

Computer Tools for Nuclear Physics

Databases of photon- and hadron-induced reactions:

XCOM, SAID, NN-OnLine, PDG Rev. Part. Phys.

Krzysztof Piasecki

- **XCOM** program for photon + medium processes. Photon $\in \{X, y\}$. Absorber $\in \{$ nucleus/atom, compound, mixture $\}$. It gives **cross sections** (σ) and **mass attenuation coefficients** (μ_m), based on model calculations + semi-empirical formulae.
- Photon energies: 1 keV 100 GeV. Target nuclei: Z ≤ 100.

Considered effects: Rayleigh scattering, Compton scattering, photoelectric absorption, pair production in the fields of: atomic nucleus and electrons

 $rac{1}{2}$ Cross section (σ), mass attenuation coefficient (μ_m), attenuation coefficient (μ) and attenuation length (λ):

$$\sigma = \mu_m \cdot \frac{M_{mol}}{N_{Av}}$$
 $\mu_m \equiv \frac{\mu}{\rho}$ $\lambda \equiv \frac{1}{n\sigma}$ where: ρ = density

- XCOM on the web: [home page] and [search form]
- The fortran code for Dos and Unix systems can be also downloaded [here]. Linux/Unix systems: first compile the code (gfortran XCOM.f -o XCOM.exe), then run. Windows: run the executable.

XCOM – introduction

- Open the XCOM search form.
 Select the medium type: Element (photon + A), Compound (photon + molecule), Mixture (of molecules).
 Let's try Element. Click [Submit Information].
- Select an atom/nucleus \rightarrow e.g. Ni
 - Select units \rightarrow let's try barns/atom
- Graph options

- → let's choose Coherent & Incoherent Scattering + Photoelectric Absorption + Pair Producton in Nuclear and Electron Field. If you want all together, click [Total].
- \rightarrow let's choose widely: [0.001 100000] MeV.

		Scatt	ering		Pair Pro	oduction	Total A	ttenuation
Edge	(required) Photon Energy	Coherent	□ Incoherent	Photoelectric Absorption	□ In Nuclear Field	In Electron Field	With Coherent Scattering	Without Coherent Scattering
	MeV	barns/atom	barns/atom	barns/atom	barns/atom	barns/atom	barns/atom	barns/atom
	1.000E-03	4.924E+02	7.613E-01	9.600E+05	0.000E+00	0.000E+00	9.605E+05	9.600E+05
	1.004E-03	4.921E+02	7.661E-01	9.500E+05	0.000E+00	0.000E+00	9.505E+05	9.500E+05
	1.008E-03	4.919E+02	7.709E-01	9.406E+05	0.000E+00	0.000E+00	9.411E+05	9.406E+05
28 L ₁	1.008E-03	4.919E+02	7.709E-01	1.071E+06	0.000E+00	0.000E+00	1.071E+06	1.071E+06
	1.500E-03	4.640E+02	1.355E+00	4.122E+05	0.000E+00	0.000E+00	4.127E+05	4.122E+05
	2.000E-03	4.334E+02	1.910E+00	1.992E+05	0.000E+00	0.000E+00	1.996E+05	1.992E+05

You can download the data (txt), specifying the effect(s). You should get:

Photon
EnergyCoherent Incoher. Photoel. Nuclear
Scatter. Scatter. Absorb. Pr. Prd. Pr. Prd.1.000E-034.924E+027.613E-019.600E+050.000E+000.000E+001.004E-034.921E+027.661E-019.500E+050.000E+000.000E+001.008E-034.919E+027.709E-019.406E+050.000E+000.000E+001.008E-034.919E+027.709E-011.071E+060.000E+000.000E+00

