

Computer Tools for Nuclear Physics

Introduction to EXFOR Nuclear Database

Krzysztof Piasecki

😣 krzysztof.piasecki@fuw.edu.pl

Introduction to EXFOR

EXFOR (EXchange FORmat, X4) – is the large database on nuclear reactions, written in a specific format.

You can retrieve (and/or plot) data on e.g. :

 $\begin{array}{ll} \sigma & (\mbox{total cross section}) \mbox{ for a given AA and nA reaction,} \\ \mbox{d} \sigma / \mbox{d} \Omega & (\mbox{angular differential cross section}) \\ \mbox{Yields and energies of Fission fragments} \\ \mbox{Gamma spectra, etc.} & \mbox{within a given range of beam energies.} \end{array}$

EXFOR is coordinated by IAEA, and maintained by the international network of Nuclear Reaction Data Centres (NRDC), nowadays: 13 institutes worldwide.

The service started in 1970. Since 1980 it was accessible via telnet, and since 1997 – on the web.

- Manual: interactive and in pdf.
- Papers: N. Otuka et al., "Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): Intl. Collaboration Between Nuclear Reaction Data Centres (NRDC)" Nucl. Data Sheets 120, 272 (2014), [arXiv]

V.V. Zerkin, B. Pritychenko, "The experimental nuclear reaction data (EXFOR): Extended computer database and Web retrieval system", Nuclear Instruments and Methods A 888, 31 (2018), [arXiv]

- **Projectiles**: (regular compilation for $E_{Kin} < 1$ GeV. For $E_{Kin} > 1$ GeV only selected data available)
 - neutrons
 - charged particles (thoroughly up to A = 12)
 - heavy ions (A > 12) : selected data
 - photons

EXFOR: basic nomenclature

- A basic unit is called: **ENTRY**. It corresponds to one nuclear experiment, resulting in ≥ 1 literature source (paper, lab report, etc.)
- An ENTRY may carry 1 or more experimental result (or data table). It may collect results from more than 1 collision type. Therefore, entries are divided into SUBENTRIES, numbered in ascending order (1, 2, 3, ...)

However, **subentry 1** is special. It always stores a human-readable meta info :

title, author, reference, institute, sample, detector etc.

Experimental data starts from subentry 2.

• Each entry has a unique **accession number** (e.g. C1582).

Original EXFOR queries and printouts are very raw. Queres are facilitated by the **Web Interface**. Convenient commentaries ("interpretations") on data \oplus plotting tools are available \Rightarrow don't feel stuck by first impression :)

- One subentry carries a given reaction and given observable. It is identified in a field called **REACTION**. To understand this field, let's learn step by step how the basic bricks of reactions are encoded by EXFOR.
- We will learn how to specify:
 - beam and target nucleus
 - outgoing particle(s) (or subgroup, or total)
 - type of reaction process
 - physics quantity we look for (e.g. cross section, angular distribution etc)

Encoding the particle type

- **Particle**: it can be either a nucleus, hadron or elementary particle.
- A general nucleus-oriented notation is:
 Z-S-A
 (Z = atomic number, S = symbol, A = mass number)

 e.g.
 6-C-12,
 13-AL-27

 But 1: for natural isotope mixture, A = 0
 e.g.
 28-NI-0
 means natNi

 But 2: if the nucleus has isomeric states, then
 Z-S-A-X
 where
 X = M (if only 1 isomeric state exists)

 M1, M2, ... (if more point to yours)
 T (if you mean: sum of all isom. states)
- **Codes** for specific **particles** (see here) :

CODE	ТҮРЕ	CODE	ТҮРЕ	CODE	ТҮРЕ	CODE	ΤΥΡΕ
А	α	ETA	η meson	Κ	Kaon (any)	PI	Pion (any)
AN	n	G	γ (photon)	KN	K⁻	PIO	π^{0}
AP	p	HE2	² He	KP	K ⁺	PIN	π^-
D	deuteron	HE3	³Не	Ν	n	PIP	π^{*}
E	electron	HE6	⁶ He	Р	р	Т	triton

• **Codes** for groups of particles and/or playing a special role in some process (see here):

CODE	ТҮРЕ	CODE	ТҮРЕ	CODE	ТҮРЕ
AR	annihilation radiation	EC	Electron capture	LCP	light charged particle
В	Decay β	ER	evaporation residues	LF	light fragment
B+	Decay $\hat{\beta}^{+}$	FF	fission fragments	PN	Prompt neutron
B-	Decay β^-	HCP	heavy charged particle	RSD	Residual nucleus
DG	Decay y	HF	heavy fragment	SF	fragments from spontan. fission
DN	Delayed neutrons	ICE	Internal-conversion electr.	XR	X-rays

- A process can have **NO** incoming or outgoing particle. Then symbol **0** (zero) is used.
- www query form: using asterisk * means: please accept any outgoing particle

• Two nuclei in the outgoing channel

• Two / more nuclei in the outgoing channel + possible further emission of γ / n

Encoding the reaction

• **Process**: an interaction of two specific nuclei / particles with a given result (scattering included).

or

Full notation of a reaction follows the "compact notation", i.e. A(b,c)D for the process $A + b \rightarrow c + D$. It fills subfields 1-4 of the REACTION field in a given SUBENTRY.

