hölder con-
tinuous + all of above

1
𝛽 -UC ∩ 1

𝛾 -UF

IIb LSQ-adaptedness + all of case I SC ∩UF

Table 2: Different cases of Văınberg–Brègman geometric axioms, and the corresponding conditions on the
Banach geometry of (𝑋, ||·||𝑋) which are sufficient for these axioms to hold for Ψ = Ψ𝜙 with a gauge 𝜙.
Notation: SC := strict convexity, G := Gateaux differentiability, R := reflexivity, RRS := the Radon–Riesz–
Shmul’yan property, F := Fréchet differentiability, ( 1

𝛽 -)UF := ( 1
𝛽 -)uniform Fréchet differentiability, ( 1

𝛽 -)UC :=
( 1
𝛽 -)uniform convexity. These results are obtained in Propositions 3.17, 3.27, 3.28, 3.31, 3.32, and 3.33. While

for any model (ℓ,Ψ) we require left and right 𝐷Ψ-projections to satisfy the respective generalised pythagorean
inequalities, case I strengthens this to a requirement of characterisation. Case IIb is included in case IIIR, but
not in case IIIL.

the choice of 𝜙, but (essentially due to Proposition 2.26.(vii)–(viii)) such dependence appears for case
VL/VR (so, also for case VI) models (Propositions 3.32 and 3.33). Hence, a passage from norm-to-norm
continuity of left and right 𝐷Ψ𝜙-projections, 𝐷Ψ𝜙-proximal maps, and 𝐷Ψ𝜙-resolvents to their uniform
continuity includes becoming sensitive to the properties of a particular 𝜙. More specifically, case VL

and case VR models are specified only for the particular family of 𝜙, given by 𝜙(𝑡) = 𝜙1,𝛽(𝑡) := 𝑡1/𝛽−1.
Furthermore, since uniform homeomorphy of unit balls of two Banach spaces does not imply uniform
homeomorphy of these spaces, a passage to uniformly well adapted models amounts, in practice (and
for Ψ = Ψ𝜙), to restriction of considerations to the extended Văınberg–Brègman geometry of a unit ball
(and its subsets). On the other hand, under generalisation from gauges to quasigauges, there is already
a split of case I models into left and right cases (IL/IR), dependently on the particular properties of a
quasigauge (Proposition 3.24).

The examples of well adapted case IV models are given by (ℓ𝛾 ,Ψ𝜙), with an arbitrary gauge 𝜙
and the Mazur map ℓ𝛾(𝜑) := 𝜑𝛾 , for 𝛾 ∈ ]0, 1[, mapping preduals of arbitrary W*-algebras 𝒩 and
semifinite JBW-algebras 𝐴 into the corresponding 𝐿1/𝛾 spaces over these algebras (Propositions 4.1
and 4.7). The resulting extended Văınberg–Brègman geometries over the respective preduals of W*-
and JBW-algebras depend only on the choice of 𝛾 and 𝜙. From the perspective of elementary differ-
ential and convex geometric properties of the Banach space norm, the structure of (𝐿1/𝛾(𝒩 ), ||·||1/𝛾)
and (𝐿1/𝛾(𝐴, 𝜏), ||·||1/𝛾) spaces does not exhibit major variability in the range of 𝛾 ∈ ]0, 1[∖{12}, and
does not depend on the type of 𝒩 and 𝐴.6 In consequence, some qualitative differences between

6In comparison, as we show in the sequel work [212] (cf. [211] for an announcement of some of its main results), the
extended Văınberg–Brègman geometries (ℓϒ,Ψ𝜙), induced over preduals 𝒩⋆ of semifinite W*-algebras 𝒩 , via Kacz-
marz maps ℓϒ, from the geometry of 𝑝-Amemiya norm on noncommutative Orlicz spaces, (𝐿ϒ(𝒩 , 𝜏), ||·||ϒ,𝑝) with
𝑝 ∈ [1,∞], exhibit variability over the type of 𝒩 , over the geometric properties of the Orlicz function ϒ, and over
𝑝 ∈ {{1}, ]1,∞[, {∞}}. In this context, two main virtues of providing an independent analysis for noncommutative and
nonassociative 𝐿1/𝛾 spaces in the current paper are: to have the range of results available for type III (i.e. not semifinite)
W*-algebras and for semifinite JBW-algebras.

9



the extended Văınberg–Brègman geometries for different choices of (𝛾, 𝜙) show up only at the level
of case VL/VR and case VI models, through dependence of the uniform and Lipschitz–Hölder con-
tinuity of 𝑗𝜙 and ℓ𝛾 on the available values (𝑝, 𝑞) of 𝑝-uniform convexity and 𝑞-uniform Fréchet dif-
ferentiability of (𝐿1/𝛾(𝒩 ), ||·||1/𝛾) and (𝐿1/𝛾(𝐴, 𝜏), ||·||1/𝛾). Case VL (resp., VR) models are given by
(ℓ𝛾 ,Ψ𝜙) with 𝐿1/𝛾 spaces over arbitrary W*-algebras and semifinite JBW-algebras for 𝜙 = 𝜙1,𝛽 with
(𝛾, 𝛽) ∈ (]0, 12 ]× ]0, 𝛾]) ∪ ([12 , 1[× ]0, 12 ]) (resp., (𝛾, 𝛽) ∈ (]0, 12 ]× [12 , 1[) ∪ ([

1
2 , 1[×[𝛾, 1[)), cf. Proposition

4.4 and Corollary 4.8. Among the case VL and case VR models we specify a class of uniformly and
Lipschitz–Hölder well adapted models, by restriction of ℓ𝛾 to a unit ball of the respective predual. For
case VI models we calculate the modulus of continuity (more specifically, the value of 𝑡 for 𝑡-Lipschitz–
Hölder continuity) of left and right 𝐷ℓ𝛾 ,Ψ𝜙1,𝛽

-projections, as well as left 𝐷ℓ𝛾 ,Ψ𝜙1,𝛽
-resolvents.

We give also three different examples of models with Ψ = Ψ𝜙 for a gauge 𝜙, but with ℓ dif-
ferent from the Mazur (as well as Kaczmarz) map. Proposition 4.10 provides well adapted (resp.,
uniformly and Lipschitz–Hölder well adapted) case VL and VR models, with (𝑋, ||·||𝑋) given by uni-
formly convex and uniformly Fréchet differentiable (resp., 𝑝-uniformly convex and 𝑞-uniformly Fréchet
differentiable) Banach function space over a localisable measure space (𝒳 , 𝜇), with ℓ given by an in-
verse ℓ𝑋 of the Lozanovskĭı factorisation map ℓ𝑋

p , and the domain of ℓ𝑋 given by the unit sphere
𝑆(𝐿1(𝒳 , 𝜇), ||·||1). Proposition 4.11 provides an analogue of this result for (𝑋, ||·||𝑋) given by uniformly
convex and uniformly Fréchet differentiable (resp., 𝑝-uniformly convex and 𝑞-uniformly Fréchet dif-
ferentiable) noncommutative rearrangement invariant Banach space over type I𝑛 W*-algebra 𝒩 with
𝑛 ∈ N (i.e. 𝒩 = B(ℋ) for dimℋ = 𝑛, and (𝑋, ||·||𝑋) is a space M𝑛(C) of 𝑛 × 𝑛 matrices over C,
equipped with a unitary invariant matrix norm). Proposition 4.13 provides case I model for preduals
of generalised spin factors (𝑋⋆ ⊕ R, ||·||𝑋⋆⊕R), with ℓ given by a mapping ℓ/R from a base of a base
normed space (𝑋 ⊕ R, ||·||𝑋⊕R) into a unit ball of a reflexive Banach space (𝑋, ||·||𝑋). This result goes
beyond the realms of W*- and JBW-algebras (since a generalised spin factor is a JBW-algebra iff
(𝑋, ||·||𝑋) is a Hilbert space), and provides an example of application of our framework to the general
base normed spaces (in particular, Proposition 4.13 characterises the presence of Alfsen–Shultz spectral
duality between (𝑋 ⊕ R, ||·||𝑋⊕R) and (𝑋⋆ ⊕ R, ||·||𝑋⋆⊕R) by the condition that Ψ𝜙 is Euler–Legendre,
which is equivalent to Gateaux differentiability and strict convexity of (𝑋, ||·||𝑋)).

Finally, we specify also some examples of case I models featuring Ψ ̸= Ψ𝜙. Proposition 4.15
deals with self-adjoint parts of preduals of arbitrary W*-algebras and with preduals of semifinite
JBW-algebras using ℓ = ℓ1/2 (with a codomain ℋ denoting, respectively, either a self-adjoint part
of a noncommutative 𝐿2 space or a nonassociative 𝐿2 space) with Ψ(𝑥) := 1

2 ⟨𝑇𝑥, 𝑥⟩ℋ, where 𝑇 is
a continuous linear map satisfying ∃𝜆 > 0 ∀𝑥, 𝑦 ∈ ℋ ⟨𝑇𝑥− 𝑇𝑦, 𝑦 − 𝑥⟩ℋ ≥ 𝜆||𝑥− 𝑦||2ℋ. Proposition
4.16 deals with preduals of type I𝑛 W*-algebras, with 𝑛 ∈ N, using Ψ given by a spectral convex
Euler–Legendre function on the space of finite dimensional self-adjoint matrices (with three formerly
known examples of such functions given in Example 2.3.(i)–(iii), and two new examples given in
Corollary 4.17.(iv)–(v)). Proposition 4.20 provides an extension of this approach to Schatten classes
(G(ℋ))sa of self-adjoint compact operators on a separable Hilbert space ℋ (with ((G(ℋ))sa, ||·||(G(ℋ))sa)
uniformly convex and uniformly Fréchet differentiable and ℓ given by the inverse ℓ(G(ℋ))sa of Lozanovskĭı
factorisation map), resulting in models (ℓ,Ψ) on 𝒩⋆sa = ((B(ℋ))sa)⋆ such that Ψ is Euler–Legendre,
while it is not assumed to be Ψ𝜙. (However, while this construction is a natural extension of already
established results, we are currently missing examples of Ψ ̸= Ψ𝜙 at this level of generality.)

1.5 Plan of the paper

Section 2 covers background definitions and properties that are extensively used in the rest of this
paper. Section 2.1 introduces key notions from convex analysis on Banach spaces. Section 2.2 presents
the properties of left and right Văınberg–Brègman projections and quasinonexpansive maps, used in
Section 3.1. Section 2.3 discusses the properties of Banach norm geometry as characterised by Ψ𝜙,
which will be used in Section 3.2.

Section 3 contains new results in the Văınberg–Brègman theory on reflexive Banach spaces together
with the theory of extended Văınbeg–Brègman geometries on arbitrary Banach spaces. In Section 3.1
we establish results applicable to arbitrary Văınberg–Brègman functionals on reflexive Banach spaces.
Section 3.2 is concerned with the special case, when Ψ is given by an integral of a gauge (or quasigauge)
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function 𝜙, i.e. Ψ = Ψ𝜙. Section 3.3 encapsulates the results of Sections 3.1 and 3.2 into the general
setting of extended Văınberg–Brègman geometry, based on composition of 𝐷Ψ on reflexive Banach
space (𝑋, ||·||𝑋) with a nonlinear homeomorphism ℓ from a subset of an arbitrary Banach space (𝑌, ||·||𝑌 ).
Section 3.4 provides construction of suitable categories of left and right 𝐷ℓ,Ψ-projections, as well as
categories of left and right strongly 𝐷ℓ,Ψ-quasinonexpansive maps, together with some elementary
results about functors between them.

Section 4 applies the results of Section 3 to the case when (𝑌, ||·||𝑌 ) is (in principle) a base normed
space, and (𝑋, ||·||𝑋) is a suitable reflexive space constructed over (𝑌, ||·||𝑌 ). Nearly all of results
in Section 4 are obtained in a setting when (𝑌, ||·||𝑌 ) is a predual of an arbitrary W*-algebra or of a
semifinite JBW-algebra and (𝑌, ||·||𝑌 ) is, respectively, noncommutative or nonassociative rearrangement
invariant space over this algebra. In particular, in Section 4.1 we consider Ψ = Ψ𝜙 with (𝑋, ||·||𝑋)
given by noncommutative and nonassociative (𝐿1/𝛾 , ||·||1/𝛾) spaces for 𝛾 ∈ ]0, 1[, and ℓ given by the
corresponding Mazur maps ℓ𝛾 . To show the flexibility of the framework (and its applicability for the
general statistical theory on base normed spaces), in Section 4.2 we provide an example beyond JBW-
algebraic setting, with (𝑌, ||·||𝑌 ) given by preduals of generalised spin factors. Apart from this, Section
4.2 contains also an example of ℓ given by the Lozanovskĭı uniform homeomorphism ℓ𝑋 , which goes far
beyond the realms of Mazur (resp., Kaczmarz) maps into 𝐿1/𝛾 (resp., Orlicz) spaces, and is applicable to
embedding of 𝑆(𝐿1(𝒳 , 𝜇), ||·||1) into any uniformly convex and uniformly Fréchet differentiable function
space over a localisable measure space (𝒳 , 𝜇). We also provide an analogue of this result for preduals
of type I𝑛 W*-algebras 𝒩 . While the results of Sections 4.1–4.2 rely on an assumption Ψ = Ψ𝜙, in
Section 4.3 we provide few examples of models with Ψ ̸= Ψ𝜙.

There is essentially no new results in Section 2,7 yet we provide some new definitions, which package
formerly known properties into suitable objects (e.g., the notions of left/right pythagorean 𝐷Ψ and
LSQ/RSQ-adapted/compositional Ψ). Contrary to that, all definitions and propositions/corollaries
in Sections 3 and 4 are new, either completely or in their (extended) range of generality (with the
exception of Propositions 3.7.(i), 3.11.(i)+(iii), 3.33.(i), 4.10.(i), 4.11.(i), 4.12.(iv), 4.15.(i)–(iv), and
equivalence of 1) and 2) in Proposition 4.13). The detailed discussion of relationships with the formerly
known results is provided in the remarks at the end of each subsection.

2 Background definitions and properties

In what follows, (𝑋, ||·||𝑋) will denote a Banach space over K ∈ {R,C} [37, §1], 𝐵(𝑋, ||·||𝑋) := {𝑥 ∈
𝑋 : ||𝑥||𝑋 ≤ 1}, 𝑆(𝑋, ||·||𝑋) := {𝑥 ∈ 𝑋 : ||𝑥||𝑋 = 1}. If 𝜆 ∈ R and 𝑍 ⊆ 𝑋, then 𝜆𝑍 := ∪𝑥∈𝑍{𝜆𝑥}.
(𝑋⋆, ||·||𝑋⋆) will denote a Banach space of continuous linear functions 𝑋 → K, equipped with a norm
||𝑦||𝑋⋆ := sup{|𝑦(𝑥)| : ||𝑥||𝑋 ≤ 1} ∀𝑦 ∈ 𝑋⋆ [164, p. 62], and will be called a Banach dual of (𝑋, ||·||𝑋)
(with respect to a bilinear duality [[𝑥, 𝑦]]𝑋×𝑋⋆ := 𝑦(𝑥) ∈ K ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋⋆). (𝑋, ||·||𝑋) is called
reflexive [157, pp. 219–220] iff 𝐽𝑋 : 𝑋 ∋ 𝑥 ↦→ [[𝑥, · ]]𝑋×𝑋⋆ ∈ 𝑋⋆⋆ is an isometric isomorphism.
By default, unless stated otherwise, all references to continuity and closure/openness of sets will be
understood in the sense of the norm topology of an underlying Banach space. In particular, given
(𝑋, ||·||𝑋), for any 𝑌 ⊆ 𝑋, int(𝑌 ) (resp., cl(𝑌 )) will denote a topological interior (resp., closure) of 𝑌
with respect to the topology of ||·||𝑋 . If (𝑋, ||·||𝑋) and (𝑌, ||·||𝑌 ) are Banach spaces, then (𝑋, ||·||𝑋) ⊑
(𝑌, ||·||𝑌 ) will denote a continuous embedding 𝑋 ⊆ 𝑌 . (In more general situation, the reference to a
particular norm will be provided in a subscript of cl and int.) Given Banach spaces (𝑋, ||·||𝑋) and
(𝑌, ||·||𝑌 ), 𝑍 ⊆ 𝑋, 𝑊 ⊆ 𝑌 , a function 𝑓 : 𝑍 →𝑊 is said to be: uniformly continuous on 𝑍 iff

∀𝜖1 > 0 ∃𝜖2 > 0 ∀𝑥, 𝑦 ∈ 𝑍 ||𝑥− 𝑦||𝑋 < 𝜖2 ⇒ ||𝑓(𝑥)− 𝑓(𝑦)||𝑌 < 𝜖1; (23)

𝑡-Lipschitz–Hölder continuous8 on 𝑍 for 𝑡 ∈ ]0,∞[ (called an exponent of 𝑓) iff

∃𝑐 > 0 ∀𝑥, 𝑦 ∈ 𝑍 ||𝑓(𝑥)− 𝑓(𝑦)||𝑌 ≤ 𝑐||𝑥− 𝑦||
𝑡
𝑋 ; (24)

7With a possible exceptions of Corollaries 2.22 and 2.27, which are quite straightforward, but we have not found them
in the literature.

8This condition, both for 𝑡 = 1 and 𝑡 < 1 has been introduced first by Lipschitz, respectively, in [233, Eqn. (2)] and
[233, Eqn. (2⋆)], published 6 years before Hölder’s [168, pp. 17–18].
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Lipschitz continuous on 𝑍 iff it satisfies (24) with 𝑡 = 1. If 𝑡 ∈ ]0, 1] and 𝑓 is 𝑡-Lipschitz–Hölder
continuous on 𝑍, then it is uniformly continuous on 𝑍 and 𝑟-Lipschitz-Hölder continuous on 𝑍 ∀𝑟 ∈
]0, 𝑡[. For any Banach spaces (𝑋, ||·||𝑋) and (𝑌, ||·||𝑌 ), any uniform homeomorphism 𝛼 : 𝑆(𝑌, ||·||𝑌 ) →
𝑆(𝑋, ||·||𝑋) extends to a uniform homeomorphism [270, Prop. 2.9]

𝐵(𝑌, ||·||𝑌 ) ∋ 𝑥 ↦→

{︃
||𝑥||𝑌 𝛼

(︁
𝑥
||𝑥||𝑌

)︁
∈ 𝐵(𝑋, ||·||𝑋) : 𝑥 ∈ 𝐵(𝑌, ||·||𝑌 ) ∖ {0}

0 : 𝑥 = 0.
(25)

Conversely [49, p. 197], for any uniform homeomorphism 𝛼 : 𝐵(𝑌, ||·||𝑌 ) → 𝐵(𝑋, ||·||𝑋) there exists a
corresponding uniform homeomorphism

𝑆(𝑌, ||·||𝑌 ) ∋ 𝑥 ↦→
𝛼(𝑥)

||𝛼(𝑥)||𝑋
∈ 𝑆(𝑋, ||·||𝑋). (26)

If 𝛼 : 𝑆(𝑌, ||·||𝑌 ) → 𝑆(𝑋, ||·||𝑋) (resp., 𝛼 : 𝐵(𝑌, ||·||𝑌 ) → 𝐵(𝑋, ||·||𝑋)) is 𝑡-Lipschitz–Hölder continuous,
then the map (25) (resp., (26)) is 𝑡-Lipschitz–Hölder continuous [3, Lem. 3.1].

Ψ : 𝑋 → ] −∞,∞] will be called: proper iff efd(Ψ) := {𝑥 ∈ 𝑋 : Ψ(𝑥) ̸= ∞} ̸= ∅; coercive iff
lim||𝑥||𝑋→∞Ψ(𝑥) =∞; supercoercive iff lim||𝑥||𝑋→∞

Ψ(𝑥)
||𝑥||𝑋

=∞; lower semicontinuous iff {𝑥 ∈ 𝑋 :

Ψ(𝑥) ≤ 𝜆} is closed ∀𝜆 ∈ R iff 𝑓(𝑥) ≤ lim inf𝑦→𝑥 𝑓(𝑦); convex iff

𝑥 ̸= 𝑦 ⇒ Ψ(𝜆𝑥+ (1− 𝜆)𝑦) ≤ 𝜆Ψ(𝑥) + (1− 𝜆)Ψ(𝑦) ∀𝑥, 𝑦 ∈ efd(Ψ) ∀𝜆 ∈ ]0, 1[ (27)

(this is equivalent to the definition based on the same inequality, with quantifiers changed to ∀𝑥, 𝑦 ∈
𝑋 ∀𝜆 ∈ [0, 1], with the conventions ∞ + ∞ ≡ ∞, 0 · ∞ ≡ ∞, and without 𝑥 ̸= 𝑦 assumption);
strictly convex iff (27) holds under the same quantifiers and with ≤ replaced by <. The set of all
proper, convex, lower semicontinuous functions Ψ : 𝑋 → ] −∞,∞] will be denoted by Γ(𝑋, ||·||𝑋). If
Ψ ∈ Γ(𝑋, ||·||𝑋), then Ψ is continuous on int(efd(Ψ)) [302, Cor. 7C]. For any 𝐾 ⊆ 𝑋, an indicator

function of 𝐾 on 𝑋 is given by 𝜄𝐾(𝑥) :=

{︂
0 : 𝑥 ∈ 𝐾
∞ : 𝑥 ̸∈ 𝐾 ∀𝑥 ∈ 𝑋. If 𝐾 is nonempty, convex, and

closed, then 𝜄𝐾 ∈ Γ(𝑋, ||·||𝑋) [260, p. 2897] [301, p. 23].
For convenience of notation, from now on, and until the end of Section 2 (as well as in entire Section

3), we will assume that K = R (all results and formulas of those Sections are applicable for the case
K = C under replacement of [[·, ·]]𝑋×𝑋⋆ by re [[·, ·]]𝑋×𝑋⋆). Conventions inf ∅ = ∞ and 0 /∈ N will be
applied everywhere. For any set 𝑍, 2𝑍 will denote the set of all subsets of 𝑍.

2.1 Convex analytic preliminaries

2.1.1 Differentiability and Mandelbrojt–Fenchel duality

For any 𝑇 : 𝑋 → 2𝑋
⋆ , efd(𝑇 ) := {𝑥 ∈ 𝑋 : 𝑇 (𝑥) ̸= ∅}. The subdifferential of a proper Ψ : 𝑋 →

]−∞,∞] is [301, Def. 2-G] [263, Eqn. (1)] [258, Def. 4]

𝜕Ψ(𝑥) := {𝑦 ∈ 𝑋⋆ : Ψ(𝑧)−Ψ(𝑥) ≥ [[𝑧 − 𝑥, 𝑦]]𝑋×𝑋⋆ ∀𝑧 ∈ 𝑋} ∀𝑥 ∈ 𝑋. (28)

Hence, 𝜕Ψ(𝑥) = ∅ ∀𝑥 ∈ 𝑋 ∖ efd(Ψ) and efd(𝜕Ψ) = {𝑥 ∈ efd(Ψ) : 𝜕Ψ(𝑥) ̸= ∅}. If Ψ : 𝑋 → ]−∞,∞]
is proper, then the right Gateaux derivative of Ψ at 𝑥 ∈ efd(Ψ) in the direction ℎ ∈ 𝑋 reads [25,
p. 53]

efd(Ψ)×𝑋 ∋ (𝑥, ℎ) ↦→ DG
+Ψ(𝑥, ℎ) := lim

𝑡→+0
(Ψ(𝑥+ 𝑡ℎ)−Ψ(𝑥))/𝑡 ∈ ]−∞,∞], (29)

and it exists ∀ℎ ∈ 𝑋. If Ψ ∈ Γ(𝑋, ||·||𝑋), then DG
+Ψ(𝑥, · ) is Lipschitz continuous and finite ∀𝑥 ∈

int(efd(Ψ)) (cf., e.g., [86, Cor. 1.1.6]). Ψ ∈ Γ(𝑋, ||·||𝑋) is called Gateaux differentiable at 𝑥 ∈
int(efd(Ψ)) [151, p. 311] iff DG

+Ψ(𝑥, 𝑦) = −DG
+Ψ(𝑥,−𝑦) ∀𝑦 ∈ 𝑋. In such case DG

+Ψ(𝑥, · ) is linear,
so it defines a bounded linear operator DG

+Ψ(𝑥, 𝑦) =:
[︀[︀
𝑦,DGΨ(𝑥)

]︀]︀
𝑋×𝑋⋆ ∀𝑦 ∈ 𝑋 [332, Def. 3]. (If

𝑛 ∈ N and 𝑥 ∈ 𝑋 = R𝑛, then DGΨ(𝑥) = gradΨ(𝑥) := ( 𝜕
𝜕𝑥1

, . . . , 𝜕
𝜕𝑥𝑛 )Ψ(𝑥).) A set of all Ψ ∈ Γ(𝑋, ||·||𝑋)

that are Gateaux differentiable on int(efd(Ψ)) ̸= ∅ will be denoted ΓG(𝑋, ||·||𝑋). If Ψ ∈ Γ(𝑋, ||·||𝑋) is
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Gateaux differentiable at 𝑥 ∈ int(efd(Ψ)), then 𝜕Ψ(𝑥) = {DGΨ(𝑥)} [262, p. 20]. Combined with (28),
this gives

Ψ(𝑥)−Ψ(𝑦)−
[︀[︀
𝑥− 𝑦,DGΨ(𝑦)

]︀]︀
𝑋×𝑋⋆ ≥ 0 ∀(𝑥, 𝑦) ∈ 𝑋 × int(efd(Ψ)). (30)

Ψ ∈ Γ(𝑋, ||·||𝑋) will be called: Fréchet differentiable at 𝑥 ∈ int(efd(Ψ)) iff [148, p. 808] [146, p.
309] it is Gateaux differentiable at 𝑥 and DGΨ(𝑥) is uniformly continuous on 𝑆(𝑋, ||·||𝑋); uniformly
Gateaux differentiable on ∅ ̸= 𝐾 ⊆ efd(Ψ) [316, p. 4] (=[317, p. 643]) [34, Def. 1] [367, p. 207] iff
there exists 𝑔 : [0,∞[→ [0,∞] with 𝑔(0) = 0 and lim𝑡→+0

𝑔(𝑡)
𝑡 = 0 such that

∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑋 ∀𝜆 ∈ ]0, 1[ Ψ(𝑥) + 𝜆(1− 𝜆)𝑔(||𝑦||𝑋) ≥ (1− 𝜆)Ψ(𝑥− 𝜆𝑦) + 𝜆(𝑥+ (1− 𝜆)𝑦); (31)

essentially Gateaux differentiable [40, Def. 5.2.(i), Thm. 5.6] iff int(efd(Ψ)) ̸= ∅ and 𝜕Ψ(𝑥) = {*}
∀𝑥 ∈ efd(𝜕Ψ); essentially strictly convex [40, Def. 5.2.(ii)] iff Ψ is strictly convex on every convex
subset of efd(𝜕Ψ) and

∃𝜀 > 0 ∀𝑥 ∈ efd((𝜕Ψ)

p

) sup{
⃒⃒⃒⃒
(𝜕Ψ)

p

(𝑥+ 𝜀𝑦)
⃒⃒⃒⃒
𝑋

: 𝑦 ∈ 𝑋, ||𝑦||𝑋 ≤ 1} <∞, (32)

where (𝜕Ψ)

p

(𝑦) := {𝑥 ∈ 𝑋 : 𝑦 ∈ 𝜕Ψ(𝑥)}; Euler–Legendre [40, Def. 5.2.(iii)] iff it is essentially
Gateaux differentiable and essentially strictly convex. If Ψ ∈ Γ(𝑋, ||·||𝑋) and efd(Ψ) = 𝑋, then Ψ
will be called: uniformly Fréchet differentiable on 𝑋 (resp., on ∅ ̸= 𝐾 ⊆ 𝑋) [316, p. 4] (=[317,
p. 643]) [367, Thm. 3.5.6] iff Ψ is Fréchet differentiable at any 𝑥 ∈ 𝑋 (resp., 𝑥 ∈ 𝐾), and DGΨ is
uniformly continuous on 𝑋 (resp., DGΨ(𝑥)(ℎ) exists in uniform convergence ∀(𝑥, ℎ) ∈ 𝐾×𝑆(𝑋, ||·||𝑋));
uniformly Fréchet differentiable on bounded subsets of 𝑋 [367, p. 221] iff Ψ is uniformly Fréchet
differentiable on 𝜆𝐵(𝑋, ||·||𝑋) ∀𝜆 > 0. If Ψ ∈ Γ(𝑋, ||·||𝑋) and efd(Ψ) ̸= {*}, then Ψ is called uniformly
convex at 𝑥 ∈ efd(Ψ) (resp., on 𝑋; on bounded subsets of 𝑋) [26, p. 231] [365, Def. 2.1] (resp., [224,
p. 997] [339, Def. 1]; [367, p. 221])9 iff

∀𝑡 ∈ ]0,∞[ inf
{︀
1
2Ψ(𝑥) + 1

2Ψ(𝑦)−Ψ
(︀𝑥+𝑦

2

)︀
: 𝑦 ∈ efd(Ψ), ||𝑦 − 𝑥||𝑋 = 𝑡

}︀
> 0 (33)

(resp., with 𝑥 ∈ efd(Ψ) replaced by: 𝑦, 𝑥 ∈ efd(Ψ); 𝑦 ∈ efd(Ψ), 𝑥 ∈ 𝜆𝐵(𝑋, ||·||𝑋) (together with ∀𝜆 > 0
condition stated outside of inf{. . .})).

If Ψ ∈ Γ(𝑋, ||·||𝑋) is Fréchet differentiable at 𝑥 ∈ int(efd(Ψ)), then DGΨ(𝑥) will be denoted by
DFΨ(𝑥). If Ψ ∈ Γ(𝑋, ||·||𝑋) is essentially Gateaux differentiable, then Ψ ∈ ΓG(𝑋, ||·||𝑋) [40, Thm.
5.6.(iv)–(v)]. If ∅ ̸= 𝐶 ⊆ 𝑋 is open and convex, and Ψ : 𝐶 → R is convex, continuous, and Gateaux
differentiable on 𝐶, then (Ψ is Fréchet differentiable on 𝐶 iff DGΨ is norm-to-norm continuous) [279,
Prop. 2.8].

For a proper Ψ : 𝑋 → ]−∞,∞],

𝑋⋆ ∋ 𝑦 ↦→ ΨF(𝑦) := sup
𝑥∈𝑋
{[[𝑥, 𝑦]]𝑋×𝑋⋆ −Ψ(𝑥)} ∈ ]−∞,∞], (34)

which will be called the Mandelbrojt–Fenchel dual of Ψ [244, Eqn. (1)] [143, p. 75] [261, p. 8],10

satisfies ΨF ∈ Γ(𝑋⋆, ||·||𝑋⋆) [169, Thm. 5] [261, p. 9] (cf. also [72, Thm. 3.6]). If Ψ ∈ Γ(𝑋, ||·||𝑋), then
(ΨF)F|𝐽𝑋(𝑋) = Ψ [143, Thm. (p. 75)] [72, Thm. 3.13]. Furthermore, by (34), Fenchel inequality
holds [143, p. 75] [72, p. 13]:

Ψ(𝑥) + ΨF(𝑦)− [[𝑥, 𝑦]]𝑋×𝑋⋆ ≥ 0 ∀(𝑥, 𝑦) ∈ 𝑋 ×𝑋⋆, (35)

with = attained iff 𝑦 ∈ 𝜕Ψ(𝑥). If Ψ ∈ ΓG(𝑋, ||·||𝑋) then DGΨ : int(efd(Ψ)) → DGΨ(int(efd(Ψ))) is
a bijection, with (DGΨ)

p

= 𝐽

p

𝑋 ∘ DGΨF. If (𝑋, ||·||𝑋) is reflexive, and Ψ ∈ Γ(𝑋, ||·||𝑋) is essentially
Gateaux differentiable, then DGΨ(int(efd(Ψ))) = int(efd(ΨF)) and (DGΨ)

p

= DGΨF.
9For equivalence of different formulas used in these definitions, see [365, Rem. 2.1] and [87, Lem. 2.2].

10[244, Eqn. (1)] considered convex Ψ : R → R and 𝑋 = R, while [143, p. 75] considered convex and lower
semicontinuous Ψ : 𝐾 → [0,∞] with lim𝑥→𝑦 Ψ(𝑥) =∞∀𝑦 ∈ cl(𝐾)∖int(𝐾), as well as sup𝑥∈𝐾{. . .} instead of sup𝑥∈𝑋{. . .},
for a convex ∅ ̸= 𝐾 ⊆ R𝑛. [244, Thm. (p. 977)] contains an error, asserting that ΨF is a convex real valued function for
any convex function Ψ : R→ R (cf. [143, Footn. 1]). [261, p. 8] introduced (34) in a full form. In subsequent references
we list first Fenchel’s result for 𝐾 ⊆ R𝑛 (if available), and then its generalisation to (𝑋, ||·||𝑋).
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If (𝑋, ||·||𝑋) is reflexive, then Ψ ∈ Γ(𝑋, ||·||𝑋) is essentially Gateaux differentiable iff ΨF is essentially
strictly convex [40, Thm. 5.4], hence [40, Cor. 5.5] Ψ is Euler–Legendre iff ΨF is Euler–Legendre. Fur-
thermore, if (𝑋, ||·||𝑋) is reflexive, and Ψ ∈ Γ(𝑋, ||·||𝑋), then Ψ is Euler–Legendre iff Ψ ∈ ΓG(𝑋, ||·||𝑋),
efd(DGΨ) = int(efd(Ψ)), ΨF ∈ ΓG(𝑋⋆, ||·||𝑋⋆), efd(DGΨF) = int(efd(ΨF)) [294, §2.1]. Ψ ∈ Γ(𝑋, ||·||𝑋)
is uniformly Gateaux differentiable (resp., uniformly convex) on 𝑋 iff ΨF is uniformly convex (resp.,
uniformly Gateaux differentiable) on 𝑋⋆ [34, Cor. 2.8]. If (𝑋, ||·||𝑋) is reflexive, Ψ ∈ Γ(𝑋, ||·||𝑋), and
int(efd(Ψ)) ̸= ∅ (resp., int(efd(ΨF)) ̸= ∅), then Ψ is uniformly Fréchet differentiable on int(efd(Ψ))
(resp., uniformly convex on 𝑋) iff ΨF is uniformly convex on 𝑋⋆ (resp., uniformly Fréchet differentiable
on int(efd(ΨF)) [365, Thm. 2.2].

2.1.2 Văınberg–Brègman functional

Dependently on a purpose, the Văınberg–Brègman functional on (𝑋, ||·||𝑋) is defined either as [85,
Eqn. (2)]

𝐷+
Ψ : 𝑋 ×𝑋 ∋ (𝑥, 𝑦) ↦→

{︂
Ψ(𝑥)−Ψ(𝑦)−DG

+Ψ(𝑦;𝑥− 𝑦) : 𝑦 ∈ efd(Ψ)
∞ : otherwise ∈ [0,∞], (36)

for any Ψ ∈ Γ(𝑋, ||·||𝑋), or as [333, Eqn. (8.5)]

𝐷Ψ : 𝑋 ×𝑋 ∋ (𝑥, 𝑦) ↦→
{︂

Ψ(𝑥)−Ψ(𝑦)−
[︀[︀
𝑥− 𝑦,DGΨ(𝑦)

]︀]︀
𝑋×𝑋⋆ : 𝑦 ∈ int(efd(Ψ))

∞ : otherwise
∈ [0,∞], (37)

for any Ψ ∈ ΓG(𝑋, ||·||𝑋). (Nonnegativity of a codomain of 𝐷+
Ψ and 𝐷Ψ follows from convexity of Ψ.)

Definition (37) implies ∀Ψ,Ψ1,Ψ2 ∈ ΓG(𝑋, ||·||𝑋) ∀𝑥, 𝑦 ∈ int(efd(Ψ)) ∀𝑧, 𝑤 ∈ 𝑋 ∀𝜆1, 𝜆2 ≥ 0
∀𝜆3, 𝜆4 ∈ R

Ψ3(𝑥) := 𝜆3𝑥+ 𝜆4 ⇒ 𝐷𝜆1Ψ1+𝜆2Ψ2+Ψ3 = 𝜆1𝐷Ψ1 + 𝜆2𝐷Ψ2 [68, p. 16], (38)

𝐷Ψ(𝑥, 𝑦) +𝐷Ψ(𝑦, 𝑥) =
[︀[︀
𝑥− 𝑦,DGΨ(𝑥)−DGΨ(𝑦)

]︀]︀
𝑋×𝑋⋆ [92, p. 328], (39)

𝐷Ψ(𝑧, 𝑥) = 𝐷Ψ(𝑧, 𝑦) +𝐷Ψ(𝑦, 𝑥)−
[︀[︀
𝑧 − 𝑦,DGΨ(𝑥)−DGΨ(𝑦)

]︀]︀
𝑋×𝑋⋆ [101, Lem. 3.1],

(40)

𝐷Ψ(𝑧, 𝑥) +𝐷Ψ(𝑤, 𝑦) = 𝐷Ψ(𝑧, 𝑦) +𝐷Ψ(𝑤, 𝑥)−
[︀[︀
𝑧 − 𝑤,DGΨ(𝑥)−DGΨ(𝑦)

]︀]︀
𝑋×𝑋⋆ [44, Rem. 3.5].

(41)

Equations (38)–(41) hold also for 𝐷Ψ (resp.,
[︀[︀
·,DGΨ(𝑦)

]︀]︀
𝑋×𝑋⋆) replaced by 𝐷+

Ψ (resp., DG
+Ψ(𝑦, · )).

Equation (39) implies the formula for the class of Văınberg–Brègman functionals that are symmetric
with respect to interchange of variables: ∀𝑥, 𝑦 ∈ int(efd(Ψ))

𝐷Ψ(𝑥, 𝑦) = 𝐷Ψ(𝑦, 𝑥) ⇐⇒ 𝐷Ψ(𝑥, 𝑦) =
1
2

[︀[︀
𝑥− 𝑦,DGΨ(𝑥)−DGΨ(𝑦)

]︀]︀
𝑋×𝑋⋆ . (42)

Comparison of (37) with (30), while applying the equality case of (35), gives

𝐷Ψ(𝑥, 𝑦) = Ψ(𝑥) + ΨF(DGΨ(𝑦))−
[︀[︀
𝑥,DGΨ(𝑦)

]︀]︀
𝑋×𝑋⋆ ∀(𝑥, 𝑦) ∈ 𝑋 × int(efd(Ψ)). (43)

When equipped with an additional condition, 𝐷Ψ(𝑥, 𝑦) =∞ ∀(𝑥, 𝑦) ∈ 𝑋 × (𝑋 ∖ int(efd(Ψ))), (43) be-
comes a definition of𝐷Ψ equivalent to (37). If ΨF is Gateaux differentiable on ∅ ̸= DGΨ(int(efd(Ψ))) ⊆
int(efd(ΨF)), then [40, Lem. 7.3] [240, Lem. 3.2]

𝐷Ψ(𝑥, 𝑦) = 𝐷ΨF(DGΨ(𝑦),DGΨ(𝑥)) ∀𝑥, 𝑦 ∈ int(efd(Ψ)). (44)

𝐷Ψ is said to be jointly convex [39, §1] iff (𝑥, 𝑦) ↦→ 𝐷Ψ(𝑥, 𝑦) is convex on int(efd(Ψ))× int(efd(Ψ)).
Ψ ∈ Γ(𝑋, ||·||𝑋) is called: totally convex at 𝑥 ∈ efd(Ψ) iff [84, 2.2] [85, p. 62]

𝜈Ψ(𝑥, 𝑡) := inf{𝐷+
Ψ(𝑦, 𝑥) : 𝑦 ∈ efd(Ψ), ||𝑦 − 𝑥||𝑋 = 𝑡} > 0 ∀𝑡 ∈ ]0,∞[ , (45)
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or, equivalently [298, Prop. 2.2], iff

lim
𝑛→∞

𝐷+
Ψ(𝑦𝑛, 𝑥) = 0 ⇒ lim

𝑛→∞
||𝑦𝑛 − 𝑥||𝑋 = 0 ∀{𝑦𝑛 ∈ efd(Ψ) : 𝑛 ∈ N}; (46)

totally convex on bounded subsets of 𝑋 [86, Lem. 2.1.2] iff

inf{𝜈Ψ(𝑥, 𝑡) : 𝑥 ∈ 𝑌 ∩ efd(Ψ)} > 0 ∀𝑡 ∈ ]0,∞[ ∀ bounded ∅ ̸= 𝑌 ⊆ 𝑋. (47)

If efd(Ψ) ̸= {*}, then (47) is equivalent [87, Prop. 4.2] to sequential consistency of Ψ, defined as
[92, Def. 2.1.(vi)] [85, Cor. 4.9.(iii)] ∀{𝑦𝑛 ∈ efd(Ψ) : 𝑛 ∈ N} ∀ bounded {𝑥𝑛 ∈ efd(Ψ) : 𝑛 ∈ N}

lim
𝑛→∞

𝐷Ψ(𝑦𝑛, 𝑥𝑛) = 0 ⇒ lim
𝑛→∞

||𝑦𝑛 − 𝑥𝑛||𝑋 = 0. (48)

2.1.3 Monotone maps

If (𝑋, ||·||𝑋) is a Banach space, then the graph of 𝑇 : 𝑋 → 2𝑋
⋆ is given by graph(𝑇 ) := {(𝑥, 𝑦) ∈

𝑋×𝑋⋆ : 𝑦 ∈ 𝑇 (𝑋)}, while 𝑇 p

(𝑦) := {𝑥 ∈ 𝑋 : 𝑦 ∈ 𝑇 (𝑥)} ∀𝑦 ∈ 𝑋⋆. If, furthermore, ∅ ̸= 𝐾 ⊆ efd(𝑇 ),
then 𝑇 is called: monotone on 𝐾 iff [338, Thm. 7] [187, Eqn. (1)] [361, p. 0] [257, p. 341]

[[𝑥− 𝑦, 𝑣 − 𝑤]]𝑋×𝑋⋆ ≥ 0 ∀𝑥, 𝑦 ∈ 𝐾 ∀𝑣 ∈ 𝑇 (𝑥) ∀𝑤 ∈ 𝑇 (𝑦); (49)

strictly monotone on 𝐾 iff

𝑥 ̸= 𝑦 ⇒ [[𝑥− 𝑦, 𝑣 − 𝑤]]𝑋×𝑋⋆ > 0 ∀𝑥, 𝑦 ∈ 𝐾 ∀𝑣 ∈ 𝑇 (𝑥) ∀𝑤 ∈ 𝑇 (𝑦); (50)

strongly monotone on 𝐾 iff [361, p. 12] ∃𝜆 > 0

[[𝑥− 𝑦, 𝑣 − 𝑤]]𝑋×𝑋⋆ ≥ 𝜆||𝑥− 𝑦||2𝑋 ∀𝑥, 𝑦 ∈ 𝐾 ∀𝑣 ∈ 𝑇 (𝑥) ∀𝑤 ∈ 𝑇 (𝑦); (51)

𝑓-uniformly monotone on 𝐾 iff [334, p. 203] there exists a strictly increasing 𝑓 : R+ → R+ with
𝑓(0) = 0 such that

[[𝑥− 𝑦, 𝑣 − 𝑤]]𝑋×𝑋⋆ ≥ ||𝑥− 𝑦||𝑋𝑓(||𝑥− 𝑦||𝑋) ∀𝑥, 𝑦 ∈ 𝐾 ∀𝑣 ∈ 𝑇 (𝑥) ∀𝑤 ∈ 𝑇 (𝑦); (52)

maximally monotone on 𝐾 iff it is monotone on 𝐾 and its graph is not contained in the graph of any
other map from 𝑋 to 2𝑋

⋆ that is monotone on 𝐾. For any Banach space (𝑋, ||·||𝑋), if 𝑓 ∈ Γ(𝑋, ||·||𝑋),
then 𝜕𝑓 is maximally monotone [304, Thm. 4] [306, Thm. A].

2.1.4 Remarks and examples

Remark 2.1. (i) Transformation d(𝑧(𝑥, 𝑦)−𝑝𝑥−𝑞𝑦) = −𝑥d𝑝−𝑦d𝑞, with 𝑝 = 𝜕𝑧(𝑥,𝑦)
𝜕𝑥 and 𝑞 = 𝜕𝑧(𝑥,𝑦)

𝜕𝑦 ,
was introduced by Euler [138, Probl. 11 (Part I)] and Legendre [221, p. 347]. Since Legendre’s
work appeared 17 years later then Euler’s, it seems to be quite adequate to include Euler in the
terminology. Under generalisation to R𝑛 with 𝑛 ∈ N, the Euler–Legendre transformation
(Ψ, 𝜃) ↦→ (ΨL, 𝜂) of a strictly convex and differentiable function Ψ : R𝑛 → R is defined by{︂

𝜂 := gradΨ(𝜃) ∀𝜃 ∈ R𝑛
ΨL(𝜂) := [[𝜂, 𝜃]]R𝑛×R𝑛 −Ψ(𝜃) =

[︀[︀
𝜂, (gradΨ)

p

(𝜂)
]︀]︀
R𝑛×R𝑛 −Ψ((gradΨ)

p

)(𝜂)) ∀𝜂 ∈ R𝑛, (53)

with its inverse given by {︂
𝜃 = grad(ΨL)(𝜂)
Ψ = ΨLL.

(54)

If one restricts the domain of Ψ to an open set 𝑈 ⊆ R𝑛 and allows Ψ to take infinite values, there
appears a question about the optimal conditions to be imposed on Ψ to guarantee uniqueness
of transformation in both directions, while preserving structural symmetry between Ψ and ΨL.
Following a remark in [143, p. 77], Rockafellar [301, Thm. C-K] [303, Thm. 1] showed that if
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∅ ̸= 𝑈 ⊆ R𝑛 is open and convex, while Ψ : 𝑈 → ]−∞,∞] is strictly convex, differentiable on 𝑈 ,
and satisfies

lim
𝑡→+0

d
d𝑡Ψ(𝑡𝑥+ (1− 𝑡)𝑦) = −∞ ∀(𝑥, 𝑦) ∈ 𝑈 × (cl(𝑈) ∖ 𝑈), (55)

then gradΨ is a bijection on 𝑈 , grad(ΨF) = (gradΨ)

p on gradΨ(𝑈), and ΨF satisfies on grad(𝑈)
the same conditions as Ψ on 𝑈 . The notion of (Euler–)Legendre function introduced in [40, Def.
5.2.(iii)] reduces to Rockafellar’s for 𝑋 = R𝑛 [40, Thm. 5.11.(iii)]. See [60, §3] for an extension of
essentially Gateaux differentiable and Euler–Legendre functions to nonreflexive Banach spaces,
as well as to other types of differentiability. On the other hand, strengthening to essential Fréchet
differentiability and, correspondingly, to Fréchet–(Euler–)Legendre functions was developed in
[62, 323, 343].

(ii) For 𝑦 ∈ int(efd(Ψ)), the function (37) was introduced by Văınberg in [333, Eqn. (8.5)]11, already
at the Banach space level of generality (and, as such, it was further discussed in a series of works
by Văınberg [335, Lem. 1] [336, Lem. 6.1] [337, Eqn (0.1)] and Kachurovskĭı [188, Thm. 3]).
For 𝑋 = R, (37) appeared independently in [80, Eqn. (4.1)], in the context of the problem of
minimisation of

𝐷𝜇
Ψ(𝑥, 𝑦) :=

∫︁
𝒳
𝜇(x )𝐷Ψ(𝑥(x ), 𝑦(x )), (56)

for 𝑥, 𝑦 : 𝒳 → R with 𝒳 ⊆ R𝑛 and 𝑛 ∈ N, over a measure space (R𝑛,℧Borel(R𝑛), 𝜇), considered
in [80, Thm. 4.2]. Independently, (37) appeared in [67, p. 1021] and [69, Eqn. (1.4)] (=[68,
Eqn. (2.1)]) for 𝑋 = R𝑛 (with a convex set ∅ ̸= 𝐶 ⊆ R𝑛, and with Ψ : 𝐶 → R differentiable on
𝐶 and strictly convex), where it was used in the context of minimisation of 𝐷Ψ. Attribution of
the name ‘Brègman’ to 𝐷Ψ and 𝐷+

Ψ goes back to [92, §2]. Correspondingly, it is fair to call 𝐷𝜇
Ψ

the Brunk–Ewing–Utz functional. It has been further investigated in [186, 185], and, under
generalisation to any countably finite measure space, in [111, 112, 113, 114, 115].

(iii) The function (37), and its related properties, can be further generalised to 𝐷𝜕
Ψ by replacing

DGΨ by a function D𝜕Ψ, defined as a selection from the set 𝜕Ψ ranging over efd(Ψ) (instead of
assuming that this set is globally a singleton). See [199, 200, 196, 83, 321] for further discussion
of this direction.

(iv) If 𝑘 ∈ N, Ψ𝑖 : R𝑛𝑖 → ]−∞,∞] is Euler–Legendre (resp., totally convex with
⋂︀𝑘
𝑖=1 efd(Ψ𝑖) ̸= ∅)

∀𝑛𝑖 ∈ N ∀𝑖 ∈ {1, . . . , 𝑘} and 𝜆𝑖 > 0 ∀𝑖 ∈ {1, . . . , 𝑘}, then Ψ :
∏︀𝑘
𝑖=1R𝑛𝑖 → ] −∞,∞], defined by

Ψ =
∑︀𝑘

𝑖=1 𝜆𝑖Ψ𝑖, is Euler–Legendre [38, Cor. 5.13] (resp., totally convex [86, Prop. 1.2.7]). In
such case 𝐷Ψ =

∑︀𝑘
𝑖=1 𝜆𝑖𝐷Ψ𝑖 [91, Lem. 3.1]. Examples 2.2.(i)–(v) provide special cases of both

these theorems in action, while Ψ in Example 2.2.(vi) is both Euler–Legendre and totally convex,
but not decomposable into a weighted sum of Ψ𝑖.