 SAID (Scattering Analysis Interactive Dialin) – database of experimental and model parameters on specific processes involving hadrons @ low and intermediate energies:

pp o pp ,	$np \rightarrow np$	(NN elastic scattering)
$\pi^{\pm} p ightarrow \pi^{\pm} p$,	$\pi^- p \rightarrow \pi^0 n$	(pion-induced elastic scattering)
$\pi^{\pm}p ightarrow\pi^{\pm}\pi^{0}p$,	$\pi^{\pm} p \rightarrow \pi^{+} \pi^{-} n$	($\pi\pi$ production)
$K^{\scriptscriptstyle +}p ightarrow K^{\scriptscriptstyle +}p$,	$K^+ d \rightarrow K^+ d$, $K^+ d \rightarrow K^+ p n$, $K^0_L p \rightarrow K^+ n$	(K-induced elastic, breakup, charge-exchange)
$\gammaN ightarrow\pi^{0}N$,	$\gamma p \rightarrow \pi^{+} n$, $\gamma n \rightarrow \pi^{-} p$, $\pi^{-} p \rightarrow \gamma N$	(photoproduction of pions & inverse)
$\gamma N o K^{\scriptscriptstyle +} \Lambda$,	$ ightarrow {\sf K}^+ \Sigma^0$, $ ightarrow {\sf K}^0 \Sigma^+$	(photoproduction of kaons and hyperons)
$\gamma N ightarrow \eta N$,	$\rightarrow \eta' N$	(photoproduction of η and η' mesons)
$e^{-}N \rightarrow e^{\prime}N \pi^{0}$,	$e^{-}p \rightarrow e' n \pi^{+}$, $e^{-}n \rightarrow e' p \pi^{-}$	(electroproduction of pions)
$\pi^{\pm}d o\pi^{\pm}d$,	$\pi^+ d \rightarrow p p$	(πd elastic scattering and pp production)

- You can extract differential cross section: $d\sigma/d\Omega = f(\theta)$ at fixed T_{Beam} or $d\sigma/d\Omega = f(T_{\text{Beam}})$ at fixed θ . Sometimes also integrated cross section (σ). The unit is mb/sr (or mb). Often many scattering-specific observables are available. They will not be covered in this tutorial.
- The data are experimental and theoretical. For model description: **PWA** (Plane-Wave Analysis).
- You get: plot, tabularized printout, reference list.
- SAID web interface: [here]

Talk on SAID: [here]

• Platform started in 1980s, now offers several hundred thousands data points.

SAID – how to plot and print the data

- Open the SAID web interface.
- Menue "Partial-Wave Analyses at GW" :
 - \rightarrow select the reaction family you need (e.g. Nucleon-Nucleon).
- Submenue: Analysis Options (most basic options)
 Data Base = Listing of references
 Observables = Plots and data printout [click it]
- "Give Predictions for Observables"
 We focus on exp data itself, so choose any model.
- You will always see default suggestions.
 If you just start training, start from these defaults.
- "Choose a Reaction type" \rightarrow e.g. PP "Isospin Components (0 and 1)" \rightarrow (applicable to NP only). If not clicked, you mean total σ .
- "Choose Observable ... Enter one of the above observable types: " \rightarrow We'll first search for d σ /d Ω , so type DSG.
- "Enter independent variable"
- "Enter fixed variable"
- Then click [Start].

Partial-Wave Analyses at GW [See Instructions] Pion-Nucleon Pi-Pi-N Kaon(+)-Nucleon Nucleon-Nucleon Pion Photoproduction Pion Electroproduction Kaon Photoproduction Eta Photoproduction Eta-Prime Photoproduction Pion-Deuteron (elastic) Pion-Deuteron to Proton+Proton

\bigcirc Acm	○ Alab	Tlab	\bigcirc Plab	\bigcirc Wcm
▲	≜			▲
θ_{CM}	θ_{Lab}			Defunct?

