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Abstract

We prove the equivalence of two tensor products over a category of W∗-algebras with normal (not
necessarily unital) ∗-homomorphisms, defined by Guichardet and Dauns, respectively. This struc-
ture differs from the standard tensor product construction by Misonou–Takeda–Turumaru, which
is based on weak topological completion, and does not have a categorical universality property.

1 Introduction

The finite dimensional sector of von Neumann’s Hilbert space based framework for quantum mechanics
[30] was reformulated in [1, 20, 21, 2] in terms of symmetric monoidal categories equipped with further
structural properties. However, the extension of categorical foundations for quantum mechanics to
the infinite dimensional regime (thus, category-theoretisation of the original object of concern of von
Neumann) remains an open problem. In this paper we prove that two alternative constructions of a
tensor product over a category W

∗
n of W∗-algebras with normal ∗-homomorphisms are equivalent.

One of them (denoted here by ⊗G) was introduced by Guichardet [13], another one (denoted here by
⊗) was introduced by Dauns [5]. On the other hand, the most popular tensor product structure over
W∗-algebras is the one defined by Misonou, Takeda, and Turumaru [17, 24, 29] as the weak closure
of the algebraic tensor product over a Hilbert space defined by tensor product of faithful normal
representations of composite W∗-algebras. However, this tensor product structure (denoted here as ⊗)
lacks categorical universality property and, furthermore, it is not equivalent with ⊗ if the composite
W∗-algebras are not nuclear. This leads us to suggest the symmetric monoidal category (W∗

n,⊗,C)
as a point of departure for further category theoretic axiomatisation of infinite-dimensional quantum
mechanics.

In Section 2 we recall the basic facts and definitions of the tensor products over W∗-algebras. In
Section 3 we present Guichardet’s construction, and prove that it is equivalent with Dauns’.

2 Analytic tensor products of W∗-algebras

For any two infinite dimensional W∗-algebras N1 and N2 there exist different inequivalent tensor
product structures ⊗, allowing to form a compound W∗-algebra N1⊗N2. The variety of these structures
arises from different possible ways of introducing a topology on the algebraic tensor product of N1 and
N2 which makes it into a W∗-algebra. If N1 or N2 is finite dimensional, then all those tensor product
structures coincide. In this section we will review the results of the general theory that allows to deal
with the generic infinite dimensional case.

Let X be a Banach space, M a closed subspace of X , and Y a subset of X . A Banach dual space
of X will be denoted X⋆. Then M and X/M are also Banach spaces. An annihilator of Y in X⋆ is
defined as

Y ⊥ := {z ∈ X⋆ | z(x) = 0 ∀x ∈ X} (1)

These objects satisfy [7]
M⋆ ∼= X⋆/M⊥, (X/M)⋆ ∼= M⊥. (2)

If X is a Banach dual space of some Banach space Z, then Z is called a predual of X , and is denoted
by X⋆.
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All C∗-algebras in this text are assumed to contain a unit I. The weakly-⋆ continuous linear maps
between W∗-algebras will be called normal . In particular, as follows from [4], Prop. 2.4.2 and 2.4.3,
the left and right multiplication maps a 7→ ab, a 7→ ba are weak-⋆ continuous.

For any Banach space X , there is a canonical isometric embedding map jX : X → X⋆⋆, defined by
[15]

(jX(x))(φ) := φ(x) ∀φ ∈ X⋆ ∀x ∈ X. (3)

If C is a C∗-algebra, then C⋆⋆ is a W∗-algebra, called a universal enveloping W∗-algebra , while jC
is a ∗-isomorphism onto a weak-⋆ dense ∗-subalgebra of C⋆⋆ [22, 23].