- The process can be either specified by:
- the incoming and outgoing projectile-like fragment,
 an abbreviation of the process type.

Examples of ①:				
1-H-1(N,G)1-H-2	means	¹ Η (n, γ) ² Η	or	$p + n \rightarrow d + \gamma$
5-B-10(N,A+T)2-HE-4	means	¹ºΒ (n, α+t) ⁴He	or	$n + {}^{10}B \rightarrow \alpha + \alpha + t$

Ad ② – list of process types (see also here):

CODE	REACTION TYPE		CODE	REACTION TYPE
ABS	Absorption		PAI	Pair production (for photonuclear reactions)
EL	Elastic scattering		SCT	Total scattering (elastic + inelastic)
F	Fission		TCC	Total charge changing
FUS	Total fusion		THS	Thermal neutron scattering
INL	Inelastic scattering		TOT	Total
NON	Nonelastic (= total minu	ıs elastic)	Х	Process unspecified
Examples of	⊘:			
92-U-	235(N,F)	means	235 U + n \rightarrow	fission of ²³⁶ U
26-FE	-56(N,INL)26-FE-56	means	⁵⁶ Fe(n,n') ⁵⁶ Fe	(inelastic scattering of neutron)
28-NI	-0(P,X)11-NA-24	means	^{nat} Ni(p,X) ²⁴ Na	(production of ²⁴ Ni, possibly + anything)

• **Quantity**: is a requested physics observable.

A dictionary of quantities is enormous (see here). Here – only some basic ones.

CODE	QUANTITY	
SIG	σ	(Integrated) cross section
DA	$d\sigma/d\Omega = f(\theta)$	Differential cross section with respect to angle
DAP	$d\sigma/d\Omega = f(\theta)$	Partial differential cross section with respect to angle
		"Partial" means: a given initial state has more final states than ours.
PY/DA	dN/d Ω	Differential product yield
PY/DA/DE	d2N/dΩdE	Double differential product yield

This symbol is placed in the **subfield 6** of the REACTION field (for a given SUBENTRY).

Most usually other subfields (5, 7, 8, 9) are empty. Sometimes they report an auxiliary information, e.g. PAR in field 5 means "partial"

Examples of full REACTION field:

(92-U-235(N,F),,SIG)	means	Cross section for $^{235}U + n \rightarrow fission of {}^{236}U$
(28-NI-60(N,P)29-CU-60,,DA)	means	$d\sigma/d\Omega = f(\theta)$ for ⁶⁰ Ni(n, p) ⁶⁰ Cu reaction
(3-LI-7(3-Li-7,A)4-BE-10,PAR,DA)	means	partial $d\sigma/d\Omega = f(\theta)$ for $^{7}Li(^{7}Li, \alpha)^{10}Be$ reaction

• Example 2. Elastic scattering of n + ²⁰⁸Pb

We search for $d\sigma/d\Omega = f(\theta)$ within $E \in [10, 25]$ MeV.

Let's try "1984 R.W.Finlay+" dataset covering [20, 24] MeV. Check "Advanced plot" and click [Retrieve].

Nearly done, but we need to pinpoint the energy.

Let's take that for 20 MeV \Rightarrow select [20, 21] MeV. Now click [$d\sigma/d\Omega$ (θ)]:

- RHS : print data or run plotly2 (nicer plot)
 Btw. in plotly2's legend you can look up the datasets.
- Below the plot: plotting options (don't forget to [Repaint])

TargetPb-208Reactionn,elQuantityDA; DAPProduct□Energy from10to25MeV ✓

• Example 3. Fusion of ¹²C+ ¹⁶O

We search for $\sigma = f(E)$ within $E \in [1, 250]$ MeV.

This time let's accept all the data sets – check [All] :

RetrieveSelectedUnselectedAllOutput:X4+EXFORBibliographyPlot:Quick-plot (cross-sections)ungroup

Choose "Quick plot", then [Retrieve].

• Example 4. p+p collisions : elastic and total $\sigma = f(E)$.

Let's take all the energies. With ; more cases are accepted. Click [Submit].

Next, choose [All] and [Quick plot], then [Retrieve].

Below the plot, click [Log: Y]. Click Plotting options: [+], then unzoom Y axis.

Target 🔽	H-1
Reaction 🔽	p,EL; p,TOT
Quantity 🔽	CS
Product 🗌	
Energy fror	n 🗌 to 🗌 🔍 🗸