Example 2.2. Let 𝑛 ∈ N.
(i) Let Ψ(𝑥) =

∑︀𝑛
𝑖=1 𝛾|𝑥𝑖|

1/𝛾 =: 𝛾||𝑥||1/𝛾1/𝛾 on 𝑋 = efd(Ψ) = R𝑛, 𝛾 ∈ ]0, 1[. This implies ΨF(𝑦) =

(1 − 𝛾)||𝑦||1/(1−𝛾)1/(1−𝛾) [305, p. 106] [133, Ex. 2]. Ψ is Euler–Legendre [38, Ex. 6, Cor. 5.13]. From

gradΨ(𝑥) =
∑︀𝑛

𝑖=1 sgn(𝑥𝑖)|𝑥𝑖|
1/𝛾−1 outside of the points where 𝑥𝑗 = 0 for some 𝑗 ∈ {1, . . . , 𝑛}, it

follows that ∀𝑥 ∈ R𝑛 ∀𝑦 ∈ R𝑛 ∖ {(𝑦1, . . . , 𝑦𝑛) ∈ R𝑛 : ∃𝑖 ∈ {1, . . . , 𝑛} 𝑦𝑖 = 0}

𝐷Ψ(𝑥, 𝑦) =

𝑛∑︁
𝑖=1

(︁
𝛾|𝑥𝑖|1/𝛾 − 𝛾|𝑦𝑖|1/𝛾 − (𝑥𝑖 − 𝑦𝑖)|𝑦𝑖|1/𝛾−1sgn(𝑦𝑖)

)︁
. (57)

𝐷Ψ is jointly convex only for 𝛾 ∈ ]0, 12 ] [39, Ex. 4.2].
(ii) Let Ψ(𝑥) =

∑︀𝑛
𝑖=1(𝑥𝑖 log(𝑥𝑖) − 𝑥𝑖) if 𝑥 ≥ 0 and Ψ(𝑥) = ∞ otherwise (with 0 log 0 ≡ 0). This

implies int(efd(Ψ)) = (R𝑛)+0 := {𝑥 ∈ R𝑛 : 𝑥𝑖 > 0 ∀𝑖 ∈ {1, . . . , 𝑛}}, gradΨ(𝑥) = log(𝑥), and
ΨF(𝑦) = exp(𝑦) (cf., e.g., [305, p. 105]). Ψ is Euler–Legendre [38, Ex. 6.5, Cor. 5.13]. 𝐷Ψ

is equal to [67, p. 1021] (=[68, p. 15]) the finite dimensional denormalised Kullback–Leibler
information [215, Eqn. (2.4)],

𝐷Ψ(𝑥, 𝑦) =

{︂ ∑︀𝑛
𝑖=1(𝑦𝑖 − 𝑥𝑖 + 𝑥𝑖(log(𝑥𝑖)− log(𝑦𝑖))) : (𝑥, 𝑦) ∈ (R𝑛)+ × (R𝑛)+0

∞ : otherwise. (58)

11Numbered as Eqn. (8.4) in the English translation of this book.
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𝐷Ψ is jointly convex (cf., e.g., [39, p. 34]) and satisfies 𝐷Ψ(𝜆𝑥, 𝜆𝑦) = 𝜆𝐷Ψ(𝑥, 𝑦) ∀𝜆 > 0. Ψ
is totally convex on int(efd(Ψ)) [84, Prop. 2.5.(i)] [59, Prop. 9] and supercoercive. For any
nonempty, closed, convex 𝐾 ⊆ int(efd(Ψ)),

←−
P𝐷Ψ
𝐾 is continuous [84, Lem. 3.1].12 Convex closed

subsets 𝐶 ⊆ R𝑛 with 𝐶 ∩ int(efd(Ψ)) are right 𝐷Ψ-Chebyshëv [46, Ex. 2.16.(ii)]. For 𝑛 = 2,
𝐶 = {(e𝜆, e2𝜆) : 𝜆 ∈ [0, 1]} is a nonconvex right 𝐷Ψ-Chebyshëv set with convex (gradΨ)(𝐶) [47,
Ex. 7.5].

(iii) Let Ψ(𝑥) = −
∑︀𝑛

𝑖=1 log(𝑥𝑖) on efd(Ψ) = (R𝑛)+0 and Ψ(𝑥) =∞ otherwise.13 This gives gradΨ(𝑥) =
− 1
𝑥 and ΨF(𝑦) = −

∑︀𝑛
𝑖=1 log(−𝑦𝑖) − 𝑛 on efd(ΨF) = ] −∞, 0[𝑛, and thus [93, Eqn. (57)] 𝐷Ψ is

equal to the Pinsker information [280, Eqn. (4)] [281, Eqn. (10.5.4)]14,

𝐷Ψ(𝑥, 𝑦) =

𝑛∑︁
𝑖=1

(︂
− log

𝑥𝑖
𝑦𝑖

+
𝑥𝑖
𝑦𝑖
− 1

)︂
∀(𝑥, 𝑦) ∈ (R𝑛)+0 × (R𝑛)+0 . (59)

Ψ is Euler–Legendre [38, Ex. 6.7, Cor. 5.13] [291, §8.1]. 𝐷Ψ is not jointly convex [39, Thm.
3.11.(i), Ex. 3.14]. It satisfies 𝐷Ψ(𝜆𝑥, 𝜆𝑦) = 𝐷Ψ(𝑥, 𝑦) ∀𝜆 > 0.

(iv) Let Ψ(𝑥) =
∑︀𝑛

𝑖=1(𝑥𝑖 log(𝑥𝑖) + (1− 𝑥𝑖) log(1− 𝑥𝑖)) on efd(Ψ) = [0, 1]𝑛 and Ψ(𝑥) = ∞ otherwise
[193, Eqn. (60)]. ΨF(𝑦) = log(1 + exp(𝑦)) on efd(ΨF) = R𝑛, and (gradΨ(𝑦))𝑖 = log( 𝑦𝑖

1−𝑦𝑖 ). Ψ
is Euler–Legendre [38, Ex. 6.6, Cor. 5.13] and totally convex [59, Prop. 11]. The resulting
Văınberg–Brègman functional reads [197, p. 142]

𝐷Ψ(𝑥, 𝑦) =
𝑛∑︁
𝑖=1

(︂
𝑥𝑖 log

(︂
𝑥𝑖
𝑦𝑖

)︂
+ (1− 𝑥𝑖) log

(︂
1− 𝑥𝑖
1− 𝑦𝑖

)︂)︂
, (60)

and it is jointly convex [39, Ex. 3.5]. Convex closed subsets 𝐶 ⊆ 𝑋 with 𝐶 ∩ int(efd(Ψ)) are
right 𝐷Ψ-Chebyshëv [46, Ex. 2.16.(iii)].

(v) Let

Ψ(𝑥) = Ψ𝛼(𝑥) :=

⎧⎨⎩
1

𝛼−1
∑︀𝑛

𝑖=1(𝑥
𝛼
𝑖 − 1) : 𝑥 ∈ [0,∞[𝑛, 𝛼 ∈ ]0, 1[

1
1−𝛼

∑︀𝑛
𝑖=1(𝑥

𝛼
𝑖 − 1) : 𝑥 ∈ ]0,∞[𝑛, 𝛼 ∈ ]−∞, 0[

∞ : otherwise
[291, Eqn. (37)]. (61)

Ψ𝛼 is Euler–Legendre [291, §7.2], and gives [291, Eqn. (38)]

𝐷Ψ𝛼(𝑥, 𝑦) =

⎧⎨⎩
1

1−𝛼
∑︀𝑛

𝑖=1(−𝑥𝛼𝑖 + (1− 𝛼)𝑦𝛼𝑖 + 𝛼𝑦𝛼−1𝑖 𝑥𝑖) : (𝑥, 𝑦) ∈ (R𝑛)+ × (R𝑛)+0 , 𝛼 ∈ ]0, 1[
1

𝛼−1
∑︀𝑛

𝑖=1(−𝑥𝛼𝑖 + (1− 𝛼)𝑦𝛼𝑖 + 𝛼𝑦𝛼−1𝑖 𝑥𝑖) : (𝑥, 𝑦) ∈ (R𝑛)+0 × (R𝑛)+0 , 𝛼 ∈ ]−∞, 0[
∞ : otherwise.

(62)
− 2𝛼−1

2𝛼−1−1(𝛼 − 1)Ψ𝛼 with 𝛼 > 0 (resp., −Ψ𝛼 with 𝛼 ∈ R) was introduced in [163, Thm. 1]
(resp., [329, Eqn. (1)]). Denoting by 𝐷Ψ̂𝛼

the first case in (62), 𝛼−1
𝛼 𝐷Ψ̂𝛼

with 𝛼 > 1 (resp.,
(1− 𝛼)𝐷Ψ̂𝛼

for 𝛼 ∈ ]−∞, 0[∪ ]0, 1[; 𝐷Ψ̂𝛼
for 𝛼 ∈ ]0, 1[) was introduced in [186, Eqn. (7)] (resp.,

[110, Thm. 4] and [111, Eqns. (1.7), (1.8), (1.12)]; [325, Ex. 3.1.3]). Since 𝐷Ψ is invariant
under addition of affine function to Ψ, and scales linearly under positive linear scaling of Ψ,
there are several closely related functions Ψ, giving rise to the same 𝐷Ψ𝛼 (or 𝐷Ψ̂𝛼

), up to a
positive scaling. For example, Ψ(𝑥) = 1

𝛼(𝛼−1)
∑︀𝑛

𝑖=1(𝑥
𝛼
𝑖 −𝛼𝑥𝑖+𝛼−1) [228, Eqn. (2.1)] or Ψ(𝑥) =

1
𝛼−1

∑︀𝑛
𝑖=1(𝑥

𝛼
𝑖 −𝛼𝑥𝑖) [325, Ex. 3.1.3]. In particular, Ψ(𝑥) = 1

𝛼(1−𝛼)
∑︀𝑛

𝑖=1 𝑥
𝛼 is Euler–Legendre for

(𝑥, 𝛼) ∈ (R𝑛× ]1,∞[)∪((R𝑛)+× ]0, 1[)∪((R𝑛)+0 × ]−∞, 0])∪(−(R𝑛)+× ]0, 1[)∪(−(R𝑛)+0 × ]−∞, 0[)
[349, Thm. 5].

12For the notions of left 𝐷Ψ-projection
←−
P𝐷Ψ

𝐾 and right 𝐷Ψ-Chebyshëv set, see Definition 2.6.(i)–(ii).
13The works of Burg, often referenced in this context, consider only the continuous analogue of this Ψ, given by

𝑥 ↦→ −
∫︀ 𝑡2
𝑡1

d𝑡 log(𝑥(𝑡)), 𝑡1, 𝑡2 ∈ R [81, Slide 6] [82, p. 1].
14As opposed to Pinsker’s [280, Eqn. (4)] and [281, Eqn. (10.5.4)], which are featuring (59) explicitly, the paper by

Itakura and Saito, published 8 years later and often referenced for introduction of this 𝐷Ψ, contains only a formula
2 log(2𝜋) + 1

2𝜋

∫︀ 𝜋

−𝜋
d𝑡(log(𝑦(𝑡)) + 𝑥(𝑡)

𝑦(𝑡)
) [174, Eqn. (7)].
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(vi) Let Ψ(𝑥) = 1
2 ||𝑥||

2
1/𝛾 = 1

2

(︁∑︀𝑛
𝑖=1 |𝑥𝑖|

1/𝛾
)︁2𝛾

on efd(Ψ) = R𝑛 for 𝛾 ∈ [12 , 1[ [267, Eqn. (III.2.2)] [48,

§8]. This gives (gradΨ(𝑦))𝑖 = sign(𝑦𝑖)|𝑦𝑖|1/𝛾−1||𝑦||2−1/𝛾1/𝛾 outside the points where 𝑦𝑖 = 0, and thus
[198, p. 1784] ∀(𝑥, 𝑦) ∈ R𝑛 × (R𝑛 ∖ {(𝑦1, . . . , 𝑦𝑛) ∈ R𝑛 : ∃𝑖 ∈ {1, . . . , 𝑛} 𝑦𝑖 = 0})

𝐷Ψ(𝑥, 𝑦) =
1
2 ||𝑥||

2
1/𝛾 −

1
2 ||𝑦||

2
1/𝛾 − ||𝑦||

2−1/𝛾
𝛾

∑︀𝑛
𝑖=1(𝑥𝑖 − 𝑦𝑖)sign(𝑦𝑖)|𝑦𝑖|

1/𝛾−1. (63)

Ψ is strictly convex [48, Lem. 8.1] (and this implies total convexity), as well as supercoercive
and Euler–Legendre [291, §11.3].

Example 2.3. Given a Hilbert space ℋ with dimℋ ∈ N, 𝒦 := (G2(ℋ))sa := {𝑥 ∈ B(ℋ) :√︀
trℋ(𝑥*𝑥) ≤ ∞, 𝑥 = 𝑥*} with dim𝒦 =: 𝑛, equipped with an inner product ⟨𝑥, 𝑦⟩𝒦 := trℋ(𝑥𝑦)
∀𝑥, 𝑦 ∈ 𝒦, becomes a real Hilbert space of 𝑛× 𝑛 self-adjoint matrices. Let 𝑆𝑛 denote the group of all
𝑛 × 𝑛 permutation matrices R𝑛 → R𝑛 (representing the group of all bijections of the set {1, . . . , 𝑛}
into itself), called a symmetric group, and let 𝑈𝑛 denote the group of all 𝑛 × 𝑛 unitary matrices
𝒦 → 𝒦, called a unitary group. For 𝑥 ∈ 𝒦, let 𝜆(𝑥) := (𝜆1(𝑥), . . . ,𝜆𝑛(𝑥)) ∈ R𝑛 denote the vector of
eigenvalues of 𝑥 ordered nonincreasingly. For any 𝑛×𝑛 matrix 𝑥 (resp., for 𝑥 ∈ R𝑛), let diag(𝑥) denote
the diagonal matrix with elements given by a diagonal of 𝑥 (resp., by elements of 𝑥). Given 𝐶 ⊆ R𝑛,
𝜆

p

(𝐶) := {𝑥 ∈ 𝒦 : 𝜆(𝑥) ∈ 𝐶} is called a spectral set. If 𝑠(𝐶) = 𝐶 ∀𝑠 ∈ 𝑆𝑛, then 𝜆

p

(𝐶) is closed
(resp., convex) iff 𝐶 is closed (resp., convex) [226, Thm. 8.4]. A function 𝑓 : R𝑛 → ] −∞,∞] will be
called symmetric, and 𝑓 ∘ 𝜆 : 𝒦 → ]−∞,∞] will be called spectral, iff 𝑓(𝑠(𝑥)) = 𝑓(𝑥) ∀𝑠 ∈ 𝑆𝑛. For
any symmetric 𝑓 , 𝑓 ∘𝜆 is convex iff 𝑓 is convex [117, Thm. (p. 276)]. Furthermore, for any symmetric
𝑓 [225, Thm. 2.3, Cors. 2.4, 3.2, 3.3] [226, Thms. 8.1, 5.4] [38, Fact 7.14, Prop. 7.19.(ii)]:

1) 𝑓F is symmetric;
2) 𝑓 ∈ Γ(R𝑛) iff 𝑓 ∘ 𝜆 ∈ Γ(𝒦); (𝑓 ∘ 𝜆)(𝑢*𝑥𝑢) = (𝑓 ∘ 𝜆)(𝑥) ∀𝑥 ∈ ℋ ∀𝑢 ∈ 𝑈𝑛;
3) (𝑓 ∘ 𝜆)F = 𝑓F ∘ 𝜆;
4) efd(𝑓 ∘ 𝜆) = 𝜆

p

(efd(𝑓));
5) int(efd(𝑓 ∘ 𝜆)) = 𝜆

p

(int(efd(𝑓)));
6) if 𝑓 ∈ Γ(R𝑛), then 𝑓 ∘ 𝜆 is differentiable at 𝑥 iff 𝑓 is differentiable at 𝜆(𝑥);
7) 𝑓 is essentially strictly convex (resp., essentially Gateaux differentiable; Euler–Legendre) iff 𝑓 ∘𝜆

is essentially strictly convex (resp., essentially Gateaux differentiable; Euler–Legendre);
8) if 𝑓 ∈ Γ(R𝑛) and 𝑓 ∘ 𝜆 is differentiable at 𝑦 ∈ int(efd(𝑓 ∘ 𝜆)) then grad(𝑓 ∘ 𝜆)(𝑦) =

𝑣(diag(grad𝑓(𝜆(𝑦))))𝑣* ∀𝑣 ∈ 𝑈𝑛 such that 𝑣*𝑦𝑣 = diag(𝜆(𝑦)), and grad(𝑓 ∘ 𝜆)(𝑢*𝑦𝑢) =
𝑢*grad(𝑓 ∘ 𝜆)(𝑦)𝑢 ∀𝑢 ∈ 𝑈𝑛.

In consequence, 𝐷Ψ(𝑥, 𝑦) = 𝐷Ψ(𝑢
*𝑥𝑢, 𝑢*𝑦𝑢) ∀𝑥 ∈ 𝒦 ∀𝑦 ∈ int(efd(Ψ)) ∀𝑢 ∈ 𝑈𝑛 for all spectral Euler–

Legendre Ψ [38, Cor. 7.21].
The examples of symmetric Euler–Legendre functions are:

(i) 𝑓(𝑥) =
∑︀𝑛

𝑖=1 𝛾|𝑥𝑖|
1/𝛾 =: 𝛾||𝑥||1/𝛾1/𝛾 on efd(𝑓) = int(efd(𝑓)) = R𝑛 for 𝛾 ∈ ]0, 1[, which gives [225,

p. 171] spectral Euler–Legendre (𝑓 ∘ 𝜆)(𝜉) = 𝛾||𝜆(𝜉)||1/𝛾1/𝛾 =
∑︀𝑛

𝑖=1 𝛾|𝜆𝑖(𝜉)|
1/𝛾 = 𝛾trℋ(|𝜉|1/𝛾) =

𝛾||𝜉||1/𝛾1/𝛾 on efd(𝑓 ∘ 𝜆) = G2(ℋ). Under a restriction of a domain of 𝜁 to (G2(ℋ))+0 = {𝑥 ∈ 𝒦 :

𝑥 is positive definite}, the corresponding Văınberg–Brègman functional reads

𝐷𝑓∘𝜆(𝜉, 𝜁) = trℋ(𝛾|𝜉|1/𝛾 − 𝛾𝜁1/𝛾 − (𝜉 − 𝜁)𝜁1/𝛾−1) ∀(𝜉, 𝜁) ∈ (G2(ℋ))sa × (G2(ℋ))+0 ; (64)

(ii) 𝑓(𝑥) =
∑︀𝑛

𝑖=1(𝑥𝑖 log(𝑥𝑖) − 𝑥𝑖) if 𝑥 ≥ 0 and 𝑓(𝑥) = ∞ otherwise, which gives [38, Ex. 7.29]
spectral Euler–Legendre (𝑓 ∘ 𝜆)(𝜉) = trℋ(𝜉 log 𝜉 − 𝜉) with efd(𝑓 ∘ 𝜆) = (G2(ℋ))+ = {𝑥 ∈
𝒦 : 𝑥 is positive semi-definite}, int(efd(𝑓 ∘ 𝜆)) = (G2(ℋ))+0 , and grad(𝑓 ∘ 𝜆)(𝜉) = log(𝜉). The
corresponding Văınberg–Brègman functional reads [330, Def. 1]

𝐷𝑓∘𝜆(𝜉, 𝜁) = trℋ(𝜉(log 𝜉 − log 𝜁)− 𝜉 − 𝜁) ∀(𝜉, 𝜁) ∈ (G2(ℋ))+ × (G2(ℋ))+0 ; (65)

(iii) 𝑓(𝑥) = −
∑︀𝑛

𝑖=1 log(𝑥𝑖) on efd(𝑓) = (R𝑛)+0 and 𝑓(𝑥) = ∞ otherwise, which gives [225, pp.
170–171] spectral Euler–Legendre (𝑓 ∘ 𝜆)(𝜉) = − log det(𝜉) ∀𝜉 ∈ efd(𝑓 ∘ 𝜆) = (G2(ℋ))+0 and
(𝑓 ∘ 𝜆)(𝜉) = ∞ otherwise (cf., e.g., [268, Thm. 3.2.(iv)]). It satisfies grad(𝑓 ∘ 𝜆)(𝜉) = −𝜉−1.
Its Mandelbrojt–Fenchel dual is (𝑓 ∘ 𝜆)F(𝜉) = −𝑛− log det(−𝜉) on efd((𝑓 ∘ 𝜆)F) = −(G2(ℋ))+0
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[225, p. 171], and satisfies grad((𝑓 ∘ 𝜆)F)(𝜉) = −𝜉−1. The corresponding Văınberg–Brègman
functional reads [178, §5]

𝐷𝑓∘𝜆(𝜉, 𝜁) =
⟨︀
𝜉, 𝜁−1

⟩︀
𝒦 − log det(𝜉𝜁−1)− 𝑛 = ℎ(𝜁−1/2𝜉𝜁−1/2)− 𝑛, (66)

for ℎ(𝜉) := tr𝒦(𝜉)− log det(𝜉).

2.2 Văınberg–Brègman projections and quasinonexpansive maps

2.2.1 Projections

Definition 2.4. For any set 𝑍, 𝐷 : 𝑍 × 𝑍 → [0,∞] will be called an information on 𝑍 (and −𝐷
will be called a relative entropy on 𝑍) iff 𝐷(𝑥, 𝑦) = 0 ⇐⇒ 𝑥 = 𝑦 ∀𝑥, 𝑦 ∈ 𝑍.

Proposition 2.5. Let Ψ ∈ Γ(𝑋, ||·||𝑋). Then:
(i) if Ψ ∈ ΓG(𝑋, ||·||𝑋), then 𝐷Ψ is an information on 𝑋 iff Ψ is strictly convex on int(efd(Ψ)) [86,

Prop. 1.1.9];
(ii) if (𝑋, ||·||𝑋) is reflexive and Ψ is essentially strictly convex, then 𝐷+

Ψ is an information on 𝑋 [40,
Lem. 7.3.(vi)].

Definition 2.6. Let Ψ ∈ ΓG(𝑋, ||·||𝑋), 𝑦 ∈ int(efd(Ψ)), and 𝐾 ⊆ 𝑋 with ∅ ̸= 𝐾 ∩ int(efd(Ψ)).
(i) If the set arg inf𝑥∈𝐾 {𝐷Ψ(𝑥, 𝑦)} is a singleton, then its element will be denoted

←−
P𝐷Ψ
𝐾 (𝑦), and

called a left 𝐷Ψ-projection of 𝑦 onto 𝐾 [67, p. 1019] [68, §1.II, §2.2] [69, p. 620], while 𝐾 will
be called a left 𝐷Ψ-Chebyshëv set [41, Def. 3.28].

(ii) If 𝐾 ⊆ int(efd(Ψ)) and the set arg inf𝑥∈𝐾 {𝐷Ψ(𝑦, 𝑥)} is a singleton, then its element will be
denoted

−→
P𝐷Ψ
𝐾 (𝑦), and called a right 𝐷Ψ-projection of 𝑦 onto 𝐾 [46, Def. 3.1, Lem. 3.5], while

𝐾 will be called a right 𝐷Ψ-Chebyshëv set [45, Def. 1.7].
(iii)

←−
P𝐷Ψ
𝐾 (resp.,

−→
P𝐷Ψ
𝐾 ) will be called zone consistent (with respect to the class of sets 𝐾

which are under consideration) [92, Def. 3.1.(i)] iff
←−
P𝐷Ψ
𝐾 (int(efd(Ψ))) ⊆ int(efd(Ψ)) (resp.,

−→
P𝐷Ψ
𝐾 (int(efd(Ψ))) ⊆ int(efd(Ψ))) for any 𝐾 (in the given class).

Definition 2.7. Let Ψ ∈ ΓG(𝑋, ||·||𝑋), ∅ ̸= 𝐾 ⊆ 𝑋. 𝐷Ψ will be called:
a) left pythagorean on 𝐾 iff 𝐾 is left 𝐷Ψ-Chebyshëv and, for any 𝑥 ∈ int(efd(Ψ)) and any 𝑤 ∈ 𝐾,

the following conditions are equivalent:
(i) 𝑤 =

←−
P𝐷Ψ
𝐾 (𝑥);

(ii) 𝑤 is the unique solution of the variational inequality[︀[︀
𝑧 − 𝑦,DGΨ(𝑥)−DGΨ(𝑧)

]︀]︀
𝑋×𝑋⋆ ≥ 0 ∀𝑦 ∈ 𝐾; (67)

(iii) 𝑤 is the unique solution of the variational inequality

𝐷Ψ(𝑦, 𝑧) +𝐷Ψ(𝑧, 𝑥) ≤ 𝐷Ψ(𝑦, 𝑥) ∀𝑦 ∈ 𝐾; (68)

b) right pythagorean on 𝐾 iff 𝐾 is right 𝐷Ψ-Chebyshëv and, for any 𝑥 ∈ int(efd(Ψ)) and any
𝑤 ∈ 𝐾, the following conditions are equivalent:
(i) 𝑤 =

−→
P𝐷Ψ
𝐾 (𝑥);

(ii) 𝑤 is the unique solution of the variational inequality[︀[︀
𝑥− 𝑧,DGΨ(𝑥)−DGΨ(𝑦)

]︀]︀
𝑋×𝑋⋆ ≥ 0 ∀𝑦 ∈ 𝐾; (69)

(iii) 𝑤 is the unique solution of the variational inequality

𝐷Ψ(𝑥, 𝑧) +𝐷Ψ(𝑧, 𝑦) ≤ 𝐷Ψ(𝑥, 𝑦) ∀𝑦 ∈ 𝐾. (70)

Proposition 2.8. Let (𝑋, ||·||𝑋) be reflexive, Ψ ∈ ΓG(𝑋, ||·||𝑋) and ∅ ̸= 𝐾 ⊆ 𝑋 be closed and convex.
Then:

(i) 𝐾 is left 𝐷Ψ-Chebyshëv, and 𝐷Ψ is left pythagorean on 𝐾 if any of (generally, inequivalent)
conditions holds:
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a) Ψ is totally convex on efd(Ψ), 𝐾 ⊆ int(efd(Ψ)) [86, Prop. 2.1.5]+[89, Prop. 4.1.(i)](=[89,
Cor. 4.4]); or

b) Ψ is strictly convex on efd(Ψ) and supercoercive, 𝐾 ∩ int(efd(Ψ)) ̸= ∅ [14, Prop. 2.2]+[89,
Prop. 4.1.(ii)]; or

c) Ψ is Euler–Legendre, 𝐾 ∩ int(efd(Ψ)) ̸= ∅ [38, Prop. 3.16]+[40, Thm. 7.8](=[41, Cor.
3.35]);

(ii) if any of the conditions (i).a)–(i).c) holds, and 𝐾 is affine, then

𝐷Ψ(𝑥,
←−
P𝐷Ψ
𝐾 (𝑦)) +𝐷Ψ(

←−
P𝐷Ψ
𝐾 (𝑦), 𝑦) = 𝐷Ψ(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ 𝐾 × int(efd(Ψ)); (71)

(iii) if (condition (i).c) holds), or (condition (i).a) or condition (i).b) holds, and 𝐾 ⊆ int(efd(Ψ))),
then

←−
P𝐷Ψ
𝐾 is zone consistent [40, Cor. 7.9].

Corollary 2.9. If any of the conditions a)–c) in Proposition 2.8.(i) holds, then 𝐷Ψ is an information
on 𝑋.

Proof. The condition of strict convexity on efd(Ψ) in Proposition 2.8.(i).b) implies Proposition 2.5.(i).
The condition of 2.8.(i).c) implies Proposition 2.5.(ii), which in turn implies that 𝐷Ψ is an information
on 𝑋. Since total convexity on efd(Ψ) implies strict convexity on int(efd(Ψ)) [85, Prop. 3.1.(i)], the
condition of Proposition 2.8.(i).a) implies Proposition 2.5.(i).

Proposition 2.10. [240, Lem. 3.2] If Ψ ∈ ΓG(𝑋, ||·||𝑋), ΨF is Gateaux differentiable on ∅ ̸=
DGΨ(int(efd(Ψ))) ⊆ int(efd(ΨF)), 𝐾 ⊆ int(efd(Ψ)), and DGΨ(𝐾) is convex and closed, then

−→
P𝐷Ψ
𝐾 (𝑥) = (𝐽𝑋)

p ∘DGΨF ∘
←−
P
𝐷

ΨF

DGΨ(𝐾)
∘DGΨ(𝑥) ∀𝑥 ∈ int(efd(Ψ)). (72)

Remark 2.11. (i) The notion of a Chebyshëv set, defined as a subset 𝐾 of a Banach space
(𝑋, ||·||𝑋) such that arg inf𝑥∈𝐾 {||𝑥− 𝑦||𝑋} = {*} =: {P

𝑑||·||𝑋
𝐾 (𝑦)} ∀𝑦 ∈ 𝑋, was introduced in [201,

§A2] (implicitly) and [134, p. 17] (explicitly). This name refers to Chebyshëv’s paper [98], where
first nontrivial examples of such sets were considered. See Remarks 3.37.(iii), 3.37.(viii), and
3.37.(x) for further discussion.

(ii) In principle, Definitions 2.6 and 2.7 could be formulated more generally, by dropping an assump-
tion Ψ ∈ ΓG(𝑋, ||·||𝑋) and with 𝐷Ψ (resp., DGΨ; int(efd(Ψ))) replaced either by 𝐷+

Ψ (resp., DG
+Ψ;

efd(Ψ)) or by 𝐷𝜕
Ψ (resp., D𝜕Ψ; efd(Ψ)). (This is the reason for putting Gateaux differentiability

into brackets in the third paragraph of Section 1.) While this is a tempting possibility in the con-
text of a general axiomatic scheme, as well as in the light of references listed in Remark 2.1.(iii),
there are currently no substantial geometric results available for such a degree of generality.

(iii) Both left and right 𝐷Ψ-projections are idempotent: if 𝐾 is left (resp., right) 𝐷Ψ-Chebyshëv, then
←−
P𝐷Ψ
𝐾 ∘

←−
P𝐷Ψ
𝐾 =

←−
P𝐷Ψ
𝐾 (resp.,

−→
P𝐷Ψ
𝐾 ∘

−→
P𝐷Ψ
𝐾 =

−→
P𝐷Ψ
𝐾 ).

(iv) The naming convention of Definition 2.4 follows Wiener’s dictum that the «amount of information
is the negative of the quantity usually defined as entropy» [347, p. 76], and agrees with: Rényi’s
«measure of the amount of information» [297, p. 554], Umegaki’s definition of «information» on
state spaces of type I W*-algebras as 𝐷1(𝜌, 𝜎) = trℋ(𝜌(log 𝜌− log 𝜎)) [330, Def. 1] [331, Def. 1],
Csiszár’s definition of «relative information» 𝐷f in [107, p. 86], as well as with the sign, ordering,
and naming conventions used throughout [65]. It also avoids terminological confusions: when,
e.g., both −trℋ(𝜌 log 𝜌) and 𝐷1(𝜌, 𝜎) are called an ‘entropy’ (sign ambiguity); when both 𝐷(𝜌, 𝜎)
and 𝐷(𝜌, 𝜎) + 𝐷(𝜎, 𝜌) are called a ‘divergence’ (both [215, p. 81] and [331, Def. 2] explicitly
distinguish between 𝐷1 and «divergence», the latter defined as a symmetrisation 𝐷1(𝜌, 𝜎) +
𝐷1(𝜎, 𝜌) [182, Eqn. (1)])15; when any 𝐷 as well as only a symmetric 𝐷 satisfying triangle
inequality are called a ‘distance’. Mathematically, our definition of «information» coincides with
the definition of a «contrast functional» in [135, p. 794] and of a «distance» in [111, p. 161],
with the property (I) of 𝐷 in [67, p. 1019] (=[68, p. 5]), and can be seen as turning [92, Lem.
2.1] into an axiom.

15Furthermore, the notion of «divergence» has already other meanings in differential calculus and in renormalisation.
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(v) First special case of left 𝐷Ψ-projection for nonsymmetric 𝐷Ψ, with 𝐷Ψ given by the Kullback–
Leibler information (i.e. 𝐷Ψ on R𝑛 × R𝑛 with Ψ(𝑥𝑖) =

∑︀𝑛
𝑖=1(𝑥𝑖 log(𝑥𝑖) − 𝑥𝑖) and 𝑛 ∈ N),

was independently introduced in [310, p. 32] and [214, Ch. 3.2]. First special case of right
𝐷Ψ-projection for nonsymmetric 𝐷Ψ, with 𝐷Ψ given by the Kullback–Leibler information, was
introduced in [99, Eqn. (16)] (cf. also [100, Def. 22.2]). First instance of a right pythagorean
(in)equality (70), together with its interpretation as «nonsymmetrical analogue of the theorem
of Pythagoras», was established in [99, Thm. 1] for the Kullback–Leibler information. The
corresponding special case of (68) was first considered implicitly in [67, p. 1021] and explicitly
in [108, Thm. 2.2].

2.2.2 Quasinonexpansive maps

Definition 2.12. For any (𝑋, ||·||𝑋), let ∅ ̸= 𝐾 ⊆ 𝑋, 𝑇 : 𝐾 → 𝑋. Then:
(i) 𝑥 ∈ 𝐾 is called a fixed point of 𝑇 iff 𝑇 (𝑥) = 𝑥; a set of all fixed points of 𝑇 will be denoted

Fix(𝑇 );
(ii) 𝑥 ∈ cl(𝐾) is called an asymptotic fixed point of 𝑇 iff there exists {𝑥𝑛 ∈ 𝐾 : 𝑛 ∈ N} which

converges weakly to 𝑥, and lim𝑛→∞ ||𝑥𝑛 − 𝑇 (𝑥𝑛)||𝑋 = 0 [293, p. 313]. The set of all asymptotic
fixed points of 𝑇 will be denoted ̂︂Fix(𝑇 ).

Definition 2.13. Let ∅ ̸= 𝐾 ⊆ int(efd(Ψ)), Ψ ∈ ΓG(𝑋, ||·||𝑋), 𝑇 : 𝐾 → int(efd(Ψ)) will be called:
(i) completely nonexpansive with respect to Ψ and 𝐾 iff [86, 2.1.7]

𝐷Ψ(𝑇 (𝑥), 𝑇 (𝑦)) ≤ 𝐷Ψ(𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝐾; (73)

(ii) left strongly quasinonexpansive with respect to Ψ and 𝐾, iff [94, Def. 3.2] [293, pp. 313–314]
∅ ̸=̂︂Fix(𝑇 ) ⊆ efd(Ψ),

𝐷Ψ(𝑦, 𝑇 (𝑥)) ≤ 𝐷Ψ(𝑦, 𝑥) ∀(𝑦, 𝑥) ∈̂︂Fix(𝑇 )×𝐾, (74)

and, for any 𝑦 ∈̂︂Fix(𝑇 ) and any bounded {𝑥𝑛 ∈ 𝐾 : 𝑛 ∈ N},

lim
𝑛→∞

(𝐷Ψ(𝑦, 𝑥𝑛)−𝐷Ψ(𝑦, 𝑇 (𝑥𝑛))) = 0 ⇒ lim
𝑛→∞

𝐷Ψ(𝑇 (𝑥𝑛), 𝑥𝑛) = 0; (75)

(iii) right strongly quasinonexpansive with respect to Ψ and 𝐾 iff [245, Def. 2.3.(iv)] ∅ ̸=̂︂Fix(𝑇 ) ⊆ int(efd(Ψ)),

𝐷Ψ(𝑇 (𝑥), 𝑦) ≤ 𝐷Ψ(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ 𝐾 ×̂︂Fix(𝑇 ), (76)

and, for any 𝑦 ∈̂︂Fix(𝑇 ) and any bounded {𝑥𝑛 ∈ 𝐾 : 𝑛 ∈ N},

lim
𝑛→∞

(𝐷Ψ(𝑥𝑛, 𝑦)−𝐷Ψ(𝑇 (𝑥𝑛), 𝑦)) = 0 ⇒ lim
𝑛→∞

𝐷Ψ(𝑥𝑛, 𝑇 (𝑥𝑛)) = 0; (77)

(iv) left firmly nonexpansive with respect to Ψ and 𝐾 iff [71, Def. 3] [41, Def. 3.4, Prop. 3.5.(iv)]
∀𝑥, 𝑦 ∈ 𝐾

𝐷Ψ(𝑇 (𝑥), 𝑇 (𝑦)) +𝐷Ψ(𝑇 (𝑦), 𝑇 (𝑥)) +𝐷Ψ(𝑇 (𝑥), 𝑥) +𝐷Ψ(𝑇 (𝑦), 𝑦) ≤ 𝐷Ψ(𝑇 (𝑥), 𝑦) +𝐷Ψ(𝑇 (𝑦), 𝑥);
(78)

(v) right firmly nonexpansive with respect to Ψ and 𝐾 iff [245, Def. 2.3.(i*)] ∀𝑥, 𝑦 ∈ 𝐾

𝐷Ψ(𝑇 (𝑥), 𝑇 (𝑦)) +𝐷Ψ(𝑇 (𝑦), 𝑇 (𝑥)) +𝐷Ψ(𝑥, 𝑇 (𝑥)) +𝐷Ψ(𝑦, 𝑇 (𝑥)) ≤ 𝐷Ψ(𝑥, 𝑇 (𝑦)) +𝐷Ψ(𝑦, 𝑇 (𝑥)).
(79)

The set of all left (resp., right) strongly quasinonexpansive maps with respect to Ψ and 𝐾 will be denoted
LSQ(Ψ,𝐾) (resp., RSQ(Ψ,𝐾)). The set of all left (resp., right) firmly nonexpansive maps with respect
to Ψ and 𝐾 will be denoted LFN(Ψ,𝐾) (resp., RFN(Ψ,𝐾)). The set of all completely nonexpansive
maps with respect to Ψ and 𝐾 will be denoted CN(Ψ,𝐾).
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Definition 2.14. If (𝑋, ||·||𝑋) is reflexive, then Ψ ∈ ΓG(𝑋, ||·||𝑋) will be called LSQ-compositional
(resp., RSQ-compositional) on ∅ ̸= 𝐾 ⊆ int(efd(Ψ)) iff, for any set {𝑇𝑖 : 𝐾 → 𝐾 : 𝑇𝑖 ∈
LSQ(Ψ,𝐾) (resp., RSQ(Ψ,𝐾)), 𝑖 ∈ {1, . . . ,𝑚},𝑚 ∈ N} such that

⋂︀𝑚
𝑖=1
̂︂Fix(𝑇𝑖) ̸= ∅:

(i) ̂︂Fix(𝑇𝑚 ∘ · · · ∘ 𝑇1) ⊆ ⋂︀𝑚
𝑖=1
̂︂Fix(𝑇𝑖);

(ii) if ̂︂Fix(𝑇𝑚 ∘ · · · ∘ 𝑇1) ̸= ∅, then 𝑇𝑚 ∘ · · · ∘ 𝑇1 ∈ LSQ(Ψ,𝐾) (resp., RSQ(Ψ,𝐾)).
The set LSQ(Ψ,𝐾) (resp., RSQ(Ψ,𝐾)) will be called composable iff Ψ is LSQ-(resp., RSQ-)composi-
tional on 𝐾. Ψ will be called LSQ-compositional (resp., RSQ-compositional) iff it is LSQ-(resp.,
RSQ-)compositional on any 𝐾 ⊆ int(efd(Ψ)).

Definition 2.15. If (𝑋, ||·||𝑋) is reflexive, then Ψ ∈ ΓG(𝑋, ||·||𝑋) will be called:
(i) LSQ-preadapted on a set ∅ ̸= 𝐾 ⊆ int(efd(Ψ)) iff 𝑇 ∈ LFN(Ψ,𝐾) ⇒ (𝑇 ∈ LSQ(Ψ,𝐾),̂︂Fix(𝑇 ) = Fix(𝑇 ), and Fix(𝑇 ) is convex and closed);
(ii) RSQ-preadapted on a set ∅ ̸= 𝐾 ⊆ int(efd(Ψ)) iff 𝑇 ∈ RFN(Ψ,𝐾) ⇒ (𝑇 ∈ RSQ(Ψ,𝐾),̂︂Fix(𝑇 ) = Fix(𝑇 ), and DGΨ(Fix(𝑇 )) is convex and closed).

Proposition 2.16. If (𝑋, ||·||𝑋) is reflexive and Ψ ∈ ΓG(𝑋, ||·||𝑋), then:
(i) Ψ is LSQ-compositional if any of (generally, inequivalent) conditions holds:

a) Ψ : 𝑋 → R is uniformly convex on 𝑋, DGΨ is (bounded and uniformly continuous) on
bounded subsets of 𝑋 [293, Lems. 1, 2]; or

b) Ψ : 𝑋 → R is (bounded, uniformly Fréchet differentiable, totally convex) on bounded subsets
of 𝑋, DG(ΨF) is bounded on bounded subsets of efd(ΨF) = 𝑋⋆ [246, Prop. 3.3];

(ii) Ψ is RSQ-compositional if any of (generally, inequivalent) conditions holds:
a) Ψ : 𝑋 → R is (bounded, uniformly Fréchet differentiable, totally convex) on bounded subsets

of 𝑋 [246, Prop. 4.4]; or
b) efd(ΨF) = 𝑋⋆, Ψ is Euler–Legendre, ΨF is totally convex on bounded subsets of 𝑋⋆, DGΨ is

(bounded and uniformly continuous) on bounded subsets of int(efd(Ψ)), DGΨF is (bounded
and uniformly continuous) on bounded subsets of 𝑋⋆ [246, Prop. 6.6];

(iii) Ψ : 𝑋 → R is LSQ-preadapted on any convex closed ∅ ̸= 𝐾 ⊆ 𝑋 if Ψ is Euler–Legendre
and (bounded and uniformly Fréchet differentiable) on bounded subsets of 𝑋 [295, Lems. 15.5,
15.6]+[309, Rem. 2.1.3];

(iv) Ψ is RSQ-preadapted on any ∅ ̸= 𝐾 ⊆ 𝑋 if Ψ : 𝑋 → R is Euler–Legendre, and any of (generally,
inequivalent) conditions holds:

a) Ψ is uniformly continuous on bounded subsets of 𝑋, DGΨ is weakly sequentially continuous16

[245, Props. 3.3, 3.6]; or
b) ΨF is (uniformly Fréchet differentiable and bounded) on bounded subsets of int(efd(ΨF)) ̸=

∅, DGΨ is uniformly continuous on bounded subsets of 𝑋 [245, Prop. 3.3, Rem. 3.7];
(v) if Ψ is Euler–Legendre, ∅ ̸= 𝐾 ⊆ int(efd(Ψ)), 𝑇 : 𝐾 → int(efd(Ψ)), DGΨ and DGΨF are

(uniformly continuous and bounded) on bounded subsets of int(efd(Ψ)) and int(efd(ΨF)) ̸= ∅,
respectively, then 𝑇 ∈ RSQ(Ψ,𝐾) iff DGΨ ∘ 𝑇 ∘DGΨF ∈ LSQ(Ψ,DGΨ(𝐾)) [246, Fact 6.5].

Definition 2.17. Let (𝑋, ||·||𝑋) be a Banach space, Ψ ∈ ΓG(𝑋, ||·||𝑋), 𝜆 ∈ ]0,∞[.
(i) If 𝑇 : 𝑋 → 2𝑋

⋆ and graph(𝑇 ) ̸= ∅, then the left (resp., right) 𝐷Ψ-resolvent of 𝜆𝑇 is defined
as [133, Lem. 1] [41, Def. 3.7] (resp., [245, Def. 5.3])

←−resΨ𝜆𝑇 := (DGΨ+ 𝜆𝑇 ) ∘DGΨ : 𝑋 → 2𝑋 (80)

(resp., −→resΨ𝜆𝑇 := (id𝑋⋆ + 𝜆𝑇 ∘DGΨF)

p

: 𝑋⋆ → 2𝑋
⋆
). (81)

(ii) If 𝑓 : 𝑋 → ] −∞,∞] is proper, then the left (resp., right) 𝐷Ψ-proximal map of index 𝜆 is
defined as [95, Eqn. (13)] [41, Def. 3.16] (resp., [43, Def. 3.7] [218, Def. 3.3])

←−−prox𝐷Ψ
𝜆,𝑓 : 𝑋 ∋ 𝑦 ↦→ arg inf

𝑥∈efd(𝑓)∩efd(Ψ)
{𝑓(𝑥) + 𝜆𝐷Ψ(𝑥, 𝑦)} ∈ 2𝑋 (82)

(resp., −−→prox𝐷Ψ
𝜆,𝑓 : 𝑋 ∋ 𝑦 ↦→ arg inf

𝑥∈efd(𝑓)∩int(efd(Ψ))
{𝑓(𝑥) + 𝜆𝐷Ψ(𝑦, 𝑥)} ∈ 2𝑋), (83)

16For any Banach space (𝑋, ||·||𝑋), 𝑓 : 𝑋 → 𝑋⋆ is called weakly sequentially continuous iff a weak convergence of
{𝑥𝑛 ∈ 𝑋 : 𝑛 ∈ N} to 𝑥 ∈ 𝑋 implies a weak convergence of {𝑓(𝑥𝑛) : 𝑛 ∈ N} to 𝑓(𝑥).
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whenever the argument of inf{. . .} is finite.

Proposition 2.18. Let (𝑋, ||·||𝑋) be reflexive and let Ψ ∈ ΓG(𝑋, ||·||𝑋) be Euler–Legendre. Then:
(i) if 𝑇 : 𝑋 → 2𝑋

⋆ , then
−→resΨ𝑇 = DGΨ ∘←−resΨ𝑇 ∘DGΨF (84)

with efd(−→resΨ𝑇 ) = DGΨ(efd(←−resΨ𝑇 )) and ran(−→resΨ𝑇 ) = DGΨ(ran(←−resΨ𝑇 )) [245, Lem. 5.4];
(ii) if 𝑓 : 𝑋 → ]−∞,∞] is proper and satisfies efd(𝑓) ∩ int(efd(Ψ)) ̸= ∅, then [218, Lem. 3.4]+[41,

Prop. 3.23.(v).(b)]17

−−→prox𝐷Ψ
𝜆,𝑓 (𝑥) = DGΨF ∘←−−prox

𝐷
ΨF

𝜆,𝑓∘DGΨF ∘DGΨ(𝑥) ∀𝑥 ∈ int(efd(Ψ)). (85)

Proposition 2.19. Let (𝑋, ||·||𝑋) be a Banach space, let Ψ ∈ ΓG(𝑋, ||·||𝑋), and let ∅ ̸= 𝐾 ⊆ 𝑋 be such
that 𝐾 ∩ efd(Ψ) ̸= ∅ and (𝐾 ∩ efd(Ψ) ⊆ int(efd(Ψ)) or 𝐾 ∩ efd(𝜕Ψ) ⊆ int(efd(Ψ)) or 𝐾 ⊆ int(efd(Ψ))
or efd(Ψ) is open or (int(efd(Ψ)) ∩𝐾 ̸= ∅ and Ψ is essentially Gateaux differentiable)).

(i) If 𝜆 ∈ ]0,∞[, 𝑓 ∈ Γ(𝑋, ||·||𝑋), and 𝐾 = efd(𝑓), then ←−−prox𝐷Ψ
𝜆,𝑓 = ←−resΨ𝜆𝜕𝑓 [41, Props. 3.22.(ii).(a),

3.23].
(ii) If 𝐾 is closed and convex, and 𝐾 ∩ int(efd(Ψ)) ̸= ∅, then

←−
P𝐷Ψ
𝐾 = ←−−prox𝐷Ψ

1,𝜄𝐾
= ←−resΨ𝜕𝜄𝐾 with

Fix(←−resΨ𝜕𝜄𝐾 ) = 𝐾 ∩ int(efd(Ψ)) [41, Props. 3.32, 3.33].

Proposition 2.20. Let (𝑋, ||·||𝑋) be a Banach space, let Ψ ∈ ΓG(𝑋, ||·||𝑋), and let 𝑇 : 𝑋 → 2𝑋
⋆ be

monotone. Then:
(i) ←−resΨ𝜆𝑇 ∈ LFN(Ψ, 𝑋) with efd(←−resΨ𝜆𝑇 ) ⊆ int(efd(Ψ)) ⊇ ran(←−resΨ𝜆𝑇 ) and Fix(←−resΨ𝜆𝑇 ) = int(efd(Ψ)) ∩

𝑇

p

(0) [41, Prop. 3.8.(i)–(iii),(iv).(a)]18;
(ii) if ran(DGΨ) ⊆ ran(DGΨ+𝑇 ) and Ψ is strictly convex on int(efd(Ψ)), then [41, Prop. 3.8.(iv).(b)–

(c)] ←−resΨ𝑇 is single-valued on efd(←−resΨ𝑇 ), Fix(
←−resΨ𝑇 ) is convex, and [133, Lem. 1] [41, Prop. 3.3.(i)]

𝐷Ψ(𝑥, 𝑦) ≥ 𝐷Ψ(𝑥,
←−resΨ𝑇 (𝑦)) +𝐷Ψ(

←−resΨ𝑇 (𝑦), 𝑦) ∀(𝑥, 𝑦) ∈ Fix(←−resΨ𝑇 )× int(efd(Ψ)); (86)

(iii) if (𝑋, ||·||𝑋) is reflexive, 𝜆 ∈ ]0,∞[, 𝑇 is maximally monotone with efd(𝑇 ) ⊆ int(efd(Ψ)), Ψ is
Euler–Legendre, and efd(ΨF) = 𝑋⋆, then ←−resΨ𝜆𝑇 is single-valued on efd(←−resΨ𝜆𝑇 ), and (86) holds for
←−resΨ𝑇 replaced by ←−resΨ𝜆𝑇 [41, Prop. 3.13.(iv).(b)];

(iv) if (𝑋, ||·||𝑋) is reflexive, 𝜆 ∈ ]0,∞[, 𝑓 ∈ Γ(𝑋, ||·||𝑋), Ψ is Euler–Legendre, and int(efd(Ψ)) ∩
efd(𝑓) ̸= ∅, then ←−−prox𝐷Ψ

𝜆,𝑓 is single-valued on efd(←−−prox𝐷Ψ
𝜆,𝑓 ) = int(efd(Ψ)) and satisfies (86) with

←−resΨ𝑇 replaced by ←−−prox𝐷Ψ
𝜆,𝑓 , and with Fix(←−−prox𝐷Ψ

𝜆,𝑓 ) = int(efd(Ψ)) ∩ arg inf𝑥∈𝑋 {𝑓(𝑥)} [41, Props.
3.21.(vi), 3.22.(ii).(b), 3.23.(v).(b), Cor. 3.25];

(v) if (𝑋, ||·||𝑋) is reflexive, 𝜆 ∈ ]0,∞[, int(efd(Ψ)) ∩ efd(𝑇 ) ̸= ∅, Ψ is strictly convex on
int(efd(Ψ)) and Euler–Legendre, then efd(−→resΨ𝜆𝑇 ) ⊆ int(efd(ΨF)) ⊇ ran(−→resΨ𝜆𝑇 ), Fix(−→resΨ𝜆𝑇 ) =
DGΨ(int(efd(Ψ))∩𝑇 p

(0)), −→resΨ𝜆𝑇 is single-valued on efd(−→resΨ𝜆𝑇 ), and −→resΨ𝜆𝑇 ∈ RFN(ΨF, 𝑋⋆) [245,
Lem. 5.4, Prop. 5.5]18.