Given two vector spaces X and Y over K ∈ {R,C}, X⊠Y will denote the algebraic tensor product
of X and Y , which is again a vector space over K. For any vector space X over K, X ⊠K ∼= X . Given
Banach spaces X and Y , a norm ||·|| on X ⊠ Y is called a cross norm iff [19]

||x⊗ y|| = ||x||X ||y||Y ∀(x, y) ∈ X × Y. (4)

The completion of X ⊠ Y in the topology of ||·|| is denoted X ⊗||·|| Y .
For any C∗-algebras C1 and C2, C1 ⊠ C2 is a ∗-algebra [27]. A seminorm p on C1 ⊠ C2 that satisfies

p(x∗x) = p(x)2 ∀x ∈ C1⊠C2 is called a C∗-seminorm . A norm ||·|| on C1⊠C2 that satisfies ||x∗x|| = ||x||2

∀x ∈ C1 ⊠ C2 is called a C∗-norm . Each C∗-norm is a cross norm and satisfies ||xy|| ≤ ||x||||y||
∀x, y ∈ C1 ⊠ C2. A completion of C1 ⊠ C2 in the topology of a C∗-norm ||·|| is a C∗-algebra, denoted
C1⊗||·||C2. The definition of C∗-norm ||·|| does not imply the isometric isomorphism C1⊗||·||C2 ∼= C2⊗||·||C1
(see [9] for an example). For any C∗-algebras C1 and C2, if φ1 ∈ C⋆+

1 and φ2 ∈ C⋆+
2 , then φ1 ⊠ φ2 is

continuous with respect to any C∗-norm on C1 ⊠ C2.
A C∗-norm [12]

||x||C
∗

max : = sup{p(x) | p is a C∗-norm on C1 ⊠ C2} (5)

= sup{p(x) | p is a C∗-seminorm on C1 ⊠ C2}, (6)

is ‘projective’ in the following sense: for any C∗-algebras C1 and C2, and any closed two sided ideal
I1 ⊆ Csa

1 ,
(C1/I1)⊗||·||C

∗

max

C2 ∼= (C1⊗||·||C
∗

max

C2)/(I1⊗||·||C
∗

max

C2). (7)

If I is any closed two sided ideal in C1⊗||·||C
∗

max

C2 such that (C1 ⊠ C2)∩ I = {0}, then the quotient norm

on (C1⊗||·||C
∗

max

C2)/I is a C∗-norm on C1 ⊠ C2. It satisfies the following universal property: let C1, C2,

C be C∗-algebras, if ςi : Ci → C, i ∈ {1, 2}, are ∗-homomorphisms with pointwise commuting ranges
(i.e., for x ∈ ς1(C1) and y ∈ ς(C2) one has xy = yx), then there exists a unique ∗-homomorphism
ς : C1⊗||·||C

∗

max

C2 → C such that ς(x1 ⊗ x2) = ς1(x1)ς2(x2) and ς(C1⊗||·||C
∗

max

C2) is equal to the C∗-

subalgebra of C generated by ς1(C1) and ς2(C2). An alternative characterisation of ||·||C
∗

max was given in
[14]. For C1, C2, C and ςi as above, and for m : C ⊗ C ∋ x⊗ y 7→ xy ∈ C,

||x||C
∗

max := sup {||m ◦ (ς1 ⊠ ς2)(x)|| | C, ς1, ς2} . (8)

The universal property of ||·||C
∗

max can be restated as a commutative diagram

C1⊗||·||C
∗

max

C2

��

C1

w1

::✉✉✉✉✉✉✉✉✉

ς1

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

C2

w2

dd■■■■■■■■■

ς2

yyss
ss
ss
ss
ss
s

C

(9)

where w1 and w2 are ∗-homomorphisms that are required to satisfy [w1(x1), w2(x2)] = 0.
Consider a C∗-norm defined by [27, 28]

||x||C
∗

min := ||(π1 ⊠ π2)(x)||B(H1⊗H2)
, (10)

where (H1, π1) and (H2, π2) are faithful representations of C1 and C2, respectively. This definition is
independent of the choice of particular representations [17, 24]. It is ‘injective’ in the following sense:
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if C3 and C4 are C∗-subalgebras of C1 and C2, respectively, then the embedding C3 ⊠ C4 ⊆ C1 ⊠ C2
extends to an isometric embedding C3⊗||·||C

