Calculators of two-body kinematics

Krzysztof Piasecki
[NRV] I. Zagrebaev et al. , JINR Dubna
[LISE++] O.B Tarasov, D. Bazin , MSU East Lansing

Scattering and reactions of two nuclei (lower energies)

- Two nuclei in the outgoing channel

- Two / more nuclei in the outgoing channel + possible further emission of γ / n

Some facts on non-relativistic kinematics of elastic collision

- The beam nucleus A_{1} is accelerated to kinetic energy $T_{\text {Beam }}$ and hits the stationary target nucleus A_{2}.
In, Lab

Out, CM

- If the scattering or collision is elastic, $A_{3}=A_{1}$ and $A_{2}=A_{4}$. Applying E and p conservation laws gives:

$$
\begin{aligned}
T_{3}^{L a b} & =T_{\text {Beam }} \frac{\left(A_{1}+A_{2} \cos \theta^{C M}\right)^{2}+\left(A_{2} \sin \theta^{C M}\right)^{2}}{\left(A_{1}+A_{2}\right)^{2}} & \text { where } & \tan \theta^{L a b}
\end{aligned}=\frac{\sin \theta^{C M}}{\cos \theta^{C M}+\frac{A_{1}}{A_{2}}}
$$

- Caution: if $A_{1}>A_{2}$, then:

1) one $\theta^{\text {Lab }}$ is realized by two θ^{CM}
2) $\theta^{\text {tab }}$ has an upper limit.

This situation is called reverse kinematics.

Heat of reaction Q

- Energy balance for a two-body process (not necessarily elastic one), in the CM frame:

Input channel Output channel

- Imagine a specific output channel (nuclei of masses m_{3}, m_{4} in excited states of energies $\epsilon_{3}^{*}, \epsilon_{4}^{*}$).

Can this reaction undergo freely? Does it release (kinetic) energy spontaneously?
Or should energy be pumped (via beam kinetic energy) ?

- Heat of reaction, Q:

$$
\begin{aligned}
& Q \stackrel{d f}{=}\left(m_{1}+m_{2}\right)-\left(m_{3}+m_{4}\right)-\left(\epsilon_{3}^{*}+\epsilon_{4}^{*}\right) \\
& Q \stackrel{\text { numerically }}{=} T_{3}^{C M}+T_{4}^{C M}-T_{\text {Beam }}
\end{aligned}
$$

If $Q \geq 0$, this process can occur spontaneously
If $Q<0$, it cannot. We must supply this amount of energy (via beam kinetic energy)
If the collision is elastic, then $Q=0$.

- Nuclear Reactions Video by V. Zagrebaev's group @ JINR Dubna around 1999.

It is a "low-energy knowledge base" with nuclide chart, data on nuclei, nuclear processes, kinematics calculator.
Flagship paper: A.V. Karpov et al., "NRV web of knowledge base on low-energy nuclear physics",
Nuclear Instruments and Methods A 859, 112 (2017)

- Nuclear properties - chart of nuclides. Data for each nuclide: binding energies, deformations, excited states (E, spins) and decay properties (BR, Q-values).
- Systematics - provide graphs of: separation / binding energy, size, half-life, deformation, fission barriers as function of $\mathrm{A} / \mathrm{Z} / \mathrm{N}$ for a selected one of these values.
- Kinematics calculator - provides translations between energies and emission angles of nuclei emitted in 2-body nuclear collisions:
- elastic scattering (from Coulomb or nuclear interaction)
- inelastic scattering (with excitation of any of nuclei; via Coulomb or nuclear forces)
- transfer of some nucleons between nuclei during the collision
(*) On NPD training computer, type:
(1) cp -r ~kpiasecki/soft/nrv/ctnp/*.
(2)./run.sh
 touch each other

[^0]Save data as ASCII file

- LISE++ by O.B Tarasov and D. Bazin @ Michigan State University (MSU)

Its main goal concerns fragment separators (transmission and yields of fragments produced / collected there). However, it offers several calculators, including the Relativistic Kinematics Calculator.