Definition 2.21. For reflexive (𝑋, ||·||𝑋), Ψ ∈ ΓG(𝑋, ||·||𝑋), and ∅ ̸= 𝐾 ⊆ int(efd(Ψ)), Ψ will be called:
(i) LSQ-adapted on 𝐾 iff, for any convex and closed ∅ ̸= 𝐶 ⊆ 𝐾,

←−
P𝐷Ψ
𝐶 : 𝐾 → int(efd(Ψ)) belongs

to LSQ(Ψ,𝐾), with ̂︂Fix(←−P𝐷Ψ
𝐶 ) = Fix(

←−
P𝐷Ψ
𝐶 ) = 𝐶;

(ii) RSQ-adapted on 𝐾 iff, for any ∅ ̸= 𝐶 ⊆ 𝐾 such that DGΨ(𝐶) is convex and closed,
−→
P𝐷Ψ
𝐶 :

𝐾 → int(efd(Ψ)) belongs to RSQ(Ψ,𝐾), with ̂︂Fix(−→P𝐷Ψ
𝐶 ) = Fix(

−→
P𝐷Ψ
𝐶 ) = 𝐶.

Corollary 2.22. Let (𝑋, ||·||𝑋) be reflexive, Ψ ∈ ΓG(𝑋, ||·||𝑋), ∅ ̸= 𝐾 ⊆ int(efd(Ψ)).
(i) If Ψ is LSQ-preadapted on 𝐾, then:

a) Ψ is LSQ-adapted on 𝐾;
b) if 𝐾 = 𝑋, then ←−resΨ𝑇 ∈ LSQ(Ψ, 𝑋) for any monotone 𝑇 : 𝑋 → 2𝑋

⋆.
17While [218, Lem. 3.4] is stated and proved for 𝑋 = R𝑛, its extension from R𝑛 to reflexive (𝑋, ||·||𝑋) is straightforward,

with exactly the same proof, due to [41, Prop. 3.23.(v).(b)].
18This reference assumes 𝜆 = 1, however the proofs of the corresponding properties do not change under generalisation

to 𝜆 ∈ ]0,∞[, since if 𝑇 : 𝑋 → 2𝑋
⋆

is monotone, then 𝜆𝑇 is monotone, efd(𝑇 ) = efd(𝜆𝑇 ), and (𝜆𝑇 )

p

(0) = 𝑇

p

(0).
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(ii) If Ψ is RSQ-preadapted on 𝐾, then:
a) if DGΨ is bounded on bounded subsets of int(efd(Ψ)), and DGΨF is bounded on bounded

subsets of int(efd(ΨF)), then Ψ is RSQ-adapted;
b) if 𝐾 = 𝑋, 𝑇 : 𝑋 → 2𝑋

⋆ is monotone, int(efd(Ψ)) ∩ efd(𝑇 ) ̸= ∅, Ψ is strictly convex on
int(efd(Ψ)) and Euler–Legendre, then −→resΨ𝑇 ∈ RSQ(ΨF, 𝑋⋆).

Proof. (i) Follows from Propositions 2.20.(i) and 2.19.(ii).
(ii) Follows from (i), Proposition 2.10, [246, Fact 6.2]19, and Proposition 2.20.(v).

Definition 2.23. If (𝑋, ||·||𝑋) is reflexive, and Ψ ∈ ΓG(𝑋, ||·||𝑋) together with ∅ ̸= 𝐶 ⊆ 𝐾 ⊆
int(efd(Ψ)) satisfy the conditions of Corollary 2.22.(i).a) (resp., 2.22.(ii).a)), then

←−
P𝐷Ψ
𝐶 (resp.,

−→
P𝐷Ψ
𝐶 )

will be said to be adapted.

Remark 2.24. (i) In general, without some additional conditions, neither
←−
P𝐷Ψ
𝐾 nor

−→
P𝐷Ψ
𝐾 will be-

long to CN(Ψ,𝐾). Consider Ψ given in Example 2.2.(ii). If (R𝑛)+1 := {𝑥 ∈ (R𝑛)+ : ||𝑥||1 = 1},
and 𝑥, 𝑦 ∈ (R𝑛)+0 such that ||𝑥||1 = ||𝑦||1 < 1, then 𝐷Ψ(

←−
P𝐷Ψ

(R𝑛)+1
(𝑥),
←−
P𝐷Ψ

(R𝑛)+1
(𝑦)) > 𝐷Ψ(𝑥, 𝑦),

which implies that
←−
P𝐷Ψ

(R𝑛)+1
is not an element of CN(Ψ) [86, 2.1.7]. Furthermore, there is no

Ψ̂ : R𝑛 → ] −∞,∞] such that 𝐷Ψ(𝑥, 𝑦) = 𝐷Ψ̂(𝑦, 𝑥) ∀𝑥, 𝑦 ∈ int(efd(Ψ)) [46, Prop. 3.3], hence
left and right 𝐷Ψ-projections not only do not coincide, but also have to be considered as a priori
independent notions.

(ii) The difference in the strength of assumptions imposed to obtained analogous behaviour of left
and right 𝐷Ψ-projections/proximal maps/resolvents is caused by the limitation of the current
knowledge about right 𝐷Ψ-projections: in practice, all of known results in the reflexive Banach
space setting are obtained by the Euler–Legendre transformation of the corresponding proper-
ties of their left 𝐷Ψ variants. The most blatant manifestation of this approach is the use of
Euler–Legendre transformation of ←−resΨ𝜆𝑇 for the purpose of a definition of −→resΨ𝜆𝑇 . However, it is
important to remember, that the above approach does not cover the whole possible range of the
right Văınberg–Brègman theory. (Cf. also Remarks 3.12.(v), 3.51.(i), and 3.51.(v) for a further
discussion of this theme.)

(iii) For (𝑋, ||·||𝑋) given by the Hilbert space, and Ψ = 1
2 ||·||

2
𝑋 , ←−resΨ𝑇 = resΨ𝑇 := (𝑇 + id𝑋)

p was

introduced in [361, Lem. 2] and [257, Cor. (p. 344)], ←−−prox𝐷Ψ
1,𝑓 = −−→prox𝐷Ψ

1,𝑓 = prox
𝑑||·||ℋ
1,𝑓 : 𝑦 ↦→

arg inf𝑥∈efd(𝑓)

{︁
𝑓(𝑥) + 1

2 ||𝑥− 𝑦||
2
𝑋

}︁
was introduced in [260, p. 2897] [264, p. 1069], while the

corresponding prox
𝑑||·||ℋ
𝜆,𝑓 = ←−−prox𝐷Ψ

𝜆,𝑓 = −−→prox𝐷Ψ
𝜆,𝑓 for 𝜆 ∈ ]0,∞[ appeared in [30, p. 539]. For a

Banach space (𝑋, ||·||𝑋) and Ψ = 1
2 ||·||

2
𝑋 , ←−resΨ𝜆𝑇 was introduced first in [194, Eqn. (1)].

(iv) For (𝑋, ||·||𝑋) given by the Hilbert space (ℋ, ⟨·, ·⟩ℋ), and Ψ = 1
2 ||·||

2
ℋ, the definition of LFN(Ψ,𝐾)

operators takes the form [76, Def. 6]

⟨𝑥− 𝑦, 𝑇 (𝑥)− 𝑇 (𝑦)⟩ℋ ≥ ||𝑇 (𝑥)− 𝑇 (𝑦)||
2
ℋ ∀𝑥, 𝑦 ∈ 𝐾. (87)

2.3 Quasigauge functions and Banach space geometry

2.3.1 Banach space geometry

A Banach space (𝑋, ||·||𝑋) is said to satisfy the Radon–Riesz–Shmul’yan property20 [286, p. 1363]
[300, p. 182] [318, Thm. 5] iff, for any {𝑥𝑛 ∈ 𝑋 : 𝑛 ∈ N}, convergence of 𝑥𝑛 to 𝑥 ∈ 𝑋 in weak topology

19This result disproves an earlier claim in [245, Prop. 2.7.(iv)], which stated the same consequence, but without
assuming that DGΨ (resp., DGΨF) is bounded on bounded subsets of int(efd(Ψ)) (resp., int(efd(ΨF))), and without an
explicit proof.

20In the literature it is usually called either the Radon–Riesz property [223, §3], or an 𝐻-property [120, Def. 2
(Ch. 7)], or the Kadec–Klee property [128, p. 119]. It was first considered by Radon [286, p. 1363] and Riesz [300, p.
182] for (𝐿1/𝛾(𝒳 , 𝜇), ||·||1/𝛾), 𝛾 ∈ ]1,∞[. For the general Banach spaces it was first introduced and studied by Shmul’yan
in [318, Thm. 5]. Kadec [191, p. 13] explicitly refers to this work of Shmul’yan, while Klee [202, pp. 25–27] explicitly
refers to this paper of Kadec.
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together with lim𝑛→∞ ||𝑥𝑛||𝑋 = ||𝑥||𝑋 implies lim𝑛→∞ ||𝑥𝑛 − 𝑥||𝑋 = 0. A Banach space (𝑋, ||·||𝑋) is
called: strictly convex [147, p. 39] [104, p. 404] [213, p. 178] iff

∀𝑥, 𝑦 ∈ 𝑋 ∖ {0} ||𝑥+ 𝑦||𝑋 = ||𝑥||𝑋 + ||𝑦||𝑋 ⇒ ∃𝜆 > 0 𝑦 = 𝜆𝑥, (88)

which is equivalent [308, Thm. 1.(1)] with

∀𝑥, 𝑦 ∈ 𝑆(𝑋, ||·||𝑋) 𝑥 ̸= 𝑦 ⇒ 1
2 ||𝑥+ 𝑦||𝑋 < 1; (89)

Gateaux differentiable [252, p. 78] iff ||·||𝑋 is Gateaux differentiable at every 𝑥 ∈ 𝑋 ∖ {0} (or,
equivalently, at every 𝑥 ∈ 𝑆(𝑋, ||·||𝑋)), which is equivalent [252, 253] to each point of 𝑆(𝑋, ||·||𝑋) having
a unique supporting hyperplane21, i.e.

∀𝑥 ∈ 𝑆(𝑋, ||·||𝑋) ∃!𝑦(𝑥) ∈ 𝑋
⋆ (𝑦(𝑥))(𝑥) = ||𝑦(𝑥)||𝑋⋆ ||𝑥||𝑋 = ||𝑥||𝑋 ;

uniformly convex [104, Def. 1] iff

∀𝜖1 > 0 ∃𝜖2 > 0 ∀𝑥, 𝑦 ∈ 𝑆(𝑋, ||·||𝑋) ||𝑥− 𝑦||𝑋 ≥ 𝜖1 ⇒
1
2 ||𝑥+ 𝑦||𝑋 ≤ 1− 𝜖2; (90)

uniformly Fréchet differentiable iff any of the equivalent properties hold:
(i) [266, Thm. 77.1] ∀𝜖1 > 0 ∃𝜖2 > 0 ∀𝑥, 𝑦 ∈ 𝑋 (||𝑥||𝑋 = 1, ||𝑦||𝑋 ≤ 𝜖2) ⇒ ||𝑥+ 𝑦||𝑋 + ||𝑥− 𝑦||𝑋 ≤

2 + 𝜖1||𝑦||𝑋 ,
(ii) [119, p. 375] ∀𝜖1 > 0 ∃𝜖2 > 0 ∀𝑥, 𝑦 ∈ 𝑆(𝑋, ||·||𝑋) ||𝑥− 𝑦||𝑋 ≤ 𝜖1 ⇒ 1− 1

2 ||𝑥+ 𝑦||𝑋 ≤ 𝜖2||𝑥− 𝑦||𝑋 ,
(iii) [319, p. 645] the limit DG||ℎ||𝑋(𝑥) exists in uniform convergence as 𝑥 and ℎ vary over 𝑆(𝑋, ||·||𝑋);
Fréchet differentiable [253, p. 129] iff ||·||𝑋 is Fréchet differentiable at every 𝑥 ∈ 𝑋 ∖ {0} (or,
equivalently, at every 𝑥 ∈ 𝑆(𝑋, ||·||𝑋)), i.e. for any fixed 𝑥 ∈ 𝑋 ∖ {0} (or 𝑥 ∈ 𝑆(𝑋, ||·||𝑋)) DG||ℎ||𝑋(𝑥)
exist in uniform convergence ∀ℎ ∈ 𝑆(𝑋, ||·||𝑋); locally uniformly convex [235, Def. 0.2] iff

∀𝜖1 > 0 ∀𝑥 ∈ 𝑆(𝑋, ||·||𝑋) ∃𝜖2 > 0 ∀𝑦 ∈ 𝑆(𝑋, ||·||𝑋) ||𝑥− 𝑦||𝑋 ≥ 𝜖1 ⇒
1
2 ||𝑥+ 𝑦||𝑋 ≤ 1− 𝜖2; (91)

𝑟-uniformly convex for 𝑟 ∈ [2,∞[ [29, Def. 2)] [36, p. 468] iff

∃𝜆 > 0 ∀𝑥, 𝑦 ∈ 𝑋 ||𝑥+ 𝑦||𝑟𝑋 + ||𝑥− 𝑦||𝑟𝑋 ≥ 2(||𝑥||𝑟𝑋 +
⃒⃒⃒⃒
𝜆−1𝑦

⃒⃒⃒⃒ 𝑟
𝑋
), (92)

or, equivalently, iff [296, Def. 4.1, Thm. 4.3]

∃𝜆 > 0 ∀𝑥, 𝑦 ∈ 𝑋 ||𝑥+ 𝑦||𝑟𝑋 + 𝜆||𝑥− 𝑦||𝑟𝑋 ≤ 2𝑟−1(||𝑥||𝑟𝑋 + ||𝑦||𝑟𝑋), (93)

or, equivalently [350, Thm. 2.5] [36, Prop. 7], iff ∃𝑐 > 0 𝛿(𝑋, ||·||𝑋 ; 𝜖) ≥ 𝑐𝜖𝑟, where [104, Def. 1] [119,
p. 375]

]0, 2] ∋ 𝜖 ↦→ 𝛿(𝑋, ||·||𝑋 ; 𝜖) := inf
{︀
1− 1

2 ||𝑥+ 𝑦||𝑋 : 𝑥, 𝑦 ∈ 𝑆(𝑋, ||·||𝑋), ||𝑥− 𝑦||𝑋 ≥ 𝜖
}︀
∈ [0, 1]; (94)

𝑟-uniformly Fréchet differentiable for 𝑟 ∈ ]1, 2] [29, Def. 1)] [36, p. 468] iff

∃𝜆 > 0 ∀𝑥, 𝑦 ∈ 𝑋 ||𝑥+ 𝑦||𝑟𝑋 + ||𝑥− 𝑦||𝑟𝑋 ≤ 2(||𝑥||𝑟𝑋 + ||𝜆𝑦||𝑟𝑋), (95)

or, equivalently [296, Thm. 2.2], iff [328, Def. 1]

∃𝜆 > 0 ∀𝑥, 𝑦 ∈ 𝑋 ||𝑥+ 𝑦||𝑟𝑋 + 𝜆||𝑥− 𝑦||𝑟𝑋 ≥ 2𝑟−1(||𝑥||𝑟𝑋 + ||𝑦||𝑟𝑋), (96)

or, equivalently [167, Thm. 2.4] [28, Lem. 1] [36, Prop. 7], iff ∃𝑐 > 0 𝜌(𝑋, ||·||𝑋 ; 𝜖) ≤ 𝑐𝜖𝑟, where [230,
p. 241]

]0,∞[∋ 𝜖 ↦→ 𝜌(𝑋, ||·||𝑋 ; 𝜖) := sup
{︀
1
2(||𝑥+ 𝑦||𝑋 + ||𝑥− 𝑦||𝑋)− 1 : 𝑥, 𝑦 ∈ 𝑋, ||𝑥|| = 1, ||𝑦||𝑋 = 𝜖

}︀
=sup

{︀
1
2(||𝑥+ 𝜖𝑦||𝑋 + ||𝑥− 𝜖𝑦||𝑋)− 1 : 𝑥, 𝑦 ∈ 𝑆(𝑋, ||·||𝑋)

}︀
∈ R+. (97)

21More specifically, if 𝑥 ∈ 𝑋 ∖ {0}, then DG||𝑥||𝑋 exists iff ||𝑥||𝑋𝑆(𝑋, ||·||𝑋) has a unique supporting hyperplane at 𝑥.
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2.3.2 Quasigauge 𝜙

A strictly increasing and continuous function 𝜙 : R+ → R+ such that 𝜙(0) = 0 and lim𝑡→∞ 𝜙(𝑡) =∞
[51, p. 407]22 will be called a gauge [74, p. 348]. A nondecreasing function 𝜙 : R+ → [0,∞] satisfying
𝜙 ̸≡ 0 and ∃𝑢 ∈ R+ lim𝑡→+𝑢 𝜙(𝑡) < ∞ [365, p. 367] will be called a quasigauge. For any Banach
space (𝑋, ||·||𝑋) and any quasigauge 𝜙, a duality map on (𝑋, ||·||𝑋) is defined by [27, Def. (p. 200)]
[365, Eqn. (A.4)]

𝑗𝜙 : 𝑋 ∋ 𝑥 ↦→ {𝑦 ∈ 𝑋⋆ : [[𝑥, 𝑦]]𝑋×𝑋⋆ = ||𝑥||𝑋 ||𝑦||𝑋⋆ , lim
𝑡→−||𝑥||𝑋

𝜙(𝑡) ≤ ||𝑦||𝑋⋆ ≤ lim
𝑡→+||𝑥||𝑋

𝜙(𝑡)} ⊆ 𝑋⋆, (98)

with the convention lim𝑡→−0 𝜙(𝑡) ≡ 𝜙(0). For any gauge 𝜙, (98) turns into [51, p. 407]

𝑗𝜙 : 𝑋 ∋ 𝑥 ↦→ {𝑦 ∈ 𝑋⋆ : [[𝑥, 𝑦]]𝑋×𝑋⋆ = ||𝑥||𝑋 ||𝑦||𝑋⋆ , ||𝑦||𝑋⋆ = 𝜙(||𝑥||𝑋)} ⊆ 𝑋
⋆, (99)

which is said to be normalised, and denoted as 𝑗, iff 𝜙(𝑡) = 𝑡 [201, p. 35] [334, p. 211]. For any
quasigauge 𝜙, let 𝑗⋆𝜙 denote a duality map on (𝑋⋆, ||·||𝑋⋆). Then, for any gauge [123, Prop. 3]

𝑗𝜙 = (𝑗⋆
𝜙 p )

p ∘ 𝐽𝑋 and (𝑗𝜙)

p

= (𝐽𝑋)

p ∘ 𝑗⋆
𝜙 p . (100)

If 𝜙1 and 𝜙2 are gauges, then [103, Prop. I.3.1.g)]

𝜙2(||𝑥||𝑋)𝑗𝜙1(𝑥) = 𝜙1(||𝑥||𝑋)𝑗𝜙2(𝑥) ∀𝑥 ∈ 𝑋. (101)

For any quasigauge 𝜙,

𝑋 ∋ 𝑥 ↦→ Ψ𝜙(𝑥) :=

∫︁ ||𝑥||𝑋
0

d𝑡 𝜙(𝑡) ∈ R+ (102)

satisfies Ψ𝜙 ∈ Γ(𝑋, ||·||𝑋) [366, p. 281], Ψ𝜙(0) = 0 [365, p. 368], as well as [27, p. 200] [365, Prop.
A.3.(i)]

𝑗𝜙(𝑥) = 𝜕Ψ𝜙(𝑥) ∀𝑥 ∈ 𝑋 ∖ {0} with 𝑗𝜙(0) = 0. (103)

If 𝜙 is a gauge, then Ψ𝜙 is continuous (cf., e.g., [367, Thm. 3.7.2.(i)]).
As an example, for 𝛼 ∈ ]0,∞[ and 𝛽 ∈ ]0, 1[, 𝜙𝛼,𝛽(𝑡) := 1

𝛼 𝑡
1/𝛽−1 is a gauge. Application of (102)

and (101) gives
Ψ𝜙𝛼,𝛽

(𝑥) = 𝛽
𝛼 ||𝑥||

1/𝛽
𝑋 , 𝑗𝜙𝛼,𝛽

(𝑥) = 1
𝛼 ||𝑥||

1/𝛽−2
𝑋 𝑗(𝑥) ∀𝑥 ∈ 𝑋. (104)

For any nondecreasing function 𝑓 : R+ → [0,∞], its right (resp., left) inverse function reads

R+ ∋ 𝑡 ↦→ 𝑓∨(𝑡) := sup{𝑠 ≥ 0 : 𝑓(𝑠) ≤ 𝑡} = inf{𝑠 ≥ 0 : 𝑓(𝑠) > 𝑡} ∈ [0,∞] (105)
(resp., R+ ∋ 𝑡 ↦→ 𝑓∧(𝑡) := sup{𝑠 ≥ 0 : 𝑓(𝑠) < 𝑡} = inf{𝑠 ≥ 0 : 𝑓(𝑠) ≥ 𝑡} ∈ [0,∞]). (106)

In general, 𝑓∧ ≤ 𝑓∨ (cf., e.g., [204, Eqn. (8)]). If 𝑓 : R+ → [0,∞] is strictly increasing and continuous
on R+, then 𝑓∨ = 𝑓

p

= 𝑓∧, where 𝑓 p is an inverse function in the standard sense, i.e. 𝑓 ∘ 𝑓 p

=
idR+ = 𝑓

p ∘ 𝑓 (cf., e.g., [204, p. 5] and [137, Rem. 1.(1)]).
For any 𝑓 : R→ [0,∞], its Young–Birnbaum–Orlicz dual [357, p. 226] [53, Eqn. (5)] reads

R ∋ 𝑦 ↦→ 𝑓Y(𝑦) := sup{𝑥|𝑦| − 𝑓(𝑥) : 𝑥 ≥ 0} ∈ [0,∞]. (107)

If 𝑓 : R+ → [0,∞] is proper, convex on efd(𝑓), satisfies 𝑓(0) = 0, 𝑓 ̸≡ 0, and is left continuous at
sup(efd(𝑓)) (i.e. lim𝑡→−sup(efd(𝑓)) 𝑓(𝑡) = sup(efd(𝑓))), then it is called a Young function [359, §2]. If
𝑓 is a Young function, then 𝑓YY = 𝑓Y (cf., e.g., [161, Prop. 2.4.5]).

22Under a weakening of ‘strictly increasing’ to ‘nondecreasing’, the corresponding function, called a 𝜙-function, is
used in the Orlicz space theory since [249, p. 349]. In the context of duality map, this weakening, joined with dropping
the condition lim𝑡→∞ 𝜙(𝑡) =∞, has been considered in [27, Def. (p. 200)]. All of these functions are special cases of a
quasigauge.
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2.3.3 Characterisation of Banach space geometry by Ψ𝜙

Remark 2.25. In order to stress that the properties of Ψ𝜙 depend on a choice of the specific
norm ||·||𝑋 on 𝑋, while avoiding the notation “Ψ𝜙,||·||𝑋 ” (in order to avoid dealing with such terms

as “
←−
P
𝐷ℓϒ,Ψ𝜙𝛼,𝛽,||·||ϒ,𝑝

𝐶 ”), we will sometimes use the notation Ψ𝜙 : (𝑋, ||·||𝑋)→ R+.

Proposition 2.26. Let (𝑋, ||·||𝑋) be a Banach space, 𝜙 a gauge, and Ψ𝜙 : (𝑋, ||·||𝑋)→ R+. Then:
(i) (𝑋, ||·||𝑋) is a Hilbert space iff 𝑗 is linear [154, Prop. 2];
(ii) (𝑋, ||·||𝑋) is strictly convex:

a) iff Ψ𝜙 is strictly convex [365, Prop. A.3.(iii)];
b) iff 𝑗𝜙 is strictly monotone on 𝑋 [123, Thm. 1] (cf. [277, Thm. 1] for 𝜙(𝑡) = 𝑡);

(iii) (𝑋, ||·||𝑋) is Gateaux differentiable:
a) iff Ψ𝜙 is Gateaux differentiable on 𝑋 [365, Prop. A.3.(ii)];
b) iff 𝑗𝜙 is single-valued on 𝑋 [365, Prop. A.3.(ii)] (cf. [252, Rems. 5, 8] [253, p. 130] [116,

Cor. 4.8] for 𝜙(𝑡) = 𝑡);
(iv) (𝑋, ||·||𝑋) is Fréchet differentiable:

a) iff Ψ𝜙 is Fréchet differentiable on 𝑋 [367, Prop. 3.7.4.(ii)];
b) iff 𝑗𝜙 is single-valued and norm-to-norm continuous on 𝑋 [103, Thm. II.2.9] (cf. [116, Cor.

4.12] for 𝜙(𝑡) = 𝑡);
(v) (𝑋, ||·||𝑋) is uniformly Fréchet differentiable:

a) iff Ψ𝜙 is uniformly Fréchet differentiable on bounded subsets of 𝑋 [367, Thm. 3.7.4.(iii)];
b) iff 𝑗𝜙 is single-valued and uniformly continuous on bounded subsets of 𝑋 [103, Thm. II.2.10]

(cf. [116, Cor. 4.12] for 𝜙(𝑡) = 𝑡);
(vi) (𝑋, ||·||𝑋) is uniformly convex:

a) iff Ψ𝜙 is uniformly convex on bounded subsets of 𝑋 [365, Thm. 4.1.(ii)];
b) iff ΨF

𝜙 is uniformly Fréchet differentiable on bounded subsets of 𝑋⋆ [367, Thm. 3.7.9.(iv)];
c) iff (𝑗𝜙)

p is single-valued and uniformly continuous on bounded subsets of 𝑋⋆ [365, Cor. 4.2];
d) iff 𝑗 is 𝑓 -uniformly monotone on 𝐵(𝑋, ||·||𝑋) [285, Thm. 1] [353, Rem. 2] [351, Cor. 3.(iii)];
e) iff [90, Thm. 3] ∀𝑡 ∈ ]0, 2]

inf{[[𝑥− 𝑦, 𝑣 − 𝑤]]𝑋×𝑋⋆ : 𝑥, 𝑦 ∈ 𝑆(𝑋, ||·||𝑋), 𝑣 ∈ 𝑗(𝑥), 𝑤 ∈ 𝑗(𝑦), ||𝑥− 𝑦||𝑋 ≥ 𝑡} > 0;
(108)

(vii) (𝑋, ||·||𝑋) is 𝑟-uniformly convex for 𝑟 ∈ [2,∞[:
a) iff Ψ𝜙 with 𝜙(𝑡) = 𝑟𝑡𝑟−1 is uniformly convex on 𝑋 [351, Thm. 1];
b) iff 𝑗̃︀𝜙 with ̃︀𝜙(𝑡) = 𝑡𝑟−1 is 𝑓 -uniformly monotone on 𝑋 with 𝑓(𝑡) = ̃︀𝜙(𝑡) [351, Cor. 1.(ii)].

In particular, (𝑋, ||·||𝑋) is 2-uniformly convex:
c) iff 𝑗 is strongly monotone on 𝑋 [353, p. 203] (cf. [283, Prop. 2.11]);
d) iff 𝑗⋆ is single-valued and Lipschitz continuous on 𝑋⋆ [363, Thm. (p. 62)];

(viii) (𝑋, ||·||𝑋) is 𝑟-uniformly Fréchet differentiable for 𝑟 ∈ ]1, 2]:
a) iff Ψ𝜙 with 𝜙(𝑡) = 𝑟𝑡𝑟−1 is uniformly Fréchet differentiable on 𝑋 [316, Thm. 10] (= [317,

Thm. 6.4]) [57, Thm. 2.2];
b) iff 𝑗𝜙 with 𝜙(𝑡) = 𝑟𝑡𝑟−1 is single-valued and (𝑟 − 1)-Lipschitz–Hölder continuous on 𝑋 [57,

Thm. 2.2];
c) iff 𝑗𝜙 with 𝜙(𝑡) = 𝑡𝑟−1 is single-valued and (𝑟 − 1)-Lipschitz–Hölder continuous on 𝑋 [167,

Thm. 2.4] [353, Rem. 5];
d) iff, for ̃︀𝜙(𝑡) = 𝑡𝑟−1, [351, Cor. 1’]

∃𝑐 > 0 ∀𝑥, 𝑦 ∈ 𝑋 ∀𝑣 ∈ 𝑗̃︀𝜙(𝑥) ∀𝑤 ∈ 𝑗̃︀𝜙(𝑦) [[𝑥− 𝑦, 𝑣 − 𝑤]]𝑋×𝑋⋆ ≤ 𝑐||𝑥− 𝑦||𝑟𝑋 . (109)

In particular, (𝑋, ||·||𝑋) is 2-uniformly Fréchet differentiable:
e) iff 𝑗 is single-valued and Lipschitz continuous on 𝑋 [139, Lem. 2.4.(iv)] [363, Thm. (p.

62)];
f) iff 𝑗⋆ is strongly monotone on 𝑋 [363, Thm. (p. 62)];

(ix) (𝑋, ||·||𝑋) is locally uniformly convex iff Ψ𝜙 is uniformly convex at each 𝑥 ∈ 𝑋 [365, Thm. 4.1.(i)]
(cf. [26, p. 232] for 𝜙(𝑡) = 𝑡);
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(x) (𝑋, ||·||𝑋) is reflexive iff 𝑗𝜙 is surjective (i.e. 𝑋⋆ =
⋃︀
𝑥∈𝑋 ran(𝑗𝜙(𝑥))) [121, Thm. III.7] (cf. also

[365, Prop. A.3.(iv)]);
(xi) if (𝑋, ||·||𝑋) is reflexive, then ((𝑋, ||·||𝑋) is strictly convex and has the Radon–Riesz–Shmul’yan

property) iff Ψ𝜙 is totally convex) [298, Thm. 3.1, Thm. 3.3];
(xii) if (𝑋, ||·||𝑋) is locally uniformly convex, then Ψ𝜙 is totally convex on 𝑋 [298, Thm. 3.1, Cor. 3.4];
(xiii) (𝑋, ||·||𝑋) has the Radon–Riesz–Shmul’yan property iff at least one single-valued section 𝑇 of 𝑗

satisfies{︂
lim𝑛→∞ [[𝑥𝑛 − 𝑥, 𝑇 (𝑥𝑛)− 𝑇 (𝑥)]]𝑋×𝑋⋆ = 0
lim𝑛→∞ ||𝑇 (𝑥𝑛)||𝑋⋆ = ||𝑇 (𝑥)||𝑋⋆ ⇒ lim𝑛→∞ [[𝑥, 𝑇 (𝑥𝑛)]]𝑋×𝑋⋆ = [[𝑥, 𝑇 (𝑥)]]𝑋×𝑋⋆

(110)

for every {𝑥𝑛 ∈ 𝑋 : 𝑛 ∈ N} with 𝑥𝑛 convergent to 𝑥 in the weak topology [277, Prop. 1].

Corollary 2.27. (𝑋, ||·||𝑋) is 𝑟-uniformly convex for 𝑟 ∈ [2,∞[ iff 𝑗𝜙𝜆
is 𝑓 -uniformly monotone with

𝑓(𝑡) = 𝜙𝜆(𝑡), where 𝜙𝜆(𝑡) = 𝜆𝑡𝑟−1 and 𝜆 ∈ ]0,∞[.

Proof. Follows from Proposition 2.26.(vii), together with (101) giving 𝑗𝜙𝜆
= 𝜆𝑗̃︀𝜙, and cancellation of

1
𝜆 on both sides of (52).

Corollary 2.28. For any gauge 𝜙 and any Banach space (𝑋, ||·||𝑋):
(i) 𝑗𝜙 is a bijection iff (𝑋, ||·||𝑋) is reflexive, strictly convex, and Gateaux differentiable [103, Cor.

b) (p. 105)];
(ii) 𝑗𝜙 is a norm-to-norm homeomorphism iff (𝑋, ||·||𝑋) reflexive, strictly convex, Fréchet differen-

tiable, and has the Radon–Riesz–Shmul’yan property [205, Lem. 2.(i)] (and, for 𝜙(𝑡) = 𝑡, [152,
Cor. (p. 189)]).

Proof. By Propositions 2.26.(iii) and 2.26.(x), (𝑋, ||·||𝑋) is Gateaux differentiable and reflexive iff 𝑗𝜙 is
single-valued and surjective. By reflexivity of (𝑋, ||·||𝑋), strict convexity of (𝑋, ||·||𝑋) is equivalent with
Gateaux differentiability of (𝑋⋆, ||·||𝑋⋆), which is equivalent with single-valuedness and surjectivity of
𝑗⋆
𝜙 p . By reflexivity of (𝑋, ||·||𝑋) and (100), 𝑗𝜙 = (𝑗⋆

𝜙 p )

p . Hence, 𝑗𝜙 is a bijection. Norm-to-norm
homeomorphy of 𝑗𝜙 follows the same way, by Proposition 2.26.(iv), and the fact [21, Thm. 3.9] that, if
(𝑋, ||·||𝑋) is reflexive, then (𝑋⋆, ||·||𝑋⋆) is Fréchet differentiable iff ((𝑋, ||·||𝑋) is strictly convex and has
the Radon–Riesz–Shmul’yan property).

Proposition 2.29. For any quasigauge 𝜙 and any Banach space (𝑋, ||·||𝑋):
(i) ((𝑋, ||·||𝑋) is Gateaux differentiable and 𝜙 is continuous on [0, sup(efd(𝜙))[) iff 𝑗𝜙 is single-valued

on int(efd(Ψ𝜙)) = int(sup(efd(𝜙))𝐵(𝑋, ||·||𝑋)) [365, Prop. A.3.(ii)];
(ii) ((𝑋, ||·||𝑋) is strictly convex and 𝜙 is strictly increasing on efd(𝜙)) iff Ψ𝜙 is strictly convex on

efd(Ψ𝜙) [365, Prop. A.3.(iii)] [366, Thm. 2.1.(viii)];
(iii) ((𝑋, ||·||𝑋) is locally uniformly convex and 𝜙 is strictly increasing on efd(𝜙)) iff Ψ𝜙 is uniformly

convex at any 𝑥 ∈ int(efd(Ψ𝜙)) = int(sup(efd(𝜙))𝐵(𝑋, ||·||𝑋)) [365, Thm. 4.1.(i)];
(iv) ((𝑋, ||·||𝑋) is uniformly convex and 𝜙 is strictly increasing on efd(𝜙)) iff Ψ𝜙 is uniformly convex

on 𝜆𝑆(𝑋, ||·||𝑋) ∀𝜆 ∈ ]0, sup(efd(𝜙))] [365, Thm. 4.1.(ii)];
(v) ((𝑋, ||·||𝑋) is reflexive and lim𝑡→∞ 𝜙(𝑡) =∞) iff 𝑗𝜙 is surjective [365, Prop. A.3.(iv)].

3 Văınberg–Brègman relative entropies, quasinonexpansive maps, and their extensions

3.1 𝐷Ψ with Ψ ∈ ΓG(𝑋, ||·||𝑋) and reflexive (𝑋, ||·||𝑋)

Proposition 3.1. Let (𝑋, ||·||𝑋) be reflexive, Ψ ∈ ΓG(𝑋, ||·||𝑋), ΨF Gateaux differentiable on ∅ ̸=
DGΨ(int(efd(Ψ))) ⊆ int(efd(ΨF)), ∅ ̸= 𝐾 ⊆ int(efd(Ψ)), DGΨ(𝐾) closed and convex. If any of the
following (generally, inequivalent) conditions holds:

a) ΨF is totally convex on efd(ΨF); or
b) ΨF is strictly convex on efd(ΨF) and supercoercive; or
c) ΨF is Euler–Legendre,

then:
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(i) 𝐾 is right 𝐷Ψ-Chebyshëv, and 𝐷Ψ is right pythagorean on 𝐾;
(ii)
−→
P𝐷Ψ
𝐾 is zone consistent;

(iii) 𝐷ΨF is an information on 𝑋⋆ (and, in the case c), 𝐷Ψ is an information on 𝑋);
(iv) if DGΨ(𝐾) is affine, then

𝐷Ψ(𝑥, 𝑦) = 𝐷Ψ(𝑥,
−→
P𝐷Ψ
𝐾 (𝑥)) +𝐷Ψ(

−→
P𝐷Ψ
𝐾 (𝑥), 𝑦) ∀(𝑥, 𝑦) ∈ int(efd(Ψ))×𝐾. (111)

Proof. (i) Proposition 2.8.(i), by application of (72), implies that 𝐾 is right 𝐷Ψ-Chebyshëv. As for
𝐷Ψ being right pythagorean, the proof is exactly the same as a proof of [245, Prop. 4.11], with
the following changes, extending the range of its validity: (1) an extension from Ψ : 𝑋 → R
to Ψ : 𝑋 → ] −∞,∞] is provided by using (72) instead of [47, Prop. 7.1, Eqn. (79)] (=[245,
Eqn. (28)]), together with imposing the condition DGΨ(int(efd(Ψ))) ⊆ int(efd(ΨF)), instead of
efd(Ψ) = 𝑋, as in [245, Prop. 4.11], or instead of the Euler–Legendre property of Ψ, as in [47,
Prop. 7.1]; (2) the assumption of total convexity of ΨF on efd(ΨF) is weakened by allowing the
alternative assumptions of the Euler–Legendre property or of (strict convexity on int(efd(ΨF))
and supercoercivity) due to Proposition 2.8.(i).

(i’) Alternatively, one may use [240, Thm. 3.12] (relaxing its condition DGΨ(int(efd(Ψ))) =
int(efd(ΨF)) to one-sided inclusion from left to right, because we do not require characterisation
of convexity of DGΨ(𝐾)) and fulfill its condition of right 𝐷Ψ-proximinality by Proposition 2.8.(i)
to obtain equivalence of Definition 2.7.b).(i) and 2.7.b).(ii). (72) gives equivalence of (67) and
(68).

(ii) Follows from the assumption 𝐾 ⊆ int(efd(Ψ)).
(iii) Follows directly from assumptions on ΨF and Corollary 2.9.
(iv) Follows from (70) in the same way as (71) follows from (68).

Corollary 3.2. Let (𝑋, ||·||𝑋) be reflexive, Ψ ∈ ΓG(𝑋, ||·||𝑋), ΨF Gateaux differentiable on ∅ ̸=
DGΨ(int(efd(Ψ))) ⊆ int(efd(ΨF)). If ∅ ̸= 𝐾 ⊆ int(efd(Ψ)) is convex, DGΨ-convex, closed, DGΨ-
closed, and any of the following (generally, inequivalent) conditions holds, then 𝐷Ψ is left and right
pythagorean on 𝐾:

a) Ψ is totally convex on efd(Ψ), ΨF is strictly convex on efd(ΨF) and supercoercive; or
b) Ψ is strictly convex on efd(Ψ) and supercoercive, ΨF is totally convex on efd(ΨF); or
c) Ψ is strictly convex on efd(Ψ) and supercoercive, ΨF is strictly convex on efd(ΨF) and superco-

ercive; or
d) Ψ is Euler–Legendre.

Furthermore, if Ψ is Fréchet differentiable on int(efd(Ψ)), then an assumption of DGΨ-closure of 𝐶 is
obsolete.

Proof. Follows directly from Propositions 2.8 and 3.1. The case of (Ψ totally convex on efd(Ψ) and
ΨF totally convex on efd(ΨF)) reduces to d), because, for reflexive (𝑋, ||·||𝑋), total convexity of Ψ on
efd(Ψ) implies its essential strict convexity [298, Prop. 2.1] [89, Prop. 2.13] (the converse is not true
[298, p. 3]). For norm-to-norm continuity of DFΨ on int(efd(Ψ)) see, e.g., [367, Cor. 3.3.6].

Proposition 3.3. Let (𝑋, ||·||𝑋) be reflexive, 𝜆 ∈ ]0,∞[, let Ψ ∈ ΓG(𝑋, ||·||𝑋) be Euler–Legendre, let
𝑓 : 𝑋 → ] −∞,∞] satisfy 𝑓 ∘ DGΨF ∈ Γ(𝑋⋆, ||·||𝑋⋆) and int(efd(ΨF)) ∩ efd(𝑓 ∘ DGΨF) ̸= ∅. Then
−−→prox𝐷Ψ

𝜆,𝑓 is single-valued on int(efd(Ψ)) and satisfies

𝐷Ψ(𝑥, 𝑦) ≥ 𝐷Ψ(𝑥,
−−→prox𝐷Ψ

𝜆,𝑓 (𝑥)) +𝐷Ψ(
−−→prox𝐷Ψ

𝜆,𝑓 (𝑥), 𝑦) ∀(𝑥, 𝑦) ∈ int(efd(Ψ))× Fix(−−→prox𝐷Ψ
𝜆,𝑓 ), (112)

where Fix(−−→prox𝐷Ψ
𝜆,𝑓 ) = DGΨF ∘ (int(efd(ΨF)) ∩ arg inf𝑥∈𝑋⋆

{︀
𝑓 ∘DGΨF(𝑥)

}︀
).

Proof. Follows from Proposition 2.20.(iv), by application of (44), Proposition 2.18.(ii), Fix(−−→prox𝐷Ψ
𝜆,𝑓 ) =

DGΨF(Fix(←−−prox
𝐷

ΨF

𝜆,𝑓∘DGΨF)) (which follows from [245, Prop. 2.7.(iii)]), and efd(←−−prox
𝐷

ΨF

𝜆,𝑓∘DGΨF) =

int(efd(ΨF)) (which follows from [41, Prop. 3.21.(vi)]).
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Proposition 3.4. If (𝑋, ||·||𝑋) is reflexive and Ψ ∈ ΓG(𝑋, ||·||𝑋) is strictly convex on int(efd(Ψ)) and
Euler–Legendre, then:

(i) if 𝑇 : 𝑋 → 2𝑋
⋆ is monotone and ran(DGΨ) ⊆ ran(DGΨ + 𝑇 ), then −→resΨ𝑇 is single-valued on

efd(−→resΨ𝑇 ) ⊆ int(efd(ΨF)), and

𝐷ΨF(𝑥, 𝑦) ≥ 𝐷ΨF(𝑥,−→resΨ𝑇 (𝑥)) +𝐷ΨF(−→resΨ𝑇 (𝑥), 𝑦) ∀(𝑥, 𝑦) ∈ int(efd(ΨF))× Fix(−→resΨ𝑇 ), (113)

with Fix(−→resΨ𝑇 ) = DGΨ(int(efd(Ψ)) ∩ 𝑇 p

(0));
(ii) if 𝑇 : 𝑋 → 2𝑋

⋆ is maximally monotone, efd(𝑇 ) ⊆ int(efd(Ψ)), efd(ΨF) = 𝑋⋆, and 𝜆 ∈ ]0,∞[,
then −→resΨ𝜆𝑇 is single-valued on efd(−→resΨ𝜆𝑇 ) ⊆ int(efd(ΨF)), and

𝐷ΨF(𝑥, 𝑦) ≥ 𝐷ΨF(𝑥,−→resΨ𝜆𝑇 (𝑥)) +𝐷ΨF(−→resΨ𝜆𝑇 (𝑥), 𝑦) ∀(𝑥, 𝑦) ∈ int(efd(ΨF))× Fix(−→resΨ𝜆𝑇 ), (114)

with Fix(−→resΨ𝜆𝑇 ) = DGΨ(int(efd(Ψ)) ∩ 𝑇 p

(0)).

Proof. Follows from Propositions 2.20.(ii), 2.20.(iii), and 2.20.(v), by application of (44), Proposition
2.18.(i), and Fix(−→resΨ𝑇 ) = DGΨ(Fix(←−resΨ𝑇 )) (which follows from [245, Prop. 2.7.(iii)]).

Proposition 3.5. Let (𝑋, ||·||𝑋) be reflexive, ∅ ̸= 𝐾 ⊆ int(efd(Ψ)), and Ψ ∈ ΓG(𝑋, ||·||𝑋) be Fréchet
differentiable on int(efd(Ψ)). Then:

(i) if 𝐾 is convex and closed, Ψ is totally convex on efd(Ψ) and supercoercive, then
←−
P𝐷Ψ
𝐾 is norm-

to-norm continuous on int(efd(Ψ)), while inf𝑦∈𝐾{𝐷Ψ(𝑦, · )} is continuous on int(efd(Ψ));
(ii) if 𝐾 is convex and closed, Ψ is totally convex on bounded subsets of 𝑋, supercoercive, and Euler–

Legendre, then
←−
P𝐷Ψ
𝐾 is norm-to-norm continuous on int(efd(Ψ));

(iii) if DGΨ(𝐾) is convex and closed, ∅ ̸= DGΨ(int(efd(Ψ))) ⊆ int(efd(ΨF)), ΨF is totally convex on
efd(ΨF), Fréchet differentiable on int(efd(ΨF)), and supercoercive, then

−→
P𝐷Ψ
𝐾 is norm-to-norm

continuous on int(efd(Ψ));
(iv) if DGΨ(𝐾) is convex and closed, ΨF is totally convex on bounded subsets of 𝑋⋆, Euler–Legendre,

Fréchet differentiable on int(efd(ΨF)), and supercoercive, then
−→
P𝐷Ψ
𝐾 is norm-to-norm continuous

on int(efd(Ψ)).

Proof. (i) By [298, Props. 4.2, 4.3], if Ψ ∈ Γ(𝑋, ||·||𝑋) is totally convex on efd(Ψ) and Fréchet dif-
ferentiable on int(efd(Ψ)) ̸= ∅, and if the set {𝑦 ∈ 𝐾 : 𝐷Ψ(𝑥, 𝑦) ≤ 𝜆} is bounded ∀𝜆 ∈ ]0,∞[
(or, equivalently, by Corollary 2.9, ∀𝜆 ∈ [0,∞[) ∀𝑦 ∈ 𝐾, then 𝑥 ↦→ inf𝑦∈𝐾{𝐷Ψ(𝑦, 𝑥)} is contin-
uous on int(efd(Ψ)) and

←−
P𝐷Ψ
𝐾 : int(efd(Ψ)) → 𝐾 is norm-to-norm continuous on int(efd(Ψ)).

By [40, Lem. 7.3.(vii)], if Ψ ∈ Γ(𝑋, ||·||𝑋) is supercoercive, and 𝑥 ∈ int(efd(Ψ)) ̸= ∅, then
𝐷+

Ψ(𝑥, · ) is coercive, which is equivalent (cf. [38, Defs. 2.10, 4.1.(B3).(ii)]) with boundedness of
{𝑦 ∈ int(efd(Ψ)) : 𝐷+

Ψ(𝑥, 𝑦) ≤ 𝜆} ∀𝜆 ∈ [0,∞[ ∀𝑥 ∈ int(efd(Ψ)).
(0) We will use the following fact: the Fréchet differentiability of Ψ ∈ ΓG(𝑋, ||·||𝑋) on int(efd(Ψ))

(resp., ΨF ∈ ΓG(𝑋⋆, ||·||𝑋⋆) on int(efd(ΨF))) is equivalent with norm-to-norm continuity of
DGΨ = DFΨ (resp., DGΨF = DFΨF) [279, Prop. 2.8] [367, Cor. 3.3.6].

(ii) By [360, Thm. 3.4.(ii)], if Ψ ∈ ΓG(𝑋, ||·||𝑋) is totally convex on bounded subsets of 𝑋, superco-
ercive, and Euler–Legendre, and ∅ ̸= 𝐾 ⊆ int(efd(Ψ)) is convex and closed, then the map [275,
Def. 1]

int(efd(ΨF)) ∋ 𝑦 ↦→ arg inf
𝑥∈𝐾

{︀
𝐷Ψ(𝑥,D

GΨF(𝑦))
}︀
∈ 𝐾 (115)

is norm-to-norm continuous. Setting 𝑦 = DGΨ(𝑧) for 𝑧 ∈ int(efd(Ψ)), and using Fréchet differen-
tiability of Ψ on int(efd(Ψ)) together with (0), gives a result, since a composition of norm-to-norm
continuous functions is norm-to-norm continuous.

(iii) Follows from (i) and an application of (72), taking into account (0), so (72) is a composition of
norm-to-norm continuous functions.

(iv) Follows from (ii) in the same way as (iii) follows from (i).