∗

min

C4 ⊆ C1⊗||·||C
∗

min

C2. (Because the notions of ‘projective’ and

‘injective’ tensor products for Banach spaces do not coincide with those for C∗-algebras, we will avoid
using these adjectives.) Every C∗-norm ||·|| satisfies [26]

||x||C
∗

min ≤ ||x|| ≤ ||x||C
∗

max ∀x ∈ C1 ⊠ C2, (11)

with lower bound attained iff C1 or C2 is commutative [25] (this implies C(X)⊗||·||C
∗

min

C(Y ) ∼= C(X ×Y )

for compact Hausdorff spaces X and Y [27]). Thus, the set of all C∗-norms on C1 ⊠ C2 is a complete
lattice. A C∗-algebra C1 is called nuclear iff

||x||C
∗

min = ||x||C
∗

max ∀x ∈ C1 ⊠ C2 (12)

holds for any C∗-algebra C2 [26, 16]. All finite dimensional and all commutative C∗-algebras are
nuclear. If H is an infinite dimensional separable Hilbert space, then B(H) is not nuclear [31].

Given W∗-algebras N1 and N2, and a C∗-norm ||·||, the C∗-algebra N1 ⊗||·|| N2 is not necessary a
W∗-algebra. However, one can prove the following lemma.

Lemma 2.1. Given W∗-algebras N1 and N2, a C∗-norm ||·|| on N1 ⊠N2, let Y be a closed subspace
of (N1 ⊗||·|| N2)

⋆ that is invariant under left and right multiplication by the elements of N1 ⊗||·|| N2.
Then

N1 ⊗||·||,Y N2 := (N1 ⊗||·|| N2)
⋆⋆/Y ⊥ ∼= Y ⋆ (13)

is a W∗-algebra.

Proof. From definition, (N1⊗||·||N2)
⋆⋆ is a W∗-algebra and Y ⊥ is a two sided ideal in it. Last equation

follows from the general Banach space property (2).

The special case of the above construction has been used in [18] for ||·|| = ||·||C
∗

min and Y =
(N1)⋆ ⊗(||·||C

∗

min
)⋆ (N2)⋆ =: (N1)⋆⊗⋆(N2)⋆. The resulting tensor product W∗-algebra, N1⊗N2, is equiva-

lent with the tensor product of N1 and N2 defined in [17] as a von Neumann subalgebra of B(H⊗K)
that is a weak closure of π1(N1)⊠π2(N2) on H1⊗H2, where (H1, π1) and (H2, π2) are faithful normal
representations of N1 and N2, respectively. N1⊗N2 is a weakly-⋆ dense subspace of ((N1)⋆⊗⋆(N2)⋆)

⋆,
and canonical embedding of the former into the latter is a ∗-isomorphism.

Another special case of the construction (13) was proposed in [5, 6] for ||·|| = ||·||C
∗

max and Y =:
(N1)⋆⊗⋆

(N2)⋆ defined as a set of all φ ∈ (N1⊗||·||C
∗

max

N2)
⋆ satisfying φ(x⊗·) ∈ (N2)⋆ and φ(·⊗y) ∈ (N1)⋆

∀(x, y) ∈ N1 ×N2.
The tensor product W∗-algebra, N1⊗N2, satisfies the following property: if Ni, i ∈ {1, . . . , 4},

are W∗-algebras, α1 : N1 → N3, α2 : N2 → N4 are weak-⋆ continuous ∗-homomorphisms, then there
exists a unique weak-⋆ continuous ∗-homomorphism α : N1⊗N2 → N3⊗N4 such that α(x ⊗ y) =
α1(x) ⊗ α2(y) [5]. The analogous result holds for ⊗ and weak-⋆ continuous ∗-homomorphisms of
W∗-algebras [17, 24, 29].

