Computer Tools for Nuclear Physics

Introduction to EXFOR Nuclear Database

Krzysztof Piasecki

EXFOR (EXchange FORmat, X4) - is the large database on nuclear reactions, written in a specific format.
You can retrieve (and/or plot) data on e.g. :
$\sigma \quad$ (total cross section) for a given AA and nA reaction,
$\mathrm{d} \sigma / \mathrm{d} \Omega \quad$ (angular differential cross section)
Yields and energies of Fission fragments
Gamma spectra, etc. within a given range of beam energies.
EXFOR is coordinated by IAEA, and maintained by the international network of Nuclear Reaction Data Centres (NRDC), nowadays: 13 institutes worldwide.

The service started in 1970. Since 1980 it was accessible via telnet, and since 1997 - on the web.

- Manual: interactive and in pdf.
- Papers: N. Otuka et al., "Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): Intl. Collaboration Between Nuclear Reaction Data Centres (NRDC)" Nucl. Data Sheets 120, 272 (2014), [arXiv]
V.V. Zerkin, B. Pritychenko, "The experimental nuclear reaction data (EXFOR): Extended computer database and Web retrieval system", Nuclear Instruments and Methods A 888, 31 (2018), [arXiv]
- Projectiles: (regular compilation for $E_{\text {Kin }}<1 \mathrm{GeV}$. For $E_{\text {Kin }}>1 \mathrm{GeV}$ only selected data available)
- neutrons
- \quad charged particles (thoroughly up to $A=12$)
- heavy ions $(A>12)$: selected data
- photons

EXFOR: basic nomenclature

- A basic unit is called: ENTRY.

It corresponds to one nuclear experiment, resulting in ≥ 1 literature source (paper, lab report, etc.)

- An ENTRY may carry 1 or more experimental result (or data table).

It may collect results from more than 1 collision type.
Therefore, entries are divided into SUBENTRIES, numbered in ascending order (1, 2, 3, ...)
However, subentry 1 is special. It always stores a human-readable meta info :
title, author, reference, institute, sample, detector etc.
Experimental data starts from subentry 2.

- Each entry has a unique accession number (e.g. C1582).

Original EXFOR queries and printouts are very raw. Queres are facilitated by the Web Interface .
Convenient commentaries ("interpretations") on data \oplus plotting tools are available \Rightarrow don't feel stuck by first impression :)

- One subentry carries a given reaction and given observable. It is identified in a field called REACTION . To understand this field, let's learn step by step how the basic bricks of reactions are encoded by EXFOR.
- We will learn how to specify:
- beam and target nucleus
- outgoing particle(s) (or subgroup, or total)
- type of reaction process
- physics quantity we look for (e.g. cross section, angular distribution etc)

Encoding the particle type

- Particle: it can be either a nucleus, hadron or elementary particle.

A general nucleus-oriented notation is: $\quad Z-S-A \quad(Z=$ atomic number, $S=$ symbol, $A=$ mass number $)$
e.g. 6-C-12, 13-AL-27

But 1: for natural isotope mixture, $A=0$ e.g. $28-\mathrm{NI}-0$ means ${ }^{\text {nat }} \mathrm{Ni}$
But 2: if the nucleus has isomeric states, then $Z-S-A-X \quad$ where $X=M$ (if only 1 isomeric state exists) M1, M2, ... (if more - point to yours) T (if you mean: sum of all isom. states)

- Codes for specific particles (see here) :

CODE	TYPE	CODE	TYPE	CODE	TYPE	CODE	TYPE
A	α	ETA	η meson	K	Kaon (any)	PI	Pion (any)
AN	$\frac{\alpha}{n}$	G	γ (photon)	KN	K^{-}	PIO	π^{0}
AP	\bar{p}	HE2	${ }^{2} \mathrm{He}$	KP	K^{+}	PIN	π^{-}
D	deuteron	HE3	${ }^{3} \mathrm{He}$	N	n	PIP	π^{+}
E	electron	HE6	${ }^{6} \mathrm{He}$	P	p	T	triton

- Codes for groups of particles and/or playing a special role in some process (see here):