Proposition 3.6. If (𝑋, ||·||𝑋) is reflexive, Ψ ∈ ΓG(𝑋, ||·||𝑋), ΨF is supercoercive, Ψ is uniformly
Fréchet differentiable on bounded subsets of int(efd(Ψ)), then int(efd(Ψ)) = efd(Ψ) = 𝑋, and:
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(i) Ψ is LSQ-compositional if any of (generally, inequivalent) conditions holds:
a) Ψ is totally convex on 𝑋; or
b) Ψ is totally convex on bounded subsets of 𝑋 and is supercoercive;

(ii) Ψ is RSQ-compositional if any of (generally, inequivalent) conditions holds:
a) Ψ is totally convex on bounded subsets of 𝑋; or
b) Ψ is Euler–Legendre and supercoercive, ΨF is (totally convex and uniformly Fréchet differ-

entiable) on bounded subsets of efd(ΨF);
(iii) Ψ is LSQ-adapted on any closed and convex ∅ ̸= 𝐾 ⊆ 𝑋 (and

←−
P𝐷Ψ
𝐶 is adapted for any ∅ ̸= 𝐶 ⊆

𝐾 with convex and closed 𝐶) if Ψ is Euler–Legendre;
(iv) Ψ is RSQ-adapted on any ∅ ̸= 𝐾 ⊆ 𝑋 (and

−→
P𝐷Ψ
𝐶 is adapted for any ∅ ̸= 𝐶 ⊆ 𝐾 with convex

and closed DGΨ(𝐶)) if Ψ is supercoercive and Euler–Legendre, and ΨF is uniformly Fréchet
differentiable on bounded subsets of int(efd(ΨF)) ̸= ∅;

(v) (𝑇 ∈ RSQ(Ψ,𝐾) iff DGΨ ∘ 𝑇 ∘DGΨF ∈ LSQ(Ψ,DGΨ(𝐾))) if Ψ is Euler–Legendre and super-
coercive, ∅ ̸= 𝐾 ⊆ int(efd(Ψ)), 𝑇 : 𝐾 → int(efd(Ψ)), and ΨF is uniformly Fréchet differentiable
on bounded subsets of int(efd(ΨF)) ̸= ∅.

Proof. (0) For any Ψ ∈ Γ(𝑋, ||·||𝑋), by [367, Lem. 3.6.1], ΨF is supercoercive iff (efd(Ψ) = 𝑋 and Ψ
is bounded on bounded subsets). By [86, Prop. 1.1.11], if 𝑓 : 𝑋 → R is continuous and convex,
then (𝜕𝑓 is bounded on bounded subsets of efd(𝜕𝑓) iff 𝑓 is bounded on bounded subsets of 𝑋).
Hence, since int(efd(Ψ)) = efd(Ψ) = 𝑋 and Ψ ∈ ΓG(𝑋, ||·||𝑋), Ψ is continuous and convex, and
DGΨ is bounded on bounded subsets of efd(DGΨ) = 𝑋.

(i).a) By [367, Prop. 3.6.3] (cf. [294, Prop. 2.1]), Ψ is (bounded and uniformly Fréchet differentiable) on
bounded subsets iff (Ψ is Fréchet differentiable on 𝑋 = efd(Ψ) and DGΨ is uniformly continuous
on bounded subsets). By [87, Prop. 2.3], if 𝑥 ∈ efd(Ψ) and Ψ is Fréchet differentiable at 𝑥,
then (Ψ is totally convex at 𝑥 iff Ψ is uniformly convex at 𝑥). The rest follows from Proposition
2.16.(i).a), taking (0) into account.

(i).b) Since ΨF ∈ Γ(𝑋, ||·||𝑋), it is (convex and) continuous on int(efd(ΨF)) = efd(ΨF) = 𝑋⋆ [302,
Cor. 7C]. Hence, by (0), applied to ΨF instead of Ψ, DG(ΨF) is bounded on bounded subsets of
efd(ΨF) = 𝑋⋆ iff Ψ is supercoercive. The rest follows from Proposition 2.16.(i).b).

(ii)–(v) Follow, respectively, from Proposition 2.16.(ii), 2.16.(iii), 2.16.(iv).b), 2.16.(v), and Corollary
2.22, by the same technique as above.

Proposition 3.7. Let 𝜆 ∈ ]0,∞[, let (𝑋, ||·||𝑋) be reflexive, let Ψ ∈ ΓG(𝑋, ||·||𝑋) be strictly convex on
int(efd(Ψ)), let 𝑓 ∈ Γ(𝑋, ||·||𝑋) be bounded from below, lim||𝑥||𝑋→∞ 𝑓(𝑥) =∞, efd(𝑓) ∩ efd(Ψ) ̸= ∅ and
(efd(𝑓)∩ efd(Ψ) ⊆ int(efd(Ψ)) or efd(Ψ) is open or efd(𝑓) ⊆ int(efd(Ψ)) or (int(efd(Ψ))∩ efd(𝑓) ̸= ∅
and Ψ is essentially Gateaux differentiable)). Then:

(i) ←−−prox𝐷Ψ
𝜆,𝑓 is single-valued and norm-to-norm continuous on 𝑋;

(ii) if Ψ is Fréchet differentiable on int(efd(Ψ)) and Euler–Legendre, and ΨF is Fréchet differentiable
on int(efd(ΨF)), then −−→prox𝐷Ψ

𝜆,𝑓 is single-valued and norm-to-norm continuous on int(efd(Ψ)).

Proof. (i) Follows from [102, p. 186, Cor. 4.2], using the criteria for single-valuedness of ←−−prox𝐷Ψ
𝜆,Ψ

provided by [41, Props. 3.22.(ii).(d), 3.23].
(ii) Follows from (i), using Proposition 2.18.(ii) together with the fact (0) in the proof of Proposition

3.5.

Proposition 3.8. Let (𝑋, ||·||𝑋) be reflexive, 𝜆 ∈ ]0,∞[, 𝑟 ∈ ]1,∞[, 𝑠 ∈ ]0, 1], let Ψ ∈ ΓG(𝑋, ||·||𝑋),
efd(Ψ) = 𝑋, and ΨF ∈ ΓG(𝑋⋆, ||·||𝑋⋆).

(i) If 𝑇 : 𝑋 → 2𝑋
⋆ is maximally monotone, 𝑓 ∈ Γ(𝑋, ||·||𝑋), and DGΨ is 𝑠-Lipschitz–Hölder con-

tinuous on 𝑋 and 𝑔-uniformly monotone on 𝑋 with 𝑔(𝑡) = 𝑟𝑡𝑟−1, then ←−resΨ𝜆𝑇 and ←−−prox𝐷Ψ
𝜆,𝑓 are

single-valued and 𝑠
𝑟−1 -Lipschitz–Hölder continuous on 𝑋, while −→resΨ𝜆𝑇 is single-valued and 𝑠2

(𝑟−1)2 -
Lipschitz–Hölder continuous on 𝑋⋆.
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(ii) If 𝑓 : 𝑋 → ] −∞,∞] satisfies 𝑓 ∘DGΨF ∈ Γ(𝑋⋆, ||·||𝑋⋆), 𝑤 ∈ ]0, 1], DGΨ is 𝑤-Lipschitz–Hölder
continuous on 𝑋, and DGΨF is 𝑠-Lipschitz–Hölder continuous on 𝑋⋆ and 𝑔-uniformly monotone
on 𝑋⋆ with 𝑔(𝑡) = 𝑟𝑡𝑟−1, then −−→prox𝐷Ψ

𝜆,𝑓 is single-valued and 𝑠2𝑤
𝑟−1 -Lipschitz–Hölder continuous on

𝑋.

Proof. By [290, Cor. 6.4], (DGΨ+ 𝜆𝑇 )

p is single-valued and 1
𝑟−1 -Lipschitz–Hölder continuous on 𝑋⋆.

Furthermore, we use Proposition 2.18.(i). The result for←−resΨ𝜆𝑇 and −→resΨ𝜆𝑇 follows from the fact that the
composition of 𝑟1-Lipschitz–Hölder map with 𝑟2-Lipschitz–Hölder map, with both maps defined over
all space, is 𝑟1𝑟2-Lipschitz–Hölder map ∀𝑟1, 𝑟2 ∈ ]0, 1]. For ←−−prox𝐷Ψ

𝜆,𝑓 we use additionally Proposition
2.19.(i), while for −−→prox𝐷Ψ

𝜆,𝑓 we use also Proposition 2.18.(ii).

Corollary 3.9. Let (𝑋, ||·||𝑋) be reflexive, 𝑟 ∈ ]1,∞[, 𝑠 ∈ ]0, 1], Ψ ∈ ΓG(𝑋, ||·||𝑋), efd(𝑋) = R, ΨF ∈
ΓG(𝑋⋆, ||·||𝑋⋆), and ∅ ̸= 𝐾 ⊆ int(efd(Ψ)). Then:

(i) if DGΨ is 𝑠-Lipschitz–Hölder continuous on 𝑋 and 𝑔-uniformly monotone on 𝑋 with 𝑔(𝑡) =

𝑟𝑡𝑟−1, and 𝐾 is convex and closed, then
←−
P𝐷Ψ
𝐾 is 𝑠

𝑟−1 -Lipschitz–Hölder continuous on 𝑋;
(ii) if 𝑤 ∈ ]0, 1], DGΨ is 𝑤-Lipschitz–Hölder continuous on 𝑋, DGΨF is 𝑠-Lipschitz–Hölder con-

tinuous on 𝑋⋆ and 𝑔-uniformly monotone on 𝑋⋆ with 𝑔(𝑡) = 𝑟𝑡𝑟−1, ∅ ̸= DG(int(efd(Ψ))) ⊆
int(efd(ΨF)), and DGΨ(𝐾) ⊆ int(efd(ΨF)) is convex and closed, then

−→
P𝐷Ψ
𝐾 is 𝑠2𝑤

𝑟−1 -Lipschitz–
Hölder continuous on 𝑋.

Proof. (i) Follows from Propositions 3.8.(i) and 2.19.(ii).
(ii) Follows from Propositions 3.8.(ii), 2.18.(ii), and 2.19.(ii).

Lemma 3.10. If Ψ ∈ Γ(𝑋, ||·||𝑋), as well as efd(Ψ) = 𝑋 and efd(ΨF) ̸= {*} (resp., efd(ΨF) = 𝑋⋆

and efd(Ψ) ̸= {*}), then:
(i) Ψ is uniformly Fréchet differentiable (resp., uniformly convex) on 𝑋 iff ΨF is uniformly convex

(resp., uniformly Fréchet differentiable) on 𝑋⋆;
(ii) if Ψ is uniformly Fréchet differentiable on bounded subsets (resp., uniformly convex on bounded

subsets) of 𝑋, and supercoercive, then ΨF is uniformly convex on bounded subsets (resp., uni-
formly Fréchet differentiable on bounded subsets) of 𝑋⋆.

Proof. Let Ψ ∈ Γ(𝑋, ||·||𝑋). By [34, Cor. 2.8], if efd(Ψ) ̸= {*} (resp., efd(ΨF) ̸= {*}), then Ψ is uni-
formly convex (resp., uniformly Gateaux differentiable) on 𝑋 iff ΨF is uniformly Gateaux differentiable
(resp., uniformly convex) on 𝑋⋆. By [367, p. 207] (cf. [316, p. 4](=[317, p. 643])), Ψ is uniformly
Fréchet differentiable on any ∅ ̸= 𝐾 ⊆ efd(Ψ) iff Ψ is uniformly Gateaux differentiable on 𝐾. Setting
efd(Ψ) = 𝑋 gives (i). (ii) follows directly from (i) and [367, Prop. 3.6.2.(i)].

Proposition 3.11. Let (𝑋, ||·||𝑋) be reflexive, ∅ ̸= 𝐾 ⊆ 𝑋, Ψ ∈ ΓG(𝑋, ||·||𝑋) be supercoercive and
strictly convex, ΨF ∈ ΓG(𝑋⋆, ||·||𝑋⋆) be supercoercive and strictly convex. For any convex set 𝐶 ⊆ 𝑋,
let 𝐶∘ := {𝑦 ∈ 𝑋⋆ : [[𝑥, 𝑦]]𝑋×𝑋⋆ ≤ 0 ∀𝑥 ∈ 𝐶}. Then:

(i) if Ψ : 𝑋 → R, ΨF(0) = 0, (DGΨF)(0) = 0, (DGΨF)(−𝑦) = −(DGΨF)(𝑦) ∀𝑦 ∈ 𝑋⋆, ∅ ̸= 𝐾 ⊂ 𝑋
is a closed convex cone with a vertex at 0 ∈ 𝑋, then

∀𝑥 ∈ 𝑋

⎧⎨⎩ 𝑥 = (DGΨ)

p ∘ P̂ΨF

𝐾∘ ∘DGΨ(𝑥) +
←−
P𝐷Ψ
𝐾 (𝑥)[︁[︁←−

P𝐷Ψ
𝐾 (𝑥), P̂ΨF

𝐾∘ ∘DGΨ(𝑥)
]︁]︁
𝑋×𝑋⋆

= 0,
(116)

where {︃
P̂ΨF

𝐾∘(𝑦) := arg inf𝑧∈𝐾∘
{︀
ΨF(𝑦 − 𝑧)

}︀
∀𝑦 ∈ 𝑋⋆

P̂ΨF

𝐾∘ ∘ P̂ΨF

𝐾∘(𝑦) = P̂ΨF

𝐾∘(𝑦) ∀𝑦 ∈ 𝑋⋆;
(117)

(ii) if ΨF : 𝑋⋆ → R, Ψ(0) = 0, (DGΨ)(0) = 0, (DGΨ)(−𝑥) = −(DGΨ)(𝑥) ∀𝑥 ∈ 𝑋, ∅ ̸= DGΨ(𝐾) ⊂
𝑋⋆ is a closed convex cone with a vertex at 0 ∈ 𝑋⋆, then

∀𝑦 ∈ 𝑋

⎧⎨⎩ 𝑦 = P̂Ψ
(DGΨ(𝐾))∘

(𝑦) +
−→
P𝐷Ψ
𝐾 (𝑦)[︁[︁

(DGΨF)

p ∘
−→
P𝐷Ψ
𝐾 (𝑦), P̂Ψ

(DGΨ(𝐾))∘
(𝑦)
]︁]︁
𝑋×𝑋⋆

= 0.
(118)
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Furthermore:
(iii) if ∅ ̸= 𝐾 ⊆ 𝑋 is a linear subspace instead of a closed convex cone, then (116) holds under

replacement of 𝐾∘ with 𝐾⊥ := {𝑦 ∈ 𝑋⋆ : [[𝑥, 𝑦]]𝑋×𝑋⋆ = 0 ∀𝑥 ∈ 𝐾};
(iv) if ∅ ̸= DGΨ(𝐾) ⊆ 𝑋⋆ is a linear subspace instead of a closed convex cone, then (118) holds

under replacement of (DGΨ(𝐾))∘ with (DGΨ(𝐾))⊥.

Proof. (i) This is [13, Thm. 3.19].
(iii) This is [13, Rem. 3.20].

(ii)+(iv) Follows directly from (i) and (iii) combined with Proposition 2.10.

Remark 3.12. (i) Proposition 3.1.(i) is a generalisation of [245, Prop. 4.11], as indicated in the
proof.

(ii) Regarding Corollary 3.2, left and right projections onto sets which are both convex and DGΨ-
convex (despite that DGΨ is not an affine map) were considered earlier in [45, p. 11, Probl.
3].

(iii) Proposition 3.5.(i) provides a (new) special case of [298, Props. 4.2, 4.3], which is more suitable
for our purposes, because it allows to derive Proposition 3.5.(iii), as well as Propositions 3.27.(ii)
and 3.27.(iii). Ψ ∈ ΓG(𝑋, ||·||𝑋) totally convex on efd(Ψ), such that 𝐷Ψ(𝑥, · ) is coercive on
int(efd(Ψ)) ∀𝑥 ∈ efd(Ψ) is called a Brègman function in [86, Def. 2.1.1], and it provides a Banach
space generalisation (and also a weakening) of the notion of Brègman function introduced in [92,
Def. 2.1] (cf. also [38, §4]). See [291, Def. 4.2] for further generalisation and discussion of this
notion.

(iv) The direct relationship between the differing assumptions of Propositions 3.5.(i) (resp., 3.5.(iii))
and 3.5.(ii) (resp., 3.5.(iv)) is not clear at this level of generality. However, in a special case of
Ψ = Ψ𝜙, the former variants are essentially more general than the latter, see Remark 3.37.(vii).

(v) Proposition 3.5.(iii) is essentially new in the Banach space setting. For 𝑋 = R𝑛, ∅ ̸= 𝐾 ⊆ 𝑋
convex closed, 𝐾 ∩ int(efd(Ψ)) ̸= ∅, Ψ Euler–Legendre, Ψ ∈ C2(int(efd(Ψ))), 𝐷Ψ jointly convex,
𝐷Ψ(𝑥, · ) strictly convex on int(efd(Ψ)) and coercive ∀𝑥 ∈ int(efd(Ψ)), norm-to-norm continuity
of
−→
P𝐷Ψ
𝐶 has been established in [46, Cor. 3.7]. While coerciveness of 𝐷Ψ(𝑥, · ) follows from

supercoerciveness of Ψ [40, Lem. 7.3.(viii)], the rest of these conditions is noticeably different
from the assumptions of Proposition 3.5.(iii).

(vi) The reason why Proposition 3.6.(iv) omits case a) of Proposition 2.16.(iv) will be explained in
the Remark 3.37.(xii).

(vii) Generalised pythagorean equations (111) and (71) are special cases of the generalised cosine
equation (40), obtained for[︁[︁

𝑥−
−→
P𝐷Ψ
𝐾 (𝑥),DGΨ(𝑦)−DGΨ(

−→
P𝐷Ψ
𝐾 (𝑥))

]︁]︁
𝑋×𝑋⋆

= 0 ∀(𝑥, 𝑦) ∈ int(efd(Ψ))×𝐾, (119)

and [︁[︁
𝑥−
←−
P𝐷Ψ
𝐾 (𝑦),DGΨ(𝑦)−DGΨ(

←−
P𝐷Ψ
𝐾 (𝑦))

]︁]︁
𝑋×𝑋⋆

= 0 ∀(𝑥, 𝑦) ∈ 𝐾 × int(efd(Ψ)), (120)

respectively. One can see (119)–(120) as the conditions of orthogonality (at
−→
P𝐷Ψ
𝐾 (𝑥) and

←−
P𝐷Ψ
𝐾 (𝑦),

respectively) between a vector joining the projected point with its projection, and a vector ranging
from a projection into an arbitrary point within the constraint set 𝐾.

(viii) As compared to the original phrasing of [13, Thm. 3.19], Proposition 3.11.(i) assumes additionally
strict convexity of ΨF, since, by the definition of P̂ΨF [13, Def. 3.1], this condition is necessary
for the uniqueness of P̂ΨF

𝐾∘(𝑦). Proposition 3.11.(ii) is new.
(ix) For 𝑛 ∈ N, 𝑋 = R𝑛, Euler–Legendre Ψ ∈ ΓG(𝑋, ||·||𝑋), 𝑓 ∈ Γ(𝑋, ||·||𝑋), efd(𝑓)∩ int(efd(Ψ)) ̸= ∅,

and some additional conditions on Ψ, the (norm-to-norm) continuity of ←−−prox𝐷Ψ
1,𝑓 and −−→prox𝐷Ψ

1,𝑓 was
established in [43, Prop. 3.10].

33



3.2 𝐷Ψ with Ψ = Ψ𝜙

Proposition 3.13. For any gauge 𝜙 and any Banach space (𝑋, ||·||𝑋), Ψ𝜙 is supercoercive.

Proof. Let Ψ ∈ Γ(𝑋, ||·||𝑋). By [367, Lem. 3.6.1], Ψ is supercoercive iff (efd(ΨF) = 𝑋⋆ and ΨF is
bounded on bounded subsets). If int(efd(ΨF)) = 𝑋⋆, then ΨF is continuous on 𝑋⋆ [302, Cor. 7C]. If
ΨF is continuous on 𝑋⋆, then, by [86, Prop. 1.1.11], ΨF is bounded on bounded subsets iff 𝜕(ΨF) is
bounded on bounded subsets. By [367, Thm. 3.7.2.(ii)],

(Ψ𝜙)
F(𝑦) =

∫︁ ||𝑦||𝑋⋆

0
d𝑡 𝜙

p

(𝑡) ∀𝑦 ∈ 𝑋⋆, (121)

so (Ψ𝜙)
F has the same properties as Ψ𝜙, since 𝜙 p is a gauge function (cf. [367, p. 227]). In particular,

(Ψ𝜙)
F is convex and continuous on 𝑋⋆, with efd((Ψ𝜙)

F) = 𝑋⋆ = int(efd((Ψ𝜙)
F)). Finally, from

definition (99) of 𝑗𝜙, it follows:

∃𝜆 > 0 ∀𝑧 ∈ 𝑍 ⊊ 𝑋⋆ ||𝑧||𝑋⋆ ≤ 𝜆 ⇒ ∀𝑦 ∈ 𝑗⋆
𝜙 p (𝑧) ||𝑦||𝑋⋆⋆ = 𝜙

p

(||𝑧||𝑋⋆) ≤ 𝜙 p

(𝜆), (122)

where the last inequality holds since 𝜙 p is nondecreasing. Hence, 𝑗⋆
𝜙 p maps bounded sets to bounded

sets (cf., e.g., [232, p. 176]). Since 𝑗⋆
𝜙 p = 𝜕((Ψ𝜙)

F) by (103) and (121), this completes the proof.

Proposition 3.14. For any gauge 𝜙, Ψ𝜙 is Euler–Legendre iff (𝑋, ||·||𝑋) is strictly convex and Gateaux
differentiable.

Proof. 1) By Proposition 2.26.(iii), (𝑋, ||·||𝑋) is Gateaux differentiable iff 𝑗𝜙 is single-valued on 𝑋.
By [40, Thm. 5.6.(i)-(ii)], Ψ𝜙 is essentially Gateaux differentiable iff (int(efd(Ψ𝜙)) ̸= ∅ and 𝜕Ψ𝜙

is single-valued on efd(𝜕Ψ𝜙)). By [27, Thm. 1], 𝑗𝜙 = 𝜕Ψ𝜙. Since efd(𝜕Ψ𝜙) = 𝑋 [103, Obs. I.3.1]
and efd(Ψ𝜙) = int(efd(Ψ𝜙)) = 𝑋 for any gauge 𝜙, we obtain: (𝑋, ||·||𝑋) is Gateaux differentiable
iff Ψ𝜙 is essentially Gateaux differentiable.

2) By Proposition 2.26.(ii), (𝑋, ||·||𝑋) is strictly convex iff Ψ𝜙 is strictly convex. By [40, Lemma
5.8], if efd(𝜕Ψ𝜙) and efd((Ψ𝜙)

F) are open, then (Ψ𝜙 is strictly convex on int(efd(Ψ𝜙)) iff Ψ𝜙

is essentially strictly convex). By [103, Obs. I.3.1], efd(𝜕Ψ𝜙) = 𝑋. Furthermore, efd(Ψ𝜙) =
int(efd(Ψ𝜙)) = 𝑋. From (121) it it follows that efd((Ψ𝜙)

F) = 𝑋, which is an open set, since
every Banach space is (both a closed and) an open set.

Corollary 3.15. For any gauge 𝜙 and any Banach space (𝑋, ||·||𝑋):
(i) if (𝑋, ||·||𝑋) is Gateaux differentiable, then

𝐷Ψ𝜙(𝑥, 𝑦) =

∫︁ ||𝑥||𝑋
0

d𝑡 𝜙(𝑡) +

∫︁ ||𝑗𝜙(𝑦)||𝑋⋆

0
d𝑡 𝜙

p

(𝑡)− [[𝑥, 𝑗𝜙(𝑦)]]𝑋×𝑋⋆ ∀𝑥, 𝑦 ∈ 𝑋; (123)

(ii) if (𝑋, ||·||𝑋) is Gateaux differentiable and Ψ𝜙 is totally convex, then Ψ𝜙 is Euler–Legendre;
(iii) in particular, if (𝑋, ||·||𝑋) is locally uniformly convex and Gateaux differentiable, then Ψ𝜙 is

Euler–Legendre and totally convex.

Proof. (i) Follows from (43), (121), and Proposition 2.26.(iii).
(ii) Follows from Proposition 3.14 combined with the fact [298, Thm. 3.1, Cor. 3.4] that total

convexity of Ψ implies strict convexity of (𝑋, ||·||𝑋).
(iii) Follows from the fact that local uniform convexity of (𝑋, ||·||𝑋) implies its strict convexity, com-

bined with Propositions 2.26.(xii) and 3.14.

Corollary 3.16. For any gauge 𝜙, if (𝑋, ||·||𝑋) is reflexive, strictly convex, and Gateaux differentiable,
and ∅ ̸= 𝐾 ⊆ 𝑋 is weakly closed, then 𝐾 is left 𝐷Ψ𝜙-Chebyshëv iff 𝐾 is convex.

Proof. Follows from [342, Cor. 1] combined with Proposition 3.14.
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Proposition 3.17. For any gauge 𝜙, if ∅ ̸= 𝐾 ⊆ 𝑋, and (𝑋, ||·||𝑋) is reflexive, strictly convex, and
Gateaux differentiable, then:

(i) if 𝐾 is convex and closed, then 𝐾 is left 𝐷Ψ𝜙-Chebyshëv, and 𝐷Ψ𝜙 is left pythagorean on 𝐾;
(ii) if 𝑗𝜙(𝐾) is convex and closed, then 𝐾 is right 𝐷Ψ𝜙-Chebyshëv, and 𝐷Ψ𝜙 is right pythagorean on

𝐾;
(iii) 𝐷Ψ𝜙 (resp., 𝐷ΨF

𝜙
) is an information on 𝑋 (resp., 𝑋⋆);

(iv)
←−
P
𝐷Ψ𝜙

𝐾 and
−→
P
𝐷Ψ𝜙

𝐾 are zone consistent.

Proof. (i) By Proposition 3.13, Ψ𝜙 is supercoercive for any gauge 𝜙. For any gauge 𝜙, Proposi-
tion 2.26.(xii) gives that Ψ𝜙 is totally convex on any locally uniformly convex Banach space
(𝑋, ||·||𝑋). The latter implies strict convexity, and the opposite implication is not true in general.
Furthermore, by Proposition 2.26.(xi), if (𝑋, ||·||𝑋) is reflexive, then (it is strictly convex and has
the Radon–Riesz–Shmul’yan property) iff Ψ𝜙 is totally convex for any gauge 𝜙. Hence, when
applied to Ψ𝜙 (and taking into account Proposition 3.14), the weakest conditions to be assumed
in Proposition 2.8.(ii) are provided in Proposition 2.8.(i).b) and 2.8.(i).c), which turn out to be
equivalent in this situation.

(ii) Follows from (i) and Proposition 3.1.(i), taking into account that, for reflexive (𝑋, ||·||𝑋), Gateaux
differentiability of (𝑋, ||·||𝑋) (resp., (𝑋⋆, ||·||𝑋⋆)) implies strict convexity of (𝑋⋆, ||·||𝑋⋆) (resp.,
(𝑋, ||·||𝑋)) [201, A.1.1].

(iii) Follows from Corollary 2.9 and Proposition 3.1.(iii).
(iv) Follows from int(efd(Ψ𝜙)) = 𝑋.

Lemma 3.18. If 𝜙 is a quasigauge, then:
(i) 𝜙∧, 𝜙∨, (𝑡 ↦→ lim𝑠→−𝑡 𝜙(𝑠))

∧, and (𝑡 ↦→ lim𝑠→+𝑡 𝜙(𝑠))
∨ are quasigauges;

(ii) 𝜙∧ (resp., 𝜙∨) is left (resp., right) continuous.

Proof. (i) Nondecreasing of 𝑓∧ and 𝑓∨ holds for any 𝑓 : R+ → [0,∞] (cf., e.g., [161, Lem. 2.3.9.a)]
for 𝑓∧ and [346, Lem. 1.(b)]23). This implies existence of left and right limits of 𝑓∧(𝑡) and 𝑓∨(𝑡)
at any 𝑡 ∈ R+. 𝜙 ̸≡ 0 (resp., 𝜙 ̸≡ ∞) implies 𝜙∧ ̸≡ ∞ ̸≡ 𝜙∨ (resp., 𝜙∧ ̸≡ 0 ̸≡ 𝜙∨). Thus,
∃𝑠, 𝑡 > 0 such that lim𝑢→+𝑠 𝜙

∧(𝑢) <∞ and lim𝑢→+𝑡 𝜙
∨(𝑢) <∞. The same reasoning applies to

(𝑡 ↦→ lim𝑠→−𝑡 𝜙(𝑠))
∧ and (𝑡 ↦→ lim𝑠→+𝑡 𝜙(𝑠))

∨.
(ii) This holds for any nondecreasing 𝑓 : R+ → [0,∞], cf., e.g., [161, Lem. 2.3.9.c)] for 𝑓∧ and [346,

Lem. 1.(c)]23 for 𝑓∨.

Lemma 3.19. If 𝜙 is a quasigauge, and 𝑓𝜙(𝑢) :=
∫︀ 𝑢
0 d𝑡 𝜙(𝑡) ∀𝑢 ∈ R+, then

(𝑓𝜙)
Y(𝑢) =

∫︁ 𝑢

0
d𝑡 ( lim

𝑠→+𝑡
𝜙(𝑠))∨ =

∫︁ 𝑢

0
d𝑡 ( lim

𝑠→−𝑡
𝜙(𝑠))∧ ∀𝑢 ∈ R+. (124)

If, furthermore, 𝜙 is right (resp., left) continuous on R+, then24

(𝑓𝜙)
Y(𝑢) =

∫︁ 𝑢

0
d𝑡 𝜙∨(𝑡) ∀𝑢 ∈ R+ (125)

(resp., (𝑓𝜙)Y(𝑢) =

∫︁ 𝑢

0
d𝑡 𝜙∧(𝑡) ∀𝑢 ∈ R+). (126)

Proof. Since 𝑓𝜙 and (𝑓𝜙)
Y are proper, convex, lower semicontinuous functions, taking value 0 at

0 [365, pp. 367–368], we can use the representation [305, Thm. 24.2] of such type of functions,
𝑔(𝑢) =

∫︀ 𝑢
0 d𝑡 𝑔′+(𝑡) =

∫︀ 𝑢
0 d𝑡 𝑔′−(𝑡) ∀𝑢 ∈ R+, and combine it with [365, Prop. A.2.(i)]

((𝑓𝜙)
Y)′+(𝑡) = ( lim

𝑠→+𝑡
𝜙(𝑠))∨, (127)

((𝑓𝜙)
Y)′−(𝑡) = ( lim

𝑠→−𝑡
𝜙(𝑠))∧. (128)

23This lemma is stated for 𝑓 : R+ → R+, however the extension of a proof to 𝑓 : R+ → [0,∞] by an analogy with the
proof of [161, Lem. 2.3.9] is straightforward.

24(125) has been proved earlier, by a different method, in [315, Thm. 2.11].
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Lemma 3.20. For any quasigauge 𝜙 and any Banach space (𝑋, ||·||𝑋):
(i) (Ψ𝜙)

F(𝑦) =
∫︀ ||𝑦||𝑋⋆

0 d𝑡 (lim𝑠→+𝑡 𝜙(𝑠))
∨ =

∫︀ ||𝑦||𝑋⋆

0 d𝑡 (lim𝑠→−𝑡 𝜙(𝑠))
∧ ∀𝑦 ∈ 𝑋⋆;

(ii) if 𝜙 is right (resp., left) continuous on R+, then

(Ψ𝜙)
F(𝑦) =

∫︁ ||𝑦||𝑋⋆

0
d𝑡 𝜙∨(𝑡) ∀𝑦 ∈ 𝑋⋆ (129)

(resp., (Ψ𝜙)
F(𝑦) =

∫︁ ||𝑦||𝑋⋆

0
d𝑡 𝜙∧(𝑡) ∀𝑦 ∈ 𝑋⋆), (130)

((Ψ𝜙)
F)F(𝑧) =

∫︁ ||𝑧||𝑋⋆⋆

0
d𝑡 (𝜙∨)∨(𝑡) ∀𝑧 ∈ 𝑋⋆⋆ (131)

(resp., ((Ψ𝜙)
F)F(𝑧) =

∫︁ ||𝑧||𝑋⋆⋆

0
d𝑡 (𝜙∧)∧(𝑡) ∀𝑧 ∈ 𝑋⋆⋆), (132)

and 𝜕((Ψ𝜙)
F) = 𝑗⋆𝜙∨ (resp., 𝜕((Ψ𝜙)

F) = 𝑗⋆𝜙∧);
(iii) if 𝜙 is right (resp., left) continuous on R+ and (𝑋, ||·||𝑋) is reflexive, then 𝑗⋆⋆(𝜙∨)∨ = 𝑗𝜙 (resp.,

𝑗⋆⋆(𝜙∧)∧ = 𝑗𝜙).

Proof.
(i)–(ii) By [365, Eqn. (A.6)], (Ψ𝜙)

F(𝑦) = (𝑓𝜙)
Y(||𝑦||𝑋⋆) ∀𝑦 ∈ 𝑋⋆, where 𝑓𝜙(𝑢) =

∫︀ 𝑢
0 d𝑡 𝜙(𝑡) ∀𝑢 ∈ R+.

The rest follows from Lemmas 3.18 and 3.19.
(iii) For any 𝑓 : R+ → [0,∞], 𝑓 is (nondecreasing and right (resp., left) continuous) iff 𝑓∨∨ = 𝑓

(resp., 𝑓∧∧ = 𝑓) [315, Lem. 2.4]25 (resp., [161, Lem. 2.3.11]). On the other hand, reflexivity of
(𝑋, ||·||𝑋) and Ψ𝜙 ∈ Γ(𝑋, ||·||𝑋) give ((Ψ𝜙)

F)F = Ψ𝜙. Hence, 𝑗⋆⋆(𝜙∨)∨ = 𝜕(((Ψ𝜙)
F)F) = 𝜕Ψ𝜙 = 𝑗𝜙

in the right continuous case, and analogously in the left continuous case.

Corollary 3.21. If (𝑋, ||·||𝑋) is a Gateaux differentiable Banach space, and a quasigauge 𝜙 is contin-
uous on [0, sup(efd(𝜙))[, then ∀(𝑥, 𝑦) ∈ 𝑋 × int(sup(efd(𝜙))𝐵(𝑋, ||·||𝑋))

𝐷Ψ𝜙(𝑥, 𝑦) =

∫︁ ||𝑥||𝑋
0

d𝑡 𝜙(𝑡) +

∫︁ ||𝑗𝜙(𝑦)||𝑋⋆

0
d𝑡 ( lim

𝑠→+𝑡
𝜙(𝑠))∨ − [[𝑥, 𝑗𝜙(𝑦)]]𝑋×𝑋⋆ (133)

=

∫︁ ||𝑥||𝑋
0

d𝑡 𝜙(𝑡) +

∫︁ ||𝑗𝜙(𝑦)||𝑋⋆

0
d𝑡 ( lim

𝑠→−𝑡
𝜙(𝑠))∧ − [[𝑥, 𝑗𝜙(𝑦)]]𝑋×𝑋⋆ . (134)

If, furthermore, 𝜙 is right (resp., left) continuous at sup(efd(𝜙)), then

𝐷Ψ𝜙(𝑥, 𝑦) =

∫︁ ||𝑥||𝑋
0

d𝑡 𝜙(𝑡) +

∫︁ ||𝑗𝜙(𝑦)||𝑋⋆

0
d𝑡 𝜙∨(𝑡)− [[𝑥, 𝑗𝜙(𝑦)]]𝑋×𝑋⋆ (135)

(resp., 𝐷Ψ𝜙(𝑥, 𝑦) =

∫︁ ||𝑥||𝑋
0

d𝑡 𝜙(𝑡) +

∫︁ ||𝑗𝜙(𝑦)||𝑋⋆

0
d𝑡 𝜙∧(𝑡)− [[𝑥, 𝑗𝜙(𝑦)]]𝑋×𝑋⋆ ) (136)

∀(𝑥, 𝑦) ∈ 𝑋 × int(sup(efd(𝜙))𝐵(𝑋, ||·||𝑋)).

Proof. Follows from Lemma 3.20 and Proposition 2.29.(i), applied to (43), (102), and (103).

Proposition 3.22. Let 𝜙 be a quasigauge, and let (𝑋, ||·||𝑋) be a Banach space. Then:
(i) 𝑗⋆𝜙∨ is bounded;
(ii) if 𝜙∧ is right continuous, then 𝑗⋆𝜙∧ is bounded;
(iii) if either 𝜙∨ is finite or 𝜙∧ is (right continuous and finite), then Ψ𝜙 is supercoercive.

Proof.
25This lemma states only an implication from left to right, however an implication in the opposite direction can be

provided by a direct analogue of the corresponding proof in [161, Lem. 2.3.11].
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(i)–(ii) Lemma 3.18.(i) allows us to use (103) to (129) and (130). Replacing 𝜙 p in (122) by 𝜙∨ (resp.,
𝜙∧), and using its right continuity together with (98) instead of (99), gives the boundedness of
𝑗⋆𝜙∨ (resp., 𝑗⋆𝜙∧).

(iii) The assumption of finiteness of 𝜙∨ (resp., 𝜙∧) guarantees that (𝑓𝜙)
Y(𝑢), as defined by (125)

(resp., (126)), is finite ∀𝑢 ∈ R+. Hence, efd((Ψ𝜙)
F) = 𝑋⋆ = int(efd((Ψ𝜙)

F)). Using (i)–(ii),
together with [302, Cor. 7C], [86, Prop. 1.1.11], and [367, Lem. 3.6.1], in the same way as in the
proof of Proposition 3.13, gives the result.

Proposition 3.23. Let (𝑋, ||·||𝑋) be a Banach space, and let 𝜙 be a quasigauge strictly increasing on
efd(𝜙), continuous on [0, sup(efd(𝜙))[, and let⎧⎪⎪⎨⎪⎪⎩

𝑗𝜙 is not single-valued on efd(𝑗𝜙) ∖ int(sup(efd(𝜙))𝐵(𝑋, ||·||𝑋))
int(efd(Ψ𝜙)) = efd(Ψ𝜙)
efd(𝑗𝜙) is open
efd((Ψ𝜙)

F) is open.

(137)

Then Ψ𝜙 is Euler–Legendre iff (𝑋, ||·||𝑋) is strictly convex and Gateaux differentiable.

Proof. Follows the same arguments as the proof of Proposition 3.14, with the properties of a gauge 𝜙
and of Ψ𝜙 replaced by the above assumptions, and with the use of Proposition 2.26.(ii)–(iii) replaced
by the use of Proposition 2.29.(i)–(ii).

Proposition 3.24. Let (𝑋, ||·||𝑋) be a reflexive, strictly convex, and Gateaux differentiable Banach
space, let 𝜙 be a quasigauge strictly increasing on efd(𝜙) and continuous on [0, sup(efd(𝜙))[, let 𝐾 ∩
int(efd(Ψ𝜙)) ̸= ∅. Then:

(i) if 𝐾 is convex and closed, and any of the following (inequivalent) conditions holds:
a) 𝜙∨ is finite or 𝜙∧ is (right continuous and finite);
b) (137),

then:
1) 𝐾 is left 𝐷Ψ𝜙-Chebyshëv, 𝐷Ψ𝜙 is left pythagorean on 𝐾, and 𝐷Ψ𝜙 is an information on 𝑋;

2) if b) or (a) and 𝐾 ⊆ int(efd(Ψ𝜙))) holds, then
←−
P
𝐷Ψ𝜙

𝐾 are zone consistent;
(ii) if 𝐾 ⊆ int(efd(Ψ𝜙)), 𝑗𝜙(𝐾) is convex and closed, and any of the following (inequivalent) condi-

tions holds:

a)
{︂

x)
𝜙 is finite or (𝜙∨)∧ is right continuous and finite;

b)
{︂

y)
(𝜙∧)∨ is finite or 𝜙 is right continuous and finite;

c)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x)
𝜙∨ is continuous on [0, sup(efd(𝜙∨))[
𝑗⋆𝜙∨ is not single-valued on efd(𝑗⋆𝜙∨) ∖ int(sup(efd(𝜙∨))𝐵(𝑋⋆, ||·||𝑋⋆))

int(efd(Ψ𝜙∨)) = efd(Ψ𝜙∨)
efd(𝑗⋆𝜙∨) is open
efd(Ψ𝜙) is open;

d)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y)
𝜙∧ is continuous on [0, sup(efd(𝜙∧))[
𝑗⋆𝜙∧ is not single-valued on efd(𝑗⋆𝜙∧) ∖ int(sup(efd(𝜙∧))𝐵(𝑋⋆, ||·||𝑋⋆))

int(efd(Ψ𝜙∧)) = efd(Ψ𝜙∧)
efd(𝑗⋆𝜙∧) is open
efd(Ψ𝜙) is open,

where:

x)

⎧⎨⎩
𝜙 is right continuous on R+

𝜙∨ is strictly increasing on efd(𝜙∨)
Ψ𝜙∨ is Gateaux differentiable on ∅ ̸= 𝑗𝜙(int(sup(efd(𝜙))𝐵(𝑋, ||·||𝑋))) ⊆ int(efd(Ψ𝜙∨));
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y)

⎧⎨⎩
𝜙 is left continuous on R+

𝜙∧ is strictly increasing on efd(𝜙∧)
Ψ𝜙∧ is Gateaux differentiable on ∅ ̸= 𝑗𝜙(int(sup(efd(𝜙))𝐵(𝑋, ||·||𝑋))) ⊆ int(efd(Ψ𝜙∧)),

then:
1) 𝐾 is right 𝐷Ψ𝜙-Chebyshëv, 𝐷Ψ𝜙 is right pythagorean on 𝐾, 𝐷(Ψ𝜙)F is an information on

𝑋⋆, and
−→
P
𝐷Ψ𝜙

𝐾 is zone consistent;
2) if either c) or d) holds, then 𝐷Ψ𝜙 is an information on 𝑋.

Proof. Follows directly from Propositions 3.22 and 3.23, applied to Propositions 2.8 and 3.1, and to
Corollary 2.9. In (ii).a) (resp., (ii).b)) we use 𝜙∨∨ = 𝜙 (resp., 𝜙∧∧ = 𝜙) for right (resp., left) continuous
𝜙 (cf. the proof of Lemma 3.20), while in (ii).c) and (ii).d) we use also ((Ψ𝜙)

F)F = Ψ𝜙 that follows
from Ψ𝜙 ∈ Γ(𝑋, ||·||𝑋) and reflexivity of (𝑋, ||·||𝑋).

Corollary 3.25. If (𝑋, ||·||𝑋) is reflexive, strictly convex, and Gateaux differentiable, 𝜙 is a gauge, and
𝜆 ∈ ]0,∞[, then:

(i) if 𝑓 ∈ Γ(𝑋, ||·||𝑋), then ←−−prox
𝐷Ψ𝜙

𝜆,𝑓 is single-valued on 𝑋, and satisfies

𝐷Ψ𝜙(𝑥, 𝑦) ≥ 𝐷Ψ𝜙(𝑥,
←−−prox

𝐷Ψ𝜙

𝜆,𝑓 (𝑦)) +𝐷Ψ𝜙(
←−−prox

𝐷Ψ𝜙

𝜆,𝑓 (𝑦), 𝑦) ∀(𝑥, 𝑦) ∈ Fix(←−−prox
𝐷Ψ𝜙

𝜆,𝑓 )×𝑋, (138)

where Fix(←−−prox
𝐷Ψ𝜙

𝜆,𝑓 ) = arg inf𝑥∈𝑋 {𝑓(𝑥)};

(ii) if a proper 𝑓 : 𝑋 → ] −∞,∞] satisfies 𝑓 ∘ (𝑗𝜙) p ∈ Γ(𝑋⋆, ||·||𝑋⋆), then −−→prox
𝐷Ψ𝜙

𝜆,𝑓 is single-valued
on 𝑋, and satisfies

𝐷Ψ𝜙(𝑥, 𝑦) ≥ 𝐷Ψ𝜙(𝑥,
−−→prox

𝐷Ψ𝜙

𝜆,𝑓 (𝑥)) +𝐷Ψ𝜙(
−−→prox

𝐷Ψ𝜙

𝜆,𝑓 (𝑥), 𝑦) ∀(𝑥, 𝑦) ∈ 𝑋 × Fix(−−→prox
𝐷Ψ𝜙

𝜆,𝑓 ), (139)

where Fix(−−→prox
𝐷Ψ𝜙

𝜆,𝑓 ) = (𝑗𝜙)

p ∘ arg inf𝑥∈𝑋⋆

{︀
𝑓 ∘ (𝑗𝜙) p

(𝑥)
}︀
.

Proof. (i) Follows from Propositions 2.20.(iv) and 3.14.
(ii) Follows from Propositions 3.3 and 3.14.

Corollary 3.26. Let (𝑋, ||·||𝑋) be reflexive, strictly convex, and Gateaux differentiable, let 𝜙 be a
gauge, 𝜆 ∈ ]0,∞[, and let 𝑇 : 𝑋 → 2𝑋

⋆. If (𝑇 is monotone and ran(𝑗𝜙+𝜆𝑇 ) = 𝑋⋆) or 𝑇 is maximally
monotone, then:

(i) ←−resΨ𝜙

𝜆𝑇 is single-valued on efd(←−resΨ𝜙

𝜆𝑇 ), Fix(
←−resΨ𝜙

𝜆𝑇 ) = 𝑇

p

(0) is convex, and

𝐷Ψ𝜙(𝑥, 𝑦) ≥ 𝐷Ψ𝜙(𝑥,
←−resΨ𝜙

𝜆𝑇 (𝑦)) +𝐷Ψ𝜙(
←−resΨ𝜙

𝜆𝑇 (𝑦), 𝑦) ∀(𝑥, 𝑦) ∈ Fix(←−resΨ𝜙

𝜆𝑇 )×𝑋; (140)

(ii) −→resΨ𝜙

𝜆𝑇 is single-valued on efd(−→resΨ𝜙

𝜆𝑇 ), Fix(
−→resΨ𝜙

𝜆𝑇 ) = 𝑗𝜙(𝑇

p

(0)) is 𝑗𝜙-convex, and

𝐷(Ψ𝜙)F(𝑥, 𝑦) ≥ 𝐷(Ψ𝜙)F(𝑥,
−→resΨ𝜙

𝜆𝑇 (𝑥)) +𝐷(Ψ𝜙)F(
−→resΨ𝜙

𝜆𝑇 (𝑥), 𝑦) ∀(𝑥, 𝑦) ∈ 𝑋
⋆ × Fix(−→resΨ𝜙

𝜆𝑇 ), (141)

where (Ψ𝜙)
F is given by (121).

Proof. Follows from Propositions 2.20.(i)–(iii), 3.4, and 3.14.

Proposition 3.27. Let ∅ ̸= 𝐾 ⊆ 𝑋. For any gauge 𝜙, if (𝑋, ||·||𝑋) is strictly convex, Fréchet
differentiable, reflexive, and has the Radon–Riesz–Shmul’yan property, then:

(i) if 𝐾 is convex and closed, then
←−
P
𝐷Ψ𝜙

𝐾 is norm-to-norm continuous on 𝑋, while inf𝑦∈𝐾{𝐷Ψ𝜙(𝑦, · )}
is continuous on 𝑋;

(ii) if 𝑗𝜙(𝐾) is convex and closed, then
−→
P
𝐷Ψ𝜙

𝐾 is norm-to-norm continuous on 𝑋.

Proof. (i) Taking into account Proposition 2.26.(xi), together with equivalence of Fréchet differ-
entiability of (𝑋, ||·||𝑋) with Fréchet differentiability of Ψ𝜙 (Proposition 2.26.(iv)), we conclude
that, for any gauge 𝜙, if (𝑋, ||·||𝑋) is reflexive, strictly convex, Fréchet differentiable, and has the
Radon–Riesz–Shmul’yan property, then Ψ𝜙 is totally convex and Fréchet differentiable on 𝑋 (as
well as supercoercive). Hence, Proposition 3.5.(i) applies.
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(ii) By Proposition 2.26.(iv), 𝑗𝜙 (resp., 𝑗⋆
𝜙 p ) is norm-to-norm continuous iff (𝑋, ||·||𝑋) (resp.,

(𝑋⋆, ||·||𝑋⋆)) is Fréchet differentiable (and, in such case, 𝑗𝜙 = DFΨ𝜙 (resp., 𝑗⋆
𝜙 p = DF((Ψ𝜙)

F))).
By [21, Thm. 3.9], if (𝑋, ||·||𝑋) is reflexive, then (𝑋⋆, ||·||𝑋⋆) is Fréchet differentiable iff ((𝑋, ||·||𝑋)
is strictly convex and has the Radon–Riesz–Shmul’yan property). Hence, (72) is a composition
of norm-to-norm continuous functions, and thus it is norm-to-norm continuous, under the same
assumptions on Ψ as in (ii).

(ii’) Follows from Proposition 3.5.(iii).

Proposition 3.28. Let 𝜙 be any gauge.
(i) If (𝑋, ||·||𝑋) is uniformly Fréchet differentiable and strictly convex, then Ψ𝜙 is LSQ-adapted on

any convex and closed ∅ ̸= 𝐾 ⊆ 𝑋, and
←−
P
𝐷Ψ𝜙

𝐶 is adapted for any ∅ ̸= 𝐶 ⊆ 𝐾 with convex and
closed 𝐶.

(ii) If (𝑋, ||·||𝑋) is uniformly Fréchet differentiable, strictly convex, and has the Radon–Riesz–
Shmul’yan property, then Ψ𝜙 is LSQ-compositional and RSQ-compositional.

(iii) If (𝑋, ||·||𝑋) is uniformly Fréchet differentiable and uniformly convex, then:
a) Ψ𝜙 is RSQ-adapted on any ∅ ̸= 𝐾 ⊆ 𝑋, and

−→
P
𝐷Ψ𝜙

𝐶 is adapted for any ∅ ̸= 𝐶 ⊆ 𝐾 with
convex and closed 𝑗𝜙(𝐶);

b) For any ∅ ̸= 𝐾 ⊆ 𝑋 and 𝑇 : 𝐾 → 𝑋,

𝑇 ∈ RSQ(Ψ𝜙,𝐾) ⇐⇒ 𝑗𝜙 ∘ 𝑇 ∘ (𝑗𝜙)

p ∈ LSQ(Ψ𝜙, 𝑗𝜙(𝐾)). (142)

Proof.
(i)–(ii) By Proposition 2.26.(v), (𝑋, ||·||𝑋) is uniformly Fréchet differentiable iff Ψ𝜙 is uniformly Fréchet

differentiable on bounded subsets of 𝑋. By Proposition 2.26.(xi), if (𝑋, ||·||𝑋) is reflexive, then
(it is strictly convex and has the Radon–Riesz–Shmul’yan property) iff Ψ𝜙 is totally convex
on 𝑋. The rest follows from Proposition 3.6.(i).a), as well 3.6.(i).b) and 3.6.(ii)–(iii), due to
supercoercivity of Ψ𝜙 (Proposition 3.13) and because total convexity on 𝑋 implies total convexity
on bounded subsets of 𝑋.