The tensor product (N1)⋆⊗⋆(N2)⋆ can be constructed as a projective tensor product of operator
spaces [11, 3], and it satisfies (N1⊗N2)⋆ ∼= (N1)⋆⊗⋆(N2)⋆ [10]. On the other hand, the tensor product
⊗

⋆
satisfies (N1⊗N2)⋆ ∼= (N1)⋆⊗⋆

(N2)⋆ [5].

3 Categorical tensor products of W∗-algebras

Guichardet [13] introduced a category W
∗
n of W∗-algebras and normal (not necessarily unital) ∗-

homomorphisms between them. A degenerate algebra O = {0}, consisting of only one element, is
considered as an object of W∗

n. Clearly, this is a terminal object of W∗
n. It is also an initial object

of W∗
n, since the only linear map O → A is 0 7→ 0. Consequently, O is a zero object and W

∗
n has

zero morphisms, i.e. for any A,B there is a unique 0A,B ∈ Hom(A,B) defined by A
!
→ O

!
→ B. (In

case of category with unital morphisms, we do not have the zero object since since there is no unital
morphism from the O algebra to any other algebra.)

For a countable family {Ai}i∈I of W∗-algebras acting on Hilbert spaces Hi we define their product
(cf. [8]) A =

∏
i∈I Ai as a von Neumann algebra which elements are sequences (ai)i∈I , ai ∈ Ai, such

that supi∈I {||ai||} < ∞, acting on a direct sum H =
⊕

i∈I Hi in the following way:

x = (xi)i∈I 7→ ax = (aixi)i∈I .
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Clearly it is a product in the W
∗
n category [13]: for any family ui : B → Ai we define u : B →

∏
i Ai

by b 7→ u(b) = (ui(b)); then ui = pi ◦ u, where pi :
∏

i Ai → Ai are canonical projections. Moreover, it
satisfies following universality property:

Proposition 3.1 ([13], remark 3.2). Let ui : Ai → B be a family of morphisms in W
∗
n such that

ui(xi)uj(xj) = 0 for i 6= j. Then, there exists a unique morphism u :
∏

i Ai → B such that ui = u ◦ si,
where si : Ai →

∏
i Ai are canonical injections.

Guichardet defined the tensor product in this category by means of the following universal property.

Definition 3.2. Let N1,N2,N be W∗-algebras, let w1 : N1 → N and w2 : N2 → N be normal
∗-homomorphisms such that

1) [w1(x1), w2(x2)] = 0 ∀x1 ∈ N1 ∀x2 ∈ N2,

2) for any W∗-algebra M and any normal ∗-homomorphisms t1 : N1 → M and t2 : N2 → M
such that [t1(x1), t2(x2)] = 0 ∀x1 ∈ N1 ∀x2 ∈ N2 there exists a unique normal ∗-homomorphism
t : N → M such that the following diagram commutes

N

t

��

N1

w1

==④④④④④④④④

t1 !!❈
❈❈

❈❈
❈❈

N2

w2

aa❈❈❈❈❈❈❈❈

t2}}④④
④④
④④
④

M

(14)

Then N is denoted as N1 ⊗G N2.

Proof. We have to show that for any pair N1,N2 of W∗-algebras there exist a N1⊗GN2. Let us denote
by:

r1(a) = a⊗ I, a ∈ N1,

r2(b) = I⊗ b, b ∈ N2.

maps ri : Ni → N1 ⊠ N2. We say that ∗-homomorphism u : N1 ⊠ N2 → M, where M is some W∗-
algebra and u(N1 ⊠N2) is weakly-⋆ dense in M, is normal whenever both u ◦ r1, u ◦ r2 are normal as
a maps Ni → M. Further, we say that two such normal maps: u : N1 ⊠N2 → A, v : N1 ⊠ N2 → B,
where A,B are two arbitrary W∗-algebras, are equivalent, whenever there exist a normal isomorphism
f : A → B such that v = f ◦ u. It can be shown ([13], Lemma 4.2) that equivalence classes of such
maps form a set. Observe also that there are always at least two such classes, represented by maps:

p1(a⊗ b) = a, p2(a⊗ b) = b, and extended by linearity;