CODE	TYPE	CODE	TYPE	CODE	TYPE
AR	annihilation radiation	EC	Electron capture	LCP	light charged particle
B	Decay β	ER	evaporation residues	LF	light fragment
B+	Decay β^{+}	FF	fission fragments	PN	Prompt neutron
B-	Decay β^{-}	HCP	heavy charged particle	RSD	Residual nucleus
DG	Decay γ	HF	heavy fragment	SF	fragments from spontan. fission
DN	Delayed neutrons	ICE	Internal-conversion electr.	XR	X-rays

- A process can have NO incoming or outgoing particle. Then symbol 0 (zero) is used.
- www query form: using asterisk * means: please accept any outgoing particle
- Two nuclei in the outgoing channel

- Two / more nuclei in the outgoing channel + possible further emission of γ / n

Encoding the reaction

- Process: an interaction of two specific nuclei / particles with a given result (scattering included).

Full notation of a reaction follows the "compact notation", i.e. $A(b, c) D$ for the process $A+b \rightarrow c+D$. It fills subfields 1-4 of the REACTION field in a given SUBENTRY.

- The process can be either specified by:
(1) the incoming and outgoing projectile-like fragment, or (2) an abbreviation of the process type.

Examples of (1):

$$
\begin{aligned}
& 1-\mathrm{H}-1(\mathrm{~N}, \mathrm{G}) 1-\mathrm{H}-2 \text { means }{ }^{1} \mathrm{H}(\mathrm{n}, \gamma)^{2} \mathrm{H} \text { or } \mathrm{p}+\mathrm{n} \rightarrow \mathrm{~d}+\gamma \\
& \text { 5-B-10 (N, A+T) 2-HE-4 } \\
& \text { means } \\
& { }^{10} \mathrm{~B}(\mathrm{n}, \alpha+\mathrm{t}){ }^{4} \mathrm{He} \\
& \text { or } n+{ }^{10} B \rightarrow \alpha+\alpha+t
\end{aligned}
$$

- Ad (2) - list of process types (see also here):

CODE	REACTION TYPE	CODE
ABS	Absorption	PAI
EL	Elastic scattering	SCT
F	Fission	TCC
FUS	Total fusion	THS
INL	Inelastic scattering	TOT
NON	Nonelastic (= total minus elastic)	X

REACTION TYPE
Pair production (for photonuclear reactions)
Total scattering (elastic + inelastic)
Total charge changing
Thermal neutron scattering
Total
Process unspecified

Examples of (2):

$92-U-235(N, F)$	means	${ }^{235} \mathrm{U}+\mathrm{n} \rightarrow$	fission of ${ }^{236} \mathrm{U}$
$26-\mathrm{FE}-56(\mathrm{~N}, \mathrm{INL}) 26-\mathrm{FE}-56$	means	${ }^{56} \mathrm{Fe}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)^{56} \mathrm{Fe}$	(inelastic scattering of neutron)
$28-\mathrm{NI}-0(\mathrm{P}, \mathrm{X}) 11-\mathrm{NA}-24$	means	${ }^{\text {nat }} \mathrm{Ni}(\mathrm{p}, \mathrm{X})^{24} \mathrm{Na}$	(production of ${ }^{24} \mathrm{Ni}$, possibly + anything)

Encoding the quantity

- Quantity: is a requested physics observable.

A dictionary of quantities is enormous (see here). Here - only some basic ones.

CODE QUANTITY
SIG σ (Integrated) cross section
DA $\quad d \sigma / d \Omega=f(\theta) \quad$ Differential cross section with respect to angle
DAP $\quad d \sigma / d \Omega=f(\theta) \quad$ Partial differential cross section with respect to angle
"Partial" means: a given initial state has more final states than ours.
Differential product yield
Double differential product yield

This symbol is placed in the subfield 6 of the REACTION field (for a given SUBENTRY).
Most usually other subfields (5, 7, 8, 9) are empty.
Sometimes they report an auxiliary information, e.g. PAR in field 5 means "partial"

- Examples of full REACTION field:

$(92-U-235(N, F)$, SIG $)$	means	Cross section for ${ }^{235} \mathrm{U}+\mathrm{n} \rightarrow$ fission of ${ }^{236} \mathrm{U}$
$(28-\mathrm{NI}-60(\mathrm{~N}, \mathrm{P}) 29-\mathrm{CU}-26, \mathrm{DA})$	means	$\mathrm{d} \sigma / \mathrm{d} \Omega=\mathrm{f}(\theta)$ for ${ }^{60} \mathrm{Ni}(\mathrm{n}, \mathrm{p}){ }^{60} \mathrm{Cu}$ reaction
$(3-\mathrm{LI}-7(3-\mathrm{Li}-7, \mathrm{~A}) 4-\mathrm{BE}-10, \mathrm{PAR}, \mathrm{DA})$	means	partial $\mathrm{d} \sigma / \mathrm{d} \Omega=\mathrm{f}(\theta)$ for ${ }^{7} \mathrm{Li}\left({ }^{7} \mathrm{Li}, \alpha\right){ }^{10} \mathrm{Be}$ reaction

Web interface: examples of querying

EXFOR web interface: [HERE].

- Example 1. $\quad \gamma+{ }^{208} \mathrm{~Pb} \rightarrow$ Anything

We search for $\sigma=f(E)$ within $E \in[1,25] \mathrm{MeV}$.
Caution: within interface, CS instead SIG!
Now, click [Submit].

Data Selection
 Retrieve OSelected OUnselected O All Reset \square in new Window Output: \square X4+ \boxtimes EXFOR \quad Bibliography \square TAB \square C4 \square PlotC4 Plot? \square Quick-plot (cross-sections) \square ungroup /product: $\square \square$ Advanced plot
 ```-3) i) P 82-PB-208(G,N) 82-PB-207,,SIG,,BRS Q(keV)=-7367.867 C4:MF=3 MT=?```
 Quantity: [CS] Cross section
 Energies [eV]
 No. of points in dataset

 Now, click [Retrieve].
 You should get this plot:

[^0]Below the plot: plotting options. You can click [+] to enhance. Click [Repaint] to update the plot.

At the RHS, find out this:

Web interface: examples of querying

- Example 2. Elastic scattering of $\mathrm{n}+{ }^{208} \mathrm{~Pb}$

We search for $d \sigma / d \Omega=f(\theta)$ within $E \in[10,25] \mathrm{MeV}$.
Let's try "1984 R.W.Finlay+" dataset covering [20, 24] MeV. Check "Advanced plot" and click [Retrieve].

Target \downarrow	Pb-208		
Reaction \downarrow	n, el		
Quantity \downarrow	DA; DAP		
Product \square			
Energy from	- 10	to $\downarrow 25$	MeV \checkmark

Nearly done, but we need to pinpoint the energy.
Let's take that for $20 \mathrm{MeV} \Rightarrow$ select $[20,21] \mathrm{MeV}$. Now click [dб/d $\Omega(\theta)]$:

Web interface: examples of querying

- Example 3. Fusion of ${ }^{12} \mathrm{C}+{ }^{16} \mathrm{O}$

We search for $\sigma=f(E)$ within $E \in[1,250] \mathrm{MeV}$.
This time let's accept all the data sets - check [AII] :
Retrieve \bigcirc Selected OUnselected OAll
Output: $\checkmark \times 4+\square$ EXFOR \quad Bibliography
Plot: \square Quick-plot (cross-sections) \square ungroup

Choose "Quick plot", then [Retrieve].
6-C-12(8-0-16, FUS)
EXFOR Request: 6760/1, 2022-Aug-16 17:08:35

Notice: plotly2 offers an informative legend (colors are bug-free wrt quick plot)

Web interface: examples of querying

- Example 4. $p+p$ collisions: elastic and total $\sigma=f(E)$.

Let's take all the energies. With ; more cases are accepted. Click [Submit].

Next, choose [All] and [Quick plot] , then [Retrieve].

Target \downarrow	H-1			
Reaction \downarrow	p,EL; p,TOT			
Quantity \downarrow	CS			
Product \square				
Energy from	\square	to \square		

Below the plot, click [Log: Y]. Click Plotting options: [+], then unzoom Y axis.

For comparison: $\sigma=f(\sqrt{ } s)$ from PDG . $\sqrt{s_{N N}}=\sqrt{2 m_{N}\left(2 m_{n}+T_{B}\right)}$

[^0]: ncident Enorgy (MoUl)