SAID – how to plot and print the data

Plotted data is for TLAB= 204.00 to TLAB= 210.00 PP DSG TLAB= 200.00 UN-Normalized You should obtain such a plot: 5 5.56 △ - RY[71] ◆ - KO[61] - Curve: model predictions (based on PWA). - **Points**: we see 2 series of data points. Why? Below the plot you can find the data printout: - model prediction of $d\sigma/d\Omega$ [mb/sr] = f(θ_{CM} [°]) experimental data sets We see that 2 datasets were found within our specified energy range (\Rightarrow 2 series of points). 0.00 You may return to prev. page and limit the scope. 0.0 180.0 (deg 8/17/22 SM16 0-3.0 GEV PP=50276/25348 NP=22832/12938 RAA [147] 5/ NN091 Nucleon-Nucleon 05/09 Arndt[NIJM] 11/07/21 SM16 0-3.0 GEV PP=50276/25348 NP=22832/12938 RAA (147) 5/03/07 PP DSG at TLAB= 200.00 8/17/22 **Model predictions** 5 ACM Obs,Err DSG(cm) A(lab) A(cm) Err DSG(lab) 0.0000E+00 0.000 0.5558E+01 0.00 0.2460E+02 10.000 0.3796E+01 0.0000E+00 4.75 0.1672E+02 20.000 0.3604E+01 0.0000E+00 9.52 0.1564E+02 . . . T =204.000 Nd= 3 RY(71) PPA RYAN, PRD3, 1(71) RsF= 1.000 52.66 0.37200E+01 0.23000E+00 **Experimental data** 69.87 0.28900E+01 0.25000E+00 E. 85.30 0.38900E+01 0.19000E+00 T= 210.000 Nd= 7 KO(61) ROCH KONRADI, THESIS(61) RsF= 1.000 30.00 0.37000E+01 0.40000E-01 40.00 0.37300E+01 0.40000E-01 . . .

SAID – integrated cross section

- **b** Let's hunt for **integrated cross section** (σ) of: **elastic scattering**, **reaction** ("**inelastic**") and **total** (elastic + reaction)
- Open the SAID web interface.
 Menue "Partial-Wave Analyses at GW" → select again Nucleon-Nucleon.
 Submenue "Analysis options" → select "Observables"
- Choose a Reaction type" → select PP "Isospin Components (0 and 1)" → don't click
- Choose Observable ... Enter one of the above observable types: "
 → for elastic scattering type SGTE. → For reaction type SGTR. → for Total (elastic + inelastic) type SGT.
- "Enter independent variable" \rightarrow select Tlab. Below, set range [0, 100, 5000] MeV.
 - " "Enter fixed variable" \rightarrow select Acm, and value to 0. Also, set range to [0, 0].
- Then click [Start].

NN-OnLine – database of experimental and model parameters on specific processes involving hadrons @ low and intermediate energies $T_{\text{Beam}} \sim 1 \text{ MeV} - \text{few GeV}$.

 $\begin{array}{ll} pp \rightarrow pp &, np \rightarrow np \\ \Lambda p \,, \, \Sigma^{+}p \,, \, \Sigma^{-}p \,, \, \Xi^{0}p \,, \, \Xi^{-}p \end{array} \begin{array}{ll} \text{(NN: } d\sigma/d\Omega \text{ of elastic scattering and } \sigma \text{ of total interaction}). \\ \text{(YN: elastic scattering and reactions)} \end{array}$

For NN elastic scattering you can get plots & printout on exp. differential cross section, $d\sigma/d\Omega = f(\theta)$ at fixed T_{beam} .

For NN, and YN (hyperon $Y \in [\Lambda, \Sigma, \Xi]$) you can get exp. integrated cross sections (σ) – only as tabularized data. Many other scattering-specific observables are available. They are not covered in this tutorial.

Many variants of model description. This topic is also not covered here.

NN-OnLine web interface: [here].

Papers on theoretical models describing the exp. data: [here]

• Platform was launched in 1994.