(clearly pi ◦ rj are normal). Now let us a take one representant uj : N1 ⊠ N2 → Mi out of each of
above equivalence classes. Denote by g : N1 ⊠ N2 → N ⊂

∏
i Mi the ∗-homomorphism made out of

(uj) and the weak-⋆ closure of (
∏

j uj)(N1 ⊠N2) in
∏

i Mi. By definition it is a W∗-algebra. Denote
by wi = g ◦ ri, for i = 1, 2.

Let us define a map u(a⊗ b) = t1(a)t2(b) and extend by linearity to N1 ⊠N2 → M. Observe that
u ◦ r1 = t1(a)t2(I) is a composition of two weakly-⋆ continuous maps (t1 and right multiplication by
t2(I)), thus u ◦ r1 is also weak-⋆ continuous. Analogously u ◦ r2 is weak-⋆ continuous. Consequently, u
is a normal map. As such, we know that there exists j such that uj is equivalent to u, i.e. there exists
f : Mi → M such that u = f ◦ uj . As a result t = f ◦ pj:

N

pj

��
N1

w1

==④④④④④④④④

t1 !!❈
❈❈

❈❈
❈❈

❈
Mj

f

��

N2

w2

aa❈❈❈❈❈❈❈❈

t2}}④④
④④
④④
④④

M

(15)
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Not that although isomorphism f does not have to be unique, the whole construction of tensor product
is up to isomorphism (we choose uj from equivalence classes). This completes the proof of universality.

Dauns [5] introduced another tensor product in W
∗
n, denoted in Section 2 as N1⊗N2. He showed

that N1⊗N2 is characterised by the universal property analogous to one given in Definition 3.2, but
specified in the category W

∗
un of W∗-algebras and normal unital ∗-homomorphisms. Dauns showed

also that (W∗
n,⊗,C) and (W∗

un,⊗,C) are symmetric monoidal categories. However, the relationship
between the tensor products ⊗G and ⊗ was left unspecified, so let us fill this gap.

Proposition 3.3. For any N1,N2 ∈ Ob(W∗
n) there is a normal unital ∗-isomorphism N1 ⊗G N2

∼=
N1⊗N2.

Proof. Universality of N1⊗N2 ([5], 4.8) means that for any unital ∗-homomorphisms α : N1 → M and
β : N2 → M, such that [α(N1), β(N2)] = 0 there exists a unique unital ∗-homomorphism such that the
following diagram commutes:

M

N1
v1 //

α

;;✈✈✈✈✈✈✈✈✈
N1⊗N2

f

OO

N2
v2oo

β

cc❍❍❍❍❍❍❍❍❍

where v1, v2 are natural inclusions of N1,N2 into N1⊗N2.
Let g, (uj), wi, ri be defined as in the proof of Def. 3.2. From the ∗-homomorphism property we

have that for
uj(I)uj(a) = uj(a) = uj(a)uj(I) ∀a ∈ N1 ⊠N2,

since the image of uj is weakly-⋆ dense in Mj and since uj(I)uj(a) is weakly-⋆ continuous (composition
of weakly-⋆ continuous uj and left multiplication), we can extend this equality by continuity to Mj .
Consequently, uj(I) = I and thus g(I) = I and wi = g ◦ ri are unital. Then the diagram

N1⊗N2

N1

v1

::ttttttttt w1//

v1 $$❏
❏❏

❏❏
❏❏

❏❏
❏

N1 ⊗G N2

f

OO

N2

v2

dd❏❏❏❏❏❏❏❏❏
w2oo

v2zzttt
tt
tt
tt
t

N1⊗N2

h

OO

commutes, where existence of unique h follows from universality of ⊗ and existence of unique f follows
from universality of ⊗G. From universality of ⊗ the whole diagram yields that f ◦ h = idN1⊗N2

. The
other way follows analogously.
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