WWW: https://lise.nscl.msu.edu
Papers: [2008], [2016], [2023].
Installation:

- Download: [HERE]
- NPD training computer: first install on your account:
(1) mkdir lise; cd lise
(2) $\mathrm{cp} \sim$ kpiasecki/soft/lise++/ctnp/lise_setup.sh
(3) ./lise_setup.sh

Then run using wine:
(4) nice wine ./LISE++.exe

- Instructions on Relativistic Kinematics calculator:
[HERE] and [HERE]
- How to open Calculator:
- From the upper toolbar, choose:

- Different types of processes:

Scattering: $A+B \rightarrow A+B$, nuclear convention: $B(A, A) B$
Two body: $A+B \rightarrow C+D$, nuclear convention: $B(A, C) D$
Breakup (fission) , but also: decay.
Understood as „spontaneous" process, i.e. symbol x means none. Either fission of nucleus ($A \rightarrow B C$), or decay from excited state ($A^{*} \rightarrow B C$)
\(\left[\begin{array}{ll}Reactions

TWO BODY \& \mathrm{B}(\mathrm{A}, \mathrm{C}) \mathrm{D}

SCATTERING \& \mathrm{B}(\mathrm{A}, \mathrm{C}=\mathrm{A}) \mathrm{D}=\mathrm{B}\end{array}\right]\)| BREAKUP
 (FISSION) |
| :--- |
| $\mathrm{x}(\mathrm{A}, \mathrm{C}, \mathrm{D}) \mathrm{x}$
 (or y -emission) |

- Different types of beam:

- Target has thickness
\Rightarrow substrates and products lose energy.
Lise needs to be told, where in the target the reaction occurs.

Also, if energy of products should be given just after reaction, or after crossing the target.
\square

LISE

Relativistic Kinematics Calculator

- Example
${ }^{24} \mathrm{Mg}+{ }^{90} \mathrm{Zr} \rightarrow{ }^{22} \mathrm{Mg}+{ }^{92} \mathrm{Zr}$
$T_{\text {Beam }}=30 \mathrm{~A} \mathrm{MeV}$
Target thickness: $1.5 \mu \mathrm{~m}$
Reaction: mid-target

	LAB		CM		pps
Counting in monitor $=$	1.61e-01	$2.42 \mathrm{e}-01$			
Differential Cross Section $=$	142.547	214.689	100	100	$\mathrm{mb} / \mathrm{sr}$
Energy after reaction =	28.288	0.8988	20.2076	1.170	MeV/u**
Energy at det.entrance $=$	28.239	0.6427			MeV for y)

Reaction's Kinematics

${ }^{24} \mathrm{Mg}+{ }^{90} \mathrm{Zr} \rightarrow{ }^{22} \mathrm{Mg}+{ }^{92} \mathrm{Zr}$ or ${ }^{90} \mathrm{Zr}\left({ }^{24} \mathrm{Mg},{ }^{22} \mathrm{Mg}\right){ }^{92} \mathrm{Zr}$; Reaction at the "middle" of the target
Projectile Energy at the reaction place: $29.97 \mathrm{MeV} / \mathrm{u} ; \quad$ Grazing angle: $\mathrm{CMS}=6.65 \mathrm{deg} ; \quad \mathrm{Lab}=5.27 \mathrm{deg}$
$Q_{\text {reaction }}:-13.85 \mathrm{MeV}$ (Excitations $0.0+0.0 \rightarrow 0.0+0.0$); Plotted Energy option is "after reaction"

[^0]: Grazing collision ${ }^{(44], \mathrm{p} .7)}: \theta_{\mathrm{gr}}(\mathrm{cm}) \approx 143.3 \mathrm{deg}, \theta_{\mathrm{gr}}(\mathrm{lab}) \approx 131.9 \mathrm{deg}, \mathrm{b}_{\mathrm{gr}} \approx 1.7 \mathrm{fm}, \mathrm{L}_{\mathrm{gr}} \approx 13 \mathrm{\hbar}$