(iii) By Proposition 2.26.(vi), uniform convexity of (𝑋, ||·||𝑋) is equivalent with uniform Fréchet dif-
ferentiability of (Ψ𝜙)

F on bounded subsets of (𝑋⋆, ||·||𝑋⋆). By Propositions 3.6.(iv) and 3.6.(v),
this gives, respectively, (iii).a) and (iii).b).

Proposition 3.29. Let 𝛾 ∈ ]0, 12 ].
(i) If 𝜙(𝑡) ∈

{︁
1

1−𝛾 𝑡
𝛾

1−𝛾 , 𝑡
𝛾

1−𝛾

}︁
, then (𝑋, ||·||𝑋) is 1

𝛾 -uniformly convex iff 𝑗⋆𝜙 on (𝑋⋆, ||·||𝑋⋆) is single-
valued and 𝛾

1−𝛾 -Lipschitz–Hölder continuous on 𝑋.

(ii) Let 𝜙(𝑡) ∈
{︁
(1− 𝛾)

1−𝛾
𝛾 𝑡

1−𝛾
𝛾 , 𝑡

1−𝛾
𝛾

}︁
. If (𝑋, ||·||𝑋) is 1

𝛾 -uniformly convex, then (𝑗𝜙)

p is single-valued
and 𝛾

1−𝛾 -Lipschitz–Hölder continuous on 𝑋.

Proof. (i) Follows from equivalence of 1
𝛾 -uniform convexity of (𝑋, ||·||𝑋) and 1

1−𝛾 -uniform Fréchet
differentiability of (𝑋⋆, ||·||𝑋⋆) [231, p. 63 (Vol. 2)] combined with Proposition 2.26.(viii).b)–c).

(ii) Follows from (i), Proposition 2.26.(viii).b)–c), and (100).

Proposition 3.30. Let 𝜆 ∈ ]0,∞[, let (𝑋, ||·||𝑋) be reflexive, let 𝜙 be a gauge, let 𝑓 ∈ Γ(𝑋, ||·||𝑋) be
bounded from below, and lim||𝑥||𝑋→∞ 𝑓(𝑥) =∞. Then:

(i) if (𝑋, ||·||𝑋) is strictly convex and Gateaux differentiable, then ←−−prox
𝐷Ψ𝜙

𝜆,𝑓 is single-valued and con-
tinuous on 𝑋;

(ii) if (𝑋, ||·||𝑋) is strictly convex, Fréchet differentiable, and satisfies Radon–Riesz–Shmul’yan prop-
erty, then −−→prox

𝐷Ψ𝜙

𝜆,𝑓 is single-valued and continuous on 𝑋.
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Proof. Follows from Proposition 3.7.(i)–(ii), and the same reasoning as in the proof of Proposition
3.27.(i)–(ii).

Proposition 3.31. Let (𝑋, ||·||𝑋) be a Banach space, let 𝜙 be a gauge, and let 𝑇 : 𝑋 → 2𝑋
⋆ be

maximally monotone with 0 ∈ efd(𝑇 ). Then:
(i) if (𝑋, ||·||𝑋) is Fréchet differentiable and uniformly convex, then ←−resΨ𝜙

𝑇 = (𝑇 + 𝑗𝜙)

p ∘ 𝑗𝜙 maps 𝑋
on efd(𝑇 ) and is norm-to-norm continuous on 𝑋;

(ii) if (𝑋, ||·||𝑋) is strictly convex, uniformly Fréchet differentiable, and has Radon–Riesz–Shmul’yan
property, then −→resΨ𝜙

𝑇 = (𝑗𝜙)

p ∘(𝑇+𝑗𝜙)

p maps 𝑋⋆ on 𝑗𝜙(efd(𝑇 )) and is norm-to-norm continuous
on 𝑋⋆.

Proof. (i) By [77, Thm. 5.(c)], if (𝑋, ||·||𝑋) is Gateaux differentiable and uniformly convex, 𝜙 is a
gauge, and 𝑇 : 𝑋 → 2𝑋

⋆ is maximally monotone with 0 ∈ efd(𝑇 ), then (𝑇 + 𝑗𝜙)

p is a norm-to-
norm continuous map from 𝑋⋆ to efd(𝑇 ). (While the explicit statement of this theorem assumes
additionally that 𝑇 = 𝜕𝑓 for 𝑓 ∈ Γ(𝑋, ||·||𝑋), its proof does not depend on this assumption.) The
rest follows from Proposition 2.26.(iv).b) and composability of norm-to-norm continuous maps
on Banach spaces.

(ii) From Proposition 2.18.(i) it follows that −→resΨ𝜙

𝑇 = DGΨ𝜙 ∘ ←−res
Ψ𝜙

𝑇 ∘ DG(Ψ𝜙)
F with efd(−→resΨ𝜙

𝑇 ) =

DGΨ𝜙(efd(
←−resΨ𝜙

𝑇 )) and ran(−→resΨ𝜙

𝑇 ) = DGΨ𝜙(ran(
←−resΨ𝜙

𝑇 )). Furthermore, due to (103) and (121),
(Ψ𝜙)

F = Ψ𝜙 p and (𝑗𝜙)

p

= 𝑗⋆
𝜙 p . The rest follows from (i), combined with the equivalence of

(Gateaux diferentiability and uniform convexity of (𝑋, ||·||𝑋)) with (strict convexity and uniform
Fréchet differentiability of (𝑋⋆, ||·||𝑋⋆)), Proposition 2.26.(iv).b) applied to 𝑗𝜙 and 𝑗⋆

𝜙 p , and the
fact [21, Thm. 3.9] that (reflexivity, strict convexity, and Radon–Riesz–Shmul’yan property of
(𝑋, ||·||𝑋)) implies Fréchet differentiability of (𝑋⋆, ||·||𝑋⋆).

Proposition 3.32. Let (𝑋, ||·||𝑋) be a Banach space, let 𝛽 ∈ ]0, 1[, let 𝑇 : 𝑋 → 2𝑋
⋆ be maximally

monotone, let 𝑓 ∈ Γ(𝑋, ||·||𝑋), let 𝑔 : 𝑋 → ]−∞,∞] satisfy 𝑔 ∘ 𝑗𝜙1,1−𝛽
∈ Γ(𝑋⋆, ||·||𝑋⋆) for 𝛽 ∈ [12 , 1[, let

𝜆 ∈ ]0,∞[ and 𝑟 ∈ ]1, 2]. Then:

(i) if 𝛽 ∈ ]0, 12 ] and (𝑋, ||·||𝑋) is 1
𝛽 -uniformly convex and uniformly Fréchet differentiable, then←−res

Ψ𝜙1,𝛽

𝜆𝑇

and ←−−prox
𝐷Ψ𝜙1,𝛽

𝜆,𝑓 are single-valued and uniformly continuous on bounded subsets of 𝑋;
(ii) if 𝛽 ∈ ]0, 12 ] and (𝑋, ||·||𝑋) is 1

𝛽 -uniformly convex and 𝑟-uniformly Fréchet differentiable, then
←−res

Ψ𝜙1,𝛽

𝜆𝑇 and ←−−prox
𝐷Ψ𝜙1,𝛽

𝜆,𝑓 are single-valued and (𝑟 − 1) 𝛽
1−𝛽 -Lipschitz–Hölder continuous on 𝑋;

(iii) if 𝛽 ∈ [12 , 1[ and (𝑋, ||·||𝑋) is uniformly convex and 1
𝛽 -uniformly Fréchet differentiable, then

−→res
Ψ𝜙1,𝛽

𝜆𝑇 is single-valued and uniformly continuous on bounded subsets of 𝑋⋆, while −−→prox
𝐷Ψ𝜙1,𝛽

𝜆,𝑔 is
single-valued and uniformly continuous on bounded subsets of 𝑋;

(iv) if 𝛽 ∈ [12 , 1[ and (𝑋, ||·||𝑋) is 𝑟
𝑟−1 -uniformly convex and 1

𝛽 -uniformly Fréchet differentiable, then
−→res

Ψ𝜙1,𝛽

𝜆𝑇 is single-valued and ( (1−𝛽)(𝑟−1)𝛽 )2-Lipschitz–Hölder continuous on bounded subsets of 𝑋⋆,

while −−→prox
𝐷Ψ𝜙1,𝛽

𝜆,𝑔 is single-valued and ( (1−𝛽)(𝑟−1)𝛽 )2-Lipschitz–Hölder continuous on bounded sub-
sets of 𝑋.

Proof. (i) By [290, Ex. 6.7], if (𝑋, ||·||𝑋) is Gateaux differentiable and 1
𝛽 -uniformly convex, then

(DGΨ𝜙1,𝛽
+ 𝜆𝑇 )

p is single-valued and 𝛽
1−𝛽 -Lipschitz–Hölder continuous on 𝑋. Combining this

with Proposition 2.26.(v).b) gives the result for←−res
Ψ𝜙1,𝛽

𝜆𝑇 . The result for←−−prox
𝐷Ψ𝜙1,𝛽

𝜆,𝑓 follows in the
same way as in Proposition 3.8. (Equivalently, the same conclusion follows from Proposition 3.8,
combined with Propositions 2.26.(v).b) and 2.26.(vii).b).)

(ii) Follows from the proof of (i), Proposition 2.26.(viii).c), and the fact that the composition of
Lipschitz–Hölder continuous maps has the exponent given by the multiplication of the exponents
of the composite maps.
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(iii) From Proposition 2.18.(i), we obtain

−→res
Ψ𝜙1,𝛽

𝜆𝑇 = 𝑗𝜙1,𝛽
∘←−res

Ψ𝜙1,𝛽

𝜆𝑇 ∘ (𝑗𝜙1,𝛽
)

p

. (143)

The result for −→res
Ψ𝜙1,𝛽

𝜆𝑇 follows from combining (i) with Propositions 2.26.(vi).c) and 2.26.(v).b),
and with the fact that 1

𝛽 -uniform Fréchet differentiability of (𝑋, ||·||𝑋) implies its Fréchet differ-

entiability. The result for −−→prox
𝐷Ψ𝜙1,𝛽

𝜆,𝑔 follows the same way, using Proposition 2.18.(ii).
(iv) By

(𝑗𝜙1,𝛽
)

p

= (DGΨ𝜙1,𝛽
)

p

= DG((Ψ𝜙1,𝛽
)F) = 𝑗⋆

(𝜙1,𝛽)

p = 𝑗⋆𝜙1,1−𝛽
, (144)

(143) gives
−→res

Ψ𝜙1,𝛽

𝜆𝑇 = 𝑗𝜙1,𝛽
∘←−res

Ψ𝜙1,𝛽

𝜆𝑇 ∘ 𝑗⋆𝜙1,1−𝛽
. (145)

By [231, p. 63 (Vol. 2)], 1
𝛾 -uniform convexity of (𝑋, ||·||𝑋) is equivalent with 1

1−𝛾 -uniform Fréchet
differentiability of (𝑋⋆, ||·||𝑋⋆) ∀𝛾 ∈ ]0, 12 ]. By [196, Cor. 2.35], if a Banach space (𝑋, ||·||𝑋) is
𝑠-uniformly Fréchet differentiable, 𝑠 ∈ ]1, 2],26 and 𝑤 ∈ ]1,∞[, then 𝑗𝜙1,1/𝑤

is single-valued and
min{𝑤 − 1, 𝑠− 1}-Lipschitz–Hölder continuous on bounded subsets of 𝑋. Setting 1− 𝛽 = 𝑤 for
𝛽 ∈ [12 , 1[ gives 𝑤 ∈ [2,∞[, hence min{ 1

1−𝛽 − 1, 𝑟− 1} = 𝑟− 1. Combining this with (ii) and with

Proposition 2.26.(viii).c), we obtain that the map (145) is 1−𝛽
𝛽

(︁
1−𝛽
𝛽 (𝑟 − 1)

)︁
(𝑟 − 1)-Lipschitz–

Hölder continuous on 𝑋⋆. The result for −−→prox
𝐷Ψ𝜙1,𝛽

𝜆,𝑔 follows completely analogously.

Proposition 3.33. Let (𝑋, ||·||𝑋) be a Banach space, 𝛽 ∈ ]0, 1[, 𝑟 ∈ ]1, 2], ∅ ̸= 𝐾 ⊆ 𝑋. Then:
(i) if 𝛽 ∈ ]0, 12 ], (𝑋, ||·||𝑋) is 1

𝛽 -uniformly convex and uniformly Fréchet differentiable, and 𝐾 is convex

and closed, then
←−
P
𝐷Ψ𝜙1,𝛽

𝐾 is uniformly continuous on bounded subsets of 𝑋;
(ii) if 𝛽 ∈ ]0, 12 ], (𝑋, ||·||𝑋) is 1

𝛽 -uniformly convex and 𝑟-uniformly Fréchet differentiable, and 𝐾 is

convex and closed, then
←−
P
𝐷Ψ𝜙1,𝛽

𝐾 is 𝛽(𝑟−1)
1−𝛽 -Lipschitz–Hölder continuous on 𝑋;

(iii) if 𝛽 ∈ [12 , 1[, (𝑋, ||·||𝑋) is 1
𝛽 -uniformly Fréchet differentiable and uniformly convex, and 𝑗𝜙1,𝛽

(𝐾)

is convex and closed, then
−→
P
𝐷Ψ𝜙1,𝛽

𝐾 is uniformly continuous on bounded subsets of 𝑋;
(iv) if 𝛽 ∈ [12 , 1[, (𝑋, ||·||𝑋) is 1

𝛽 -uniformly Fréchet differentiable and 𝑟
𝑟−1 -uniformly convex, and

𝑗𝜙1,𝛽
(𝐾) is convex and closed, then

−→
P
𝐷Ψ𝜙1,𝛽

𝐾 is (1−𝛽)2
𝛽2 (𝑟 − 1)2-Lipschitz–Hölder continuous on

bounded subsets of 𝑋.

Proof.
(i)–(ii) Follows from Propositions 3.32.(i)–(ii) and 2.19.(ii), by setting 𝑇 = 𝜕𝜄𝐾 and 𝜆 = 1.

(iii) Follows from (i), taken together with (72), analogously to the proof of Proposition 3.32.(iii),
using (144), and replacing (145) by

−→
P
𝐷Ψ𝜙1,𝛽

𝐾 (𝑥) = 𝑗⋆𝜙1,1−𝛽
∘
←−
P
𝐷Ψ𝜙1,1−𝛽

𝑗𝜙1,𝛽
(𝐾) ∘ 𝑗𝜙1,𝛽

(𝑥) ∀𝑥 ∈ 𝑋. (146)

(iv) Follows from (ii), analogously to the proof of Proposition 3.32.(iv), with the same substitution
as in (iii).

Definition 3.34. Let 𝜙 be a gauge. A Banach space (𝑋, ||·||𝑋) will be called 𝜙-uniformly convex
(resp., 𝜙-uniformly Fréchet differentiable) iff Ψ𝜙 is uniformly convex (resp., uniformly Fréchet
differentiable) on (𝑋, ||·||𝑋).

26While [196, Cor. 2.35] uses 𝑠 ∈ ]1,∞], the limitation to 𝑠 ∈ ]1, 2] follows from the fact that there are no 𝑠-uniformly
Fréchet differentiable spaces for (𝑠 < 1 as well as) 𝑠 > 2 (cf., e.g., [355, pp. 8–9] for a proof).
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Corollary 3.35. For any gauge 𝜙, a Banach space (𝑋, ||·||𝑋) is 𝜙-uniformly convex (resp., 𝜙-uniformly
Fréchet differentiable) iff (𝑋⋆, ||·||𝑋⋆) is 𝜙-uniformly Fréchet differentiable (resp., 𝜙-uniformly convex).

Proof. Follows directly from Lemma 3.10.

Proposition 3.36. If (𝑋, ||·||𝑋) is reflexive, strictly convex, Gateaux differentiable, 𝜙 is a gauge, ∅ ̸=
𝐾1 ⊂ 𝑋 is a closed convex cone with a vertex at 0 ∈ 𝑋, ∅ ̸= 𝐾2 ⊂ 𝑋, 𝑗𝜙(𝐾2) is a closed convex cone
with a vertex at 0 ∈ 𝑋⋆, then

∀𝑥 ∈ 𝑋

⎧⎨⎩ 𝑥 = 𝑗⋆
𝜙 p ∘ P̂

(Ψ𝜙)F

𝐾∘
1
∘ 𝑗𝜙(𝑥) +

←−
P
𝐷Ψ𝜙

𝐾1
(𝑥)[︁[︁←−

P
𝐷Ψ𝜙

𝐾1
(𝑥), P̂

(Ψ𝜙)F

𝐾∘
1
∘ 𝑗𝜙(𝑥)

]︁]︁
𝑋×𝑋⋆

= 0
(147)

and

∀𝑦 ∈ 𝑋

⎧⎨⎩ 𝑦 = P̂
Ψ𝜙

(𝑗𝜙(𝐾2))∘
(𝑦) +

−→
P
𝐷Ψ𝜙

𝐾2
(𝑦)[︁[︁

𝑗⋆
𝜙 p ∘

−→
P
𝐷Ψ𝜙

𝐾2
(𝑦), P̂

Ψ𝜙

(𝑗𝜙(𝐾2))∘
(𝑦)
]︁]︁
𝑋×𝑋⋆

= 0,
(148)

where, for any strictly convex function 𝑓 and convex closed set 𝐶, P̂𝑓
𝐶(𝑥) := arg inf𝑧∈𝐶 {Ψ(𝑥− 𝑧)}

∀𝑥 ∈ 𝑋 and P̂𝑓
𝐶 ∘ P̂

𝑓
𝐶(𝑥) = P̂𝑓

𝐶(𝑥) ∀𝑥 ∈ 𝑋. Furthermore, if ∅ ̸= 𝐾1 ⊆ 𝑋 (resp., ∅ ̸= 𝑗𝜙(𝐾2) ⊆ 𝑋⋆)
is a linear subspace instead of a closed convex cone, then (147) (resp., (148)) holds under replacement
of (·)∘ with (·)⊥.

Proof. Follows from Propositions 3.11, 2.26.(ii)–(iii), 3.13, and (100).

Remark 3.37. (i) (123) and (133)–(136) are new. The same holds for the equations in Lemma
3.20. The first implicit appearance of the formula equivalent to a statement of nonnegativity of
𝐷Ψ𝜙 (more precisely, of 𝐷𝜕

Ψ𝜙
) can be found in [27, Thm. 1]. (Nonnegativity of 𝐷Ψ as a condition

characterising monotonicity of 𝜕Ψ appeared earlier, in [188, Thm. 3].) For Ψ = Ψ𝜙1/2,1/2
and

Ψ = Ψ𝜙1,𝛽
, 𝛽 ∈ ]0, 1[, an identification of this formula as corresponding to the Văınberg–Brègman

functional, together with a study of
←−
P𝐷Ψ , was made in [8, §7] and [10, §7].

(ii) Proposition 3.14 clarifies relationships between the Euler–Legendre property and total convexity
of Ψ𝜙: the former is equivalent to (strict convexity and Gateaux differentiability) of (𝑋, ||·||𝑋),
while the latter is implied by the local uniform convexity of (𝑋, ||·||𝑋), hence it entails strict con-
vexity and the Radon–Riesz–Shmul’yan property of (𝑋, ||·||𝑋) (implication of the latter property
is proved in [345, Prop. (p. 352)]). The lack of Gateaux differentiability in the latter case should
be seen in the context of total convexity being defined by DG

+Ψ (and thus 𝐷+
Ψ) instead of DGΨ

(and thus 𝐷Ψ). For reflexive (𝑋, ||·||𝑋), Ψ𝜙 is totally convex iff (𝑋, ||·||𝑋) is strictly convex and has
the Radon–Riesz–Shmul’yan property [298, Thms. 3.1, 3.3]. An example of a reflexive, strictly
convex, Gateaux differentiable Banach space (𝑋, ||·||𝑋) which does not satisfy the Radon–Riesz–
Shmul’yan property, so Ψ𝜙 is Euler–Legendre but is not totally convex, is provided in [42, Ex.
2.5].

(iii) Let (𝑋, ||·||𝑋) be a Banach space, let ∅ ̸= 𝐾 ⊆ 𝑋 be convex and closed, and consider a metric

projection, defined as a set-valued map P
𝑑||·||𝑋
𝐾 : 𝑋 ∋ 𝑥 ↦→ arg inf𝑦∈𝐾 {||𝑦 − 𝑥||𝑋} ⊆ 𝐾. Then:

a) P
𝑑||·||𝑋
𝐾 exists and is unique (i.e. 𝐾 is a Chebyshëv set: P

𝑑||·||𝑋
𝐾 (𝑥) = {*} ∀𝑥 ∈ 𝑋) iff (𝑋, ||·||𝑋)

is strictly convex and reflexive [203, p. 292]27;
b) P

𝑑||·||𝑋
𝐾 is norm-to-norm (resp., norm-to-weak) continuous on 𝑋 iff (𝑋, ||·||𝑋) is strictly con-

vex, reflexive, and satisfies the Radon–Riesz–Shmul’yan property [341, Thm. (p. 813)]28

(resp., [255, Thm. 2.16]).
27An implication from right to left was proved earlier in [118, Lem. (p. 316)]. Two key components of the character-

isation result were: 1) the characterisation of strict convexity in [213, p. 179], implying equivalence of strict convexity
of (𝑋, ||·||𝑋) and uniqueness of P

𝑑||·||𝑋
𝐾 ; 2) the characterisation of reflexivity in [176, p. 167] [177, Thm. 5], implying

equivalence of reflexivity of (𝑋, ||·||𝑋) and existence of P
𝑑||·||𝑋
𝐾 [278, p. 253]. Cf., e.g., [255, Thm. 2.9] and [256, Thm.

5.1.18, p. 436] for more details.
28[142, Thm. 8] proved an implication from right to left, while [341, Thm. (p. 813)] established equivalence of norm-

to-norm continuity of P
𝑑||·||𝑋
𝐾 with (𝑋, ||·||𝑋) being strictly convex and having the Efimov–Stechkin property (cf. also
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Proposition 3.17.(i)–(ii) (resp., Proposition 3.27) can be seen as a Văınberg–Brègman analogue
of implication from right to left in a) (resp., b)). Furthermore, Proposition 3.33 provides a
Văınberg–Brègman analogue of the facts:

c) if (𝑋, ||·||𝑋) is uniformly convex, then P
𝑑||·||𝑋
𝐾 are uniformly continuous on bounded subsets

of 𝑋 [276, Thm. 4.1]29;
d) if (𝑋, ||·||𝑋) is 1

𝛽 -uniformly convex, with 𝛽 ∈ ]0, 12 ], then P
𝑑||·||𝑋
𝐾 are 𝛽-Lipschitz–Hölder con-

tinuous on bounded neighbourhoods of 𝐾 [2, Thm. 5.7];
e) if (𝑋, ||·||𝑋) is 1

𝛽 -uniformly convex and 𝑟-uniformly Fréchet differentiable, with 𝛽 ∈ ]0, 12 ] and

𝑟 ∈ ]1, 2], then P
𝑑||·||𝑋
𝐾 are 𝑟𝛽-Lipschitz–Hölder continuous on bounded neighbourhoods of 𝐾

[2, Thm. 5.8].
In general, the results on behaviour of 𝐷Ψ𝜙-projections (existence and uniqueness, norm-to-norm
continuity, uniform continuity, Lipschitz–Hölder continuity) require stronger sufficient conditions
on ||·||𝑋 than those which are sufficient for the corresponding properties of metric projections. In
all of these cases the additional strengthening guarantees a suitable differentiability of Ψ𝜙 (or its
Mandelbrojt–Fenchel dual), which is equivalent with a suitable continuity of 𝑗𝜙 (or, respectively,
𝑗⋆
𝜙 p ).

(iv) The characterisation results (iii).a) and (iii).b), considered in parallel to the characterisation
provided by Proposition 3.14, leads us to ask:

1) are the conditions for 𝐾 being left 𝐷Ψ𝜙-Chebyshëv (resp., for norm-to-norm continuity of
←−
P
𝐷Ψ𝜙

𝐾 ), imposed in Proposition 3.17 (resp., Proposition 3.27.(i)), not only sufficient but
also necessary?

Additionally, a comparison of (iii).a) and (iii).b) with (iii).c), as well as a comparison of (iii).c)
and Proposition 3.33.(i)–(ii) with (iii).d)–(iii).e), in the context of Proposition 2.26, leads us to
ask:

2) does uniform continuity of P
𝑑||·||𝑋
𝐾 on bounded subsets of (𝑋, ||·||𝑋) imply (and, thus, char-

acterise) uniform convexity of (𝑋, ||·||𝑋)?;
3) do the results d)–e) hold, with the same values of parameters, globally (i.e. for the Lipschitz–

Hölder continuity of P
𝑑||·||𝑋
𝐾 on bounded subsets of (𝑋, ||·||𝑋))?

(v) For any Gateaux differentiable (𝑋, ||·||𝑋), 𝛽 ∈ ]0, 1[, and 𝛼 ∈ ]0,∞[, (104) gives us a special case
of (123),

𝐷Ψ𝜙𝛼,𝛽
(𝑥, 𝑦) = 1

𝛼

(︁
𝛽||𝑥||1/𝛽𝑋 + (1− 𝛽)||𝑦||1/𝛽𝑋 − ||𝑦||1/𝛽−2𝑋 [[𝑥, 𝑗(𝑦)]]𝑋×𝑋⋆

)︁
∀𝑥, 𝑦 ∈ 𝑋. (149)

The formula (149) is a tiny generalisation of 𝐷Ψ𝜙1,𝛽
. For some discussion of the properties of

Ψ𝜙𝛼,𝛽
see [175, p. 616].

(vi) Proposition 3.14 provides a generalisation of [40, Lem. 6.2]. The latter is recovered for 𝜙 = 𝜙1,𝛽 .

For any Gateaux differentiable (𝑋, ||·||𝑋), (104) gives gives DGΨ𝜙1,𝛽
(𝑥) = ||𝑥||

1
𝛽
−2

𝑋 𝑗(𝑥) (cf. [234]).
The corresponding Văınberg–Brègman functional appeared implicitly in [358, p. 68], and was

explicitly discussed, together with a study of
←−
P
𝐷Ψ𝜙1,𝛽

𝐾 for nonempty, closed, convex 𝐾 ⊆ 𝑋, in
[8, pp. 14–15] and [10, §7], as well as in [312, 313, 314]. For any (𝑋, ||·||𝑋) which is reflexive,
strictly convex, and has the Radon–Riesz–Shmul’yan property, total convexity of Ψ𝜙1,𝛽

follows
directly from [298, Thm. 3.1].

[274, Thm. (p. 459), p. 466] for an earlier, and equivalent, characterisation result). By [320, Cor. 3] (cf. also [340, Prop.
2.5]), this is equivalent to say that (𝑋, ||·||𝑋) is strictly convex, reflexive, and has the Radon–Riesz–Shmul’yan property.
(The claim of a counterexample for this characterisation, stated in [216, Thm. 2.1], has been shown [125, §5] to contain
an error, invalidating this claim. On the other hand, the claim of characterisation of norm-to-norm continuity of P

𝑑||·||𝑋
𝐾

by (reflexivity and strict convexity) of (𝑋, ||·||𝑋), stated in [243, Thm. E], is not equipped with any proof, and refers to
a paper that has never been published or cited elsewhere.)

29For uniformly convex and uniformly Fréchet differentiable (𝑋, ||·||𝑋) this implication has been obtained earlier in
[354, Thm. 2.(ii)] [16, Thm. 3.1, Rem. 3.2] [9, Thm. 3.1, Rem. 3.4]. For uniformly convex (resp., uniformly convex and
uniformly Fréchet differentiable) (𝑋, ||·||𝑋) the implication of uniform continuity of P

𝑑||·||𝑋
𝐾 on bounded neighbourhoods

of 𝐾 has been obtained earlier in [49, Lem. 2.5] (resp., [351, Thm. 4]).
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(vii) Proposition 3.27.(i) is a generalisation of [298, Cor. 4.4]. The latter is recovered for 𝜙 = 𝜙𝛽,𝛽
(for a Gateaux differentiable (𝑋, ||·||𝑋), the corresponding 𝐷Ψ𝜙𝛽,𝛽

was discussed in [14, 88]). The
use of Proposition 3.5.(i) (resp., 3.5.(iii)) in the proof of Proposition 3.27.(i) (resp., 3.27.(ii)),
instead of Proposition 3.5.(ii) (resp., 3.5.(iv)) is due to their larger generality in the Ψ = Ψ𝜙

case. More precisely, since 3.5.(ii) requires Ψ𝜙 to be totally convex on bounded subsets of 𝑋,
and any Ψ ∈ Γ(𝑋, ||·||𝑋) is totally convex on bounded subsets of 𝑋 iff it is uniformly convex
on bounded subsets of 𝑋 [87, Prop. 4.2], Proposition 2.26.(vi) implies that (𝑋, ||·||𝑋) has to be
uniformly convex. Thus, using Proposition 3.5.(ii) instead of Proposition 3.5.(i) in the proof
would require us to strengthen an assumption of (reflexivity, strict convexity, and the Radon–
Riesz–Shmul’yan property of (𝑋, ||·||𝑋)) to uniform convexity. Analogous situation holds for the
Proposition 3.27.(ii).

(viii) If 𝛼 = 1 and 𝛽 = 1
2 , then 𝜙𝛼,𝛽(𝑡) = 𝑡 and Ψ𝜙1,1/2

(𝑥) = 1
2 ||𝑥||

2
𝑋 . If (𝑋, ||·||𝑋) is Gateaux differen-

tiable, then DGΨ𝜙1,1/2
= ||·||𝑋DG||·||𝑋 = 𝑗 and we obtain a special case of (149), given by [15, p.

1035] [7, p. 5] [8, §7] [10, §7] (cf. also [362, Def. 1])

𝐷Ψ𝜙1,1/2
(𝑥, 𝑦) = 1

2 ||𝑥||
2
𝑋 + 1

2 ||𝑦||
2
𝑋 − [[𝑥, 𝑗(𝑦)]]𝑋×𝑋⋆ ∀𝑥, 𝑦 ∈ 𝑋. (150)

In general, if (𝑋, ||·||𝑋) is not a Hilbert space, then neither left nor right 𝐷Ψ𝜙1,1/2
-projections

coincide with metric projections (cf. [14, p. 39] for a simple example). If (𝑋, ||·||𝑋) is reflexive,

Gateaux differentiable, strictly convex, and 𝑥 ∈ 𝑋, then: left 𝐷Ψ𝜙1,1/2
-projections

←−
P
𝐷Ψ𝜙1,1/2

𝐾 (𝑥)

onto closed convex sets 𝐾 are characterised as 𝑧 ∈ 𝑋 satisfying variational inequality [10, Prop.
7.c]

[[𝑧 − 𝑦, 𝑗(𝑥)− 𝑗(𝑧)]]𝑋×𝑋⋆ ≥ 0 ∀𝑦 ∈ 𝐾, (151)

which is a special case of (67); if 𝐾 ⊆ 𝑋 is left 𝐷Ψ𝜙1,1/2
-Chebyshëv then 𝐾 is convex iff it is

weakly closed [242, Cor. 4.2] (cf. Corollary 3.16). See [8, 10, 13] for further properties of left
𝐷Ψ𝜙1,1/2

-projections in this case.
(ix) It is quite noticeable that Proposition 3.13 and Corollary 3.15.(iii) provide jointly all three key

convexity properties of Ψ𝜙 (i.e. Ψ𝜙 being supercoercive, totally convex, and Euler–Legendre)
without assuming reflexivity of (𝑋, ||·||𝑋). Additionally, the sum of Proposition 3.13 and Corollary
3.15.(iii) can be considered as a far generalisation of Example 2.2.(vi) from Ψ = Ψ𝜙1,1/2

and
𝑋 = R𝑛 to Ψ = Ψ𝜙 for any gauge 𝜙 and any Gateaux differentiable, strictly convex, locally
uniformly convex Banach space (𝑋, ||·||𝑋). The equation (63) is recovered from (150) by setting
(𝑋, ||·||𝑋) = (𝐿1/𝛾(𝒳 , 𝜇), ||·||1/𝛾) with purely atomic finite (𝒳 , 𝜇), and applying the formula for 𝑗

on (𝐿1/𝛾(𝒳 , 𝜇), ||·||1/𝛾), which reads [253, p. 132] 𝑗(𝑥) = ||𝑥||2−1/𝛾1/𝛾 |𝑥|1/𝛾−1sgn(𝑥).
(x) If 𝛼 = 1, 𝛽 = 1

2 , and (𝑋, ||·||𝑋) is a Hilbert space (ℋ, ⟨·, ·⟩ℋ), then (Ψ𝜙1,1/2
)F = Ψ𝜙1,1/2

= 1
2 ||·||

2
ℋ,

DGΨ𝜙1,1/2
= idℋ with DGΨ𝜙1,1/2

(𝑦)(𝑥) = ⟨𝑥, 𝑦⟩ℋ, and (150) turns into [67, p. 1021] [68, §2.1]

𝐷Ψ𝜙1,1/2
(𝑥, 𝑦) = 1

2 ||𝑥||
2
ℋ + 1

2 ||𝑦||
2
ℋ − ⟨𝑥, 𝑦⟩ℋ = 1

2 ||𝑥− 𝑦||
2
ℋ ∀𝑥, 𝑦 ∈ ℋ. (152)

In consequence, Chebyshëv, left 𝐷Ψ𝜙1,1/2
-Chebyshëv, and right 𝐷Ψ𝜙1,1/2

-Chebyshëv subsets of ℋ
coincide, with

←−
P
𝐷Ψ𝜙1,1/2

𝐾 (𝑦) =
−→
P
𝐷Ψ𝜙1,1/2

𝐾 (𝑦) = P
𝑑||·||ℋ
𝐾 (𝑦) ∀𝑦 ∈ ℋ ∀ Chebyshëv 𝐾 ⊆ ℋ. (153)

In particular, for any convex closed 𝐾 ⊆ ℋ, the metric projection P
𝑑||·||ℋ
𝐾 (𝑦) is characterised as

a map 𝑇 : ℋ → 𝐾 satisfying [24, p. 87]

⟨𝑦 − 𝑇 (𝑥), 𝑥− 𝑇 (𝑥)⟩ℋ ≤ 0 ∀(𝑥, 𝑦) ∈ ℋ ×𝐾. (154)

If 𝐾 is affine, then the generalised pythagorean equation (71) turns into

||𝑥− 𝑦||2ℋ =
⃒⃒⃒⃒⃒⃒
𝑥−P

𝑑||·||ℋ
𝐾 (𝑦)

⃒⃒⃒⃒⃒⃒ 2
ℋ
+
⃒⃒⃒⃒⃒⃒
P
𝑑||·||ℋ
𝐾 (𝑦)− 𝑦

⃒⃒⃒⃒⃒⃒ 2
ℋ
∀(𝑥, 𝑦) ∈ 𝐾 ×ℋ (155)
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(with P
𝑑||·||ℋ
𝐾 given by the bounded linear projection operator 𝑃𝐾 : ℋ → 𝐾 if 𝐾 is a linear

subspace of ℋ), while the generalised cosine equation (40) turns into

||𝑥− 𝑧||2ℋ = ||𝑥− 𝑦||2ℋ + ||𝑦 − 𝑧||2ℋ − 2 ⟨𝑥− 𝑦, 𝑧 − 𝑦⟩ℋ ∀𝑥, 𝑦, 𝑧 ∈ ℋ (156)

(which, for ℋ = R2 with ⟨𝑥, 𝑦⟩ℋ =
∑︀2

𝑖=1 𝑥𝑖𝑦𝑖, gives the cartesian version of a planar cosine
theorem of al-Kāshān̄ı [6]30). On the other hand, left and right strongly quasinonexpansive
operators with respect to Ψ𝜙1,1/2

on ℋ do not coincide, in general, with the strongly ||·||ℋ-
nonexpansive operators of [79, p. 459], although for ℋ = R𝑛 the latter are the subset of the
former [247, Rem. 3].

(xi) While there is no general notion of an angle between two elements of a general Banach space, the
relationship between (40) and (156) allows us to introduce a Ψ-angle between nonzero vectors
𝑥− 𝑦, 𝑧 − 𝑦 ∈ 𝑋, for any reflexive and Gateaux differentiable Banach space (𝑋, ||·||𝑋):

∡Ψ(𝑥− 𝑦, 𝑧 − 𝑦) := arccos

(︃[︀[︀
𝑥− 𝑦,DGΨ(𝑧)−DGΨ(𝑦)

]︀]︀
𝑋×𝑋⋆

2||𝑥− 𝑦||𝑋 ||𝑧 − 𝑦||𝑋

)︃
. (157)

(xii) Not much is known so far about weak sequential continuity of 𝑗𝜙 = DGΨ𝜙 for arbitrary gauge 𝜙
and arbitrary Banach spaces. It is known to hold for 𝜙 = 𝜙1,𝛽 on sequence spaces (𝑙1/𝛽, ||·||1/𝛽)
with 𝛽 ∈ ]0, 1[ [75, Lem. 5], and on arbitrary infinite-dimensional Hilbert spaces iff 𝛽 = 1

2 [352,
Prop. 3.3]. On the other hand, it is known that 𝑗𝜙 is not weakly sequentially continuous for
arbitrary 𝜙 on (𝐿1/𝛾(𝒳 , 𝜇), ||·||1/𝛾) spaces with 𝛾 ∈ ]0, 1[∖{12} and nonatomic finite (𝒳 , 𝜇) [273,
Lem. 3, §5] (cf. [75, p. 268] for 𝛾 = 1

4 case), and for 𝜙(𝑡) = 𝑡 on (𝑙1/𝛾 , ||·||1/𝛾) spaces for
𝑝 ∈ ]0, 1[∖{12} [352, Prop. 3.2]. These are quite severe limitations, appearing already at the range
of elementary model spaces. By this reason, in Propositions 3.6.(iv) and 3.28 we have omitted the
case a) of Proposition 2.16.(iv) in favour of case b), which is much better behaved geometrically,
and (as we will show in Section 4) admits a direct application to a range of noncommutative
model spaces. In the broader perspective, dependence of weak sequential continuity of DGΨ𝜙 on
the specific choice of 𝜙 makes it a property of a different character from all other properties of
Ψ𝜙 and DGΨ𝜙 used in this paper for the case I–IV models. So, even if it would be available for
a larger class of models, relying on it would break the invariance of our framework with respect
to the choice of a gauge, and this would be a structurally undesirable feature. Nevertheless, in
face of the relationships in Proposition 2.26, it is tempting to ask: what kind of differentiability
property of Ψ𝜙 (and of (𝑋, ||·||𝑋)) is equivalent to weak sequential continuity of 𝑗𝜙?

(xiii) Corollary 3.35 provides a generalisation of the duality between 1
𝛾 -uniformly convex and 1

1−𝛾 -
uniformly Fréchet differentiable Banach spaces, 𝛾 := 1

𝑟 ∈ ]0, 1[, as exhibited in Proposition
2.26.(vii)–(viii) (and originally stated in [231, p. 63 (Vol. 2)]; the case 𝛾 = 1

2 goes back to
[230, Lem. 4]). Proposition 2.26.(viii).b) leads us to ask: is it possible to identify a specific type
of uniform continuity of 𝑗𝜙 which would be equivalent to 𝜙-uniform Fréchet differentiability of
(𝑋, ||·||𝑋)? And, if yes, then is it possible to use it to generalise Proposition 3.33 by replacing
𝜙1,𝛽 by any gauge 𝜙, together with replacing 1

𝛽 -uniform convexity (resp., 1
𝛽 -uniform Fréchet dif-

ferentiability) by 𝜙-uniform convexity (resp., 𝜙-uniform Fréchet differentiability)? An analogous
question of an extension rises with respect to [324, Thm. 5] (=[195, Thms. 1, 2]), which states
that 𝑟-uniform convexity (resp., 𝑟-uniform Fréchet differentiability) of a Banach space (𝑋, ||·||𝑋)
is equivalent with (𝑋, ||·||𝑋) having a strong type (resp., strong cotype) 𝑟, as defined in [324,
Def. 2] (=[195, Rems. 2.(iii), 3.(iii)]). Is it possible to define the corresponding notions of a
strong 𝜙-type (resp., strong 𝜙-cotype), which would be equivalent to 𝜙-uniform convexity (resp.,
𝜙-uniform Fréchet differentiability)?

(xiv) The special case of Proposition 3.36, for 𝜙(𝑡) = 𝑡 and
←−
P
𝐷Ψ𝜙

𝐾1
, has been obtained in [11, Thm.

2.4] (cf. [12, Thm. 2.13] for its nontrivial consequence). For 𝜙(𝑡) = 𝑡 and (𝑋, ||·||𝑋) given by a
Hilbert space, this result has been obtained in [259, Prop. 1].

30More precisely, al-Kāshān̄ı states 𝑐 =
√︀

(𝑎 sin 𝜃)2 + (𝑏− 𝑎 cos 𝜃)2, that is equivalent to 𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝜃 via
(sin 𝜃)2 + (cos 𝜃)2 = 1. Cf. p. 143 of Russ. transl. or p. 31 of Vol. 2 of Engl. transl.
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(xv) If (𝑋, ||·||𝑋) is reflexive and Gateaux differentiable, and 𝜙 is a gauge, then ∀𝑥, 𝑦 ∈ 𝑋

𝐷Ψ𝜙(𝑥, 𝑦) =

{︂
Ψ𝜙(𝑥) + (Ψ𝜙)

F(𝑗𝜙(𝑦))− ⟨⟨𝑥, 𝑦⟩⟩𝜙 : 𝑦 ̸= 0

Ψ𝜙(𝑥) : 𝑦 = 0,
(158)

where

⟨⟨ · , 𝑥⟩⟩𝜙 :=

{︃
𝜙(||𝑥||𝑋)
||𝑥||𝑋

⟨⟨ · , 𝑥⟩⟩ : 𝑥 ̸= 0

0 : 𝑥 = 0,
(159)

and ⟨⟨𝑥, 𝑦⟩⟩ := (𝑗(𝑦))(𝑥). For any Banach space (𝑋, ||·||𝑋), if 𝑥, 𝑦 ∈ 𝑋, then 𝑥 is said to be
orthogonal to 𝑦 iff ||𝑥+ 𝜆𝑦||𝑋 ≥ ||𝑥||𝑋 ∀𝜆 ∈ R [52, p. 169]. If (𝑋, ||·||𝑋) is Gateaux differentiable,
then 𝑥 is orthogonal to 𝑦 iff (𝑗(𝑦))(𝑥) = 0 (cf., e.g., [145, Prop. 1.4.4]). Hence, ⟨⟨ · , · ⟩⟩𝜙 can be
seen as a generalised form of orthogonality. (The notation ⟨⟨ · , · ⟩⟩ refers to Lumer’s semi-inner
product [239, Def. 1], which in the case of Gateaux differentiable (𝑋, ||·||𝑋) is given uniquely by
(𝑗(·))(·).) In particular, for Ψ = Ψ𝜙, the formula (157) turns into

∡Ψ𝜙(𝑥− 𝑦, 𝑧 − 𝑦) := arccos

(︂⟨⟨𝑥− 𝑦, 𝑧⟩⟩𝜙 − ⟨⟨𝑥− 𝑦, 𝑦⟩⟩𝜙
2||𝑥− 𝑦||𝑋 ||𝑧 − 𝑦||𝑋

)︂
. (160)

(xvi) Corollary 3.21 provides an alternative proof of Corollary 3.15.(i). Proposition 3.13 (resp., 3.14;
3.17) is a special case of Proposition 3.22.(iii) (resp., 3.23; 3.24). We have separated these
propositions in order to illustrate the differences showing up under generalisation from gauges
to quasigauges. In principle, provided a quasigauge generalisation of Propositions 2.26.(iv) and
2.26.(xii), one could use Propositions 3.5 and 3.6, combined with Propositions 2.29.(iii)–(iv), to
obtain a quasigauge generalisation of Propositions 3.27 and 3.28. (Even a quasigauge analogue
of Proposition 2.26.(xii) would suffice, although in this case the corresponding generalisation of
Proposition 3.27 would be less general, using local uniform convexity of (𝑋, ||·||𝑋) and (𝑋, ||·||𝑋)⋆
instead of their Fréchet differentiability.) For our current purposes it is sufficient to compare
Proposition 3.17 with Proposition 3.24: already at this level, there is a noticeable difference
between conditions required for a quasigauge for either left or right pythagoreanity of 𝐷Ψ𝜙 .
Furthermore, in the left case there are three inequivalent conditions available, while in the right
case there are six inequivalent conditions. An inspection of the proofs leading to this result,
together with a look at Propositions 2.29.(iii)–(iv), shows that the conditions imposed on 𝜙 in
the quasigauge analogues of Propositions 3.27 and 3.28 will not be the same as in Proposition
3.24. Thus, while there is no a priori constraints on the gauge functions used in the Propositions
3.17, 3.27, and 3.28, their quasigauge analogues introduce a substantial split of the assumptions
on 𝜙 used in each of the corresponding propositions. So, while the properties of case I–IV models
are independent of the choice of a gauge, they are sensitive to the choice of a quasigauge.

(xvii) In principle, due to Lemma 3.18.(i), given a quasigauge 𝜙, one can use (lim𝑠→+𝑡 𝜙(𝑠))
∨ (resp,

(lim𝑠→−𝑡 𝜙(𝑠))
∧) instead of 𝜙∨ (resp., 𝜙∧), relying on (124) and Lemma 3.20.(i) instead of (125)

(resp., (126)) and (129) (resp., (130)) in Propositions 3.22.(iii), 3.23, and 3.24. However, while
this would make these propositions a bit more general, it would also make them less readable.

(xviii) If efd(𝑗𝜙) = int(efd(𝑗𝜙)) = efd(Ψ𝜙) = int(efd(Ψ𝜙)) = int(sup(efd(𝜙))𝐵(𝑋, ||·||𝑋)), then the
assumptions (137) simplify, since their first and third line become obsolete. However, in a general
case, we know only that int(sup(efd(𝜙))𝐵(𝑋, ||·||𝑋)) ⊆ efd(Ψ𝜙) ⊆ cl(int(sup(efd(𝜙))𝐵(𝑋, ||·||𝑋)))
[365, p. 369].

(xix) The result in Proposition 3.33.(i) was obtained earlier, by a different method, in [314, Prop.
6.27.(a)]. By [314, Eqn. (6.100)], under conditions on (𝑋, ||·||𝑋) given in 3.33.(i), ∃𝜆 > 0 ∀𝑥, 𝑦 ∈ 𝑋⃒⃒⃒⃒⃒⃒⃒⃒
←−
P
𝐷Ψ𝜙1,𝛽

𝐾 (𝑥)−
←−
P
𝐷Ψ𝜙1,𝛽

𝐾 (𝑦)

⃒⃒⃒⃒⃒⃒⃒⃒
𝑋

≤ 𝜆
(︁
max

{︁⃒⃒⃒⃒⃒⃒
P
𝑑||·||𝑋
𝐾 (0)

⃒⃒⃒⃒⃒⃒
𝑋
, ||𝑥||𝑋 , ||𝑦||𝑋

}︁ ⃒⃒⃒⃒
𝑗𝜙1,𝛽

(𝑥)− 𝑗𝜙1,𝛽
(𝑦)
⃒⃒⃒⃒
𝑋

)︁𝛽
.

(161)

Assuming boundedness of 𝐾, boundedness of domain 𝑄 ⊆ 𝑋 of
←−
P
𝐷Ψ𝜙1,𝛽

𝐾 , 𝑟-uniform Fréchet
differentiability of (𝑋, ||·||𝑋), and using Proposition 2.26.(viii).c), we get

∃𝜆 > 0 ∀𝑥, 𝑦 ∈ 𝑄
⃒⃒⃒⃒⃒⃒⃒⃒
←−
P
𝐷Ψ𝜙1,𝛽

𝐾 (𝑥)−
←−
P
𝐷Ψ𝜙1,𝛽

𝐾 (𝑦)

⃒⃒⃒⃒⃒⃒⃒⃒
𝑋

≤ 𝜆||𝑥− 𝑦||𝛽(𝑟−1)𝑋 . (162)
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Hence, for bounded 𝐾, and under all assumptions of Proposition 3.33.(i), this gives 𝛽(𝑟 − 1)-

Lipschitz–Hölder continuity of
←−
P
𝐷Ψ𝜙1,𝛽

𝐾 on bounded subsets of 𝑋. In comparison with Proposi-
tion 3.33.(ii), this conclusion is weaker regarding the value of the exponent of Lipschitz–Hölder
continuity (since 1 ≥ 𝛽

1−𝛽 (𝑟 − 1) > 𝛽(𝑟 − 1)) and regarding the assumptions on its domain (lim-
itation to bounded subsets of 𝑋), while assuming more (boundedness of 𝐾). An analogue of a
proof of Proposition 3.33.(iv), using:

a) given a convex and bounded subset 𝑈 (resp., 𝑊 ) of a Banach space (𝑋1, ||·||𝑋1
) (resp.,

(𝑋2, ||·||𝑋2
)), and a Banach space (𝑋3, ||·||𝑋3

), if 𝑓 : 𝑈 → 𝑋2 is 𝑠-Lipschitz–Hölder continuous,
𝑔 : 𝑊 → 𝑋3 is 𝜆-Lipschitz–Hölder continuous, 𝑓(𝑈) ⊆ 𝑊 , and 𝑠, 𝜆 ∈ ]0, 1], then 𝑔 ∘ 𝑓 is
𝑠𝜆-Lipschitz–Hölder continuous [122, Thm. 4.3, Prop. 5.2];

b) by definition of 𝑗𝜙, it maps bounded sets to bounded sets (cf. the proof of Proposition 3.13),

gives (1−𝛽)2
𝛽 (𝑟 − 1)2-Lipschitz–Hölder continuity of

−→
P
𝐷Ψ𝜙1,𝛽

𝐾 on bounded and convex subsets of
𝑋, under the assumptions of Proposition 3.33.(iv), equipped with an additional requirement that
𝑗𝜙1,𝛽

(𝐾) is bounded. This conclusion is weaker than Proposition 3.33.(iv).
(xx) The continuity results in Proposition 3.27 cannot be improved using Proposition 3.30, since

lim||𝑥||𝑋→∞ 𝜄𝐾(𝑥) ̸=∞.