NN OnLine – NN elastic scattering $d\sigma/d\Omega$

- Open the NN-OnLine web interface.
- From left menue click "NN interaction" :
 right to "Experimental NN scattering data" click "Browse the NN database"
- Reaction \rightarrow let's try "proton-proton".
- Energy of the incoming particle: \rightarrow try widely, $T_{Lab} \in [0.001 5000]$ MeV
- Observable: \rightarrow for differential cross section $(d\sigma/d\Omega = f(\theta))$ at fixed T_{beam} choose DSG.
- Then click [Start]. You'll get a listing of data sets at increasing T_{Lab} range, with entries like this:

0.29976 - 0.40679 MeV

DO97 H. Dombrowski *et al.*, Nucl. Phys. **A619** (1997), 97-118 (*Muenster*) **14 DSG** data at 90.0 degrees (*)

NN OnLine – integrated total cross sections

\$	Open NN-OnLine. From menue cli \rightarrow right to "Experimental NN sca	ck "N tteri	IN interaction" : ng data" click "Browse the NN database"
	Reaction	\rightarrow	let's try "neutron-proton".
	Energy of the incoming particle:	\rightarrow	try widely, $T_{Lab} \in [0.001 - 5000]$ MeV
	Observable:	\rightarrow	for total integrated cross section (elastic+inelastic; σ_{TOT}) choose SGT.
	Then click [Start]. You'll get a listing of data sets at increasing T _{Lab} range, with entries like		0.00197 - 0.143 MeV
а			this: KO90 L. Koester <i>et al.</i> , Z. Phys. A 337 (1990), 341-348 2 SGT data
	Let's scroll down to [0.5 – 24.6] Me	V,	

as it contains many points. Click [425 SGT] and then [Show the data]. You'll get a list of $\sigma = f(T_{Lab})$ [mb].

► Let's explore the YN interactions. From menue click "YN interaction" → right to "Data" click "The database of YN scattering data".

Out of 5 variants { Λp , $\Sigma^+ p$, $\Sigma^- p$, $\Xi^0 p$, $\Xi^- p$ } we should pick the one we want. Let's try Λp (click " Λp scattering").

The Λp interaction can be: elastic scattering ($\Lambda p \rightarrow \Lambda p$) or reactions ($\Lambda p \rightarrow \Sigma^0 p$, $\Lambda p \rightarrow \Sigma^+ n$). Click e.g. $\Lambda p \rightarrow \Sigma^0 p$.

Under "Total cross section" you will find the table of [p, σ] points + references (clickable):

momentum range (MeV/c)	number of events	SGT (mb) reference
639 - 1000	3	8.5 +/- 4.9 AL61
640 - 800		8.0 +/- 4.0 HA77
650 - 700		2.8 +/- 2.0 KA71
660 - 4000	11	1.5 +/- 0.5 CH70
700 - 800		7.5 +/- 2.5 KA71

PDG (Particle Data Group) Review of Particle Physics is the basic reference for properties of particles (fundamental and hadrons) like: mass, lifetime etc.

It contains **cross sections** = *f* (energy / momentum) for "**total elastic**" and "**total collision**" processes up to **very high energies** (through LHC and beyond, from cosmic particles).

Collisions enlisted:

pp, np, pd, \overline{p} p, \overline{n} p, \overline{p} d π^{\pm} p, π^{\pm} d, Σ^{-} p K[±]p, K[±]n, K[±]d γ p, γ d, $\gamma\gamma$

The current edition is always at **pdg.lbl.gov**. But let's go the previous one, [here]. Click [Reviews, Tables, Plots] and further [Kinematics, Cross-Section Formulae, and Plots]. On the [Plots of cross sections and related quantities (rev.)] click [interactive version].

Here, find the pair of particles of your interest. You will get $\sigma = f(energy/momentum)$ as: [PDF] = static plots in pdf or [Data] = tabularized data points.

Quantities and units: p_{Lab} [GeV/c] of beam in stationary target exp. \sqrt{s} [GeV] = available energy in the CM frame.

• Let's take the pp and $\overline{p}p$ cross sections and check the pdf plots and data:

