

 \boxtimes

NUCLEAR PHYSICS DIVISION UNIVERSITY OF WARSAW

Calculators of two-body kinematics

Krzysztof Piasecki

[NRV] [LISE++] I. Zagrebaev et al. , JINR Dubna O.B Tarasov, D. Bazin , MSU East Lansing • Two nuclei in the outgoing channel

• Two / more nuclei in the outgoing channel + possible further emission of γ / n

Some facts on non-relativistic kinematics of elastic collision

• The beam nucleus A_1 is accelerated to kinetic energy T_{Beam} and hits the stationary target nucleus A_2 .

• If the scattering or collision is elastic, $A_3 = A_1$ and $A_2 = A_4$. Applying *E* and *p* conservation laws gives:

$$T_{3}^{Lab} = T_{Beam} \frac{\left(A_{1} + A_{2}\cos\theta^{CM}\right)^{2} + \left(A_{2}\sin\theta^{CM}\right)^{2}}{\left(A_{1} + A_{2}\right)^{2}} \quad \text{where} \quad \tan\theta^{Lab} = \frac{\sin\theta^{CM}}{\cos\theta^{CM} + \frac{A_{1}}{A_{2}}}$$
$$T_{4}^{Lab} = T_{Beam} \frac{A_{1}A_{2}}{\left(A_{1} + A_{2}\right)^{2}} \left(2\sin\phi^{Lab}\right)^{2} \qquad \phi^{Lab} = \frac{\pi}{2} - \frac{\phi^{CM}}{2}$$

- **Caution**: if $A_1 > A_2$, then:
 - 1) one θ^{Lab} is realized by two θ^{CM}
 - 2) θ^{Lab} has an upper limit.

This situation is called reverse kinematics.

• **Energy balance** for a two-body process (not necessarily elastic one), in the CM frame:

• Imagine a specific output channel (nuclei of masses m_3 , m_4 in excited states of energies ϵ_3^* , ϵ_4^*). Can this reaction undergo freely? Does it release (kinetic) energy spontaneously? Or should energy be pumped (via beam kinetic energy) ?

• Heat of reaction, Q:

$$Q \stackrel{df}{=} (m_1 + m_2) - (m_3 + m_4) - (\epsilon_3^* + \epsilon_4^*)$$

$$Q \stackrel{numerically}{=} T_3^{CM} + T_4^{CM} - T_{Beam}$$

If $Q \ge 0$, this process can occur spontaneously

If Q < 0, it cannot. We must supply this amount of energy (via beam kinetic energy)

If the collision is elastic, then Q = 0.

Package for nuclear data and low-energy collisions

• Nuclear Reactions Video by V. Zagrebaev's group @ JINR Dubna around 1999.

It is a "low-energy knowledge base" with nuclide chart, data on nuclei, nuclear processes, kinematics calculator.

Flagship paper: A.V. Karpov *et al.*, "NRV web of knowledge base on low-energy nuclear physics", Nuclear Instruments and Methods A 859, 112 (2017)

- Nuclear properties chart of nuclides. Data for each nuclide: binding energies, deformations, excited states (E, spins) and decay properties (BR, Q-values).
- Systematics provide graphs of: separation / binding energy, size, half-life, deformation, fission barriers as function of A / Z / N for a selected one of these values.
- Kinematics calculator provides translations between energies and emission angles of nuclei emitted in 2-body nuclear collisions:
 - elastic scattering (from Coulomb or nuclear interaction)
 - inelastic scattering (with excitation of any of nuclei; via Coulomb or nuclear forces)
 - transfer of some nucleons between nuclei during the collision

(*) On NPD training computer, type: ① cp -r ~kpiasecki/soft/nrv/ctnp/* . ② ./run.sh

Two-body kinematics: user interface

• **LISE++** by O.B Tarasov and D. Bazin @ Michigan State University (MSU)

Its main goal concerns **fragment separators** (transmission and yields of fragments produced / collected there). However, it offers several calculators, including the **Relativistic Kinematics Calculator**.

- WWW: https://lise.nscl.msu.edu
- Papers: [2008], [2016], [2023].

Installation:

- Download: [HERE]
- NPD training computer: first install on your account:
 - ① mkdir lise; cd lise
 - ② cp ~kpiasecki/soft/lise++/ctnp/lise_setup.sh .
 - ③ ./lise_setup.sh

Then run using wine:

④ nice wine ./LISE++.exe

Relativistic kinematics calculator

- Instructions on Relativistic Kinematics calculator:
- How to open Calculator:

LIS

- From the upper toolbar, choose:
- Different types of processes:

Scattering: $A + B \rightarrow A + B$, nuclear convention: B (A, A) B

Two body: $A + B \rightarrow C + D$, nuclear convention: B (A, C) D

Breakup (fission), but also: decay.

Understood as "spontaneous" process, i.e. symbol x means none. Either fission of nucleus (A \rightarrow B C), or decay from excited state (A* \rightarrow B C)

- Reactions	
O TWO BODY	B (A, C) D
• SCATTERING	B (A, C=A) D=B
O BREAKUP (FISSION)	x (A, C D) x (or γ-emission)

Different types of beam :	Beam Heavy ion	O Neutron	🔵 Gamma		
Target has thickness ⇒ substrates and products los	se energy.	Reaction takes place at the target -	Middle) Exit	
Lise needs to be told, where in the target the reaction	on occurs.	For Kinematic Plots use energy va	lues —		
Also, if energy of products should be given just after reaction, or after crossing the target.		at entrance of detectors			

[HERE] and [HERE]

LISE

Relativistic Kinematics Calculator

 $^{24}Mg + ^{90}Zr \rightarrow ^{22}Mg + ^{92}Zr$ $T_{\text{Beam}} = 30 \text{A MeV}$ Target thickness: 1.5 μm Reaction: mid-target

Click Name to save data into text file.