3.3 𝐷ℓ,Ψ

Definition 3.38. Given Banach spaces (𝑋, ||·||𝑋) and (𝑌, ||·||𝑌 ), 𝑍 ⊆ 𝑌 , Ψ ∈ ΓG(𝑋, ||·||𝑋), let ℓ : 𝑍 →
ℓ(𝑍) ⊆ 𝑋 be a bijection such that ℓ(𝑍) ∩ int(efd(Ψ)) ̸= ∅. Then

𝐷ℓ,Ψ(𝜑, 𝜓) := 𝐷Ψ(ℓ(𝜑), ℓ(𝜓)) ∀(𝜑, 𝜓) ∈ 𝑍 × 𝑍 (163)

will be called an extended Văınberg–Brègman functional.

Definition 3.39. Given Banach spaces (𝑋, ||·||𝑋) and (𝑌, ||·||𝑌 ), ∅ ̸= 𝑍 ⊆ 𝑌 , ∅ ̸= 𝐾 ⊆ 𝑋, a bijection
ℓ : 𝑍 → ℓ(𝑍) ⊆ 𝑋 with 𝐾 ⊆ ℓ(𝑍), and a function 𝑇 : 𝐾 → ℓ(𝑍), the function 𝑇 ℓ := ℓ

p ∘ 𝑇 ∘ ℓ :
ℓ

p

(𝐾)→ 𝑍 will be called an ℓ-operator.

Definition 3.40. Under assumptions on (ℓ,Ψ) as in Definition 3.38, and with ∅ ̸= 𝐶 ⊆ 𝑍,
(i) 𝐶 will be called left (resp., right) 𝐷ℓ,Ψ-Chebyshëv iff ℓ(𝐶) is left (resp., right) 𝐷Ψ-Chebyshëv,

with the corresponding left (resp., right) 𝐷ℓ,Ψ-projections given by

←−
P
𝐷ℓ,Ψ

𝐶 (𝜑) := ℓ

p ∘
←−
P𝐷Ψ

ℓ(𝐶) ∘ ℓ(𝜑) ∀𝜑 ∈ ℓ

p

(int(efd(Ψ)) ∩ ℓ(𝑍)) (164)

(resp.,
−→
P
𝐷ℓ,Ψ

𝐶 (𝜑) := ℓ

p ∘
−→
P𝐷Ψ

ℓ(𝐶) ∘ ℓ(𝜑) ∀𝜑 ∈ ℓ

p

(int(efd(Ψ)) ∩ ℓ(𝑍)) ); (165)

(ii) 𝐷ℓ,Ψ will be called left (resp., right) pythagorean on 𝐶 iff 𝐷Ψ is left (resp., right) pythagorean
on ℓ(𝐶);

(iii) 𝐶 will be called ℓ-convex (resp., ℓ-closed; ℓ-affine; ℓ-bounded; DGΨ ∘ ℓ-convex; DGΨ ∘ ℓ-
closed; DGΨ ∘ ℓ-affine) iff ℓ(𝐶) is convex (resp., closed; affine; bounded; DGΨ-convex; DGΨ-
closed; DGΨ-affine);

(iv)
←−
P
𝐷ℓ,Ψ

𝐶 (resp.,
−→
P
𝐷ℓ,Ψ

𝐶 ) will be called zone consistent iff ℓ(𝐶) ⊆ int(efd(Ψ)) and
←−
P𝐷Ψ

ℓ(𝐶) (resp.,
−→
P𝐷Ψ

ℓ(𝐶)) is zone consistent;
(v) Ψ ∘ ℓ : 𝑍 → ] − ∞,∞] and ΨF ∘ DGΨ ∘ ℓ : ℓ

p

(int(efd(Ψ)) ∩ ℓ(𝑍)) → ] − ∞,∞] will be called
(ℓ,Ψ)-potentials;

(vi) the topology on 𝑍 induced by ℓ (resp., DGΨ ∘ ℓ) from the norm topology of (𝑋, ||·||𝑋) (resp.,
(𝑋⋆, ||·||𝑋⋆)) will be called ℓ-topology (resp., DGΨ ∘ ℓ-topology);

(vii) An ℓ-operator 𝑇 ℓ : 𝐶 → ℓ

p

(int(efd(Ψ))∩ ℓ(𝑍)) will be called left (resp., right) strongly quasi-
nonexpansive with respect to (ℓ,Ψ) and 𝐶 iff ℓ(𝐶) ⊆ int(efd(Ψ)) and 𝑇 is left (resp., right)
strongly quasinonexpansive with respect to Ψ and ℓ(𝐶); the set of all ℓ-operators which are left
(resp., right) strongly quasinonexpansive with respect to (ℓ,Ψ) and 𝐶 will be denoted LSQ(ℓ,Ψ, 𝐶)
(resp., RSQ(ℓ,Ψ, 𝐶));
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(viii) the set LSQ(ℓ,Ψ, 𝐶) (resp., RSQ(ℓ,Ψ, 𝐶)) will be called composable iff LSQ(Ψ, ℓ(𝐶)) (resp.,
RSQ(Ψ, ℓ(𝐶))) is composable;

(ix)
←−
P
𝐷ℓ,Ψ

𝐶 (resp.,
−→
P
𝐷ℓ,Ψ

𝐶 ) will be called adapted iff
←−
P𝐷Ψ
𝐶 (resp.,

−→
P𝐷Ψ
𝐶 ) is adapted;

(x) an ℓ-operator 𝑇 ℓ : 𝐶 → ℓ

p

(int(efd(Ψ)) ∩ ℓ(𝑍)) will be called completely nonexpansive with
respect to (ℓ,Ψ) and 𝐶 iff ℓ(𝐶) ⊆ int(efd(Ψ)) and 𝑇 is completely nonexpansive with respect to
Ψ and ℓ(𝐶); the set of all ℓ-operators which are completely nonexpansive with respect to (ℓ,Ψ)
and 𝐶 will be denoted CN(ℓ,Ψ, 𝐶);

(xi) if 𝑇 : ℓ(𝑍)→ 2𝑋
⋆, graph(𝑇 ) ̸= ∅, and 𝜆 ∈ ]0, 1[, then the left 𝐷ℓ,Ψ-resolvent of 𝑇 is defined as

←−resℓ,Ψ𝜆𝑇 := ℓ

p ∘←−resΨ𝜆𝑇 ∘ ℓ.

Corollary 3.41. If (𝑋, ||·||𝑋) and (𝑌, ||·||𝑌 ) are Banach spaces, Ψ ∈ ΓG(𝑋, ||·||𝑋), ∅ ̸= 𝐶 ⊆ 𝑍 ⊆ 𝑌 ,
ℓ : 𝑍 → ℓ(𝑍) ⊆ 𝑋 is a bijection such that ℓ(𝑍) ∩ int(efd(Ψ)) ̸= ∅, then:

(i) if 𝐷Ψ is an information on ℓ(𝑍), then 𝐷ℓ,Ψ is an information on 𝑍;
(ii) 𝐶 is ℓ-closed iff it is closed in the topology induced by ℓ from the norm topology of (𝑋, ||·||𝑋);
(iii) if (𝑋, ||·||𝑋) reflexive, 𝐶 is ℓ-closed and ℓ-convex, then:

1) if any of the following (generally, inequivalent) conditions holds:
a) Ψ is totally convex on efd(Ψ), ℓ(𝐶) ⊆ int(efd(Ψ)); or
b) Ψ is strictly convex on efd(Ψ) and supercoercive, ℓ(𝐶) ∩ int(efd(Ψ)) ̸= ∅;
c) Ψ is Euler–Legendre, ℓ(𝐶) ∩ int(efd(Ψ)) ̸= ∅,

then 𝐶 is left 𝐷ℓ,Ψ-Chebyshëv and 𝐷ℓ,Ψ is left pythagorean on 𝐶;
2) if (1).c) holds) or (1).a) or 1).b) holds, and ℓ(𝐶) ⊆ int(efd(Ψ))), then

←−
P
𝐷ℓ,Ψ

𝐶 is zone
consistent;

3) if any of 1).a)–1).c) holds, then 𝐷ℓ,Ψ is an information on 𝑍;
4) if 1).c) holds, then 𝐷DGΨ∘ℓ,ΨF is an information on 𝑍;
5) if any of 1).a)–1).c) holds, and 𝐶 is ℓ-affine, then

𝐷ℓ,Ψ(𝜑,
←−
P
𝐷ℓ,Ψ

𝐶 (𝜓))+𝐷ℓ,Ψ(
←−
P
𝐷ℓ,Ψ

𝐶 (𝜓), 𝜓) = 𝐷ℓ,Ψ(𝜑, 𝜓) ∀(𝜑, 𝑦) ∈ 𝐶× ℓ

p

(int(efd(Ψ))∩ ℓ(𝑍));
(166)

6) if ℓ(𝐶) ⊆ int(efd(Ψ)), and Ψ is Fréchet differentiable on int(efd(Ψ)), totally con-
vex on efd(Ψ), and supercoercive, then

←−
P
𝐷ℓ,Ψ

𝐶 is ℓ-topology-to-ℓ-topology continuous
on ℓ

p

(int(efd(Ψ)) ∩ ℓ(𝑍)), while inf𝜑∈𝐾{𝐷ℓ,Ψ(𝜑, · )} is continuous in ℓ-topology on
ℓ

p

(int(efd(Ψ)) ∩ ℓ(𝑍));
(iv) if (𝑋, ||·||𝑋) is reflexive, 𝐶 is DGΨ ∘ ℓ-closed and DGΨ ∘ ℓ-convex, ℓ(𝐶) ⊆ int(efd(Ψ)), ΨF is

Gateaux differentiable on ∅ ̸= DGΨ(int(efd(Ψ))) ⊆ int(efd(ΨF)), then:
1) if any of the following (generally, inequivalent) conditions holds:

a) ΨF is totally convex on efd(ΨF); or
b) ΨF is strictly convex on efd(ΨF) and supercoercive; or
c) ΨF is Euler–Legendre,

then 𝐶 is right 𝐷ℓ,Ψ-Chebyshëv and 𝐷ℓ,Ψ is right pythagorean on 𝐶;
2) if any of 1).a)–1).c) holds, then

−→
P
𝐷ℓ,Ψ

𝐶 is zone consistent;
3) if 1).c) holds, then 𝐷ℓ,Ψ and 𝐷DGΨ∘ℓ,ΨF are informations on 𝐶;
4) if any of 1).a)–1).c) holds, and 𝐶 is DGΨ ∘ ℓ-affine, then

𝐷ℓ,Ψ(𝜑, 𝜓) = 𝐷ℓ,Ψ(𝜑,
−→
P
𝐷ℓ,Ψ

𝐶 (𝜑))+𝐷ℓ,Ψ(
−→
P
𝐷ℓ,Ψ

𝐶 (𝜑), 𝜓) ∀(𝜑, 𝜓) ∈ ℓ p

(int(efd(Ψ))∩ ℓ(𝑍))×𝐶;
(167)

5) if ΨF is totally convex on efd(ΨF), Fréchet differentiable on int(efd(ΨF)), and supercoercive,
then

−→
P
𝐷ℓ,Ψ

𝐶 is ℓ-topology-to-ℓ-topology continuous on ℓ

p

(int(efd(Ψ)) ∩ ℓ(𝑍));
(v) if ℓ is a norm-to-norm homeomorphism, then:

1) ℓ-closed sets in (𝑌, ||·||𝑌 ) coincide with closed sets;
2) result in (iii).6) is strengthened to norm-to-norm continuity of

←−
P
𝐷ℓ,Ψ

𝐶 onto closed ℓ-convex
𝐶, and continuity of inf𝜑∈𝐶{𝐷ℓ,Ψ(𝜑, · )} in the norm topology;

3) if Ψ is Fréchet differentiable, then DGΨ ∘ ℓ-closed sets in (𝑌, ||·||𝑌 ) coincide with closed sets;
4) if Ψ is Fréchet differentiable, then the result in (iv).5) is strengthened to norm-to-norm

continuity of
−→
P
𝐷ℓ,Ψ

𝐶 onto DGΨ ∘ ℓ-convex set 𝐶, closed in the norm topology of (𝑌, ||·||𝑌 );
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(vi) if (𝑋, ||·||𝑋) is reflexive, Ψ : 𝑋 → R is uniformly Fréchet differentiable on bounded subsets of 𝑋,
and ΨF is supercoercive, then:

1) if any of the following (generally, inequivalent) condition holds:
a) Ψ is totally convex on 𝑋; or
b) Ψ is totally convex on bounded subsets of 𝑋 and supercoercive,

then LSQ(ℓ,Ψ, 𝐶) is composable;
2) if any of the following (generally, inequivalent) condition holds:

a) Ψ is totally convex on bounded subsets of 𝑋; or
b) Ψ is Euler–Legendre and supercoercive, ΨF is (totally convex and uniformly Fréchet

differentiable) on bounded subsets of efd(ΨF) = 𝑋⋆,
then RSQ(ℓ,Ψ, 𝐶) is composable;

3) if Ψ is Euler–Legendre, and 𝐶 is ℓ-convex and ℓ-closed, then
←−
P
𝐷ℓ,Ψ

𝐶 is adapted;
4) if Ψ is supercoercive and Euler–Legendre, and ΨF is uniformly Fréchet differentiable on

bounded subsets of int(efd(ΨF)) ̸= ∅, then
−→
P
𝐷ℓ,Ψ

𝐶 is adapted for any DGΨ∘ℓ-convex DGΨ∘ℓ-
closed 𝐶.

Proof. Follows from Definition 3.40 applied to Propositions 3.1, 3.5, and 3.6.

Corollary 3.42. Let (𝑌, ||·||𝑌 ) be a Banach space, (𝑋, ||·||𝑋) a reflexive, Gateaux differentiable, strictly
convex Banach space, 𝜙 a gauge, ∅ ̸= 𝐶 ⊆ 𝑍 ⊆ 𝑌 , ℓ : 𝑍 → ℓ(𝑍) ⊆ 𝑋 a bijection. Then:

(i) 𝐷ℓ,Ψ𝜙 and 𝐷DGΨ𝜙∘ℓ,ΨF
𝜙

are informations on 𝑍;
(ii) if 𝐶 is ℓ-convex and ℓ-closed, then 𝐶 is left 𝐷ℓ,Ψ𝜙-Chebyshëv, 𝐷ℓ,Ψ𝜙 is left pythagorean on 𝐶,

and
←−
P
𝐷ℓ,Ψ𝜙

𝐶 are zone consistent;
(iii) if 𝐶 is 𝑗𝜙∘ℓ-convex and 𝑗𝜙∘ℓ-closed, then 𝐶 is right 𝐷ℓ,Ψ𝜙-Chebyshëv, 𝐷ℓ,Ψ𝜙 is right pythagorean

on 𝐶, and
−→
P
𝐷ℓ,Ψ𝜙

𝐶 are zone consistent;
(iv) if (𝑋, ||·||𝑋) is Fréchet differentiable and has the Radon–Riesz–Shmul’yan property, then:

1) if 𝐶 is ℓ-convex and ℓ-closed, then
←−
P
𝐷ℓ,Ψ𝜙

𝐶 is ℓ-topology-to-ℓ-topology continuous on 𝑍, while
inf𝜑∈𝐶{𝐷ℓ,Ψ𝜙(𝜑, · )} is continuous in ℓ-topology on 𝑍;

2) if 𝐶 is 𝑗𝜙 ∘ ℓ-convex and 𝑗𝜙 ∘ ℓ-closed, then ℓ-topology coincides with DGΨ𝜙 ∘ ℓ-topology (so,
𝐶 is ℓ-closed), and

−→
P
𝐷ℓ,Ψ𝜙

𝐶 is ℓ-topology-to-ℓ-topology continuous;
(v) if (𝑋, ||·||𝑋) is uniformly Fréchet differentiable and strictly convex, and 𝐶 is ℓ-convex and ℓ-closed,

then
←−
P
𝐷ℓ,Ψ𝜙

𝐶 is adapted;
(vi) if (𝑋, ||·||𝑋) is uniformly Fréchet differentiable, strictly convex, and has the Radon–Riesz–Shmul’yan

property, then the sets LSQ(ℓ,Ψ𝜙, 𝐶) and RSQ(ℓ,Ψ𝜙, 𝐶) are composable;
(vii) if (𝑋, ||·||𝑋) is uniformly Fréchet differentiable and uniformly convex, and if 𝐶 is 𝑗𝜙 ∘ ℓ-convex

𝑗𝜙 ∘ ℓ-closed, then
−→
P
𝐷ℓ,Ψ

𝐶 is adapted;
(viii) if ℓ is norm-to-norm homeomorphism, then ℓ-topological closure and continuity in (ii)–(iv) and

(vii) coincide, respectively, with closure and continuity in the norm topology of (𝑌, ||·||𝑌 ).

Proof. Follows from Definition 3.40 applied to Propositions 3.14, 3.17, 3.27, 3.28.

3.4 Categories of 𝐷ℓ,Ψ-projections and strongly 𝐷ℓ,Ψ-quasinonexpansive maps

Definition 3.43. Let (𝑋, ||·||𝑋) and (𝑌, ||·||𝑌 ) be Banach spaces, let (𝑋, ||·||𝑋) be reflexive, ∅ ̸= 𝑊 ⊆
𝑍 ⊆ 𝑌 , Ψ ∈ ΓG(𝑋, ||·||𝑋), ℓ : 𝑍 → int(efd(Ψ)) be a bijection. Consider two conditions:
(L) Ψ is totally convex on efd(Ψ) or Euler–Legendre or (strictly convex on efd(Ψ) and supercoercive);
(R) ΨF is Gateaux differentiable on ∅ ̸= DGΨ(int(efd(Ψ))) ⊆ int(efd(ΨF)) and (totally convex on

efd(ΨF) or Euler–Legendre or (strictly convex on efd(Ψ) and supercoercive)).
Then:

(i) if (L) holds, then lCvx(ℓ,Ψ,𝑊 ) is a category with: objects given by ℓ-closed ℓ-convex subsets of
𝑊 , including ∅; morphisms given by left 𝐷ℓ,Ψ-projections onto ℓ-closed ℓ-convex subsets of these
subsets (i.e. HomlCvx(ℓ,Ψ,𝑊 )( · , 𝐶) consists of

←−
P
𝐷ℓ,Ψ

𝑄 with 𝑄 varying over all ℓ-closed ℓ-convex
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subsets of 𝐶), including ∅ (resulting in empty arrows, ⌜∅⌝ ∈ HomlCvx(ℓ,Ψ,𝑊 )(𝐶1, 𝐶2)); identity
morphisms given by

←−
P𝐷Ψ
𝐶 (𝐶) = 𝐶; composition of morphisms given by

←−
P
𝐷ℓ,Ψ

𝐶2
◇
←−
P
𝐷ℓ,Ψ

𝐶1
:=
←−
P
𝐷ℓ,Ψ

𝐶2∩𝐶1
, (168)

with composition of any morphism with empty arrow resulting in an empty arrow;
(ii) if (L) holds, then lAff(ℓ,Ψ,𝑊 ) is a subcategory of lCvx(ℓ,Ψ,𝑊 ) obtained by restriction from

ℓ-closed ℓ-convex to ℓ-closed ℓ-affine subsets of 𝑊 ;
(iii) if (L) holds, then lCvx⊆(ℓ,Ψ,𝑊 ) (resp., lAff⊆(ℓ,Ψ,𝑊 )) is a subcategory of lCvx(ℓ,Ψ,𝑊 )

(resp., lAff(ℓ,Ψ,𝑊 )) obtained by restriction of composition (168) by the condition 𝐶2 ⊆ 𝐶1

(so the composition of morphisms not satisfying this condition results in ⌜∅⌝);
(iv) if (L) holds, then lCvx(ℓ,Ψ) (resp., lAff(ℓ,Ψ); lCvx⊆(ℓ,Ψ); lAff⊆(ℓ,Ψ)) is defined as

lCvx(ℓ,Ψ,𝑊 ) (resp., lAff(ℓ,Ψ,𝑊 ); lCvx⊆(ℓ,Ψ,𝑊 ); lAff⊆(ℓ,Ψ,𝑊 )) with 𝑊 = 𝑍;
(v) if (L) holds, then lCvx(Ψ) (resp., lAff(Ψ); lCvx⊆(Ψ); lAff⊆(Ψ)) is a category defined as

lCvx(ℓ,Ψ) (resp., lAff(ℓ,Ψ); lCvx⊆(ℓ,Ψ); lAff⊆(ℓ,Ψ)) with (𝑋, ||·||𝑋) = (𝑌, ||·||𝑌 ) and 𝑍 =
int(efd(Ψ));

(vi) if (R) holds, then r̄Cvx(ℓ,Ψ,𝑊 ) is a category with objects given by DGΨ ∘ ℓ-closed DGΨ ∘ ℓ-
convex subsets of 𝑊 , including ∅; morphisms given by right 𝐷ℓ,Ψ-projections onto DGΨ∘ℓ-closed
DGΨ∘ℓ-convex subsets of these subsets, including ∅; identity morphisms given by

−→
P𝐷Ψ
𝐶 (𝐶) = 𝐶;

composition of morphisms given by
−→
P
𝐷ℓ,Ψ

𝐶2
◇
−→
P
𝐷ℓ,Ψ

𝐶1
:= ℓ

p ∘DGΨF ∘
(︁−→
P
𝐷

ΨF

(DGΨ∘ℓ)(𝐶2)
◇
−→
P
𝐷

ΨF

(DGΨ∘ℓ)(𝐶1)

)︁
∘DGΨ ∘ ℓ; (169)

(vii) if (R) holds, then r̄Aff(ℓ,Ψ), r̄Cvx⊆(ℓ,Ψ), r̄Aff⊆(ℓ,Ψ), r̄Cvx(Ψ), r̄Aff(Ψ), r̄Cvx⊆(Ψ),
r̄Aff⊆(Ψ) are categories defined analogously as in (ii)–(v), with lCvx(ℓ,Ψ) replaced by r̄Cvx(ℓ,Ψ);

(viii) CN(ℓ,Ψ,𝑊 ) is a category with subsets of 𝑊 as objects, elements of CN(ℓ,Ψ,𝑊 ) as morphisms,
identity maps of subsets as identity morphisms, and composition of morphisms given by compo-
sition of elements in CN(ℓ,Ψ,𝑊 ); CN(ℓ,Ψ) will denote CN(ℓ,Ψ,𝑊 ) for 𝑊 = 𝑍;

(ix) for any set 𝑉 , let Pow(𝑉 ) denote the category of all subsets of 𝑉 as objects, with functions between
them as morphisms, and composition of functions as composition of morphisms.

Definition 3.44. Let (𝑋, ||·||𝑋) and (𝑌, ||·||𝑌 ) be Banach spaces, let (𝑋, ||·||𝑋) be reflexive, 𝑍 ⊆ 𝑌 ,
Ψ ∈ ΓG(𝑋, ||·||𝑋), ℓ : 𝑍 → int(efd(Ψ)) be a bijection. Then:

(i) if (L) and (R) hold, then (·)ΨF
: lCvx(ℓ,Ψ)→ r̄Cvx(ℓ,Ψ) is a functor, acting by 𝐶 ↦→ ℓ

p ∘DGΨ∘
ℓ(𝐶) on objects 𝐶 ∈ Ob(lCvx(ℓ,Ψ)), with (∅)Ψ

F
:= ∅, and by 𝑇 ↦→ ℓ

p ∘DGΨF ∘𝑇 ∘DGΨ ∘ ℓ on
morphisms ℓ p ∘ 𝑇 ∘ ℓ ∈ Arr(lCvx(ℓ,Ψ)), with (⌜∅⌝)Ψ

F
:= ⌜∅⌝;

(ii) if (L) and (R) hold, then (·)Ψ : r̄Cvx(ℓ,Ψ)→ lCvx(ℓ,Ψ) is a functor, acting by 𝐶 ↦→ ℓ

p ∘DGΨF ∘
ℓ(𝐶) on objects 𝐶 ∈ Ob(r̄Cvx(ℓ,Ψ)), with (∅)Ψ := ∅, and by 𝑇 ↦→ ℓ

p ∘DGΨ ∘ 𝑇 ∘DGΨF ∘ ℓ on
morphisms ℓ p ∘ 𝑇 ∘ ℓ ∈ Arr(r̄Cvx(ℓ,Ψ)), with (⌜∅⌝)Ψ := ⌜∅⌝;

(iii) if (L) holds, then coLΨ(·)
𝑤
: Pow(𝑋)→ lCvx(Ψ) is a functor, defined by:

1) a map coLΨ(·)
𝑤
: Ob(Pow(𝑋))→ Ob(Pow(𝑋)), assigning to each subset 𝑊 of 𝑋 the closure

·𝑤 of a convex hull co( · ) of 𝑊 ∩ int(efd(Ψ)) in the weak topology of (𝑋, ||·||𝑋) (it coincides
with the norm closure) if co(𝑊 ∩ int(efd(Ψ)))

𝑤 ⊆ int(efd(Ψ)), and assigning ∅ otherwise;
2) a map coLΨ(·)

𝑤
: Arr(Pow(𝑋)) → Arr(Pow(𝑋)), assigning to each function 𝑓 : 𝑊1 → 𝑊2 a

map
←−
P𝐷Ψ
𝑄 : coLΨ(𝑊1)

𝑤
→ coLΨ(𝑊2)

𝑤
, where 𝑄 := coLΨ(𝑓(𝑊1))

𝑤
, with

←−
P𝐷Ψ
𝑄 = ⌜∅⌝ if either

𝑄 = ∅ or coLΨ(𝑊1)
𝑤
= ∅;

(iv) if (R) holds, then coRΨ(·)
𝑤
: Pow(𝑋)→ r̄Cvx(Ψ) is a functor, defined by:

1) a map coRΨ(·)
𝑤

: Ob(Pow(𝑋)) → Ob(Pow(𝑋)), assigning to each subset 𝑊 of 𝑋 the set
DGΨF

(︁
co (DGΨ(𝑊 ) ∩ int(efd(ΨF)))

𝑤
)︁

(with ·𝑤 denoting a closure in a weak topology of

(𝑋⋆, ||·||𝑋⋆)) if co(DGΨ(𝑊 ) ∩ int(efd(ΨF)))
𝑤
⊆ int(efd(ΨF)), and assigning ∅ otherwise;

2) a map coRΨ(·)
𝑤
: Arr(Pow(𝑋)) → Arr(Pow(𝑋)), assigning to each function 𝑓 : 𝑊1 → 𝑊2 a

map
−→
P𝐷Ψ
𝑄 : coRΨ(𝑊1)

𝑤
→ coRΨ(𝑊2)

𝑤
, where 𝑄 := coRΨ(𝑓(𝑊1))

𝑤
, with

←−
P𝐷Ψ
𝑄 = ⌜∅⌝ if either

𝑄 = ∅ or coRΨ(𝑊1)
𝑤
= ∅;
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(v) coLℓ,Ψ(·)
ℓ
: Pow(𝑍) → lCvx(ℓ,Ψ) and coRℓ,Ψ(·)

ℓ
: Pow(𝑍) → r̄Cvx(ℓ,Ψ) are functors defined analo-

gously to the corresponding functors in (iii)–(iv), by the bijectivity of ℓ;

(vi) coL,⊆ℓ,Ψ (·)
ℓ
: Pow(𝑍) → lCvx⊆(ℓ,Ψ) (resp., coR,⊆ℓ,Ψ (·)

ℓ
: Pow(𝑍) → r̄Cvx⊆(ℓ,Ψ)) is defined as a

restriction of the functor coLℓ,Ψ(·)
ℓ

(resp., coRℓ,Ψ(·)
ℓ
) by the additional condition

←−
P
𝐷ℓ,Ψ

ℓ p (𝑄)
= ⌜∅⌝ if

𝑄 ̸⊆ coLℓ,Ψ(𝑊1)
ℓ

(resp.,
−→
P
𝐷ℓ,Ψ

ℓ p (𝑄)
= ⌜∅⌝ if 𝑄 ̸⊆ coRℓ,Ψ(𝑊1)

ℓ
);

(vii) if (L) (resp.,(R)) holds, then FrgSetLℓ,Ψ : lCvx(ℓ,Ψ) → Pow(𝑍) (resp., FrgSetRℓ,Ψ : r̄Cvx(ℓ,Ψ) →
Pow(𝑍)) denotes a forgetful functor, forgetting all properties of domain category, except their
structure as sets and functions between them; FrgSetL,⊆ℓ,Ψ (resp., FrgSetR,⊆ℓ,Ψ ) will denote a restric-
tion of FrgSetLℓ,Ψ (resp., FrgSetRℓ,Ψ) to the category lCvx⊆(ℓ,Ψ) (resp., r̄Cvx⊆(ℓ,Ψ)).

Corollary 3.45. (i) Functors (·)Ψ and (·)ΨF establish equivalence of categories lCvx(ℓ,Ψ) and
r̄Cvx(ℓ,Ψ).

(ii) There are the following adjunctions of functors: coLℓ,Ψ(·)
ℓ
⊣ FrgSetLℓ,Ψ, coL,⊆ℓ,Ψ (·)

ℓ
⊣ FrgSetL,⊆ℓ,Ψ ,

coRℓ,Ψ(·)
ℓ
⊣ FrgSetRℓ,Ψ, coR,⊆ℓ,Ψ (·)

ℓ
⊣ FrgSetR,⊆ℓ,Ψ .

Proof. (i) Follows from (169).
(ii) Follows from the definition of the forgetful functor.

Proposition 3.46. Let [0,∞] denote a category consisting of one object, ∙, with morphisms given by
the elements of the set R+ ∪ {∞}, and their composition defined by addition [219, p. 140]. Let 2

denote the category consisting of two objects, one arrow between them, and identity arrows on both of
the objects. The category [0,∞]2 has morphisms of [0,∞] as objects, commutative squares in [0,∞]
as morphisms, and commutative compositions of these squares as compositions. Let 𝑄 be a closed
affine subset of a reflexive Banach space (𝑋, ||·||𝑋), Ψ ∈ ΓG(𝑋, ||·||𝑋) satisfies (L), 𝜑 ∈ 𝑄, and let
lAff

⊆
𝑄(Ψ) denotes a subcategory of lAff⊆(Ψ) with objects restricted to sets 𝐶 ∈ Ob(lAff⊆(Ψ)) such

that 𝑄 ⊆ 𝐶. Then 𝐷Ψ(𝜑, · ) determines a contravariant functor lAff
⊆
𝑄(Ψ) → [0,∞]2 as well as a

family of natural transformations in the category of functors lAff⊆𝑄(Ψ)→ [0,∞]. Analogous statement
holds for lAff⊆(Ψ) (resp., 𝐷Ψ(𝜑, · )) replaced by lAff⊆(ℓ,Ψ) (resp., 𝐷ℓ,Ψ(𝜑, · )), or by r̄Aff⊆(Ψ)
(resp., 𝐷Ψ( · , 𝜑)), or by r̄Aff⊆(ℓ,Ψ) (resp., 𝐷ℓ,Ψ( · , 𝜑)) (last two cases require also to replace (L) by
(R)).

Proof. Let 𝐾1,𝐾2,𝐾3,𝐾, 𝐿 ∈ Ob(lAff⊆𝑄(Ψ)), 𝐾 ⊆ 𝐾2 and 𝐿 ⊆ 𝐾3. For each 𝜑 ∈ 𝑄, left pythagorean
equation implies commutativity of the diagram

∙
𝐷Ψ(𝜑,𝑥) // ∙

∙
0

OO

𝐷Ψ(𝜑,
←−
P

𝐷Ψ
𝐾 (𝑥))

// ∙
𝐷Ψ(
←−
P

𝐷Ψ
𝐾 (𝑥),𝑥)

OO

∙
0

OO

𝐷Ψ(𝜑,
←−
P

𝐷Ψ
𝐿 ◇
←−
P

𝐷Ψ
𝐾 (𝑥))

// ∙,
𝐷Ψ(
←−
P

𝐷Ψ
𝐿 ◇
←−
P

𝐷Ψ
𝐾 (𝑥),

←−
P

𝐷Ψ
𝐾 (𝑥))

OO

(170)

and hence also of

𝑥 � //
_

←−
P

𝐷Ψ
𝐾��

( ∙
𝐷Ψ(𝜑,𝑥)

// ∙ )

←−
P𝐷Ψ
𝐾 (𝑥) � //
_
←−
P

𝐷Ψ
𝐿��

( ∙

0

OO

𝐷Ψ(𝜑,
←−
P

𝐷Ψ
𝐾 (𝑥))

// ∙ )

𝐷Ψ(
←−
P

𝐷Ψ
𝐾 (𝑥),𝑥)

OO

←−
P𝐷Ψ
𝐿 ◇

←−
P𝐷Ψ
𝐾 (𝑥) � // ( ∙

0

OO

𝐷Ψ(𝜑,
←−
P

𝐷Ψ
𝐿 ◇
←−
P

𝐷Ψ
𝐾 (𝑥))

// ∙ ) .

𝐷Ψ(
←−
P

𝐷Ψ
𝐿 ◇
←−
P

𝐷Ψ
𝐾 (𝑥),

←−
P

𝐷Ψ
𝐾 (𝑥))

OO

(171)

51



This defines a contravariant functor 𝐷Ψ(𝜑, ·) : lAff⊆𝑄(Ψ)→ [0,∞]2.
For any two categories C and D, cartesian closedness of the category Cat of all small categories

(with natural transformations as morphisms) implies that any functor C→ D2 corresponds to a natural
transformation in DC.

Definition 3.47. Let (𝑋, ||·||𝑋) and (𝑌, ||·||𝑌 ) be Banach spaces, let (𝑋, ||·||𝑋) be reflexive, ∅ ̸= 𝑊 ⊆
𝑍 ⊆ 𝑌 , Ψ ∈ ΓG(𝑋, ||·||𝑋), ℓ : 𝑍 → int(efd(Ψ)) be a bijection. Then:

(i) if Ψ is LSQ-compositional on ℓ(𝑊 ), then LSQ⊆cvx(Ψ, ℓ(𝑊 )) is a category with: objects given by
convex closed subsets of ℓ(𝑊 ), including ∅; morphisms given by

Hom
LSQ

⊆
cvx(Ψ,ℓ(𝑊 ))

(𝐾1,𝐾2) :=

{︂
⌜∅⌝ : 𝐾2 ̸⊆ 𝐾1

{𝑇𝑖 ∈ LSQ(Ψ,𝐾1) : 𝐾2 ⊇ ran(𝑇𝑖)} : 𝐾2 ⊆ 𝐾1;
(172)

composition of morphisms (𝑓 : 𝐾2 → 𝐾3) ◇ (𝑔 : 𝐾1 → 𝐾2) given by{︂
(𝑓 ∘ 𝑔) : 𝐾1 → 𝐾2 : ̂︂Fix(𝑓 ∘ 𝑔) =̂︂Fix(𝑓) ∩̂︂Fix(𝑔) ̸= ∅
⌜∅⌝ : otherwise;

(173)

identity given by {id𝐾 : 𝐾 → 𝐾} ∈ LSQ(Ψ,𝐾);
(ii) LSQ⊆cvx(ℓ,Ψ,𝑊 ) is a category defined by pulling back LSQ⊆cvx(Ψ, ℓ(𝑊 )) along ℓ; LSQ⊆cvx(Ψ) (resp.,

LSQ⊆cvx(ℓ,Ψ)) is defined as LSQ⊆cvx(Ψ, ℓ(𝑊 )) (resp., LSQ⊆cvx(ℓ,Ψ,𝑊 )) with 𝑊 = 𝑍;
(iii) if Ψ is RSQ-compositional, then the categories R̄SQ⊆cvx(Ψ, ℓ(𝑊 )), R̄SQ⊆cvx(ℓ,Ψ,𝑊 ), R̄SQ⊆cvx(ℓ,Ψ),

and R̄SQ⊆cvx(Ψ) are defined analogously to (i)–(ii), by replacing LSQ(Ψ,𝐾) with RSQ(Ψ,𝐾), and
replacing convex closed subsets of ℓ(𝑊 ) by DGΨ-convex DGΨ-closed subsets of ℓ(𝑊 ).

Definition 3.48. Let (𝑋, ||·||𝑋) and (𝑌, ||·||𝑌 ) be Banach spaces, let (𝑋, ||·||𝑋) be reflexive, 𝑍 ⊆ 𝑌 ,
Ψ ∈ ΓG(𝑋, ||·||𝑋), ℓ : 𝑍 → int(efd(Ψ)) be a bijection. Then:

(i) if Ψ is LSQ-compositional and RSQ-compositional, then (·)ΨF
: LSQ⊆cvx(ℓ,Ψ) → R̄SQ⊆cvx(ℓ,Ψ)

denotes a functor, acting by 𝐶 ↦→ ℓ

p ∘ DGΨ ∘ ℓ(𝐶) on objects 𝐶 ∈ Ob(LSQ⊆cvx(ℓ,Ψ)), with
(∅)Ψ

F
:= ∅, and by 𝑇 ↦→ ℓ

p ∘ DGΨF ∘ DGΨ ∘ ℓ on morphisms ℓ p ∘ 𝑇 ∘ ℓ ∈ Arr(LSQ⊆cvx(ℓ,Ψ)),
with (⌜∅⌝)Ψ

F
:= ⌜∅⌝;

(ii) if Ψ is LSQ-compositional and RSQ-compositional, then (·)Ψ : R̄SQ⊆cvx(ℓ,Ψ) → LSQ⊆cvx(ℓ,Ψ)
denotes a functor, acting by 𝐶 ↦→ ℓ

p ∘ DGΨF ∘ ℓ(𝐶) on objects 𝐶 ∈ Ob(R̄SQ⊆cvx(ℓ,Ψ)), with
(∅)Ψ := ∅, and by 𝑇 ↦→ ℓ

p ∘DGΨ ∘ 𝑇 ∘DGΨF ∘ ℓ on morphisms ℓ p ∘ 𝑇 ∘ ℓ ∈ Arr(R̄SQ⊆cvx(ℓ,Ψ)),
with (⌜∅⌝)Ψ := ⌜∅⌝;

(iii) if (L) holds, Ψ is LSQ-compositional, and Ψ is LSQ-adapted on any convex closed ∅ ̸= 𝐾 ⊆
int(efd(Ψ)), then 𝜄L,⊆ℓ,Ψ : lCvx⊆(ℓ,Ψ) →˓ LSQ⊆cvx(ℓ,Ψ) denotes an embedding functor;

(iv) if (R) holds, Ψ is RSQ-compositional, and Ψ is RSQ-adapted on any DGΨ-convex DGΨ-closed
∅ ̸= 𝐾 ⊆ int(efd(Ψ)), then 𝜄R,⊆ℓ,Ψ : r̄Cvx⊆(ℓ,Ψ) →˓ R̄SQ⊆cvx(ℓ,Ψ) denotes an embedding functor;

(v) if (L) holds and Ψ is LSQ-compositional, then FixL,⊆ℓ,Ψ : LSQ⊆cvx(ℓ,Ψ) → lCvx⊆(ℓ,Ψ) denotes a

functor, acting as an identity map on objects, and as an assignment ℓ p ∘ 𝑇 ∘ ℓ ↦→
←−
P
𝐷ℓ,Ψ

ℓ p (Fix(𝑇 ))
to

each ℓ p ∘ 𝑇 ∘ ℓ ∈ Arr(LSQ⊆cvx(ℓ,Ψ));
(vi) if (R) holds and Ψ is RSQ-compositional, then FixR,⊆ℓ,Ψ : R̄SQ⊆cvx(ℓ,Ψ) → r̄Cvx⊆(ℓ,Ψ) denotes a

functor, acting as an identity map on objects, and as an assignment ℓ p ∘ 𝑇 ∘ ℓ ↦→
−→
P
𝐷ℓ,Ψ

ℓ p (Fix(𝑇 ))
to

each ℓ p ∘ 𝑇 ∘ ℓ ∈ Arr(R̄SQ⊆cvx(ℓ,Ψ)).

Proposition 3.49. Let (𝑋, ||·||𝑋) and (𝑌, ||·||𝑌 ) be Banach spaces, let (𝑋, ||·||𝑋) be reflexive, 𝑍 ⊆ 𝑌 ,
Ψ ∈ ΓG(𝑋, ||·||𝑋), ℓ : 𝑍 → int(efd(Ψ)) be a bijection. Then:

(i) if Ψ is LSQ-compositional, RSQ-compositional, Euler–Legendre, DGΨ is (uniformly continu-
ous and bounded) on open subsets of int(efd(Ψ)), and DGΨF is (uniformly continuous and
bounded) on open subsets of int(efd(ΨF)), then (·)Ψ and (·)ΨF establish an equivalence of cate-
gories LSQ⊆cvx(ℓ,Ψ) and R̄SQ⊆cvx(ℓ,Ψ);
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(ii) if (L) holds, Ψ is LSQ-adapted on any convex closed ∅ ̸= 𝐾 ⊆ int(efd(Ψ)), and LSQ-compositional,

then there are adjunctions 𝜄L,⊆ℓ,Ψ ⊣ FixL,⊆ℓ,Ψ and 𝜄L,⊆ℓ,Ψ ∘ co
L,⊆
ℓ,Ψ (·)

ℓ
⊣ FrgSetL,⊆ℓ,Ψ ∘ Fix

L,⊆
ℓ,Ψ , with a monad

FixL,⊆ℓ,Ψ ∘ 𝜄
L,⊆
ℓ,Ψ on lCvx⊆(ℓ,Ψ), and a comonad coL,⊆ℓ,Ψ (·)

ℓ
∘ FrgSetL,⊆ℓ,Ψ on lCvx⊆(ℓ,Ψ);

(iii) if (R) holds, Ψ is RSQ-adapted on any DGΨ-convex DGΨ-closed ∅ ̸= 𝐾 ⊆ int(efd(Ψ)), and RSQ-

compositional, then there are adjunctions 𝜄R,⊆ℓ,Ψ ⊣ FixR,⊆ℓ,Ψ and 𝜄R,⊆ℓ,Ψ ∘co
R,⊆
ℓ,Ψ (·)

ℓ
⊣ FrgSetR,⊆ℓ,Ψ ∘Fix

R,⊆
ℓ,Ψ ,

with a monad FixR,⊆ℓ,Ψ ∘𝜄
R,⊆
ℓ,Ψ on r̄Cvx⊆(ℓ,Ψ), and a comonad coR,⊆ℓ,Ψ (·)

ℓ
∘FrgSetR,⊆ℓ,Ψ on r̄Cvx⊆(ℓ,Ψ);

(iv) if (L) and (R) hold, Ψ is LSQ-adapted on any convex closed nonempty subset of int(efd(Ψ)), RSQ-
adapted on any DGΨ-convex DGΨ-closed nonempty subset of int(efd(Ψ)), LSQ-compositional,
and RSQ-compositional, Euler–Legendre, DGΨ is (uniformly continuous and bounded) on bounded
subsets of int(efd(Ψ)), and DGΨF is (uniformly continuous and bounded) on bounded subsets of
int(efd(ΨF)), then the following diagram holds (with the horizontal arrows denoting adjoint func-
tors, and vertical arrows denoting equivalences of categories):

Pow(𝑍)

coL,⊆
ℓ,Ψ (·)

ℓ

,,
lCvx⊆(ℓ,Ψ)

coL,⊆
ℓ,Ψ (·)

ℓ

∘FrgSetL,⊆
ℓ,Ψ

		

FixL,⊆
ℓ,Ψ ∘ 𝜄

L,⊆
ℓ,Ψ

HH

FrgSetL,⊆
ℓ,Ψ

kk

𝜄L,⊆
ℓ,Ψ

,,

(·)ΨF

}}

LSQ⊆cvx(ℓ,Ψ)

FixL,⊆
ℓ,Ψ

kk
⊥ ⊥

(·)ΨF

��
r̄Cvx⊆(ℓ,Ψ)

FixR,⊆
ℓ,Ψ ∘ 𝜄

R,⊆
ℓ,Ψ

		

(·)ΨF ∘ co𝐿,⊆
ℓ,Ψ (·)

ℓ

∘FrgSetL,⊆
ℓ,Ψ ∘ (·)

Ψ

HH

𝜄R,⊆
ℓ,Ψ

,,

(·)Ψ

<<

R̄SQ⊆cvx(ℓ,Ψ).

FixR,⊆
ℓ,Ψ

kk
⊥

(·)Ψ

GG
(174)

Proof. (i) Follows from Proposition 2.16.(v).
(ii) The adjunction 𝜄L,⊆ℓ,Ψ ⊣ FixL,⊆ℓ,Ψ follows from Definition 2.23, while the composite adjunction follows

from Corollary 3.45.(ii). The corresponding monad and comonad are determined by the latter
adjunction.

(iii) Follows from Definition 2.23 and Corollary 3.45.(ii).
(iv) Follows from (i)–(iii).

Corollary 3.50. Let (𝑌, ||·||𝑌 ) be a Banach space, let (𝑋, ||·||𝑋) be a uniformly Fréchet differentiable,
strictly convex Banach space with the Radon–Riesz–Shmul’yan property, let 𝑍 ⊆ 𝑌 , ℓ : 𝑍 → int(efd(Ψ))
be a bijection, let 𝜙 be a gauge. Then:

(i) there are adjunctions

Pow(𝑍)

coL,⊆
ℓ,Ψ𝜙

(·)
ℓ

,,
lCvx⊆(ℓ,Ψ𝜙)

FrgSetL,⊆
ℓ,Ψ𝜙

kk

𝜄L,⊆
ℓ,Ψ𝜙

,,
LSQ⊆cvx(ℓ,Ψ𝜙)

FixL,⊆
ℓ,Ψ𝜙

ll
⊥ ⊥ (175)

and

Pow(𝑍)

coR,⊆
ℓ,Ψ𝜙

(·)
ℓ

,,
lCvx⊆(ℓ,Ψ𝜙),

FrgSetR,⊆
ℓ,Ψ𝜙

kk
⊥ (176)
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with corresponding monads and comonads, and there are also equivalences

r̄Cvx⊆(ℓ,Ψ𝜙)

(·)Ψ𝜙

,,
lCvx⊆(ℓ,Ψ𝜙),

(·)(Ψ𝜙)F

ll
(177)

R̄SQ⊆cvx(ℓ,Ψ𝜙)

(·)Ψ𝜙

,,
LSQ⊆cvx(ℓ,Ψ𝜙);

(·)(Ψ𝜙)F

ll
(178)

(ii) if (𝑋, ||·||𝑋) is uniformly convex, then there is an adjunction

r̄Cvx⊆(ℓ,Ψ𝜙)

𝜄R,⊆
ℓ,Ψ𝜙

,,
R̄SQ⊆cvx(ℓ,Ψ𝜙),

FixR,⊆
ℓ,Ψ𝜙

ll
⊥ (179)

together with the corresponding monads and comonads.

Proof. Follows from Propositions 3.49 and 3.28.

Remark 3.51. (i) Regarding Definition 3.43:
a) the restriction to subsets of ℓ p

(int(efd(Ψ))), together with (L) (resp., (R)), guarantees
composability of ◇ by means of zone consistency of

←−
P
𝐷ℓ,Ψ

𝐶 (resp.,
−→
P
𝐷ℓ,Ψ

𝐶 ), via Corollary
3.41.(iii).2) (resp. Corollary 3.41.(iv).2));

b) 𝐶1 ∩ 𝐶2 = 𝐶2 ∩ 𝐶1 implies commutativity of ◇;
c) we interpret an empty (resp., identity) arrow as an inference corresponding to overdetermi-

nation (resp., underdetermination) of constraints (cf. [181, p. 35] for a related discussion);
d) the notation rCvx(ℓ,Ψ) (resp., rAff(ℓ,Ψ)) is kept reserved for the category of right 𝐷ℓ,Ψ-

projections onto ℓ-closed and ℓ-convex (resp., ℓ-closed and ℓ-afine) subsets of 𝑍. An example
of rCvx(Ψ) is provided by [46, p. 192, Def. 3.1, Lem. 3.5]: if 𝑛 ∈ N, 𝑋 = R𝑛, Ψ is Euler–
Legendre with DGDGΨ continuous on int(efd(Ψ)), 𝐷Ψ is jointly convex, 𝐷Ψ(𝑥, · ) is strictly
convex on int(efd(Ψ)) ∀𝑥 ∈ int(efd(Ψ)), and efd(ΨF) is open, then every convex closed
𝐾 ⊆ 𝑋 with 𝐾 ∩ int(efd(Ψ)) ̸= ∅ is a right 𝐷Ψ-Chebyshëv set, with

−→
P𝐷Ψ
𝐾 (𝑦) ∈ int(efd(Ψ))

∀𝑦 ∈ int(efd(Ψ)).
(ii) a) The composition rule ◇ for left 𝐷Ψ-projections has a range of well defined computational

meanings. Its quantitative evaluation can be performed by means of an algorithm given in
[42, Rem. 4.5, Alg. 5.1, Cor. 5.2] (valid for any {𝐾𝑖 : 𝑖 ∈ 𝐼} with a countable set 𝐼 and
any Euler–Legendre Ψ that is totally convex31 on bounded subsets of (𝑋, ||·||𝑋), hence, in
particular, for any LSQ-adapted Ψ), or by means of [44, Thm. 3.2] [70, Alg. 2.4, Thm.
3.1] [127, Alg. B] (valid for dim𝑋 ∈ N, a finite family {𝐾𝑖 : 𝑖 ∈ {1, . . . , 𝑛}, 𝑛 ∈ N}, and
Euler–Legendre Ψ satisfying some additional conditions). For (𝑋, ||·||𝑋) given by the Hilbert
space (ℋ, ||·||ℋ) and Ψ𝜙1,1/2

= 1
2 ||·||

2
ℋ, the former algorithm turns to Haugazeau’s [162, Thm.

3-2] algorithm, while the latter turns to Dykstra’s algorithm [132, p. 838, Thm. 3.2] [160,
§2, Thm. 4.7] (valid for dimℋ ∈ N∪ℵ0 [64, p. 32, Thm. 2], and extendable to {𝐾𝑖 : 𝑖 ∈ 𝐼}
with a countable set 𝐼 [171, §2]). Under further restriction of {𝐾𝑖 : 𝑖 ∈ {1, . . . , 𝑛}, 𝑛 ∈ N}

to a finite family of closed linear subspaces of ℋ,
←−
P
𝐷Ψ𝜙1,1/2

𝐾𝑖
turn into orthogonal projection

operators 𝑃𝐾𝑖 : ℋ → 𝐾𝑖, while Dykstra’s algorithm turns into Halperin’s theorem [158,
Thm. 1] on strong convergence of a cyclic repetition of 𝑃𝐾𝑛 · · ·𝑃𝐾1 to 𝑃𝐾1∩...∩𝐾𝑛 , i.e.

lim
𝑘→∞

⃒⃒⃒⃒⃒⃒ (︁
(𝑃𝐾𝑛 · · ·𝑃𝐾1)

𝑘 − 𝑃𝐾1∩...∩𝐾𝑛

)︁
𝜉
⃒⃒⃒⃒⃒⃒
ℋ
= 0 ∀𝜉 ∈ ℋ. (180)

31[42, Rem. 4.5] assumes uniform convexity on bounded subsets of (𝑋, ||·||𝑋), yet it is equivalent with total convexity
on bounded subsets of (𝑋, ||·||𝑋) due to [89, Thm. 2.10].
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When only two projections are considered, corresponding to a composition
←−
P
𝐷Ψ𝜙1,1/2

𝐾1
◇

←−
P
𝐷Ψ𝜙1,1/2

𝐾2
for linear subspaces 𝐾1 and 𝐾2 of ℋ, (180) becomes the von Neumann–Kakutani

theorem [344, Thm. 13.7] [192, pp. 42–44].
b) All of above algorithms provide evaluation of the left 𝐷Ψ-projection

←−
P𝐷Ψ
𝐾1∩...∩𝐾𝑖

(𝑥), for
𝑖 ∈ 𝐼 where 𝐼 is a finite or countable set, in terms of a norm convergence of a cyclic
sequence of algorithmic steps to the unique limit point. The differences in definitions of
those algorithms correspond to different ranges of generality and computational effectivity.
In particular, while the direct extension on the von Neumann–Kakutani algorithm to closed
convex sets converges weakly to an element in the nonempty intersection of 𝐾1 and 𝐾2

[66, Thm. 1] (Kaczmarz’s algorithm [189, pp. 355–357] is a special case of this extension,
obtained for hyperplanes and dimℋ ∈ N), the limit point may be not equal to a projection
onto 𝐾1 ∩𝐾2 [106, Fig. 2] and the norm convergence generally does not hold [170, Thm. 1]
(although the latter holds always for dimℋ ∈ N, and can be guaranteed under additional
conditions for dimℋ = ℵ0 [155, Thms. 1, 2]). On the other hand, the direct extension of
Halperin’s theorem to linear projections, of norm equal to 1, onto subspaces of uniformly
convex Banach space is norm convergent and returns a projection, of norm equal to 1, onto
an intersection [79, Thm. 2.1]. For noncyclic algorithms, see [73, 284, 20, 78, 171, 38, 42].

(iii) If (𝑋, ||·||𝑋) is separable, then lAff(Ψ) has objects given by the countable sets of polynomial
equations, which can be interpreted as data types, with morphisms between them interpreted
as programs (algorithms). More generally, if (𝑋, ||·||𝑋) is a separable Banach space, then every
convex closed subset 𝐶 ⊆ 𝑋 is the intersection of the countable number of its supporting closed
half-spaces [54, Cor. 3], i.e. it is a (countable) polyhedron, which is the set of solutions for a
countable system of linear inequalities (see [61] for a discussion of the nonseparable case). Hence,
also lCvx(Ψ), at least for separable (𝑋, ||·||𝑋), can be represented as a category of specific data
types and computations between them.

(iv) Functor coLℓ,Ψ(·)
ℓ
(resp., coRℓ,Ψ(·)

ℓ
) can be seen as implementing the following procedure: given the

collection of ‘raw’ data sets and maps between them, produce the category of ℓ-convex ℓ-closed
(resp., DGΨ ∘ ℓ-convex DGΨ ∘ ℓ-closed) information state spaces and inferences between them,
provided by left (resp., right) 𝐷ℓ,Ψ-projections. The construction of objects by means of these
functors implements maximum absolute entropy procedure, along the lines of [136, 322, 179, 180],
while the construction of morphisms corresponds to maximum relative entropy procedure, along
the lines of [310, 214, 67, 99, 166].

(v) a) The equivalence in Corollary 3.45 may seem trivial, since it is a direct consequence of the
definition of r̄Cvx(Ψ). Yet, we see it is as a top of an iceberg: currently it is an open
question whether rCvx(Ψ) is a subcategory of r̄Cvx(Ψ) or is it an independent structure
(see [47, Ex. 7.5] for an example of

−→
P𝐷Ψ
𝐶 with convex DGΨ(𝐶) and nonconvex 𝐶), the

equivalence between LSQ(Ψ) and RSQ(Ψ) classes holds only under special conditions (see
Proposition 2.16.(v)), and there is an important difference between availability of LSQ- vs
RSQ-adaptedness in models (see Propositions 3.6 and 3.28). Furthermore, while

←−
P𝐷ℓ,Ψ

for 𝐷ℓ,Ψ = 𝐷1 correspond to Sanov-type theorems [310, Thms. 10–13] [109, Thm. 1] [55,
Thm. 2] (and, more generally, for any Csiszár–Morimoto information 𝐷f [107, p. 86] [265,
p. 329],

←−
P𝐷f corresponds to conditional laws of large numbers, cf., e.g., [222, §7]),

−→
P𝐷ℓ,Ψ

correspond to minimum contrast (e.g., maximum likelihood) estimation [99, pp. 328–330]
[100, §22] [135, §1] [19, p. 93 (Engl. rev. ed.)].

b) The inequality
⟨𝑦 − 𝑇 (𝑥), 𝑥− 𝑇 (𝑥)⟩ℋ ≤ 0 ∀(𝑥, 𝑦) ∈ ℋ × 𝐶 (181)

characterises [24, p. 87] metric (= 𝐷Ψ𝜙1,1/2
-) projections, 𝑇 = P

𝑑||·||ℋ
𝐶 onto convex closed

subsets 𝐶 in Hilbert space ℋ. In general, the dichotomy between
←−
P𝐷Ψ and

−→
P𝐷Ψ can be

seen as 𝐷Ψ-version of the left/right split of (181) under a passage from ℋ to Banach spaces.
More precisely, if (𝑋, ||·||𝑋) is a Gateaux differentiable Banach space and ∅ ̸= 𝐶 ⊆ 𝑋 is
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convex and closed, then

[[𝑦 − 𝑇 (𝑥), 𝑗(𝑥− 𝑇 (𝑥))]]𝑋×𝑋⋆ ≤ 0 ∀(𝑥, 𝑦) ∈ 𝑋 × 𝐶 (182)

characterises metric projections on 𝐶 [124] [307, Thm. (p. 711)] [232, Eqn. (5.11)], while

[[𝑥− 𝑇 (𝑥), 𝑗(𝑦 − 𝑇 (𝑥))]]𝑋×𝑋⋆ ≤ 0 ∀(𝑥, 𝑦) ∈ 𝑋 × 𝐶 (183)

characterises sunny completely ||·||𝑋 -nonexpansive retractions32 on 𝐶 [292, Lem. 2.7]. On
the other hand, if (𝑋, ||·||𝑋) is reflexive, Gateaux differentiable, and strictly convex, then
(151) characterises left 𝐷Ψ𝜙1,1/2

-projections [10, Prop. 7.c], while, if (𝑋, ||·||𝑋) is reflexive,
Ψ is totally convex on efd(Ψ) and Euler–Legendre, with efd(ΨF) = 𝑋⋆, then right 𝐷Ψ-
projections are characterised as sunny quasinonexpansive 𝐷Ψ-retractions [245, Cor. 4.6].

c) This suggests us a tentative conjecture that the Euler–Legendre transform in the Văınberg–
Brègman setting, under a suitable choice of categories (e.g., a category of left𝐷Ψ-projections
and a category of sunny quasinonexpansive right 𝐷Ψ-retractions), may be an adjunction,
with the above equivalence as a special case (arising as a relationship between reflective and
coreflective subcategory of an above adjunction). Can this conjecture be approached via
the notion of a nucleus of profunctor, as in [348, §5]?

(vi) Regarding Proposition 3.46, dependence of 𝐷Ψ(𝜑, ·) on 𝑄 can be factored out by reducing con-
siderations to singletons 𝑄 = {𝜑} (understood as 0-dimensional closed affine spaces). In (some)
analogy to [35, Thm. 7] [150, Thm. 4.4], this allows us to state a problem of characterisation of
𝐷Ψ as a functor (or a natural transformation) 𝐷Ψ(𝜑, ·).

(vii) Given any 𝑄 ∈ Ob(lCvx(Ψ)), HomlCvx(Ψ)(·, 𝑄) can be equipped with the structure of a com-
mutative partially ordered monoid (i.e. a monoid (𝑀, □), satisfying 𝑥□𝑦 = 𝑦□𝑥 ∀𝑥, 𝑦 ∈ 𝑀 ,
and equipped with a partial order ≤ such that 𝑥 ≤ 𝑦 ⇒ 𝑧□𝑥 ≤ 𝑧□𝑦 ∀𝑥, 𝑦, 𝑧 ∈ 𝑀), with
←−
P𝐷Ψ
𝑄1
◇
←−
P𝐷Ψ
𝑄2

=
←−
P𝐷Ψ
𝑄1

□
←−
P𝐷Ψ
𝑄2

:=
←−
P𝐷Ψ
𝑄1∩𝑄2

,
←−
P𝐷Ψ
𝑄1
≤
←−
P𝐷Ψ
𝑄2

:= 𝑄1 ⊆ 𝑄2, and a distinguished zero

object, given by
←−
P𝐷Ψ
𝑄 . (Hence, each HomlCvx(ℓ,Ψ)(·, 𝑄) forms a resource theory in the sense of

[149, §3] (the latter generalises, in particular, the approaches of [227] and [126]).) Viewing the
order of extended positive reals as a feature distinct from their composition by addition turns
[0,∞] into a commutative partially ordered monoid (with 𝑥 +∞ := ∞ =: ∞ + 𝑥 ∀𝑥 ∈ [0,∞]).
Thus, each functor 𝐷Ψ(𝜑, ·) can be seen as a morphism Hom

lAff
⊆
𝑄(Ψ)

(·, 𝑄) → [0,∞] inside the
category of commutative partially ordered monoids.

(viii) The extension from the monoid structure of the composable sets LSQ(Ψ,𝐾) and RSQ(Ψ,𝐾) to
the corresponding categories LSQ⊆cvx(Ψ,𝐾) and R̄SQ⊆cvx(Ψ,𝐾) (which depends on the associativity
of composition) is possible due to an observation that the proofs of [293, Lems. 1, 2] and [246,
Props. 3.3, 4.4, 6.6, Fact 6.5] do not depend on the action of 𝑇𝑖 on the domain 𝐾 ∖ ran(𝑇𝑖−1)
for 𝑖 ∈ {2, . . . ,𝑚}, 𝑚 ∈ N. Hence, these results hold in larger generality, namely for 𝑚-tuples of
maps (𝑇1 : 𝐾 → 𝐾, 𝑇2 : ran(𝑇1)→ 𝐾, 𝑇3 : ran(𝑇2)→ 𝐾, . . . , 𝑇𝑚 : ran(𝑇𝑚−1)→ 𝐾).

(ix) The restriction of considerations from the category RSQ⊆cvx(ℓ,Ψ) (with objects given by any
nonempty subsets of int(efd(Ψ))) to R̄SQ⊆cvx(ℓ,Ψ), as exhibited in Definitions 3.47 and 3.48,
Proposition 3.49, and Corollary 3.50, is due to requirement of compatibility with r̄Cvx(ℓ,Ψ),
as well as with the use of Proposition 2.16.(v). Thus, the discussion in (v) applies, mutatis
mutandis, to R̄SQ⊆cvx(ℓ,Ψ).

(x) Under the additional assumptions on Ψ provided by Proposition 3.5, and assuming norm-to-
norm continuity of ℓ, we obtain the categories lCvxcont(ℓ,Ψ) and r̄Cvxcont(ℓ,Ψ) of norm-to-
norm continuous left and right 𝐷ℓ,Ψ-projections, respectively. By Proposition 3.27, if Ψ = Ψ𝜙

for a gauge 𝜙, then the above assumptions on Ψ are equivalent with assuming that (𝑋, ||·||𝑋)
is reflexive, strictly convex, Fréchet differentiable, and has the Radon–Riesz–Shmul’yan prop-
erty. Analogously, Corollary 3.9 leads to the category lCvx

𝑠/(𝑟−1)
LH, 𝑋 (Ψ) (resp., r̄Cvx𝑠

2𝑤/(𝑟−1)
LH, 𝑋 (Ψ)

of 𝑠
𝑟−1(resp., 𝑠2𝑤

𝑟−1)-Lipschitz–Hölder continuous left (resp., right) 𝐷ℓ,Ψ-projections on 𝑋, while

32Given nonempty subsets 𝐾1 and 𝐾2 of a Banach space (𝑋, ||·||𝑋), a function 𝑇 : 𝐾1 → 𝐾2 is called: a retraction
iff 𝑇 (𝑥) = 𝑥 ∀𝑥 ∈ 𝐾2 [56, §2]; sunny iff 𝑇 (𝑥) = 𝑦 ⇒ 𝑇 (𝑦 + 𝑡(𝑥− 𝑦)) = 𝑦 ∀𝑥 ∈ 𝐾1 ∀𝑡 ≥ 0 [134, p. 19].
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Proposition 3.33 leads to the category lCvx
𝛽(𝑟−1)/(1−𝛽)
LH, 𝑋 (Ψ𝜙1,𝛽

) (resp., r̄Cvx(1−𝛽)
2(𝑟−1)2/𝛽2

LH, bound(𝑋) (Ψ𝜙1,𝛽
))

of 𝛽(𝑟−1)1−𝛽 (resp., (1−𝛽)2(𝑟−1)2
𝛽2 )-Lipschitz–Hölder continuous left (resp., right) 𝐷Ψ𝜙1,𝛽

-projections on
𝑋 (resp., bounded subsets of 𝑋).

4 Some models

4.1 𝑋 = 𝐿1/𝛾 space, ℓ = Mazur map, Ψ = Ψ𝜙

Proposition 4.1. Let 𝒩 be a W*-algebra, 𝜙 a gauge, 𝛾 ∈ ]0, 1[, 𝜆 ∈ ]0,∞[, ∅ ̸= 𝐶 ⊆ 𝒩⋆, ℬ a ball in
𝒩⋆ (e.g., ℬ = 𝐵(𝒩⋆, ||·||1)). Then:

(i) 𝐷𝜆ℓ𝛾 ,Ψ𝜙 : 𝒩⋆ ×𝒩⋆ → [0,∞] is an information on 𝒩⋆;
(ii) if 𝐶 is 𝜆ℓ𝛾-convex 𝜆ℓ𝛾-closed, then 𝐷𝜆ℓ𝛾 ,Ψ𝜙 is left pythagorean on 𝐶,

←−
P
𝐷𝜆ℓ𝛾,Ψ𝜙

𝐶 is zone consistent,
and adapted;

(iii) if 𝐶 ⊆ 𝒩+
⋆ ∪ℬ is 𝜆ℓ𝛾-convex closed, then 𝐷𝜆ℓ𝛾 ,Ψ𝜙 is left pythagorean on 𝐶,

←−
P
𝐷𝜆ℓ𝛾,Ψ𝜙

𝐶 is zone con-
sistent, adapted, and norm-to-norm continuous on 𝒩⋆, and inf𝑦∈𝐶{𝐷𝜆ℓ𝛾 ,Ψ𝜙(𝑦, · )} is continuous
on 𝒩⋆;

(iv) if 𝐶 is 𝜆ℓ1−𝛾-convex 𝜆ℓ1−𝛾-closed, then 𝐷𝜆ℓ𝛾 ,Ψ𝜙 is right pythagorean on 𝐶, and
−→
P
𝐷𝜆ℓ𝛾,Ψ𝜙

𝐶 is zone
consistent, and adapted;

(v) if 𝐶 ⊆ 𝒩+
⋆ ∪ℬ is 𝜆ℓ1−𝛾-convex closed, then 𝐷𝜆ℓ𝛾 ,Ψ𝜙 is right pythagorean on 𝐶, and

−→
P
𝐷𝜆ℓ𝛾,Ψ𝜙

𝐶 is
zone consistent, adapted, and norm-to-norm continuous on 𝒩⋆;

(vi) the sets LSQ(𝜆ℓ𝛾 ,Ψ𝜙, 𝐶) and RSQ(𝜆ℓ𝛾 ,Ψ𝜙, 𝐶) are composable;
(vii) the categories lCvx⊆(𝜆ℓ𝛾 ,Ψ𝜙), r̄Cvx⊆(𝜆ℓ𝛾 ,Ψ𝜙), LSQ⊆cvx(𝜆ℓ𝛾 ,Ψ𝜙), and R̄SQ⊆cvx(𝜆ℓ𝛾 ,Ψ𝜙) satisfy the

functorial adjunctions and equivalences given by Corollary 3.50.(i)–(ii) with 𝑍 = 𝒩⋆;
(viii) if 𝑇 : 𝐿1/𝛾(𝒩 )→ 2𝐿1/(1−𝛾)(𝒩 ) is maximally monotone with 0 ∈ efd(𝑇 ), then ←−resΨ𝜙

𝑇 maps 𝐿1/𝛾(𝒩 )

on efd(𝑇 ) and is norm-to-norm continuous on (𝐿1/𝛾(𝒩 ), ||·||1/𝛾),
−→resΨ𝜙

𝑇 maps 𝐿1/(1−𝛾)(𝒩 ) on

𝑗𝜙(efd(𝑇 )) and is norm-to-norm continuous on (𝐿1/(1−𝛾)(𝒩 ), ||·||1/(1−𝛾)), and ←−resℓ𝛾 ,Ψ𝜙

𝑇 maps 𝒩⋆
on ℓ𝛾

p

(efd(𝑇 )) and is norm-to-norm continuous on 𝒩⋆.

Proof. Since int(efd(Ψ𝜙)) = 𝐿1/𝛾(𝒩 ), we have (𝜆ℓ𝛾)

p

(int(efd(Ψ𝜙))) = 𝒩⋆. Zone consistency of left
and right 𝐷𝜆ℓ𝛾 ,Ψ𝜙-projections follows from Proposition 3.17.(iv). For any 𝛾 ∈ ]0, 1[, (𝐿1/𝛾(𝒩 ), ||·||1/𝛾)
is uniformly convex (as proved for 𝛾 ∈ ]0, 12 ] in [129, Lem. 5] and for 𝛾 ∈ ]0, 1[ in [105, Cor. 2.1]33

for type I 𝒩 , for 𝛾 ∈ ]0, 1[ in [364, Lems. 3.12, 3.22, p. 262], for 𝛾 ∈ ]0, 1[ in [22, Prop. 8.2, Lem.
9.1] and [207, Thm. 4.2] for countably finite 𝒩 , for 𝛾 ∈ ]0, 12 ] in [206, Lem. 3.4.2.(i)] [326, Prop. 31]
(cf. [156, Lem. 1.18]) [165, Lem. 9] and for 𝛾 ∈ ]0, 1[ in [248, Lems. 8.1, 8.2] [140, Thm. 5.3] for
any 𝒩 ), hence uniformly Fréchet differentiable (due to (𝐿1/𝛾(𝒩 ), ||·||1/𝛾)⋆ ∼= (𝐿1/(1−𝛾)(𝒩 ), ||·||1/(1−𝛾))
∀𝛾 ∈ ]0, 1[, proved in [311, p. 580] for type I 𝒩 , [129, Thm. 7] and [356, Thm. 4.2] for semifinite
𝒩 , and in [206, Thm. 3.4.3] [165, Thm. 10.(2)] [326, Thm. 32.(2)] (cf. [156, Thm. 1.19]) for
arbitary 𝒩 ). Since uniform convexity entails both strict convexity and the Radon–Riesz–Shmul’yan
property, while uniform Fréchet differentiability entails (Fréchet differentiability and thus) Gateaux
differentiability, Ψ𝜙 is Euler–Legendre on any (𝐿1/𝛾(𝒩 ), ||·||1/𝛾) by means of Proposition 3.14, and is left
(resp., right) pythagorean on convex closed (resp., DGΨ𝜙-convex DGΨ𝜙-closed) 𝐾 = 𝜆ℓ𝛾(𝐶) by means
of Proposition 3.17 (this proposition implies also zone consistency in (ii) and (iii)). By Proposition
2.26.(iv), Fréchet differentiability of (𝑋, ||·||𝑋) is equivalent with norm-to-norm continuity of 𝑗𝜙 for any
gauge 𝜙. Furthermore, for any 𝛾 ∈ ]0, 1[, ℓ𝛾 is a norm-to-norm homeomorphism from the positive cone
of (𝒩⋆, ||·||1) to the positive cone of (𝐿1/𝛾(𝒩 ), ||·||1/𝛾) [208, Thm. 4.2], and a uniform homeomorphism
from any ball in 𝒩⋆ [289, Lem. 3.2]. Since 𝜆 is a multiplicative constant, the same conclusion follows
for 𝜆ℓ𝛾 . Since DGΨ𝜙-convexity is a convexity in 𝐿1/(1−𝛾)(𝒩 ), while 𝑗𝜙 = DGΨ𝜙 is norm-to-norm
continuous, (DGΨ𝜙 ∘ 𝜆ℓ𝛾)-convex (DGΨ𝜙 ∘ 𝜆ℓ𝛾)-closed sets in 𝒩⋆ coincide with 𝜆ℓ1−𝛾-convex 𝜆ℓ1−𝛾-
closed sets in 𝒩⋆. Since uniform convexity implies also the Radon–Riesz–Shmul’yan property [318,
Thm. 5], norm-to-norm continuity in (iii) and (v) follows from Proposition 3.27. Adaptedness in (ii)

33[254, Thm. 2.7] is often cited in this case, however its proof is incorrect (see [140, p. 299]).
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and (v) and composability in (vi), follow from Proposition 3.28, and these imply (vii). (viii) follows
from Proposition 3.31.

Proposition 4.2. For 𝜙 = 𝜙𝛼,𝛽, 𝛼, 𝜆 ∈ ]0,∞[, 𝛽, 𝛾 ∈ ]0, 1[, any W*-algebra 𝒩 , and 𝜑, 𝜓 ∈ 𝒩⋆,

𝐷𝜆ℓ𝛾 ,Ψ𝜙𝛼,𝛽
(𝜑, 𝜓) = 𝜆1/𝛽

𝛼

(︂
𝛽||𝜑||𝛾/𝛽1 + (1− 𝛽)||𝜓||𝛾/𝛽1 − ||𝜓||

𝛾( 1
𝛽
− 1

𝛾
)

1 re

∫︁
𝑢𝜑|𝜑|𝛾𝑢𝜓|𝜓|1−𝛾

)︂
. (184)

Proof. By a direct calculation from (149), using [208, Lem. 3.1] and 𝐿1/𝛾(𝒩 ) ∋ 𝑥 ↦→ 𝑗(𝑥) =

||𝑥||2−1/𝛾1/𝛾 𝑢𝑥|𝑥|1/𝛾−1 ∈ 𝐿1/(1−𝛾)(𝒩 ), the latter following from [326, Prop. 24] [165, p. 162] (cf. also
[183, Eqn. (11)]).

Corollary 4.3. For 𝜙 = 𝜙𝛼,𝛽, 𝛼, 𝜆 ∈ ]0,∞[, 𝛽, 𝛾 ∈ ]0, 1[, any W*-algebra 𝒩 , and 𝜑, 𝜓 ∈ 𝒩⋆:
(i) 𝐷𝜆ℓ𝛾 ,Ψ𝜙𝛼,𝛽

= 𝐷ℓ𝛾 ,Ψ𝜙
𝛼𝜆−1/𝛽,𝛽

;

(ii) if 𝜆 = 1, 𝛽 = 𝛾, 𝛼 = 𝛾(1− 𝛾), then 𝜙𝛾(1−𝛾),𝛾(𝑡) =
1

𝛾(1−𝛾) 𝑡
1/𝛾−1, Ψ𝜙𝛾(1−𝛾),𝛾

(𝑥) = 1
1−𝛾 ||𝑥||

1/𝛾
1/𝛾, and

𝐷ℓ𝛾 ,Ψ𝜙𝛾(1−𝛾),𝛾
(𝜑, 𝜓) = 𝐷 1

𝛾
ℓ𝛾 ,Ψ𝜙

𝛾1−1/𝛾 (1−𝛾),𝛾

(𝜑, 𝜓) (185)

= 1
1−𝛾 ||𝜑||1 +

1
𝛾 ||𝜓||1 +

1
𝛾(1−𝛾)re

∫︁
𝑢𝜑|𝜑|𝛾𝑢𝜓|𝜓|1−𝛾 =: 𝐷𝛾(𝜑, 𝜓); (186)

(iii) CPTP(𝒩⋆) ⊆ CN(ℓ𝛾 ,Ψ𝜙𝛾(1−𝛾),𝛾
), where CPTP(𝒩⋆) denotes the set of completely positive trace-

preserving maps from 𝒩⋆ to 𝒩⋆.

Proof. (i) follows directly from (184), while (ii) is a special case of (i). (iii) follows from (ii), combined
with the result [183, (ii) (p. 288)] obtained for 𝐷𝛾 on 𝒩⋆.

Proposition 4.4. Let 𝒩 be a W*-algebra, 𝛽, 𝛾 ∈ ]0, 1[, ∅ ̸= 𝐾 ⊆ 𝐿1/𝛾(𝒩 ), ∅ ̸= 𝐶 ⊆ 𝐵(𝒩⋆, ||·||1), let
𝑇 : 𝐿1/𝛾(𝒩 )→ 2𝐿1/(1−𝛾)(𝒩 ) and 𝑊 : 𝐵(𝐿1/𝛾(𝒩 ), ||·||1/𝛾)→ 2𝑗𝜙1,𝛽

(𝐵(𝐿1/𝛾(𝒩 ),||·||1/𝛾)) be maximally mono-
tone, 𝑓 ∈ Γ(𝐿1/𝛾(𝒩 ), ||·||1/𝛾), let 𝑔 : 𝐿1/𝛾(𝒩 )→ ]−∞,∞] satisfy 𝑔∘𝑗𝜙1,1−𝛽

∈ Γ(𝐿1/(1−𝛾)(𝒩 ), ||·||1/(1−𝛾))
for 𝛽 ∈ [12 , 1[, and 𝜆 ∈ ]0, 1[. Then:

(i) if 𝛾 ∈ [12 , 1[ and 𝛽 ∈ ]0, 12 ], 𝐾 is convex and closed (resp., 𝐶 is ℓ𝛾-convex and closed), then
←−
P
𝐷Ψ𝜙1,𝛽

𝐾

(resp.,
←−
P
𝐷ℓ𝛾 ,Ψ𝜙1,𝛽

𝐶 ) is uniformly continuous on bounded subsets of 𝐿1/𝛾(𝒩 ) (resp., ℓ𝛾-bounded sub-
sets of 𝐵(𝒩⋆, ||·||1)), and 𝛽(𝛾−1)

1−𝛽 -(resp., 𝛽(𝛾−1)𝛾
1−𝛽 -)Lipschitz–Hölder continuous on 𝐿1/𝛾(𝒩 ) (resp.,

𝐵(𝒩⋆, ||·||1));
(ii) if 𝛾 ∈ ]0, 12 ] and 𝛽 ∈ ]0, 𝛾], 𝐾 is convex and closed (resp., 𝐶 is ℓ𝛾-convex and closed), then
←−
P
𝐷Ψ𝜙1,𝛽

𝐾 (resp.,
←−
P
𝐷ℓ𝛾 ,Ψ𝜙1,𝛽

𝐶 ) is uniformly continuous on bounded subsets of 𝐿1/𝛾(𝒩 ) (resp., ℓ𝛾-
bounded subsets of 𝐵(𝒩⋆, ||·||1)) and 𝛽

1−𝛽 -(resp., 𝛽𝛾
1−𝛽 -)Lipschitz–Hölder continuous on 𝐿1/𝛾(𝒩 )

(resp., 𝐵(𝒩⋆, ||·||1));
(iii) if 𝛾 ∈ [12 , 1[ and 𝛽 ∈ [𝛾, 1[, 𝑗𝜙1,𝛾 (𝐾) is convex and closed (resp., 𝐶 is (𝑗𝜙1,𝛾 ∘ ℓ𝛾)-convex and

closed), then
−→
P
𝐷Ψ𝜙1,𝛽

𝐾 (resp.,
−→
P
𝐷ℓ𝛾 ,Ψ𝜙1,𝛽

𝐶 ) is (1−𝛽𝛽 )2-(resp., 𝛾(1−𝛽𝛽 )2-)Lipschitz–Hölder continuous
on bounded subsets of 𝐿1/𝛾(𝒩 ) (resp., ℓ𝛾-bounded subsets of 𝐵(𝒩⋆, ||·||1));

(iv) if 𝛾 ∈ ]0, 12 ] and 𝛽 ∈ [12 , 1[, 𝑗𝜙1,𝛽
(𝐾) is convex and closed (resp., 𝐶 is (𝑗𝜙1,𝛽

∘ℓ𝛾)-convex and closed),

then
−→
P
𝐷Ψ𝜙1,𝛽

𝐾 (resp.,
−→
P
𝐷ℓ𝛾 ,Ψ𝜙1,𝛽

𝐶 ) is ( (1−𝛽)𝛾𝛽(1−𝛾))
2-(resp., 𝛾3( (1−𝛽)

𝛽(1−𝛾))
2-)Lipschitz–Hölder continuous

on bounded subsets of 𝐿1/𝛾(𝒩 ) (resp., ℓ𝛾-bounded subsets of 𝐵(𝒩⋆, ||·||1));

(v) if 𝛾 ∈ [12 , 1[ and 𝛽 ∈ ]0, 12 ], then ←−res
Ψ𝜙1,𝛽

𝜆𝑇 and ←−−prox
𝐷Ψ𝜙1,𝛽

𝜆,𝑓 (resp., ←−res
ℓ𝛾 ,Ψ𝜙1,𝛽

𝜆𝑊 ) are (resp., is) single-
valued and uniformly continuous on bounded subsets of 𝐿1/𝛾(𝒩 ) (resp., ℓ𝛾-bounded subsets of
𝐵(𝒩⋆, ||·||1)), as well as single-valued and 𝛽(𝛾−1)

1−𝛽 -(resp., 𝛽(𝛾−1)𝛾
1−𝛽 -)Lipschitz–Hölder continuous on

𝐿1/𝛾(𝒩 ) (resp., 𝐵(𝒩⋆, ||·||1));

(vi) if 𝛾 ∈ ]0, 12 ] and 𝛽 ∈ ]0, 𝛾], then ←−res
Ψ𝜙1,𝛽

𝜆𝑇 and ←−−prox
𝐷Ψ𝜙1,𝛽

𝜆,𝑓 (resp., ←−res
ℓ𝛾 ,Ψ𝜙1,𝛽

𝜆𝑊 ) are (resp., is)
single-valued and uniformly continuous on bounded subsets of 𝐿1/𝛾(𝒩 ) (resp., ℓ𝛾-bounded subsets
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of 𝐵(𝒩⋆, ||·||1)), as well as single-valued and 𝛽
1−𝛽 -(resp., 𝛽𝛾

1−𝛽 -)Lipschitz–Hölder continuous on
𝐿1/𝛾(𝒩 ) (resp., 𝐵(𝒩⋆, ||·||1));

(vii) if 𝛾 ∈ [12 , 1[ and 𝛽 ∈ [𝛾, 1[, then −→res
Ψ𝜙1,𝛽

𝜆𝑇 is single-valued and (1−𝛽𝛽 )2-Lipschitz–Hölder continuous

on bounded subsets of 𝐿1/(1−𝛾)(𝒩 ), and −−→prox
𝐷Ψ𝜙1,𝛽

𝜆,𝑔 is single-valued and (1−𝛽𝛽 )2-Lipschitz–Hölder
continuous on bounded subsets of 𝐿1/𝛾(𝒩 );

(viii) if 𝛾 ∈ ]0, 12 ] and 𝛽 ∈ [12 , 1[, then −→res
Ψ𝜙1,𝛽

𝜆𝑇 is single-valued and ( (1−𝛽)𝛾𝛽(1−𝛾))
2-Lipschitz–Hölder continu-

ous on bounded subsets of 𝐿1/(1−𝛾)(𝒩 ), and −−→prox
𝐷Ψ𝜙1,𝛽

𝜆,𝑔 is single-valued and ( (1−𝛽)𝛾𝛽(1−𝛾))
2-Lipschitz–

Hölder continuous on bounded subsets of 𝐿1/𝛾(𝒩 ).

Proof. Clarkson inequality for (𝐿1/𝛾(𝒩 ), ||·||1/𝛾) spaces ([104, Thm. 2] for commutative 𝒩 , [105, Cor.
2.1] for type I 𝒩 , [364, Lems. 3.21, 3.22, p. 262] for semifinite 𝒩 , [207, Prop. 5.3] for countably finite
𝒩 , [140, Thm. 5.3] for any 𝒩 ) implies: if 𝛾 ∈ ]0, 12 ], then (𝐿1/𝛾(𝒩 ), ||·||1/𝛾) is 1

𝛾 -uniformly convex and
1

1−𝛾 -uniformly Fréchet differentiable. Furthermore, if 𝛾 ∈ [12 , 1[, then (𝐿1/𝛾(𝒩 ), ||·||1/𝛾) is 2-uniformly
convex ([159, Rem. (p. 244)] [190, Eqns. (10a)–(10b)] for commutative𝒩 , [327, Thm. 2.2] for type I𝒩 ,
[36, Thm. 1, p. 466] for semifinite 𝒩 , [282, Thm. 5.3] for any 𝒩 ), hence (𝐿1/(1−𝛾)(𝒩 ), ||·||1/(1−𝛾)) is 2-
uniformly Fréchet differentiable. Thus, (𝐿1/𝛾(𝒩 ), ||·||1/𝛾) is max{2, 1𝛾 }-uniformly convex and min{2, 1𝛾 }-
uniformly Fréchet differentiable ∀𝛾 ∈ ]0, 1[. Combining this with Proposition 3.33, and with the fact
that 𝑟1-uniform convexity (resp., 𝑟1-uniform Fréchet differentiability) implies 𝑟2-uniform convexity
(resp., 𝑟2-uniform Fréchet differentiability) for 2 ≤ 𝑟1 ≤ 𝑟2 < ∞ (resp., 1 < 𝑟2 ≤ 𝑟1 ≤ 2) (cf., e.g.,
[355, Props. 2.1, 2.2.(iii)] for a proof), we obtain the statements for left and right 𝐷Ψ𝜙-projections
on 𝐿1/𝛾(𝒩 ). The corresponding statements for left and right 𝐷ℓ𝛾 ,Ψ𝜙-projections follow from Lipschitz
continuity of (ℓ𝛾)

p on 𝐵(𝐿1/𝛾(𝒩 ), ||·||1/𝛾) and 𝛾-Lipschitz–Hölder continuity of ℓ𝛾 on 𝐵(𝒩⋆, ||·||1), for
any 𝛾 ∈ ]0, 1[ [299, Thm. (p. 37)]. (v)–(viii) follows from Proposition 3.32 by an analogous reasoning.

Proposition 4.5. Let 𝐴 be a semifinite JBW-algebra, 𝜏 a faithful normal semifinite trace on
𝐴, 𝛾 ∈ ]0, 1[, 𝜆 ∈ ]0,∞[. Then 𝜆ℓ𝛾 is a norm-to-norm homeomorphism between (𝐴⋆, ||·||1)+ and
(𝐿1/𝛾(𝐴, 𝜏), ||·||1/𝛾)+.

Proof. 1) Consider 𝑥 ∈ 𝐴+
⋆ and a sequence {𝑥𝑛 ∈ 𝐴+

⋆ : 𝑛 ∈ N} such that lim𝑛→∞ ||𝑥𝑛 − 𝑥||1 =

0. From inequality ||𝑥𝛾 − 𝑦𝛾 ||1/𝛾1/𝛾 ≤ ||𝑥− 𝑦||1 ∀𝑥, 𝑦 ∈ 𝐴+
⋆ [173, Prop. 9.(ii)] it follows that

lim𝑛→∞ ||𝑥𝛾𝑛 − 𝑥𝛾 ||1/𝛾1/𝛾 = 0, i.e. lim𝑛→∞ ||ℓ𝛾(𝑥𝑛)− ℓ𝛾(𝑥)||1/𝛾 = 0.
2) The uniform convexity of (𝐿1/𝛾(𝐴, 𝜏), ||·||1/𝛾), proved in [172, Thm. V.3.2] for 𝛾 ∈ ]0, 12 ] and in

[31, Thm. 2.5] and [173, Cors. 12, 13] for 𝛾 ∈ ]0, 1[, taken together with the duality [1, Thm.
2.1.10] [172, Thm. V.3.2]

(𝐿1/𝛾(𝐴, 𝜏), ||·||1/𝛾)
⋆ ∼= (𝐿1/(1−𝛾)(𝐴, 𝜏), ||·||1/(1−𝛾)) ∀𝛾 ∈ ]0, 1[, (187)

implies uniform Fréchet differentiability of (𝐿1/𝛾(𝐴, 𝜏), ||·||1/𝛾), which in turn implies its
Fréchet differentiability. Taking 𝜙(𝑡) = 𝑡1/𝛾−1 (i.e. 𝜙1,𝛽 with 𝛽 = 𝛾), corresponding to
[[𝑥, 𝑗𝜙(𝑥)]]𝐿1/𝛾(𝐴,𝜏)×𝐿1/(1−𝛾)(𝐴,𝜏)

= ||𝑥||1/𝛾1/𝛾 and ||𝑗𝜙(𝑥)||1/(1−𝛾) = ||𝑥||
1/𝛾−1
1/𝛾 , gives norm-to-norm con-

tinuity of
𝑗𝜙 : 𝐿1/𝛾(𝐴, 𝜏) ∋ 𝑥 = 𝑠𝑥 ⊙ |𝑥| ↦→ 𝑠𝑥 ⊙ |𝑥|1/𝛾−1 ∈ 𝐿1/(1−𝛾)(𝐴, 𝜏), (188)

with ⊙ denoting the nonassociative Jordan product in 𝐴. (The above expression for 𝑗𝜙 can
be explicitly deduced by noticing that the formula ||𝑥||1−1/𝛾1/𝛾 𝑠𝑥 ⊙ |𝑥|1/𝛾−1 [1, p. 51] [172, Lem.
V.3.3.2𝑜] (cf. [31, p. 101] and [173, p. 420]) equals to DF||𝑥||1/𝛾 by [173, Lem. 14]. Then, using
the general formulas 𝑗(𝑥) = 1

2D
F(||𝑥||2𝑋) = ||𝑥||𝑋DF||𝑥||𝑋 and 𝑗𝜙(𝑥) = ||𝑥||−1𝑋 𝜙(||𝑥||𝑋)𝑗(𝑥), valid for

any gauge 𝜙 and any Fréchet differentiable (𝑋, ||·||𝑋), we obtain 𝑗(𝑥) = ||𝑥||2−1/𝛾1/𝛾 𝑠𝑥 ⊙ |𝑥|1/𝛾−1 and

𝑗𝜙(𝑥) = 𝑠𝑥 ⊙ |𝑥|1/𝛾−1 for 𝜙(𝑡) = 𝑡1/𝛾−1 and (𝑋, ||·||𝑋) = (𝐿1/𝛾(𝐴, 𝜏), ||·||1/𝛾).) The latter, taken
together with the nonassociative Rogers–Hölder inequality ||𝑥𝑦||1 ≤ ||𝑥||1/𝛾 ||𝑦||1/(1−𝛾) ∀𝑥, 𝑦 ∈ 𝐴𝜏
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[1, Lem. 2.1.1.(a)] [172, Lem. V.3.3.1𝑜] (cf. [31, Prop. IV.2.4.(i)] and [173, Lem. 3.(i)]), entails
norm-to-norm continuity of 𝑗𝜙(𝑥)⊙𝑥 = 𝑥1/𝛾−1 ⊙𝑥 = 𝑥1/𝛾 ∀𝑥 ∈ 𝐿1/𝛾(𝐴, 𝜏)

+.
3) Since 𝜆 is a multiplicative positive constant, the above reasoning follows from ℓ𝛾 to 𝜆ℓ𝛾 .

Proposition 4.6. Let 𝐴 be a semifinite JBW-algebra, 𝜏 a faithful normal semifinite trace on 𝐴. If
𝛾 ∈ [12 , 1[, then (𝐿1/𝛾(𝐴, 𝜏), ||·||1/𝛾) is 2-uniformly convex and 1

𝛾 -uniformly Fréchet differentiable.

Proof. 1
1−𝛾 -uniform convexity and 1

𝛾 -uniform Fréchet differentiability of 𝐿1/𝛾(𝐴, 𝜏) for 𝛾 ∈ [12 , 1[ is
established explicitly in [31, p. 102] and [173, p. 427]. 2-uniform convexity follows from the inequality
[36, Thm. 1, p. 466] [282, Thm. 5.3]

||𝑥||21/𝛾 +
(︁

1
𝛾 − 1

)︁
||𝑦||21/𝛾 ≤

(︁
1
2

(︁
||𝑥+ 𝑦||1/𝛾1/𝛾 + ||𝑥− 𝑦||

1/𝛾
1/𝛾

)︁)︁2𝛾
∀𝑥, 𝑦 ∈ 𝐿1/𝛾(𝒩 ), (189)

for any W*-algebra 𝒩 , taken together with an extension of the Shirshov–Cohn theorem to semifinite
JBW-algebras with weights [31, Rem. (p. 94)].

Proposition 4.7. Let 𝐴 be a semifinite JBW-algebra, 𝜏 a faithful normal semifinite trace on 𝐴, 𝜙 a
gauge, 𝛾 ∈ ]0, 1[, 𝜆 ∈ ]0,∞[, ∅ ̸= 𝐶 ⊆ 𝐴⋆. Then:

(i) 𝐷𝜆ℓ𝛾 ,Ψ𝜙 : 𝐴⋆ ×𝐴⋆ → [0,∞] is an information on 𝐴⋆, independent of the choice of 𝜏 ;
(ii) the sets LSQ(𝜆ℓ𝛾 ,Ψ𝜙, 𝐶) and RSQ(𝜆ℓ𝛾 ,Ψ𝜙, 𝐶) are composable;
(iii) if 𝐶 is 𝜆ℓ𝛾-convex 𝜆ℓ𝛾-closed, then 𝐷𝜆ℓ𝛾 ,Ψ𝜙 is left pythagorean on 𝐶, and

←−
P
𝐷𝜆ℓ𝛾,Ψ𝜙

𝐶 is zone
consistent and adapted;

(iv) if 𝐶 is 𝜆ℓ1−𝛾-convex 𝜆ℓ𝛾-closed, then 𝐷𝜆ℓ𝛾 ,Ψ𝜙 is right pythagorean on 𝐶, and
−→
P
𝐷𝜆ℓ𝛾,Ψ𝜙

𝐶 is zone
consistent and adapted;

(v) if 𝐶 ⊆ 𝐴+
⋆ is 𝜆ℓ𝛾-convex closed, then (iii) holds,

←−
P
𝐷𝜆ℓ𝛾,Ψ𝜙

𝐶 is norm-to-norm continuous on 𝐴+
⋆

(with respect to ||·||1), and inf𝑦∈𝐶{𝐷𝜆ℓ𝛾 ,Ψ𝜙(𝑦, · )} is continuous on 𝐴+
⋆ (with respect to ||·||1);

(vi) if 𝐶 ⊆ 𝐴+
⋆ is 𝜆ℓ1−𝛾-convex closed, then (iv) holds, and

−→
P
𝐷𝜆ℓ𝛾,Ψ𝜙

𝐶 is norm-to-norm continuous on
𝐴+
⋆ (with respect to ||·||1);

(vii) the categories lCvx⊆(𝜆ℓ𝛾 ,Ψ𝜙), r̄Cvx⊆(𝜆ℓ𝛾 ,Ψ𝜙), LSQ⊆cvx(𝜆ℓ𝛾 ,Ψ𝜙), and R̄SQ⊆cvx(𝜆ℓ𝛾 ,Ψ𝜙) satisfy the
functorial adjunctions and equivalences given by Corollary 3.50.(i)–(ii) with 𝑍 = 𝐴⋆;

(viii) if 𝑇 : 𝐿1/𝛾(𝐴, 𝜏) → 2𝐿1/(1−𝛾)(𝐴,𝜏) is maximally monotone with 0 ∈ efd(𝑇 ), then ←−resΨ𝜙

𝑇 maps
𝐿1/𝛾(𝐴, 𝜏) on efd(𝑇 ) and is norm-to-norm continuous on (𝐿1/𝛾(𝐴, 𝜏), ||·||1/𝛾), and −→resΨ𝜙

𝑇 maps
𝐿1/(1−𝛾)(𝐴, 𝜏) on 𝑗𝜙(efd(𝑇 )) and is norm-to-norm continuous on (𝐿1/(1−𝛾)(𝐴, 𝜏), ||·||1/(1−𝛾));

(ix) if 𝑇 : (𝐿1/𝛾(𝐴, 𝜏))
+ → 2(𝐿1/(1−𝛾)(𝐴,𝜏))

+
is maximally monotone with 0 ∈ efd(𝑇 ), then ←−resℓ𝛾 ,Ψ𝜙

𝑇

maps 𝐴⋆+ on ℓ𝛾

p

(efd(𝑇 )) and is norm-to-norm continuous on 𝐴⋆
+ (with respect to ||·||1).

Proof. Due to uniform convexity and uniform Fréchet differentiability of (𝐿1/𝛾(𝐴, 𝜏), ||·||1/𝛾), 𝛾 ∈ ]0, 1[,
Proposition 3.14 implies that Ψ𝜙 is Euler–Legendre on (𝐿1/𝛾(𝐴, 𝜏), ||·||1/𝛾), while Proposition 3.17
implies that 𝐷Ψ𝜙 is an information. The proof that 𝐷𝜆ℓ𝛾 ,Ψ𝜙 is left (resp., right) pythagorean on 𝜆ℓ𝛾-
convex (resp., 𝜆ℓ1−𝛾-convex) closed sets 𝐶 is exactly the same as in the proof of Proposition 4.1. By
[32, Cor. 1] (cf. also [33, Cor. 2] with the choice of an N-function ϒ(𝑡) = 𝛾|𝑡|1/𝛾), (𝐿1/𝛾(𝐴, 𝜏1), ||·||1/𝛾)
and (𝐿1/𝛾(𝐴, 𝜏2), ||·||1/𝛾) are isometrically isomorphic for any two faithful normal semifinite traces 𝜏1
and 𝜏2 on 𝐴, with 𝛾 ∈ ]0, 1]. Hence, 𝐷𝜆ℓ𝛾 ,Ψ𝜙 does not depend on the choice of 𝜏 . The rest follows from
Propositions 4.5, [210, Prop. 4.6], 3.27, 3.28, and 3.32 in the same way as in Proposition 4.1.

Corollary 4.8. Let 𝐴 be a semifinite JBW-algebra with a faithful normal semifinite trace 𝜏 . Then
all of the statements of Proposition 4.4.(i)–(viii) hold for 𝐿1/𝛾(𝒩 ) (resp., 𝐵(𝒩⋆, ||·||1)) replaced by
𝐿1/𝛾(𝐴, 𝜏) (resp., (𝐵(𝐴⋆, ||·||1))+).

Proof. Follows from Propositions 3.32, 3.33, [210, Prop. 4.6], and 4.6, directly along the lines of the
proof of Proposition 4.4.
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Remark 4.9. (i) Identification of 𝐷𝛾 as 𝐷ℓ𝛾 ,Ψ𝜙𝛾(1−𝛾),𝛾
, provided in Corollary 4.3, is new. The right

hand side of (185) corresponds to 𝐷Ψ𝜙 with 𝜙(𝑡) = 1
1−𝛾 (𝛾𝑡)

1/𝛾−1. Up to reformulation in weight-
independent terms, provided in [209, Eqn. (41)], the formula (186) was obtained in [183, §8] (cf.
also [272, Eqn. (42)]) as 𝐷Ψ(

1
𝛾 ℓ𝛾(𝜑),

1
𝛾 ℓ𝛾(𝜓)) with Ψ equal to Ψ𝜙

𝛾1−1/𝛾 (1−𝛾),𝛾
(however, it was not

identified there as an example of Ψ𝜙, although the corresponding 𝐷Ψ was explicitly identified as
a Văınberg–Brègman functional). Proposition 4.1.(ii) provides a generalisation of [183, Props.
8.1.(i)–(ii), 8.2.(ii)] to Ψ𝜙 with any gauge 𝜙.

(ii) Another special case of 𝐷Ψ𝜙𝛼,𝛽
(𝑥, 𝑦) on 𝐿1/𝛾(𝒩 ) spaces, with 𝛼 = 1, 𝛽 = 1

2 , 𝛾 ∈ ]0, 1[, and
𝒩 limited to type I𝑛 W*-algebras, was considered in [269, p. 377]. For 𝛾 = 1

2 , and for any
W*-algebra 𝒩 , they are also a special case of 4𝐷Ψ𝜙𝛾(1−𝛾),𝛾

(𝑥, 𝑦) = 𝐷4Ψ𝜙𝛾(1−𝛾),𝛾
(𝑥, 𝑦), and take

the form 2||𝑥− 𝑦||𝐿2(𝒩 ).
(iii) Plugging the formula for 𝑗 : 𝐿1/𝛾(𝐴, 𝜏) → 𝐿1/(1−𝛾)(𝐴, 𝜏) from the proof of Proposition 4.5 into

(149), we obtain a family belonging to the class 𝐷ℓ𝛾 ,Ψ𝜙 on 𝐴⋆, which is a nonassociative analogue
of (184), with (𝜆, 𝛼, 𝛽, 𝛾) ∈ ]0,∞[2× ]0, 1[2 and 𝜑, 𝜓 ∈ 𝐴⋆:

𝐷𝜆ℓ𝛾 ,Ψ𝜙𝛼,𝛽
(𝜑, 𝜓) = 𝜆1/𝛽

𝛼

(︁
𝛽(𝜏(𝜑))𝛾/𝛽 + (1− 𝛽)(𝜏(𝜓))𝛾/𝛽 − (𝜏(𝜓))𝛾/𝛽−1𝜏((𝑠𝜑 ⊙ |𝜑|𝛾)⊙ (𝑠𝜓 ⊙ |𝜓|1−𝛾))

)︁
,

(190)
When restricted to 𝜑, 𝜓 ∈ 𝐴+

⋆ , corresponding to 𝑠𝜑 = I = 𝑠𝜓, (190) satisfies the conditions of
Proposition 4.7.(v) and 4.7.(vi).

(iv) Since Corollary 4.3.(i) applies to (190) as well, in what follows we will set 𝜆 = 1 in both JBW-
and W*-algebraic cases.

(v) Since [289, Lem. 3.2] establishes local uniform homeomorphy of ℓ𝛾 on (𝒩⋆, ||·||1), the statements

about uniform continuity of
←−
P
𝐷ℓ𝛾 ,Ψ𝜙1,𝛽

𝐶 and
−→
P
𝐷ℓ𝛾 ,Ψ𝜙1,𝛽

𝐶 in Proposition 4.4 hold for ℓ𝛾-bounded
subsets of any closed ball in 𝒩⋆ (this variant was explicitly used in Proposition 4.1).

(vi) Propositions 4.1.(i) and 4.7.(i), 4.1.(ii)–(iii) and 4.7.(iii) in their part on left pythagoreanity and
zone consistency, as well as 4.1.(iv)–(v) in their part on right pythagoreanity and zone consistency
hold also under replacing a gauge 𝜙 by a quasigauge 𝜙, provided the latter satisfies the respective
conditions of Proposition 3.24.

(vii) For an arbitrary W*-algebra 𝒩 and 𝛾1, 𝛾2 ∈ ]0,∞[, the noncommutative Mazur map,

ℓ𝛾1,𝛾2 : 𝐿1/𝛾1(𝒩 ) ∋ 𝑥 = 𝑢𝑥|𝑥| ↦→ 𝑢𝑥|𝑥|𝛾2/𝛾1 ∈ 𝐿1/𝛾2(𝒩 ), (191)

has appeared implicitly in [156, Prop. 1.9] (cf. [326, Prop. 12]), and then explicitly in [208, Thm.
4.2] (with 𝑢𝑥 = I and 𝛾1, 𝛾2 ∈ ]0, 1]) and [289, p. 58] (in full generality). In commutative case,
this map has been introduced in [251, p. 83]. As proved independently in [3, Thm. 4.5, Rem.
4.3] (for semifinite 𝒩 and 𝛾1, 𝛾2 ∈ ]0, 1[) and [299, Thm. (p. 37)] (for any 𝒩 and 𝛾1, 𝛾2 ∈ ]0, 1]),
ℓ𝛾1,𝛾2 is min{𝛾2𝛾1 , 1}-Lipschitz–Hölder from 𝐵(𝐿1/𝛾1(𝒩 ), ||·||1/𝛾1) to 𝐵(𝐿1/𝛾2(𝒩 ), ||·||1/𝛾2), hence, by
[3, Lem. 3.1], also from 𝑆(𝐿1/𝛾1(𝒩 ), ||·||1/𝛾1) to 𝑆(𝐿1/𝛾2(𝒩 ), ||·||1/𝛾2). The nonassociative Mazur
map with 𝛾1 = 1 and 𝛾2 ∈ ]1,∞[ has appeared implicitly in [1, p. 68], and was introduced in full
generality in [210, Def. 4.5].

(viii) Due to availability of several different (although equivalent) definitions of noncommutative 𝐿1/𝛾

spaces over general W*-algebras, we should specify the default meaning of this notion (since for
general W*-algebras it is defined using the tools essentially beyond the range of the integration
theory on semifinite W*-algebras). In (191), as well as everywhere else, we use the definition of
𝐿1/𝛾(𝒩 ) (and thus the functional analytic meaning of the symbol ‘|𝑥|𝛾2/𝛾1 ’) as given in [141, p.
196]. The sign of integral, appearing in (184) below and further, is understood in the sense of
[141, Eqn. (3.12’)].

(ix) Proposition 4.5 is a generalisation of [208, Thm. 4.2] from (any) W*-algebras to (semifinite)
JBW-algebras. The last step of the second part of the proof (using Rogers–Hölder inequality for
𝑥𝑥1/𝛾−1) is exactly the same here as there, however we prove the earlier part (corresponding to
[208, Lem. 4.1]), differently, using directly the properties of the duality map, instead of a multiple
use of the Rogers–Hölder inequality. [289, Lem. 3.2] establishes local uniform continuity of ℓ𝛾 on
𝒩⋆ (this term means [288, p. 70] uniform continuity on every closed ball in 𝒩⋆). Due to structural
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analogies between noncommutative and nonassociative integration theories, and in accordance
with a tradition of [172, Conj. V.3.10], we conjecture that ℓ𝛾 is norm-to-norm continuous also on
unit balls of preduals of JBW-algebras. If this is true, then the continuity results of Proposition
4.7.(v)–(vi) hold for 𝐴⋆ replacing 𝐴+

⋆ .

4.2 Other models with Ψ = Ψ𝜙

Proposition 4.10. If (𝑋, ||·||𝑋) is a uniformly convex and uniformly Fréchet differentiable Ba-
nach function space over a localisable measure space (𝒳 , 𝜇), ℓ𝑋

p

: 𝑆(𝑋, ||·||𝑋) ∋ 𝑥 ↦→ |𝑗(𝑥)|𝑥 ∈
𝑆(𝐿1(𝒳 , 𝜇), ||·||1), 𝜙 is a gauge, Ψ𝜙 : (𝑋, ||·||𝑋) → R, and ∅ ̸= 𝐶 ⊆ 𝑆(𝐿1(𝒳 , 𝜇), ||·||1), 𝜆 ∈ ]0,∞[,
𝑇 : 𝑆(𝑋, ||·||𝑋)→ 2𝑗𝜙1,𝛽

(𝑆(𝑋,||·||𝑋)) is maximally monotone for 𝛽 ∈ ]0, 12 ], then:
(i) ℓ𝑋 is a bijection, and ℓ𝑋 |(𝑆(𝐿1(𝒳 ,𝜇),||·||1))+ =

−→
P𝐷1

(𝑆(𝑋,||·||𝑋))+
, with 𝐷1 understood as a map

(𝐿∞(𝒳 , 𝜇))+ ×𝑋 → [0,∞];
(ii) 𝐷ℓ𝑋 ,Ψ𝜙 : 𝑆(𝐿1(𝒳 , 𝜇), ||·||1)× 𝑆(𝐿1(𝒳 , 𝜇), ||·||1)→ [0,∞] is an information on 𝑆(𝐿1(𝒳 , 𝜇), ||·||1);
(iii) if 𝐶 is ℓ𝑋-convex closed set, then 𝐷ℓ𝑋 ,Ψ𝜙 is zone consistent, left pythagorean on 𝐶,

←−
P
𝐷ℓ𝑋,Ψ𝜙

𝐶 is
norm-to-norm continuous on 𝑆(𝐿1(𝒳 , 𝜇), ||·||1) and adapted, and inf𝑦∈𝐶{𝐷ℓ𝑋 ,Ψ𝜙(𝑦, · )} is contin-
uous on 𝑆(𝐿1(𝒳 , 𝜇), ||·||1);

(iv) if 𝐶 is (𝑗𝜙 ∘ ℓ𝑋)-convex closed set, then 𝐷ℓ𝑋 ,Ψ𝜙 is zone consistent, right pythagorean on 𝐶, and
−→
P
𝐷ℓ𝑋,Ψ𝜙

𝐶 are norm-to-norm continuous on 𝑆(𝐿1(𝒳 , 𝜇), ||·||1) and adapted;
(v) the sets LSQ(ℓ𝑋 ,Ψ𝜙, 𝐶) and RSQ(ℓ𝑋 ,Ψ𝜙, 𝐶) are composable;
(vi) the categories lCvx⊆(ℓ𝑋 ,Ψ𝜙), r̄Cvx⊆(ℓ𝑋 ,Ψ𝜙), LSQ⊆cvx(ℓ𝑋 ,Ψ𝜙), and R̄SQ⊆cvx(ℓ𝑋 ,Ψ𝜙) satisfy

the functorial adjunctions and equivalences given by Corollary 3.50.(i)–(ii) with 𝑍 =
𝑆(𝐿1(𝒳 , 𝜇), ||·||1);

(vii) if (𝑋, ||·||𝑋) is 1
𝛽 -uniformly convex with 𝛽 ∈ ]0, 12 ], then:

a) if 𝐶 is ℓ𝑋-convex and closed, then
←−
P
𝐷ℓ𝑋,Ψ𝜙1,𝛽

𝐶 is uniformly continuous on ℓ𝑋-bounded subsets
of 𝑆(𝐿1(𝒳 , 𝜇), ||·||1);

b) ←−res
ℓ𝑋 ,Ψ𝜙1,𝛽

𝜆𝑇 is uniformly continuous on ℓ𝑋-bounded subsets of 𝑆(𝐿1(𝒳 , 𝜇), ||·||1);
(viii) if (𝑋, ||·||𝑋) is 1

1−𝛽 -uniformly Fréchet differentiable with 𝛽 ∈ ]0, 12 ], and 𝐶 is (𝑗𝜙1,1−𝛽
∘ ℓ𝑋)-convex

and closed, then
−→
P
𝐷ℓ𝑋,Ψ𝜙1,1−𝛽

𝐶 is uniformly continuous on ℓ𝑋-bounded subsets of 𝑆(𝐿1(𝒳 , 𝜇), ||·||1);
(ix) if (𝑋, ||·||𝑋) is 1

𝛽 -uniformly convex and 1
𝛾 -uniformly Fréchet differentiable, with 𝛽 ∈ ]0, 12 ] and

𝛾 ∈ [12 , 1[, then:

a) if 𝐶 is closed and ℓ𝑋-convex, then
←−
P
𝐷ℓ𝑋,Ψ𝜙1,𝛽

𝐶 is 𝛽2(1−𝛾)2
𝛾2(1−𝛽) -Lipschitz–Hölder continuous on

𝑆(𝐿1(𝒳 , 𝜇), ||·||1);

b) if 𝐶 is closed and (𝑗𝜙1,𝛾 ∘ ℓ𝑋)-convex, then
−→
P
𝐷ℓ𝑋,Ψ𝜙1,𝛽

𝐶 is 𝛽3(1−𝛾)3
𝛾3(1−𝛽)2 -Lipschitz–Hölder contin-

uous on ℓ𝑋-bounded subsets of 𝑆(𝐿1(𝒳 , 𝜇), ||·||1);
c) ←−res

ℓ𝑋 ,Ψ𝜙1,𝛽

𝜆𝑇 is 𝛽2(1−𝛾)2
𝛾2(1−𝛽) -Lipschitz–Hölder continuous on ℓ𝑋-bounded subsets of

𝑆(𝐿1(𝒳 , 𝜇), ||·||1);
(x) the properties (ii)–(ix) hold also for ℓ𝑋 (and, resp., 𝑆(𝐿1(𝒳 , 𝜇), ||·||1)) replaced by ̃︁ℓ𝑋(𝑥) :=

||𝑥||1ℓ𝑋
(︁

𝑥
||𝑥||1

)︁
for 𝑥 ∈ 𝐵(𝐿1(𝒳 , 𝜇), ||·||1) ∖ {0} and ̃︁ℓ𝑋(0) := 0 (and, resp., 𝐵(𝐿1(𝒳 , 𝜇), ||·||1)).

Proof. (i) comes straight from the definition of ℓ𝑋 [270, p. 261] [96, pp. 16–17, 20] (see [97, §5] for an
explicit discussion). By [270, Prop. 2.6] [96, Prop. 2.9] (cf. also [287, Thm. 12]), ℓ𝑋

p is a uniform
homeomorphism. Hence, by [270, Prop. 2.9], ̃︁ℓ𝑋 is a uniform homeomorphism on 𝐵(𝐿1(𝒳 , 𝜇), ||·||1).
1−𝛾
𝛾 -(resp., 𝛽-)Lipschitz–Hölder continuity of ℓ𝑋 (resp., ℓ𝑋

p ) for 1
𝛽 -uniformly convex and 1

𝛾 -uniformly
Fréchet differentiable (𝑋, ||·||𝑋) has been established in [3, Thm. 4.2] (=[5, Thm. 5.6]) (cf. [2, Rem.
3.1.b)] for equivalence of 1

𝛽 -uniform convexity (resp., 1
𝛾 -uniform Fréchet differentiability) with ( 1𝛽 , ℎ𝑐)-

uniform convexity (resp., ( 1𝛾 , ℎ𝑠)-uniform Fréchet differentiability) used in [3, Thm. 4.2]). The rest
follows from Corollary 3.42 and Propositions 3.32 and 3.33. The part of (x) that refers to (ii)–(viii)
relies on equivalence of uniform continuity of ℓ on 𝑆(𝑌, ||·||𝑌 ) with uniform continuity of ̃︀ℓ on 𝐵(𝑌, ||·||𝑌 )
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for any Banach space (𝑌, ||·||𝑌 ), as provided by (25) and (26), while the part of (x) that refers to (ix)
relies on the analogous equivalence for Lipschitz–Hölder continuity, proved in [3, Lem. 3.1].

Proposition 4.11. If (𝑋, ||·||𝑋) is a uniformly convex and uniformly Fréchet differentiable noncommu-
tative rearrangement invariant space over a type I𝑛 W*-algebra 𝒩 with 𝑛 ∈ N, ℓ𝑋

p

: (𝑆(𝑋, ||·||𝑋))+ ∋
𝑥 ↦→ |𝑗(𝑥)|𝑥 ∈ (𝑆(𝒩⋆, ||·||1))+, 𝜙 is a gauge, Ψ𝜙 : (𝑋, ||·||𝑋) → R, ∅ ̸= 𝐶 ⊆ (𝑆(𝒩⋆, ||·||1))+, 𝛽 ∈ ]0, 12 ],
𝜆 ∈ ]0,∞[, and 𝑇 : (𝑆(𝑋, ||·||𝑋))+ → 2𝑗𝜙1,𝛽

((𝑆(𝑋,||·||𝑋))+) is maximally monotone, then:
(i) ℓ𝑋 is a bijection, and ℓ𝑋 =

−→
P𝐷1

(𝑆(𝑋,||·||𝑋))+
;

(ii) 𝐷ℓ𝑋 ,Ψ𝜙 : ((𝑆(𝒩⋆, ||·||1))+ × (𝑆(𝒩⋆, ||·||1))+ → [0,∞] is an information on (𝑆(𝒩⋆, ||·||1))+;

(iii) if 𝐶 is ℓ𝑋-convex closed set, then 𝐷ℓ𝑋 ,Ψ𝜙 is zone consistent, left pythagorean on 𝐶,
←−
P
𝐷ℓ𝑋,Ψ𝜙

𝐶 is
norm-to-norm continuous on (𝑆(𝒩⋆, ||·||1))+ and adapted, and inf𝑦∈𝐶{𝐷ℓ𝑋 ,Ψ𝜙(𝑦, · )} is continuous
on (𝑆(𝒩⋆, ||·||1))+;

(iv) if 𝐶 is (𝑗𝜙 ∘ ℓ𝑋)-convex closed set, then 𝐷ℓ𝑋 ,Ψ𝜙 is zone consistent, right pythagorean on 𝐶, and
−→
P
𝐷ℓ𝑋,Ψ𝜙

𝐶 are norm-to-norm continuous on (𝑆(𝒩⋆, ||·||1))+ and adapted;
(v) the sets LSQ(ℓ𝑋 ,Ψ𝜙, 𝐶) and RSQ(ℓ𝑋 ,Ψ𝜙, 𝐶) are composable;
(vi) the categories lCvx⊆(ℓ𝑋 ,Ψ𝜙), r̄Cvx⊆(ℓ𝑋 ,Ψ𝜙), LSQ⊆cvx(ℓ𝑋 ,Ψ𝜙), and R̄SQ⊆cvx(ℓ𝑋 ,Ψ𝜙) satisfy the

functorial adjunctions and equivalences given by Corollary 3.50.(i)–(ii) with 𝑍 = (𝑆(𝒩⋆, ||·||1))+;
(vii) if (𝑋, ||·||𝑋) is 1

𝛽 -uniformly convex, then:

(i) if 𝐶 is ℓ𝑋-convex and closed, then
←−
P
𝐷ℓ𝑋,Ψ𝜙1,𝛽

𝐶 is uniformly continuous on ℓ𝑋-bounded subsets
of (𝑆(𝒩⋆, ||·||1))+;

(ii) ←−res
ℓ𝑋 ,Ψ𝜙1,𝛽

𝜆𝑇 is is uniformly continuous on ℓ𝑋-bounded subsets of (𝑆(𝒩⋆, ||·||1))+;
(viii) if (𝑋, ||·||𝑋) is 1

1−𝛽 -uniformly Fréchet differentiable, and 𝐶 is (𝑗𝜙1,1−𝛽
∘ ℓ𝑋)-convex and closed,

then
−→
P
𝐷ℓ𝑋,Ψ𝜙1,1−𝛽

𝐶 is uniformly continuous on ℓ𝑋-bounded subsets of (𝑆(𝒩⋆, ||·||1))+.

Proof. (i) is just [97, Def. 5.3]. By [97, Props. 5.6, 5.7, Lem. 5.8], ℓ𝑋

p is a uniform homeomorphism.
The rest follows from Corollary 3.42 and Propositions 3.32 and 3.33.

Proposition 4.12. If (𝑉, ||·||𝑉 ) is a radially compact base normed space with a weakly compact base
𝐾, 𝜙 is any gauge, ∅ ̸= 𝐶 ⊆ 𝑉 , Ψ𝜙 : 𝑉 → R is Euler–Legendre, ℓ : 𝑉 → 𝑉 is any automorphism of
𝑉 , then:

(i) 𝐷ℓ,Ψ𝜙 is an information on 𝑉 ;
(ii) if 𝐶 is ℓ-convex and ℓ-closed, then it is left 𝐷ℓ,Ψ𝜙-Chebyshëv, 𝐷ℓ,Ψ𝜙 is left pythagorean on 𝐶,

and
←−
P
𝐷ℓ,Ψ𝜙

𝐶 are zone consistent;
(iii) if 𝐶 is 𝑗𝜙 ∘ℓ-convex and 𝑗𝜙 ∘ℓ-closed, then it is right 𝐷ℓ,Ψ𝜙-Chebyshëv, 𝐷ℓ,Ψ𝜙 is right pythagorean

on 𝐶, and
−→
P
𝐷ℓ,Ψ𝜙

𝐶 are zone consistent;
(iv) if each norm-exposed face of 𝐾 is projective, then the pair ((𝑉, ||·||𝑉 ), (𝑉 ⋆, ||·||𝑉 ⋆)) is in spectral

duality.

Proof. A radially compact base normed space is reflexive iff its base is weakly compact [18, Lem. 8.71].
Hence, (i)–(iii) follow from Proposition 3.14 and Corollary 3.42.(i)–(iii). On the other hand, (iv) is
just [17, Prop. 2.5].

Proposition 4.13. Let (𝑉 = 𝑋 ⊕ R, ||·||𝑉 ) be a radially compact base normed space with a base 𝐾,
and a reflexive real Banach space (𝑋, ||·||𝑋) such that

∀𝑣 = (𝑥, 𝜆) ∈ 𝑉
{︂
𝑣 ≥ 0 :⇐⇒ 𝜆 ≥ ||𝑥||𝑋
||𝑣||𝑉 := max{|𝜆|, ||𝑥||𝑋},

(192)

let ℓ/R : 𝐾 ∋ 𝑣 = (𝑥, 1) ↦→ 𝑥 ∈ 𝐵(𝑋, ||·||𝑋), and let 𝜙 be any gauge. If any of equivalent conditions
holds:

1) the pair ((𝑉, ||·||𝑉 ), (𝑉 ⋆, ||·||𝑉 ⋆)) is in spectral duality;
2) (𝑋, ||·||𝑋) is strictly convex and Gateaux differentiable;
3) Ψ𝜙 : 𝐵(𝑋, ||·||𝑋)→ R is Euler–Legendre,
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then:
(i) 𝐷ℓ/R,Ψ𝜙 is an information on 𝐾;
(ii) if ∅ ̸= 𝐶 ⊆ 𝐾 is ℓ/R-convex and ℓ/R-closed, then it is left 𝐷ℓ/R,Ψ𝜙-Chebyshëv, 𝐷ℓ/R,Ψ𝜙 is left

pythagorean on 𝐶, and
←−
P
𝐷ℓ/R,Ψ𝜙

𝐶 are zone consistent;
(iii) if ∅ ̸= 𝐶 ⊆ 𝐾 is 𝑗𝜙 ∘ ℓ/R-convex and 𝑗𝜙 ∘ ℓ/R-closed, then it is right 𝐷ℓ/R,Ψ𝜙-Chebyshëv, 𝐷ℓ/R,Ψ𝜙

is right pythagorean on 𝐶, and
−→
P
𝐷ℓ/R,Ψ𝜙

𝐶 are zone consistent.
Furthermore, if (𝑋, ||·||𝑋) satisfies any of 1)–3) above, is uniformly Fréchet differentiable, and has the
Radon–Riesz–Shmul’yan property, then:
(iv) LSQ(ℓ/R,Ψ𝜙, 𝐶) and RSQ(ℓ/R,Ψ𝜙, 𝐶) are composable for any ∅ ̸= 𝐶 ⊆ 𝐾;

(v)
←−
P
𝐷ℓ/R,Ψ𝜙

𝐶 are adapted and ℓ/R-topology-to-ℓ/R-topology continuous on any ℓ/R-convex and ℓ/R-
closed ∅ ̸= 𝐶 ⊆ 𝐾;

(vi)
−→
P
𝐷ℓ/R,Ψ𝜙

𝐶 are ℓ/R-topology-to-ℓ/R-topology continuous on any (𝑗𝜙 ∘ ℓ/R)-convex and ℓ/R-closed
∅ ̸= 𝐶 ⊆ 𝐾;

(vii) the categories lCvx⊆(ℓ/R,Ψ𝜙), r̄Cvx⊆(ℓ/R,Ψ𝜙), LSQ⊆cvx(ℓ/R,Ψ𝜙), and R̄SQ⊆cvx(ℓ/R,Ψ𝜙) satisfy the
functorial adjunctions and equivalences given by Corollary 3.50.(i) with 𝑍 = 𝐾;

(viii) if 𝑇 : 𝐵(𝑋, ||·||𝑋) → 2𝑗𝜙(𝐵(𝑋,||·||𝑋)) is maximally monotone with 0 ∈ efd(𝑇 ), then −→resΨ𝜙

𝑇 maps
𝑗𝜙(𝐵(𝑋, ||·||𝑋)) pn 𝑗𝜙(efd(𝑇 )) and is norm-to-norm continuous on 𝑗𝜙(𝐵(𝑋, ||·||𝑋));

(ix) if (𝑋, ||·||𝑋) is uniformly convex, then:

a)
−→
P
𝐷ℓ/R,Ψ𝜙

𝐶 are adapted for any (𝑗𝜙 ∘ ℓ/R)-convex and ℓ/R-closed ∅ ̸= 𝐶 ⊆ 𝐾;
b) the categories r̄Cvx⊆(ℓ/R,Ψ𝜙) and R̄SQ⊆cvx(ℓ/R,Ψ𝜙) satisfy the functorial adjunction of Corol-

lary 3.50.(ii);
c) if 𝑇 is as in (viii), then ←−resΨ𝜙

𝑇 (resp., ←−resℓ/R,Ψ𝜙

𝑇 ) maps 𝐵(𝑋, ||·||𝑋) on efd(𝑇 ) (resp., 𝐾 on
ℓ/R

p

(efd(𝑇 ))) and is norm-to-norm continuous on 𝐵(𝑋, ||·||𝑋) (resp., ℓ/R-topology-to-ℓ/R-
topology continuous on 𝐾).

Proof. Equivalence of 1) and 2) was established in [50, Thm. 1] (and recently rediscovered in [184,
Thm. 6.6]). Equivalence of 2) and 3) follows from Proposition 3.14. (i)–(iii) follow from Corollary
3.42.(i)–(iii). (iv)–(vii) and (ix).a)–b) follow from Corollaries 3.42.(iv), 3.42.(v)–(vii), and 3.50. (viii)
and (ix).c) follow from Proposition 3.31.

Remark 4.14. (i) Using [270, Thm. 2.1] [96, Thm. 2.1] [4, Thm. 6.2] (resp., [97, Thm. 6.4]),
combined together with the Maurey–Pisier theorem [250, p. 46] and a fact that 𝑞-uniform
convexity with 𝑞 ≥ 2 implies cotype 𝑞 [231, Thm. 1.e.16.(i) (Vol. 2)], one can state an analogue
of Proposition 4.10.(ii)–(x) (resp., Proposition 4.11.(ii)–(viii)) for 𝑞-uniformly convex (𝑋, ||·||𝑋)
with 𝑞 ≥ 2. (In the case of Proposition 4.11.(ii)–(viii), the resulting proposition includes also
a generalisation of 𝒩 from type I𝑛 to separable factors of type I.) However, in both cases, the
corresponding uniform homeomorphism ℓ, as well as ℓ p , is constructed via renorming of the
convexification of (𝑋, ||·||𝑋), and as a result it lacks an explicit formula.

(ii) Let (𝒳 , 𝜇) be a localisable measure space, and let 𝐸(𝒳 , 𝜇) ⊆ 𝐿0(𝒳 , 𝜇) be a complete Banach
vector lattice. Let 𝐸(𝒳 , 𝜇) satisfy also the Fatou property, i.e. if {𝑥𝑛 ∈ (𝐸(𝒳 , 𝜇))+ : 𝑛 ∈ N}
is increasing and sup𝑛∈N ||𝑥𝑛||𝐸(𝒳 ,𝜇) < ∞, then there exists sup𝑛∈N 𝑥𝑛 =: 𝑥 ∈ 𝐸(𝒳 , 𝜇) and
sup𝑛∈N ||𝑥𝑛||𝐸(𝒳 ,𝜇) = ||𝑥𝑛||𝐸(𝒳 ,𝜇) [271, (𝛽)3 (p. 45)] [241, (1)–(2) (p. 1)]. (In particular, if
𝐸(𝒳 , 𝜇) is reflexive, then it satisfies the Fatou property [271, Thm. §3.1].) Lozanovskĭı proved
[238, Thm. 6.3] that ∀𝑥 ∈ 𝐿1(𝒳 , 𝜇) ∃(𝑦, 𝑧) ∈ 𝐸(𝒳 , 𝜇) × (𝐸(𝒳 , 𝜇))× such that 𝑥 = 𝑦𝑧 and
||𝑥||1 = ||𝑦||𝐸(𝒳 ,𝜇)||𝑧||(𝐸(𝒳 ,𝜇))× . The uniqueness of this factorisation, under additional assumption
supp(𝑥) = supp(𝑦) = supp(𝑧), has been established in [153, §3.(a)] (cf. also [237, 1117]). The
map (𝑆(𝐸(𝒳 , 𝜇), ||·||𝐸(𝒳 ,𝜇)))

+ ∋ 𝑦 ↦→ |𝑗(𝑦)|𝑦 ∈ (𝑆(𝐿1(𝒳 , 𝜇)))+, together with the explicit formula
for its inverse, as well as with the proof of its uniform homeomorphy, has been given by Odell and
Schlumprecht in [270, Prop. 2.6] for uniformly convex, uniformly Fréchet differentiable 𝐸(𝒳 , 𝜇)
with a 1-unconditional basis and atomic infinite (𝒳 , 𝜇). The assumptions of 1-unconditional
basis and atomic infinite (𝒳 , 𝜇) were shown to be obsolete in [96, Prop. 2.9]. The formula given
in Proposition 4.10.(i) has been established in [97, §5]. So, while the right 𝐷1-projection was
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introduced by Chencov [99, Eqn. (16)] at nearly the same time as Lozanovskĭı introduced his
factorisation, it took over a half of century to have the special case of the former map identified
as the inverse of the latter.

(iii) Proposition 4.10 (when restricted to the positive parts of unit spheres) and Proposition 4.11 deal
with the special cases of left and right 𝐷ℓ,Ψ-projections with ℓ given by another special case of

right 𝐷ℓ,Ψ-projection, i.e.
←−
P

𝐷−→
P

𝐷1
(𝑆(𝑋,||·||𝑋 ))+

,Ψ𝜙

𝐶 and
−→
P

𝐷−→
P

𝐷1
(𝑆(𝑋,||·||𝑋 ))+

,Ψ𝜙

𝐶 . This leads to a question:
is it possible to use the latter projection as ℓ in some appropriate context?

(iv) In Propositions 4.10 and 4.11, one can replace 𝑗 with 𝑗̃︀𝜙 for any gauge ̃︀𝜙 satisfying ̃︀𝜙(1) = 1,
since [287, Thm. 12] and [97, Props. 5.6, 5.7, Lem. 5.8] are proved by evaluation of 𝑗 exclusively
on the unit spheres (or their positive parts).

(v) Examples of radially compact base normed spaces with weakly compact base include all finite
dimensional base normed spaces, type I2 JBW-factors [18, Prop. 3.38] (their reflexivity was
established already in [236, Ex. 2]), and state spaces of orthomodular posets satisfying the
Jordan–Hahn decomposition property [144, Thm. 3].

(vi) Order unit spaces (𝑉 ⋆, ||·||𝑉 ⋆) satisfying the condition 2) in Proposition 4.13 were introduced in
[50, Def. 4], and named the generalised spin factors (cf. also [217, §2.3.3], where their finite
dimensional version was rediscovered as ‘centrally symmetric models’). For 𝑋 given by a real
Hilbert space with a scalar product ⟨·, ·⟩𝑋 , (𝑋⋆ ⊕ R, ||·||𝑋⋆⊕R) turn into spin factors.

(vii) Relationship between the properties of Ψ𝜙 and the spectral properties of (𝑉, ||·||𝑉 ) differ strongly
between Propositions 4.12 and 4.13: in the first case there is no relationship between them, in
the second case it is a characterisation.

(viii) Proposition 4.13.(i)–(iii) holds also under replacing a gauge 𝜙 by a quasigauge 𝜙, provided the
latter satisfies the respective conditions of Proposition 3.24.

4.3 Some models with Ψ ̸= Ψ𝜙

Proposition 4.15. Let ℋ (resp., ℓ1/2) be either an (𝐿2(𝒩 ))sa space for any W*-algebra 𝒩 (resp., a
map 𝒩 sa

⋆ ∋ 𝜑 = 𝑢𝜑|𝜑| ↦→ 𝑢𝜑|𝜑|1/2 ∈ (𝐿2(𝒩 ))sa) or an 𝐿2(𝐴, 𝜏) space for a semifinite JBW-algebra
𝐴 with a faithful normal semifinite trace 𝜏 (resp., a map 𝐴⋆ ∼= 𝐿1(𝐴, 𝜏) ∋ 𝑠𝜑 ⊙ |𝜑| ↦→ 𝑠𝜑 ⊙ |𝜑|1/2 ∈
𝐿2(𝐴, 𝜏)), let ℬ be a ball in 𝒩⋆ (e.g., ℬ = 𝐵(𝒩⋆, ||·||1)), and let 𝑇 : ℋ → ℋ be a continuous linear
map such that ∃𝜆 > 0 ∀𝑥, 𝑦 ∈ ℋ ⟨𝑇𝑦 − 𝑇𝑥, 𝑦 − 𝑥⟩ℋ ≥ 𝜆||𝑥− 𝑦||2ℋ (or, equivalently, inf{⟨𝑇𝜉, 𝜉⟩ℋ : 𝜉 ∈
ℋ, ||𝜉||ℋ = 1} ≥ 1). Then:

(i) 𝑇 is invertible;
(ii) Ψ𝑇 : ℋ → R given by Ψ𝑇 (𝑥) :=

1
2 ⟨𝑇𝑥, 𝑥⟩ℋ is Euler–Legendre;

(iii) ΨF
𝑇 = 1

2

⟨︀
𝑇

p

𝑦, 𝑦
⟩︀
ℋ ∀𝑦 ∈ ℋ, DGΨ𝑇 = 𝑇 , DGΨF

𝑇 = 𝑇

p ;
(iv) 𝐷Ψ𝑇

(𝑥, 𝑦) = 1
2 ⟨𝑇𝑥− 𝑇𝑦, 𝑥− 𝑦⟩ℋ;

(v) 𝐷ℓ1/2,Ψ𝑇
is an information on 𝒩 sa

⋆ (resp., 𝐴⋆);
(vi) if ∅ ̸= 𝐶 ⊆ 𝒩+

⋆ ∪ ℬ (resp., ∅ ̸= 𝐶 ⊆ 𝐴+
⋆ ) is ℓ1/2-convex and closed, then it is left 𝐷ℓ1/2,Ψ𝑇

-

Chebyshëv, 𝐷ℓ1/2,Ψ𝑇
is left pythagorean on 𝐶, and

←−
P
𝐷ℓ1/2,Ψ𝑇

𝐶 are zone consistent;
(vii) if ∅ ̸= 𝐶 ⊆ 𝒩+

⋆ ∪ ℬ (resp., ∅ ̸= 𝐶 ⊆ 𝐴+
⋆ ) is 𝑇 ∘ ℓ1/2-convex and 𝑇 -closed, then it is right

𝐷ℓ1/2,Ψ𝑇
-Chebyshëv, 𝐷ℓ1/2,Ψ𝑇

is right pythagorean on 𝐶, and
−→
P
𝐷ℓ1/2,Ψ𝑇

𝐶 are zone consistent.

Proof. (i)–(iv) are special cases of results which hold for any real Hilbert space ℋ. (i) follows from
[220, Thm. 2.1]; (ii) follows from [291, p. 64]; (iii) follows from [290, Ex. 3.2]; (iv) follows by a direct
calculation; (v) follows from conjunction of (ii), Corollary 2.9, and 3.41.(i); (vi) follows from Corollary
3.41.(iii) and norm-to-norm continuity of ℓ1/2 on 𝒩+

⋆ ∪ ℬ (resp., 𝐴+
⋆ ) [208, Thm. 4.2] [289, Lem. 3.2]

(resp., Proposition 4.5); (vii) follows from Corollary 3.41.(iv) and norm-to-norm continuity of ℓ1/2.

Proposition 4.16. Let ℋ be a Hilbert space with dimℋ ∈ N, let dim((G2(ℋ))sa) =: 𝑛, and let
Ψ ∈ ΓG((G2(ℋ))sa, ||·||2) be spectral, with Ψ = 𝑓 ∘ 𝜆, where 𝑓 ∈ ΓG(R𝑛, ||·||R𝑛) is Euler–Legendre. Let
ℓ (resp., 𝐶 ̸= ∅; 𝐾 ̸= ∅) be given either by a bijection ℓ : 𝑌 := (G2(ℋ))sa → (G2(ℋ))sa (resp., a
closed ℓ-convex subset of (G2(ℋ))sa; a closed (gradΨ) ∘ ℓ-convex subset of (G2(ℋ))sa) or by a bijection
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ℓ1/2 : 𝑌 := (G1(ℋ))sa ∋ 𝑥 ↦→ 𝑥1/2 ∈ (G2(ℋ))sa (resp., a closed ℓ1/2-convex subset of (G1(ℋ))sa; a
closed (gradΨ) ∘ ℓ1/2-convex subset of (G1(ℋ))sa). Let ℓ(𝐶) ⊆ int(efd(Ψ)) ⊇ ℓ(𝐾). Then:

(i) 𝐷ℓ,Ψ is an information on 𝑌 ;
(ii) 𝐶 is left 𝐷ℓ,Ψ-Chebyshëv, 𝐷ℓ,Ψ is left pythagorean on 𝐶, and

←−
P
𝐷ℓ,Ψ

𝐶 are zone consistent;
(iii) 𝐾 is right 𝐷ℓ,Ψ-Chebyshëv, 𝐷ℓ,Ψ is right pythagorean on 𝐾, and

−→
P
𝐷ℓ,Ψ

𝐾 are zone consistent.

Proof. Follows from the fact that 𝑓 is Euler–Legendre iff 𝑓 ∘ 𝜆 is Euler–Legendre (see Example 2.3),
combined with Propositions 2.8.(i).c), 2.8.(iii), 3.1.c), and Corollary 2.9.

Corollary 4.17. Proposition 4.16 holds, in particular, for Ψ = 𝑓 ∘𝜆 and 𝐷Ψ = 𝐷𝑓∘𝜆 given in Example
2.3.(i)–(iii), as well as for:
(iv) 𝑓(𝑥) =

∑︀𝑛
𝑖=1(𝑥𝑖 log(𝑥𝑖)+ (1−𝑥𝑖) log(1−𝑥𝑖)) on efd(𝑓) = [0, 1]𝑛 and 𝑓(𝑥) =∞ otherwise, which

gives spectral Euler–Legendre (𝑓 ∘ 𝜆)(𝜉) = trℋ(𝜉 log(𝜉) + (I− 𝜉) log(I− 𝜉)) for 𝜉 ∈ efd(𝑓 ∘ 𝜆) =
𝐵(G2(ℋ), ||·||2)∩ (G2(ℋ))+ and (𝑓 ∘𝜆)(𝜉) =∞ otherwise. The corresponding Văınberg–Brègman
functional reads

𝐷𝑓∘𝜆(𝜉, 𝜁) = trℋ(𝜉(log 𝜉 − log 𝜁) + (I− 𝜉)(log(I− 𝜉)− log(I− 𝜁))) (193)

for (𝜉, 𝜁) ∈ efd(𝑓 ∘ 𝜆)× int(efd(𝑓 ∘ 𝜆)), and 𝐷𝑓∘𝜆(𝜉, 𝜁) =∞ otherwise;
(v) 𝑓 given by Ψ𝛼 in (61), which gives spectral Euler–Legendre

(𝑓 ∘ 𝜆)(𝜉) =

⎧⎨⎩
1

𝛼−1trℋ(𝜉
𝛼 − 1) : 𝜉 ∈ (G2(ℋ))+, 𝛼 ∈ ]0, 1[

1
1−𝛼trℋ(𝜉

𝛼 − 1) : 𝜉 ∈ (G2(ℋ))+0 , 𝛼 ∈ ]−∞, 0[
∞ : otherwise.

(194)

The corresponding Văınberg–Brègman functional 𝐷𝑓∘𝜆(𝜉, 𝜁) reads⎧⎨⎩
1

1−𝛼trℋ(−𝜉
𝛼 + (1− 𝛼)𝜁𝛼 + 𝛼𝜁𝛼−1𝜉) : (𝜉, 𝜁) ∈ (G2(ℋ))+ × (G2(ℋ))+0 , 𝛼 ∈ ]0, 1[

1
𝛼−1trℋ(−𝜉

𝛼 + (1− 𝛼)𝜁𝛼 + 𝛼𝜁𝛼−1𝜉) : (𝜉, 𝜁) ∈ (G2(ℋ))+0 × (G2(ℋ))+0 , 𝛼 ∈ ]−∞, 0[
∞ : otherwise.

(195)

Proof. (iv)–(v) follow by application of 𝜆 to Examples 2.2.(iv)–(v).

Corollary 4.18. Let 𝑛 ∈ N, let 𝒩 be a type I𝑛 W*-algebra, and 𝑓(𝑥) =
∑︀𝑛

𝑖=1(𝑥𝑖 log(𝑥𝑖)− 𝑥𝑖) if 𝑥 ≥ 0
and 𝑓(𝑥) =∞ ∀𝑥 ∈ R𝑛 ∖ (R𝑛)+. Then CPTP(𝒩⋆) ⊆ CN(ℓ1/2, 𝑓 ∘ 𝜆).

Proof. Follows from Corollary 4.17 for Ψ = 𝑓 ∘𝜆 from Example 2.3.(ii), combined with [229, Thm. (p.
149)].

Proposition 4.19. Let (𝑙, ||·||𝑙) be a reflexive separable rearrangement invariant sequence space, and
let (G(ℋ), ||·||G(ℋ)) be a rearrangement invariant space of compact operators on a separable Hilbert
space ℋ, corresponding to (𝑙, ||·||𝑙) via G(ℋ) = {𝑥 ∈ C(ℋ) : 𝑥𝜏 ∈ 𝑙} and ||·||G(ℋ) = ||(·)𝜏 ||𝑙, where
𝑥𝜏 denotes a decreasing rearrangement of eigenvalues of 𝑥, while C(ℋ) denotes the space of compact
operators on ℋ. For any 𝑥 ∈ 𝑙 consider sets 𝐼>(𝑥) := {𝑖 ∈ N : 𝑥𝑖 > 0}, 𝐼=(𝑥) := {𝑖 ∈ N : 𝑥𝑖 = 0},
𝐼<(𝑥) := {𝑖 ∈ N : 𝑥𝑖 < 0}. Let ̂︀𝜆 : 𝑙→ 𝑙 be defined by the following procedure:
(1) let 𝑗 := 1;
(2) if 𝐼>(𝑥) ̸= ∅, then:

(i) choose 𝑖 ∈ 𝐼>(𝑥) maximising 𝑥𝑖;
(ii) (̂︀𝜆)𝑗 := 𝑥𝑖;

(iii) redefine
{︂
𝐼>(𝑥) := 𝐼>(𝑥) ∖ {𝑖}
𝑗 := 𝑗 + 1;

(3) if 𝐼=(𝑥) ̸= ∅, then:
(i) choose 𝑖 ∈ 𝐼=(𝑥);
(ii) (̂︀𝜆)𝑗 := 0;

(iii) redefine
{︂
𝐼=(𝑥) := 𝐼=(𝑥) ∖ {𝑖}
𝑗 := 𝑗 + 1;
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(4) if 𝐼<(𝑥) ̸= ∅, then:
(i) choose 𝑖 ∈ 𝐼<(𝑥) minimising 𝑥𝑖;
(ii) (̂︀𝜆)𝑗 := 𝑥𝑖;

(iii) redefine
{︂
𝐼<(𝑥) := 𝐼<(𝑥) ∖ {𝑖}
𝑗 := 𝑗 + 1;

(5) go to (2).
Let ̃︀𝜆 : (G(ℋ))sa → 𝑙 be defined by ̃︀𝜆(𝑦) := ̂︀𝜆(̃︀𝑦), where ̃︀𝑦 is any sequence of eigenvalues of 𝑦 ∈
(G(ℋ))sa, counted with multiplicities. Let 𝑓 ∈ ΓG(𝑙, ||·||𝑙), with int(efd(𝑓F)) ̸= ∅, int(efd(𝑓 ∘ ̃︀𝜆)) ̸= ∅,
int(efd(𝑓F ∘ ̃︀𝜆)) ̸= ∅, and (𝑓 ∘ ̃︀𝜆)(𝑢𝑥𝑢*) = (𝑓 ∘ ̃︀𝜆)(𝑥) ∀𝑥 ∈ (G(ℋ))sa ∀ unitary 𝑢 ∈ B(ℋ). Then 𝑓 ∘ ̃︀𝜆
is Euler–Legendre iff 𝑓 is Euler–Legendre, with (𝑓 ∘ ̃︀𝜆)F = 𝑓F ∘ ̃︀𝜆.

Proof. Follows directly from [58, Thms. 3.3, 5.9], combined with the characterisation of Euler–Legendre
functions on reflexive Banach spaces given in [294, §2.1]. Reflexivity of ((G(ℋ))sa, ||·||(G(ℋ))sa) follows
from [130, Prop. 6.8.15] (cf. also [23, p. 153]). The equivalence of single-valuedness of 𝜕𝑓 on
efd(𝜕𝑓) with single-valuedness of 𝜕(𝑓 ∘ ̃︀𝜆) on efd(𝑓 ∘ ̃︀𝜆), as well as the corresponding property of their
Mandelbrojt–Fenchel duals, is a direct consequence of the proof of [58, Thm. 5.9], when used without
the restriction to the points of Gateaux differentiability. While [58, Thm. 5.9] is stated only for
((G1/𝛾(ℋ))sa, ||·||(G1/𝛾(ℋ))sa), 𝛾 ∈ ]0, 1[, it holds also in the more general case considered here, since the
only property of ((G1/𝛾(ℋ))sa, ||·||(G1/𝛾(ℋ))sa) it relies upon (apart from reflexivity), is [58, Prop. 5.3].
However, by [311, Thm. 3.5], the latter holds in every rearrangement invariant ((G(ℋ))sa, ||·||(G(ℋ))sa).

Proposition 4.20. Let (𝑙, ||·||𝑙) be a reflexive separable rearrangement invariant sequence space, and let
(G(ℋ), ||·||G(ℋ)) be a rearrangement invariant space of compact operators on a separable Hilbert space
ℋ, corresponding to (𝑙, ||·||𝑙) as in Proposition 4.19. Let ̃︀𝜆 be defined as in Proposition 4.19. Let 𝑓 ∈
ΓG(𝑙, ||·||𝑙) be Euler–Legendre, int(efd(𝑓 ∘ ̃︀𝜆)) ̸= ∅, int(efd(𝑓F ∘ ̃︀𝜆)) ̸= ∅, and (𝑓 ∘ ̃︀𝜆)(𝑢𝑥𝑢*) = (𝑓 ∘ ̃︀𝜆)(𝑥)
∀𝑥 ∈ (G(ℋ))sa ∀ unitary 𝑢 ∈ B(ℋ). If one of the following conditions holds:

a) ℓ = ℓ1/𝛾 |(G1(ℋ))sa, (G(ℋ), ||·||G(ℋ)) = (G1/𝛾(ℋ), ||·||1/𝛾), ∅ ̸= 𝐶 ⊆ (G1(ℋ))+ ∪ 𝐵((G1(ℋ))sa, ||·||1),
𝑍 = (G1(ℋ))sa;

b) ℓ = ℓ𝑋 , with a finite dimensional uniformly convex and uniformly Fréchet differentiable re-
arrangement invariant space (𝑋, ||·||𝑋) = (G(ℋ), ||·||G(ℋ)), ∅ ̸= 𝐶 ⊆ (𝐵(G1(ℋ), ||·||1))+, 𝑍 =

(𝐵(G1(ℋ), ||·||1))+,
then:

(i) 𝐷
ℓ,𝑓∘̃︀𝜆 is an information on 𝑍;

(ii) if 𝐶 is ℓ-convex and closed, then 𝐶 is left 𝐷
ℓ,𝑓∘̃︀𝜆-Chebyshëv, 𝐷

ℓ,𝑓∘̃︀𝜆 is left pythagorean on 𝐶, and
←−
P
𝐷

ℓ,𝑓∘̃︀𝜆
𝐶 are zone consistent;

(iii) if 𝐶 is (DG(𝑓 ∘ ̃︀𝜆)) ∘ ℓ-convex and (DG(𝑓 ∘ ̃︀𝜆))-closed, then 𝐶 is right 𝐷
ℓ,𝑓∘̃︀𝜆-Chebyshëv, 𝐷

ℓ,𝑓∘̃︀𝜆
is right pythagorean on 𝐶, and

−→
P
𝐷

ℓ,𝑓∘̃︀𝜆
𝐶 are zone consistent.

Proof. Follows from Proposition 4.19, combined with Propositions 2.8.(i).c), 2.8.(iii), 3.1.c), and Corol-
lary 2.9. Homeomorphy of ℓ𝛾 follows from combination of [208, Thm. 4.2] and [289, Lem. 3.2], while
homeomorphy of ℓ𝑋 follows from [97, Props. 5.6, 5.7, Lem. 5.8].

Remark 4.21. (i) The condition on 𝑇 : ℋ → ℋ assumed in Proposition 4.15 holds, in particular,
when 𝑇 is positive semidefinite and invertible [290, Ex. 3.2], as well as when ℋ is finite dimen-
sional and 𝑇 is symmetric and positive definite [291, p. 64] (this case goes back to [68, p. 15]).
For 𝑇 = Iℋ with arbitrary dimensional ℋ, one obtains 𝐷Ψ𝑇

= 𝐷𝜙1,1/2
(see Remark 3.37.(x)),

which was considered as an example (for dimℋ <∞) already in [67, p. 1021] and [68, §2.1].
(ii) The formula (193) has appeared earlier in [269, p. 376], however without using spectral convex

functions (the Taylor expansion formula, and the finite dimensional quantum analogue 𝐷trℋ
Ψ of

the Brunk–Ewing–Utz functional were used instead). Formula (195) is new.
(iii) The main open problem posed by Proposition 4.20, is it provide examples of unitarily invariant

Euler–Legendre functions 𝑓 ∘ ̃︀𝜆 on the suitable separable reflexive spaces (G(ℋ), ||·||G(ℋ)). In
particular, is it so for the countable extensions of functions listed in Proposition 4.17?
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[66] Brègman L.M., 1965, Nakhozhdenie obšĕı tochki vypuklykh mnozhestv metodom posledovatel’nogo proektirovaniya, Dokl.
Akad. nauk SSSR 162, 487–490. mathnet.ru:dan31130 (Engl. transl.: 1965, The method of successive projection for finding
a common point of convex sets, Soviet Math. Dokl. 6, 688–692). ↑ 55.

[67] Brègman L.M., 1966, Relaksacionny̆ı metod nakhozhdeniya obšĕı tochki vypuklykh mnozhestv i ego primenenie dlya zadach
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[337] Văınberg M.M., 1972, Variacionny̆ı metod i metod monotonnykh operatorov v teorii nelinĕınykh uravnenĭı, Nauka, Moskva
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